Banking System Fragility and Resolution Costs

Jason Allen, Robert Clark, Brent Hickman & Eric Richert

Workshop on Banking and Financial Stability at the Central Bank of Chile

September 12, 2024

- $\bullet\,$ U.S. has many banks (> 4800), and occasionally some become insolvent
 - $\bullet\,$ During the Great Financial Crisis (GFC) ${\bf 510}$ banks failed in the US
 - □ Combined assets of over \$700 billion

- $\bullet\,$ U.S. has many banks (> 4800), and occasionally some become insolvent
 - During the Great Financial Crisis (GFC) 510 banks failed in the US
 - □ Combined assets of over \$700 billion
- The FDIC resolves insolvent institutions:

- $\bullet\,$ U.S. has many banks (> 4800), and occasionally some become insolvent
 - During the Great Financial Crisis (GFC) 510 banks failed in the US
 - $\hfill\square$ Combined assets of over \$700 billion
- The FDIC resolves insolvent institutions: put up for auction

- $\bullet\,$ U.S. has many banks (> 4800), and occasionally some become insolvent
 - $\bullet\,$ During the Great Financial Crisis (GFC) 510 banks failed in the US
 - $\hfill\square$ Combined assets of over \$700 billion
- The FDIC resolves insolvent institutions: put up for auction
- It typically loses money on these transactions

- U.S. has many banks (> 4800), and occasionally some become insolvent
 - During the Great Financial Crisis (GFC) 510 banks failed in the US
 - Combined assets of over \$700 billion
- The FDIC resolves insolvent institutions: put up for auction
- It typically **loses money** on these transactions
 - Cost to *Deposit Insurance Fund* during GFC was over \$90 billion (25% of failed bank assets)
 - Resulting deficit (-\$20.9 billion) covered by:
 - (i) borrowing from the U.S. Treasury
 - (ii) increasing assessment rates
 - Generates **distortions** & affects lending when the system is in turmoil

Motivation

Many failures are clustered together in crises

• Potential buyers may be less able to pay, increasing resolution costs

Monetary Tightening Crisis Spring 2023

- March 10, 2023 Silicon Valley Bank (SVB) closed by its regulator
 - One of the largest failures ever
 - $\hfill \$211$ billion in assets, estimated resolution cost: \$20 billion
 - \bullet Why? short-term funding invested in long-term bonds + rate \uparrow

Monetary Tightening Crisis Spring 2023

- March 10, 2023 Silicon Valley Bank (SVB) closed by its regulator
 - One of the largest failures ever
 - □ \$211 billion in assets, estimated resolution cost: \$20 billion
 - \bullet Why? short-term funding invested in long-term bonds + rate \uparrow
- Subsequent failures including:
 - Signature Bank:
 - □ \$110 billion in assets, estimated resolution cost \$2.5 billion
 - First Republic Bank:
 - □ \$212 billion in assets, estimated resolution cost \$13 billion

Monetary Tightening Crisis Spring 2023

- March 10, 2023 Silicon Valley Bank (SVB) closed by its regulator
 - One of the largest failures ever
 - □ \$211 billion in assets, estimated resolution cost: \$20 billion
 - \bullet Why? short-term funding invested in long-term bonds + rate \uparrow
- Subsequent failures including:
 - Signature Bank:
 - □ \$110 billion in assets, estimated resolution cost \$2.5 billion
 - First Republic Bank:
 - $\hfill \$212$ billion in assets, estimated resolution cost \\$13 billion
- Concern in Spring 2023: Many other banks might be at-risk too!

- Question: How costly might this, or any future crisis be?
 - How do macroeconomic conditions influence composition of failures, eligible/actual buyers, & total costs?

- Question: How costly might this, or any future crisis be?
 - How do macroeconomic conditions influence composition of failures, eligible/actual buyers, & total costs?
- Contribution:

Provide a framework for stress-testing the FDIC's Deposit Insurance Fund

- Question: How costly might this, or any future crisis be?
 - How do macroeconomic conditions influence composition of failures, eligible/actual buyers, & total costs?
- Contribution:

Provide a framework for stress-testing the FDIC's Deposit Insurance Fund

Identify *at-risk* banks

□ For 2023 crisis, identify banks at risk of uninsured run following Jiang et al. (2023)

- Question: How costly might this, or any future crisis be?
 - How do macroeconomic conditions influence composition of failures, eligible/actual buyers, & total costs?
- Contribution:

Provide a framework for stress-testing the FDIC's Deposit Insurance Fund

- Identify at-risk banks
 - □ For 2023 crisis, identify banks at risk of uninsured run following Jiang et al. (2023)
- Structurally estimate costs to FDIC of resolving at-risk banks
 - $\hfill\square$ Use FDIC data on bank failures during GFC
 - □ Value distributions estimated with methodology of Allen et al. (ReStud 2023)
 - □ Extend to model entry process that endogenously determines the number of bidders

- Question: How costly might this, or any future crisis be?
 - How do macroeconomic conditions influence composition of failures, eligible/actual buyers, & total costs?
- Contribution:

Provide a framework for stress-testing the FDIC's Deposit Insurance Fund

- Identify at-risk banks
 - □ For 2023 crisis, identify banks at risk of uninsured run following Jiang et al. (2023)
- Structurally estimate costs to FDIC of resolving at-risk banks
 - $\hfill\square$ Use FDIC data on bank failures during GFC
 - □ Value distributions estimated with methodology of Allen et al. (ReStud 2023)
 - Extend to model entry process that endogenously determines the number of bidders
- Simulate impact of different eligibility criteria and/or macroeconomic shocks
 Increase competition by removing size and health restrictions

Banking crises

Empirical exercise and preview of results

- Validate our approach using failures from 2017-2023 (for which costs/format are known)
 - Predicted average loss of 17.92% of failed bank assets
 - Actual average loss of 19.81%

Empirical exercise and preview of results

- Validate our approach using failures from 2017-2023 (for which costs/format are known)
 - Predicted average loss of 17.92% of failed bank assets
 - Actual average loss of 19.81%

Apply framework: evaluate resolution costs of monetary tightening / CRE crises

- Identify 185 / 247 at-risk banks using Jiang et al. (2023) approach
- Estimate total resolution cost would be over **\$105 billion** (including four actual failures)
 - Approaching the \$128 billion in the FDIC's deposit insurance fund!
 - High cost estimate largely explained by lack of competition
 - Many interested bidders constrained

Empirical exercise and preview of results

- Validate our approach using failures from 2017-2023 (for which costs/format are known)
 - Predicted average loss of 17.92% of failed bank assets
 - Actual average loss of 19.81%

Apply framework: evaluate resolution costs of monetary tightening / CRE crises

- Identify 185 / 247 at-risk banks using Jiang et al. (2023) approach
- Estimate total resolution cost would be over **\$105 billion** (including four actual failures)
 - Approaching the \$128 billion in the FDIC's deposit insurance fund!
 - High cost estimate largely explained by lack of competition
 - Many interested bidders constrained

Ounterfactuals suggest that eliminating size or health restrictions could lower these costs

• During crises resolution costs can spiral as the set of unconstrained bidders shrinks

Institutional Background

FDIC Resolution Process

- Primary resolution method: Purchase & Assumption transaction
 - Troubled institution (physical assets, investment portfolios, customer deposit accounts) auctioned off to *large* and *healthy* banks
- Procedure:
 - Bank's regulator informs the FDIC of pending failure
 - ② Can close a bank that is
 - Critically undercapitalized
 - $\hfill\square$ Assets less than obligations to creditors
 - Split determines liquidation value of bank
 - Stablishes eligible bidder list based on participation constraints
 - S A subset sign NDA to learn the basic info, get access to virtual data room (potential bidders)
 - A subset of the potential bidders become *actual bidders* by performing costly due diligence/merger valuation and submitting P&A bids
 - Ø FDIC selects least-cost bid or liquidates

FDIC Participation Constraints

• FDIC participation constraints:

- Size restrictions:
 - $\hfill\square$ Assets at least twice as large as those of failing bank
- Health restrictions, require satisfactory:
 - □ Tier 1 leverage capital ratio
 - □ CAMELS ratings
 - Compliance rating
 - Bank holding company composite rating
 - □ Community Reinvestment Act rating
 - □ Anti-money laundering record

Key features of the auction process

Bidding is multidimensional

- □ Cash (continuous)
- □ Four discrete components (loss share, partial bank, nonconforming, value appreciation instrument): 16 possible *packages*
- **②** FDIC's mandate is to resolve the failing institution at the *lowest cost*
- Algorithm for calculating the least-cost bid is proprietary
 Uncertain (from bidders' perspectives) auction-specific scoring rule
- Banks permitted to submit multiple bids in the same auction

Dataset

- Data: mostly gathered from FDIC website <- Summary State
 - Failed bank list and resolution cost
 - Full summaries for ALL bid proposals
 - $\hfill\square$ See bid proposals matched to identities of winner and low-cost loser

Dataset

- Data: mostly gathered from FDIC website
 Summary State
 - Failed bank list and resolution cost
 - Full summaries for ALL bid proposals
 - $\hfill\square$ See bid proposals matched to identities of winner and low-cost loser
- 2009-2013 Sample: 322 auctions
 - Characteristics of failed and bidding banks (SOD, Call Reports)
- 2017-2023 Sample: 20 auctions
 - Characteristics of failed banks (SOD, Call Reports)
 - Resolution costs to FDIC for 20 auctions
- Monetary tightening / CRE Samples: 185 + 62 auctions
 - Characteristics of Modern banks (SOD, Call Reports)

Framework for Forecasting Resolution Costs

Framework

• Objective: develop framework for forecasting resolution costs of failures that accounts for impact of market-wide shocks to banking industry

Framework

- Objective: develop framework for forecasting resolution costs of failures that accounts for impact of market-wide shocks to banking industry
- Challenges:
 - i. Need to determine who will bid and how much, but limited data on failures/crises
 - ii. Size of eligible bidder pool exogenously determined by macro shocks / FDIC rules
 - iii. Eligible set very large, such that most aren't seriously considering entry
 - iv. Entry / bidding endogenously adjust to market conditions

Framework

- Objective: develop framework for forecasting resolution costs of failures that accounts for impact of market-wide shocks to banking industry
- Challenges:
 - i. Need to determine who will bid and how much, but limited data on failures/crises
 - ii. Size of eligible bidder pool exogenously determined by macro shocks / FDIC rules
 - iii. Eligible set very large, such that most aren't seriously considering entry
 - iv. Entry / bidding endogenously adjust to market conditions
- Approach:
 - GFC-era data: estimate a multi-stage entry and bidding model
 - 2017-2023 data: validate model's ability to forecast actual resolution costs
 - Contemporary data: forecast resolution costs of hypothetical failure wave
 - At-risk banks: e.g., Problem-bank list or banks at risk during a modern crisis
 - Bidder-eligible banks: criteria (i) financial health, (ii) size relative to failed bank

Stage 1: Post-Failure Bank Merger Valuations – Conditional on Entry

• Structurally estimate the underlying preferences of banks for failed institutions and different components

- Model of merger valuations based on Allen et al. 2023
- Generalize existing empirical auction methods:
 - □ Setup similar to *pay-as-bid package auction*
 - □ Bids can be on any subset of packages
- Extend combinatorial auction techniques Cantillon & Pesendorfer (2007)
 - □ C&P extend Guerre, Perrigne and Vuong (2000) FOC approach to the case of package bidding for dissimilar objects
 - $\hfill\square$ We extend further to deal with uncertainty over scoring rule

Stage 1: Empirical Strategy (GPV)

- Classic techniques pioneered by Guerre, Perrigne, and Vuong (Econometrica, 2000)
- GPV setting: Single-object first price auction with N symmetric bidders, valuations v_i
- Bidder *i*'s (reduced-form) problem:

$$egin{array}{rl} \max_{b_i} \pi_i(v_i,b_i)&=&[v_i-b_i]G(b_i)\ & ext{where}\ G(b_i)=Prob(\max_{\ell
eq i}b_\ell\leq b_i)&=&Prob(b_i ext{ is the winning bid}) \end{array}$$

• Which yields the following expression for valuations in terms of observables:

$$v_i = b_i + rac{G(b_i)}{g(b_i)}$$

- This approach is more complicated in our setting:
 - Multiple first order conditions (one for each package):
 - $\hfill\square$ Hold with equality for packages bid on
 - Inequalities otherwise
 - Construction of G (prob. of winning) more complicated
 - Unknown set of asymmetric competitors
 - □ Unknown scoring rule
 - Multiple bidding own bid is in G
 - But simpler combinatorial setting than C&P:
 - □ Only one winner possible

- Failed Banks (auctions) indexed $j = 1, \dots, J$
- Bidders (healthy banks) indexed $i = 1, \ldots, N_j$
 - \Box $N_j \sim \pi(N|\boldsymbol{Z}_j)$ unobserved to individual bidders
 - \Box **Z**_j is failed bank observables

- Failed Banks (auctions) indexed $j = 1, \dots, J$
- Bidders (healthy banks) indexed $i = 1, \ldots, N_j$
 - \Box $N_j \sim \pi(N|Z_j)$ unobserved to individual bidders
 - \Box **Z**_j is failed bank observables
- Bidder *i* draws private valuation for AS-IS takeover contract: $\Box \ \overline{V}_{ii} \sim F_{\overline{V}}(\overline{V}_{ii}|\mathbf{W}_{ii}, \mathbf{Z}_{i}) \text{ (where } \mathbf{W}_{ii} \text{ is bidder observables)}$

- Failed Banks (auctions) indexed $j = 1, \dots, J$
- Bidders (healthy banks) indexed $i = 1, \ldots, N_j$
 - \square $N_j \sim \pi(N|\boldsymbol{Z}_j)$ unobserved to individual bidders
 - $\Box \mathbf{Z}_j$ is failed bank observables
- Bidder *i* draws private valuation for AS-IS takeover contract: $\Box \ \overline{V}_{ij} \sim F_{\overline{v}}(\overline{V}_{ij}|\mathbf{W}_{ij}, \mathbf{Z}_{j}) \text{ (where } \mathbf{W}_{ij} \text{ is bidder observables)}$
- Package-Specific Valuations depend on component switches:

$$\begin{aligned} \mathbf{v}_{ijk} &= \mathbf{\bar{v}}_{ij} + \mathbf{v}_{ij}^{LS} d_k^{LS} + \mathbf{v}_{ij}^{NC} d_k^{NC} + \mathbf{v}_{ij}^{PB} d_k^{PB} + \mathbf{v}_{ij}^{VAI} d_k^{VAI} + \mathbf{D}_k \mathbf{\lambda} \\ d_k^s &= \mathbf{1} \left[\text{switch } s \text{ on in } k^{th} \text{ package} \right], \ k = 1, \dots, 16 \\ \mathbf{D}_k \mathbf{\lambda} \text{ accounts for switch complementarity} \end{aligned}$$

Stage 1: Bidding behavior

• Bidders choose an optimal package portfolio L_{ii}^* , and bid profile \boldsymbol{b}_{ii}^* to solve:

$$\max_{L_{ij}} \Big\{ \max_{\boldsymbol{b}_{ij} \in \mathbb{R}^{16}} \sum_{k \in L_{ij}} (v_{ijk} - b_{ijk}) G(b_{ijk} | L_{ij}, \boldsymbol{b}_{ij}^{-k}, \boldsymbol{X}_j) \Big\}$$

$$G(b_{ijk}|L_{ij},m{b}_{ij}^{-k},m{X}_j)\equiv\Pr\left[ext{win }k^{th} ext{ package with }b_{ijk}\ \Big|\ L_{ij},\ m{b}_{ij}^{-k},m{X}_j
ight]$$

Stage 1: Bidding behavior

• Bidders choose an optimal package portfolio L_{ii}^* , and bid profile \boldsymbol{b}_{ii}^* to solve:

$$\max_{L_{ij}} \Big\{ \max_{\boldsymbol{b}_{ij} \in \mathbb{R}^{16}} \sum_{k \in L_{ij}} (\boldsymbol{v}_{ijk} - \boldsymbol{b}_{ijk}) G(\boldsymbol{b}_{ijk} | L_{ij}, \boldsymbol{b}_{ij}^{-k}, \boldsymbol{X}_j) \Big\}$$

$$G(b_{ijk}|L_{ij}, \boldsymbol{b}_{ij}^{-k}, \boldsymbol{X}_j) \equiv \Pr\left[\text{win } k^{th} \text{ package with } b_{ijk} \mid L_{ij}, \boldsymbol{b}_{ij}^{-k}, \boldsymbol{X}_j
ight]$$

• FOC (GPV inversion), for each k:

$$v_{ijk} = b_{ijk} + \frac{G(b_{ijk}|L_{ij}, \bm{b}_{ij}^{-k}, \bm{X}_j) + \sum_{\substack{k' \in L_{ij}, \, k' \neq k}} (v_{ijk'} - b_{ijk'}) \frac{\partial G(b_{ijk'}|L_{ij}, \bm{b}_{ij}^{-k}, \bm{X}_j)}{\partial b_{ijk}}}{g(b_{ijk}|L_{ij}, \bm{b}_{ij}^{-k}, \bm{X}_j)}$$

(For packages not bid on: Similar but inequality)

Model assumptions

Banking crises
- **(**) We can recover package valuations V_{ijk} using standard auction techniques
 - Estimate scoring rule, and use resampling techniques of Hortacsu & McAdams, 2010

- **(**) We can recover package valuations V_{ijk} using standard auction techniques
 - Estimate scoring rule, and use resampling techniques of Hortacsu & McAdams, 2010
- $\textbf{2} \text{ Recall that } v_{ijk} = \bar{v}_{ij} + v_{ij}^{LS} d_k^{LS} + v_{ij}^{NC} d_k^{NC} + v_{ij}^{PB} d_k^{PB} + v_{ij}^{VAI} d_k^{VAI} + \boldsymbol{D}_k \boldsymbol{\lambda}$
 - Multiple bidding means we have a panel \rightarrow interpret \overline{v}_{ij} as a bidder-auction fixed effect!

- **(**) We can recover package valuations V_{iik} using standard auction techniques
 - Estimate scoring rule, and use resampling techniques of Hortacsu & McAdams, 2010
- **2** Recall that $v_{iik} = \bar{v}_{ii} + v_{ii}^{LS} d_k^{LS} + v_{ii}^{NC} d_k^{NC} + v_{ii}^{PB} d_k^{PB} + v_{ii}^{VAI} d_k^{VAI} + \boldsymbol{D}_k \boldsymbol{\lambda}$
 - Multiple bidding means we have a panel \rightarrow interpret \overline{v}_{ii} as a bidder-auction fixed effect!
- Therefore, can separately identify/estimate: <- Estimation/Identification details 3

- Vii
- v_{ii}^s , $s \in \{LS, NC, PB, VAI\}$

- **(**) We can recover package valuations V_{iik} using standard auction techniques
 - Estimate scoring rule, and use resampling techniques of Hortacsu & McAdams, 2010
- **2** Recall that $v_{iik} = \bar{v}_{ii} + v_{ii}^{LS} d_k^{LS} + v_{ii}^{NC} d_k^{NC} + v_{ii}^{PB} d_k^{PB} + v_{ii}^{VAI} d_k^{VAI} + \boldsymbol{D}_k \boldsymbol{\lambda}$
 - Multiple bidding means we have a panel \rightarrow interpret \overline{v}_{ii} as a bidder-auction fixed effect!
- Therefore, can separately identify/estimate: <- Estimation/Identification details 3

- Vii
- v_{ii}^s , $s \in \{LS, NC, PB, VAI\}$
- Finally, we can project 4

•
$$\overline{V}_{ij} = oldsymbol{X}_{ij} oldsymbol{lpha} + e_{ij}$$

•
$$V_{ij}^s = \boldsymbol{X}_{ij} \boldsymbol{\beta}^s$$
, $s \in \{LS, NC, PB, VAI\}$

- We can recover package valuations V_{iik} using standard auction techniques
 - Estimate scoring rule, and use resampling techniques of Hortacsu & McAdams, 2010
- **2** Recall that $v_{iik} = \overline{v}_{ii} + v_{ii}^{LS} d_k^{LS} + v_{ii}^{NC} d_k^{NC} + v_{ii}^{PB} d_k^{PB} + v_{ii}^{VAI} d_k^{VAI} + \boldsymbol{D}_k \boldsymbol{\lambda}$
 - Multiple bidding means we have a panel \rightarrow interpret \overline{v}_{ii} as a bidder-auction fixed effect!
- Therefore, can separately identify/estimate: <- Estimation/Identification details (3)

- Vii
- v_{ii}^s , $s \in \{LS, NC, PB, VAI\}$
- Finally, we can project

•
$$\overline{V}_{ij} = oldsymbol{X}_{ij} oldsymbol{lpha} + e_{ij}$$

• $V_{ii}^s = \mathbf{X}_{ii}\beta^s$, $s \in \{LS, NC, PB, VAI\}$

So, with α , β we know merger valuations as functions of $X_{ii} = Z_i \otimes W_{ii}$,

• (i.e., balance-sheet info. for failed banks and bidders)

- \overline{N}_j eligible bidders for auction j, based on:
 - Balance-sheet info \boldsymbol{W}_{ij}
 - FDIC size/solvency constraints

- \overline{N}_j eligible bidders for auction j, based on:
 - Balance-sheet info \boldsymbol{W}_{ij}
 - FDIC size/solvency constraints
- For each eligible bidder there is a prob $p(y_{\ell}, \overline{N}_j)$ of becoming a **potential bidder**
 - Sign NDA to learn identity & basic info, access virtual data room
 - $y_1 = 1$ is local bidder; $y_2 = 1$ is non-local
 - Total # of potential bidders is: $N^{p} \sim \psi(n|\overline{N}_{j})$

- \overline{N}_j eligible bidders for auction j, based on:
 - Balance-sheet info \boldsymbol{W}_{ij}
 - FDIC size/solvency constraints
- For each eligible bidder there is a prob $p(y_{\ell}, \overline{N}_j)$ of becoming a **potential bidder**
 - Sign NDA to learn identity & basic info, access virtual data room
 - $y_1 = 1$ is local bidder; $y_2 = 1$ is non-local
 - Total # of potential bidders is: $N^p \sim \psi(n|\overline{N}_j)$
- Potential bidder i doesn't know precise merger value \overline{V}_{ij} when deciding on entry
 - Requires costly due diligence/merger valuation analysis to learn
 - Inputs by accountants, lawyers, finance experts, consultants, executives, etc...
- Idiosyncratic entry cost $\eta_i \sim H_\eta(\eta | \boldsymbol{Z}_j)$
 - Must incur cost η_i to learn \overline{V}_{ij} , become *actual bidder*

• Potential bidder *i* enters auction *j* if expected surplus exceeds entry cost:

$$\begin{split} S_{ij} &\equiv E\left[surplus | \boldsymbol{W}_{ij}, \boldsymbol{Z}_{j}\right] \quad (unconditional \ on \ winning) \\ &= E\left[\sum_{k=1}^{K} (V_{ijk} - b^{*}_{ijk}(\overline{V})) Pr\left[win \ contract \ k | \boldsymbol{b}^{*}_{ij}(\overline{V})\right] \left| \boldsymbol{W}_{ij}, \boldsymbol{Z}_{j}\right] \geq \eta_{i}, \end{split}$$

- $\mathbf{b}_{ii}^*(\overline{v})$ is a vector of optimal bids given merger value \overline{v}
- Expectation is with respect to the conditional distribution of \overline{V}

• Potential bidder *i* enters auction *j* if expected surplus exceeds entry cost:

$$egin{aligned} S_{ij} &\equiv E\left[surplus | oldsymbol{\mathcal{W}}_{ij}, oldsymbol{\mathcal{Z}}_{j}
ight] \quad (unconditional \ on \ winning) \ &= E\left[\sum_{k=1}^{K} (V_{ijk} - b^*_{ijk}(\overline{V})) Pr\left[win \ contract \ k | oldsymbol{b}^*_{ij}(\overline{V})
ight] ig| oldsymbol{\mathcal{W}}_{ij}, oldsymbol{\mathcal{Z}}_{j}
ight] \geq \eta_i, \end{aligned}$$

- $\mathbf{b}^*_{ii}(\overline{\mathbf{v}})$ is a vector of optimal bids given merger value $\overline{\mathbf{v}}$
- Expectation is with respect to the conditional distribution of \overline{V}
- This entry process generates distributions of actual bidders $N \sim \pi(N|\mathbf{Z}_j)$ and surpluses S
 - Known from STAGE 1 estimation

Key assumptions:

- Entry Costs η_i are independent of \overline{V}_{ij} (and also W_{ij} for simplicity)
 - $\, m{\bullet} \,$ This implies entry-cost distributions ${\cal H}_\eta$ for actual & potential bidders are the SAME

Key assumptions:

- Entry Costs η_i are independent of \overline{V}_{ij} (and also W_{ij} for simplicity)
 - $\, m{\bullet} \,$ This implies entry-cost distributions ${\cal H}_\eta$ for actual & potential bidders are the SAME
 - Independence of $\eta_i \& (W_{ij})$ is reasonable if due diligence is a fairly standardized process

Key assumptions:

- Entry Costs η_i are independent of \overline{V}_{ij} (and also W_{ij} for simplicity)
 - $\, m{\bullet} \,$ This implies entry-cost distributions ${\cal H}_\eta$ for actual & potential bidders are the SAME
 - Independence of $\eta_i \& (W_{ij})$ is reasonable if due diligence is a fairly standardized process
- At least one of the following is true:
 - (i) EITHER max $\{Supp(\eta)\} < \max\{Supp(S_{ij})\}$
 - Maximal entry costs are lower than maximal merger surplus.
 - (ii) OR $\lim_{\overline{N}\to 1} p(y_{\ell}, \overline{N}) = 1$ for each $I = 1, \dots, L$
 - FDIC ramps up proactive marketing efforts when eligible bidder pool becomes small.

Identification: Entry model primitives $H_{\eta}(\eta)$, $p(y_1, \overline{N}_j)$, and $p(y_2, \overline{N}_j)$ are uniquely pinned down from observables $(\mathcal{E}_{ij}, s_{ij}, y_{ij}, \overline{N}_j)$ for each eligible bank *i* in auction *j* (where $\mathcal{E}_{ij} = 1$ means *i* enters auction *j*). Formal proof

() Expected surplus s_{ij} is known from STAGE 1 estimation.

2 Model implies that entry probabilities, given \overline{N} , y_{ℓ} , and s can be characterized as

$$Pr(\mathcal{E}=1|\overline{N}_j,s,y_\ell,\boldsymbol{Z}_j)=H_\eta(s|\boldsymbol{Z}_j)p(y_\ell,\overline{N}_j), \ \ l=1,2.$$

• The left-hand side is raw data; right-hand side is model.

Stimation is Maximum Likelihood

Entry Model Estimates

Entry Model Estimates

• Median Entry Costs:

• \$1.1M / \$4.6 conditional on entry (for small / large failures)

- Obtermine set of contemporary at-risk banks
 - This implies a pool of Z_i 's (most likely failure candidates)

- Obtermine set of contemporary at-risk banks
 - This implies a pool of Z_j 's (most likely failure candidates)
- **②** For each at-risk bank *j*, determine set of contemporary *bidder-eligible banks*
 - This gives \overline{N}_j and a pool of eligible W_{ij} 's

- Obtermine set of contemporary at-risk banks
 - This implies a pool of Z_j 's (most likely failure candidates)
- For each at-risk bank j, determine set of contemporary bidder-eligible banks
 This gives N_i and a pool of eligible W_{ii}'s
- Then, for each at-risk bank j, use model estimates (from GFC-era data) to repeatedly:
 (i) Simulate entry decisions
 - This implies distribution of actual bidders $\pi(N|\boldsymbol{Z}_{ij})$
 - Also implies distribution of merger values \overline{V}_{ij}
 - (*ii*) Simulate optimal bids $(L_{ij}^*, \boldsymbol{b}_{ij}^*)$ for each entrant *i* in auction *j*
 - (iii) Determine winner, final resolution costs for at-risk bank j

- Obtermine set of contemporary at-risk banks
 - This implies a pool of Z_j 's (most likely failure candidates)
- For each at-risk bank j, determine set of contemporary bidder-eligible banks
 This gives N_i and a pool of eligible W_{ii}'s
- Then, for each at-risk bank j, use model estimates (from GFC-era data) to repeatedly:
 (i) Simulate entry decisions
 - This implies distribution of actual bidders $\pi(N|\boldsymbol{Z}_{ij})$
 - Also implies distribution of merger values \overline{V}_{ij}
 - (*ii*) Simulate optimal bids $(L_{ij}^*, \boldsymbol{b}_{ij}^*)$ for each entrant *i* in auction *j*
 - (iii) Determine winner, final resolution costs for at-risk bank j
- Average resolution costs across simulations

Model validation

Validation: failures from 2017-2023

Forecast cost of 20 failures from 2017-2023 for which resolution cost/sale format known

Validation: failures from 2017-2023

Forecast cost of 20 failures from 2017-2023 for which resolution cost/sale format known

- Model predicts:
 - \$26.42 billion cost vs. \$36.5 billion actual
 - Average 17.92% of failed bank assets vs. 19.81% actual
 - $\bullet\,$ Predicted/realized losses correlation of 0.53 and significant at 5%

Validation: failures from 2017-2023

Forecast cost of 20 failures from 2017-2023 for which resolution cost/sale format known

- Model predicts:
 - \$26.42 billion cost vs. \$36.5 billion actual
 - Average 17.92% of failed bank assets vs. 19.81% actual
 - $\bullet\,$ Predicted/realized losses correlation of 0.53 and significant at 5%
- Compare to naive OLS predictions: $\hat{c}_{ijk} = oldsymbol{X}_{ij} \gamma$ (γ estimated on GFC data)
 - Average loss 25.85%
 - Correlation of -0.01, not significant

Our method captures changes in costs resulting from strategic bidding behavior as the set of participants and macroeconomic conditions shift over time

• Naive approach can't account for changes in participation in 2017-2023

Resolving a Contemporary Banking Crisis: Monetary Tightening / CRE

Identifying at-risk banks using Jiang et al (2023) approach

• For each US bank calculate its *Insured Deposit Coverage ratio*:

 $\label{eq:IDC} \textbf{IDC ratio} = \frac{\text{Marked-to-market Assets} - \text{Uninsured Deposits} - \text{Insured Deposits}}{\text{Insured Deposits}}$

- Market values of assets estimated using data on traded indexes in real estate, US Treasuries
 - By the first quarter of 2023, the rate increase resulted in 9% decline in marked-to-market value of the median bank's assets
- A bank is classified as *at-risk* if its IDC ratio would be negative in the event 50% of its uninsured deposits ran.

 \rightarrow 185 such banks \checkmark Bidder Sum Stats

Expected Auction Outcomes

	Mean	StDev	
Costs (\$Millions)	378.7	1935.7	
Costs (%FBAssets)	18.41	2.29	

• Takeaways:

- Average resolution cost: \$379 million (vs. \$135 million per failure during GFC)
- Total cost for resolving 185 at-risk banks: \$70 billion (plus \$35 billion for four 2023 failures)
 - $\hfill\square$ Approaches the \$128 billion in the Deposit Insurance Fund

Expanding the bidder pool

- Elevated cost driven by difficulty finding banks able to participate and willing to submit bids > FDIC's liquidation value
 - Only 1.54 bidders on average
- Investigate impact of size & health constraints on resolution costs
 - Size: allow bidders to offer on banks of any size
 - Health: allow even unhealthy banks to participate (not a policy CF!)
- Investigate bidder options:
 - How would resolution costs change if FDIC allowed LS or PB bidding?

Expected Auction Outcomes

	Mean	StDev
Costs (\$ millions)		
Current rules	378.7	1935.7
Relaxing solvency & size	232.3	1369.0
Relaxing solvency	398.6	2344.4
Relaxing size	255.0	1469.6
Costs (%FBA)		
Current rules	18.41	2.29
Relaxing solvency & size	14.38	3.39
Relaxing solvency	17.19	2.61
Relaxing size	15.53	3.06

• Takeaways:

- Relaxing Both: \uparrow nbr bidders to 2.60, \downarrow costs to \$232M/bank
- Relaxing solvency: \uparrow nbr bidders to 1.79, \uparrow costs to \$398M/bank
- Relaxing size: \uparrow nbr bidders to 2.22, \downarrow costs to \$255M/bank

How Do Constraints Impact Purchasers?

Table: Impact on Average Auction Winner Traits

	Size (\$B)	Same-Zip (%)	T1
Current rules	109.01	15.88	10.39
Relaxing solvency & size	49.99	17.72	10.89
Relaxing Solvency	106.3	18.34	9.91
Relaxing Size	48.6	12.80	11.83

- Takeaways:
 - Relaxing Both: \uparrow capitalization and local overlap, \downarrow size
 - Relaxing size: \downarrow size, \downarrow local network overlap
 - Relaxing solvency: \uparrow local overlap, small \downarrow size
 - $\bullet\,$ SVB: size constraint removed, cost \$16.2B \sim actual \$20B

Imposing bans on purchases by local banks

	Mean	StDev
Costs (\$ millions)		
Whole bank	379	1935.7
Banning Local Sales	410.1	1983.3
Costs (%FBA)		
Whole bank	18.41	2.29
Banning Local Sales	19.80	2.26

Impact on Winner Traits								
	Size (\$B)	Same-Zip (%)	T1					
Whole Bank	109.01	15.88	10.39					
Banning Local Sales	29.22	0	10.63					

CRE crisis

	Mean	StDev
Costs (\$ millions)		
Whole bank	319.83	1636.2
Relaxing solvency & size	194.13	1188.2
Relaxing solvency	341.59	2042.1
Relaxing size	263.46	1708.1
Costs (%FBA)		
Whole bank	18.30	2.14
Relaxing solvency & size	14.12	3.30
Relaxing solvency	17.08	2.43
Relaxing size	15.29	3.00

Impact on Average Winners Traits

Size (\$B)	Same-Zip (%)	T1
108.08	16.6	10.35
49.6	17.98	10.90
105.2	13.36	11.82
49.9	18.78	9.89
	108.08 49.6 105.2	108.08 16.6 49.6 17.98 105.2 13.36

Conclusion

Conclusion

- We develop a framework to estimate the costs to the FDIC of resolving *at-risk* banks
 - Superior to regression model out of sample: captures changes in buyer health
 - 2023 Crisis: The cost of resolving these banks would be over \$105 billion
 - □ Approaches the \$128 billion in the FDIC's deposit insurance fund!
 - □ Our CFs suggest that eliminating size or health restrictions could lower these costs
 - During crises resolution costs can spiral as the set of unconstrained bidders shrinks
- Tool allows the FDIC to estimate costs in real-time, understand the impact of macroeconomic conditions, & evaluate costs of participation constraints,

Additional Slides

Least-cost resolution example

Cost = transactions equity + asset discount - deposit premium + expenses

- Deposits: \$1 million
- Loans outstanding \$500,000; book value only \$250,000
- Cash on hand: \$500,000
- total assets = loan outstanding + cash = 750,000
- Transaction equity = 750,000-1,000,000 = (\$250,000)
- Bid: asset discount of \$120,000, deposit premium of \$100,000

Transfer from FDIC to winning bank = 250,000 + 120,000 - 100,000 + expenses.

Extra slide

FDIC Bid Summaries

Bid Summary

Legacy Bank, Scottsdale, AZ Closing Date: January 7, 2011

Bidder	Type of Transaction	Deposit Premium/ (Discount) %	Asset Premium/ (Discount) \$(000) / %	SF Loss Share Tranche 1	SF Loss Share Tranche 2	SF Loss Share Tranche 3	Commercial Loss Share Tranche 1	Commercial Loss Share Tranche 2	Commercial Loss Share Tranche 3	Value Appreciation Instrument	Conforming Bid	Linked
Winning bid and bidder: Enterprise Bank & Trust, Clayton, Missouri	Nonconforming all deposit whole bank with loss share (1)	1.00%	\$ (9995)	80%	80%	NA	80%	80%	NA	Yes	No	N/A
Cover - Commerce Bank of Arizona, Tucson, Arizona	All deposit whole bank with loss share		\$ (21975)	75%	75%	N/A	75%	75%	N/A	No	Yes	N/A
Other bid	All deposit whole bank with loss share		\$ (9525)	80%	80%	N/A	80%	80%	N/A	No	Yes	N/A
Other bid	All deposit whole bank with loss share		\$ (21475)	80%	80%	N/A	80%	80%	N/A	No	Yes	N/A
Other bid	All deposit whole bank with loss share		\$ (22000)	80%	80%	N/A	80%	80%	N/A	No	Yes	N/A
Other bid	Nonconforming Whole Bank P&A (2)	0.00%	\$ (41679)	N/A	N/A	N/A	N/A	N/A	N/A	No	No	N/A

Deemed nonconforming due to cap placed on Value Appreciation Instrument
 Deemed nonconforming since bid excluded all OREO.

Other Bidder Names:

Commerce Bank of Arizona, Tucson, Arizona Enterprise Bank & Trust, Clayton, Missouri SouthWest Bank, Odessa, Texas Wedbush Bank, Los Angeles, California

Banking crises

Summary Statistics

			V	alidation		Contemporary	At-Risk San	nple	
		GFC-Era	Sample		M	onetary	CR	CRE-Crisis	
.,		10-90		10-90		10-90		10-90	
Variable	Mean	Interval	Mean	Interval	Mean	Interval	Mean	Interval	
#Failed/At-Risk									
Banks	322	-	20	-	185	-	62	[70.1005]	
Tot. Assets (\$M)	827	[64, 1348]	26743	[39, 154480]	1811	[53,1953]	750	[78,1895]	
Tot. Depos. (\$M)	702	[60, 1262]	23139	[34, 136450]	1673	[50,1710]	685	[73,1658]	
Ins. Depos. (\$M)	630	[55, 1207]	3359	[31, 9179]	1533	[43, 1353]	571	[66,1431]	
Core Depos. (%)	77	[56, 95]	88	[61, 100]	94	[85, 100]	92	[83,100]	
CRE (%)	25	[10.43, 43.31]	13	[1, 32]	9	[0,20]	15	[5,28]	
C&I (%)	8.00	[1.52, 17.37]	12	[1, 26]	4	[0,8]	4	[4,9]	
CNSMR (%)	1.52	[0.10, 3.71]	2	[0, 6]	3	[0,6]	2	[1,5]	
SFR (%)	18.41	[3.71, 35.71]	22	[3, 49]	32	[6,62]	23	[10,46]	
ARE (%)	59.90	[44.87, 74.27]	64	[36, 93]	81	[60,98]	83	[65,97]	
ROA	-6.81	[-12.90, -1.72]	-2.3	[-7.3, 1.5]	0.7	[0.2,1.3]	0.9	[0.45,1.69	
Tier 1 Ratio	1.17	[-1.79, 3.58]	5	[1, 9]	9	[2,13]	9	[7,12]	
NA (%)	10.97	[4.35, 19.44]	5.7	[0, 14]	0.32	[0,0.77]	0.21	[0,0.6]	

Extra slide

Model assumptions

- Bidders have IPV for absorbing the failed bank's depositors, liabilities, and assets into their own businesses
 - Heterogeneous synergies between bidder and failed-bank assets and depositor base
 - Limited resale opportunities
 - Ex-ante symmetry of information about ex-post value
- Independence Across Auctions
 - No learning
 - No complementarities
 - No dynamic capacity constraints

Back

Estimation/Identification Overview

Step 1: Estimate G (prob. of winning)

(i) Recover Distribution of least-cost scoring rule

$$c_{ijk} = b_{ijk} + \epsilon_j d_{ijk}^{LS} (\%LS) + \kappa_j d_{ijk}^{NC} + \nu_j d_{ijk}^{PB} (\%PB) + \psi_j d_{ijk}^{VAI} + \delta_{ij} + u_j$$

Estimation: Auction-specific scoring rule weights $(\epsilon_j, \kappa_j, \nu_j, \psi_j)$ assumed normally distributed Identification: Observe cost equation for the winning bid; Inequality for all losing bids

 (*ii*) Construct weighted bootstrap sample of offers from bidders in similar auctions to determine probability a given bid wins (Hortacsu & McAdams, 2010)

Estimation/Identification Overview

- Step 2: Backing out private values
 - GPV-type inversion to get package-specific \hat{v}_{ijk}
 - Specify component-specific valuation as a function of observed traits of bidder & failed bank: $v_{ij}^{s} = \mathbf{X}_{ij}\beta^{s}, \ s = LS, NC, PB, VAI$
 - Use panel structure from multiple bids to estimate FE model

$$\hat{v}_{ijk} = \overline{v}_{ij} + \boldsymbol{X}_{ij} \boldsymbol{\beta} \boldsymbol{d}_k + \xi_{ijk}, \ i = 1, \dots, N_j, \ j = 1, \dots, J$$

Identification: Entry model primitives $H_{\eta}(\eta)$, $p(y_1, \overline{N}_j)$, and $p(y_2, \overline{N}_j)$ are uniquely determined by observables $(\mathcal{E}_{ij}, s_{ij}, y_{ij}, \overline{N}_j)$ for each eligible bank *i* in auction *j* (where $\mathcal{E}_{ij} = \mathbb{1}$ means *i* enters auction *j*).

• Expected surplus s_{ij} is known from STAGE 1 estimation.

Identification: Entry model primitives $H_{\eta}(\eta)$, $p(y_1, \overline{N}_j)$, and $p(y_2, \overline{N}_j)$ are uniquely determined by observables $(\mathcal{E}_{ij}, s_{ij}, y_{ij}, \overline{N}_j)$ for each eligible bank *i* in auction *j* (where $\mathcal{E}_{ij} = \mathbb{1}$ means *i* enters auction *j*).

- **(**) Expected surplus s_{ij} is known from STAGE 1 estimation.
- Solution Model implies that entry probabilities, given \overline{N} , y_{ℓ} , and s can be characterized as $Pr(\mathcal{E}=1|\overline{N}_j, s, y_{\ell}) = H_{\eta}(s)p(y_{\ell}, \overline{N}_j), \quad l = 1, 2.$
 - The left-hand side values of the above equation are known from raw data.

Identification: Entry model primitives $H_{\eta}(\eta)$, $p(y_1, \overline{N}_j)$, and $p(y_2, \overline{N}_j)$ are uniquely determined by observables $(\mathcal{E}_{ij}, s_{ij}, y_{ij}, \overline{N}_j)$ for each eligible bank *i* in auction *j* (where $\mathcal{E}_{ij} = \mathbb{1}$ means *i* enters auction *j*).

- Expected surplus s_{ij} is known from STAGE 1 estimation.
- Oddel implies that entry probabilities, given \overline{N} , y_{ℓ} , and s can be characterized as $Pr(\mathcal{E}=1|\overline{N}_j, s, y_{\ell}) = H_{\eta}(s)p(y_{\ell}, \overline{N}_j), \quad l = 1, 2.$
 - The left-hand side values of the above equation are known from raw data.
- **3** by either part of Assumption 2, we can isolate entry costs: $\frac{Pr(\mathcal{E}=1|\overline{N}_{j},s,y_{\ell})}{Pr(\mathcal{E}=1|\overline{N}_{j},\eta^{max},y_{\ell})} = \frac{H_{\eta}(s)}{H_{\eta}(\eta^{max})} = H_{\eta}(s) \text{ (via } (i)\text{) and/or } Pr(\mathcal{E}=1|1,s,y_{\ell}) = H_{\eta}(s) \text{ (via } (ii)\text{).}$

Identification: Entry model primitives $H_{\eta}(\eta)$, $p(y_1, \overline{N}_j)$, and $p(y_2, \overline{N}_j)$ are uniquely determined by observables $(\mathcal{E}_{ij}, s_{ij}, y_{ij}, \overline{N}_j)$ for each eligible bank *i* in auction *j* (where $\mathcal{E}_{ij} = \mathbb{1}$ means *i* enters auction *j*).

- **(**) Expected surplus s_{ij} is known from STAGE 1 estimation.
- Oddel implies that entry probabilities, given \overline{N} , y_{ℓ} , and s can be characterized as $Pr(\mathcal{E}=1|\overline{N}_j, s, y_{\ell}) = H_{\eta}(s)p(y_{\ell}, \overline{N}_j), \ l = 1, 2.$
 - The left-hand side values of the above equation are known from raw data.
- **3** by either part of Assumption 2, we can isolate entry costs: $\frac{Pr(\mathcal{E}=1|\overline{N}_{j},s,y_{\ell})}{Pr(\mathcal{E}=1|\overline{N}_{j},\eta^{max},y_{\ell})} = \frac{H_{\eta}(s)}{H_{\eta}(\eta^{max})} = H_{\eta}(s) \text{ (via } (i)\text{) and/or } Pr(\mathcal{E}=1|1,s,y_{\ell}) = H_{\eta}(s) \text{ (via } (ii)\text{).}$
- So Either way, can use $\frac{Pr(\mathcal{E}=1|\overline{N},s,y)}{H_{\eta}(s)} = p(y,\overline{N})$ to trace out consideration probabilities.

Key Assumption

Valuation process is the same for modern-era banks and GFC-era banks:

• Bidder/Failed Bank traits interact to determine values in the same way

Key drivers of baseline values: Assets, Deposits, Insured Deposits, ROA (Allen et al., 2023)

- Opposit franchise valuations similar across periods
 - Customers' elasticities of deposits wrt rates haven't increased (Schnabl, 2023)
 - Deposit Betas similar to last crisis (Kang-Landsberg et al, 2023)
- 2 Loan portfolio valuations similar over time
 - Balance-sheet complementarities (Granja et al., 2017) being stable over time
- Pricing models stable
 - Condition on a wealth of observable balance-sheet characteristics

Bidding Banks

	Constrained		Un	constrained	L	.ocal Ban
Variable	Mean	10-90 Interval	Mean	10-90 Interval	Mean	10-90 Interva
Tot. Assets (\$B)	134	[0.3, 1219]	46.9	[0.08, 9.78]	28.8	[0.3,199.2]
Tot. Deposits (\$B)	94	[0.3, 840]	39.6	[0.07, 8.37]	21.1	[0.2,172.7]
Uninsured Deposits (%)	35.68	[14, 63]	28.8	[10.4, 50.8]	32.6	[13.6, 54.1]
CRE (%)	17.0	[1.8, 31.0]	13	[1, 32]	18.5	[4.3,34.9]
C&I (%)	10.5	[8.2, 21.9]	8.3	[1.5, 16.4]	8.8	[1.5,18.3]
CNSMR (%)	5.4	[0.0, 11.7]	3	[0, 7.1]	3.6	[0.0,8.4]
SFR (%)	12.8	[2.1, 25.3]	17	[3, 34]	15.3	[4.8,27.5]
NA (%) ROA	0.29 1.25	[0.0, 0.6] [0.58, 1.84]	0.3 1.08	[0, 0.9] [0.37, 1.8]	0.34 1.14	[0,0.82] [0.4,1.8]
Tier 1 Ratio	10.14	[7.62, 13.13]	11.0	[7.6, 14.2]	10.7	[8.1,14.1]
Leverage	10.43	[7.84, 13.45]	11.1	[7.8, 14.4]	10.9	[8.3,14.6]
IDC Ratio	7.84	[7.62, 13.16]	21.8	[-0.1, 19.7]	17	[0.0,30.9]
Losses	8.02	[3.52, 12.48]	10.6	[4.8, 17.0]	9	[4.7,12.7]
Insolvent	0	[0, 0]	0.35	[0, 1]	0	[0,0]

