### **Bank Market Power and Credit Allocation**

Felipe Brugués

Rebecca De Simone University of Michigan

The Micro and the Macro of Financial Intermediation
Banco Central de Chile

### **Motivation**

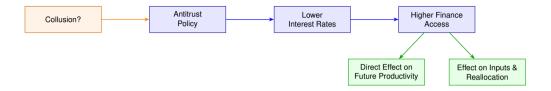
- Large literature documenting existence of bank market power and its effects on pass-throughs to rates (Crawford et al. (2018), Drechsler et al. (2017), Benetton & Fantino (2021), & others)
- Effects of market power on output/welfare is theoretically ambiguous
  - Pricing power from demand inelasticity can benefit borrowers through ex-ante lender incentives (Petersen & Rajan (1995), Yannelis & Zhang (2023))
  - ► Competition-fragility debate (Keeley (1990), Martinez-Miera & Repullo (2010))
- Understudied: Supply-side sources of market power (softened price competition)

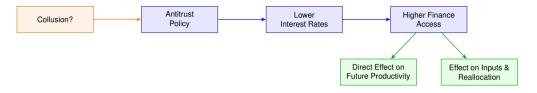
### **Motivation**

- Large literature documenting existence of bank market power and its effects on pass-throughs to rates (Crawford et al. (2018), Drechsler et al. (2017), Benetton & Fantino (2021), & others)
- Effects of market power on output/welfare is theoretically ambiguous
  - Pricing power from demand inelasticity can benefit borrowers through ex-ante lender incentives (Petersen & Rajan (1995), Yannelis & Zhang (2023))
  - ► Competition-fragility debate (Keeley (1990), Martinez-Miera & Repullo (2010))
- Understudied: Supply-side sources of market power (softened price competition)
- This paper: Decompose markups into

demand-side (elasticity) + supply-side (conduct) + risk-adjustment

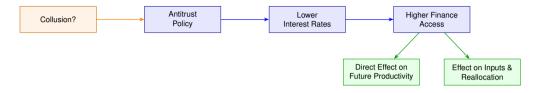
to explore effects of supply-side pricing power on credit allocation and efficiency


### **Motivation**


- Large literature documenting existence of bank market power and its effects on pass-throughs to rates (Crawford et al. (2018), Drechsler et al. (2017), Benetton & Fantino (2021), & others)
- Effects of market power on output/welfare is theoretically ambiguous
  - Pricing power from demand inelasticity can benefit borrowers through ex-ante lender incentives (Petersen & Rajan (1995), Yannelis & Zhang (2023))
  - ► Competition-fragility debate (Keeley (1990), Martinez-Miera & Repullo (2010))
- Understudied: Supply-side sources of market power (softened price competition)
- This paper: Decompose markups into

demand-side (elasticity) + supply-side (conduct) + risk-adjustment

to explore effects of supply-side pricing power on credit allocation and efficiency


• Financial sector is special: supracompetitive pricing may particularly affect firm growth





#### 1. Quantify the effects of market power on prices in Ecuador

- Simplified version of conduct model in Brugués & De Simone (2024) for credit demand & supply (nests Crawford et al. (2018), Benetton (2021), Ioannidou et al. (2022))
- Pass-through of a surprise loan tax in Ecuador as moment to identify conduct
- Markups: demand-side (70%) + supply-side (26%) + risk-adjustment (4%)



- 1. Quantify the effects of market power on prices in Ecuador
- 2. Quantify the effects of conduct on credit allocation via anti-trust counterfactual
  - Equilibrium prices ↓ 17%
  - Two responses:
    - Loan use ↑ 21%
    - Credit demand ↑ 12%



- 1. Quantify the effects of market power on prices in Ecuador
- 2. Quantify the effects of conduct on credit allocation via anti-trust counterfactual
- 3. Aggregation via allocative efficiency framework (Petrin & Levinsohn (2012), Bau & Matray (2023))
  - IV Firm-level: 20% loan use ↑ 0.4% TFPR
  - Aggregate: TFP ↑ 0.7%
    - 56% of Ecuador TPFR growth in 2010-2017
    - Comparable to Indian credit subsidy program in Rotemberg (2019)

#### Related literature

#### Market power in financial markets

Cornaggia et al. (2015), Scharfstein & Sunderam (2017), Drechsler et al. (2017), Crawford et al. (2018), Allen et al. (2019), Benetton (2021), Hatfield & Wallen (2023), Jiang et al. (2023), Yannelis & Zhang (2023), Cox et al. (2023), Cuesta & Sepúlveda (2024), Brugués & De Simone (2024)

Decompose the sources of market power and isolate supply-side

#### Incidence and welfare effects of market power

Ciliberto & Williams (2014), Miller & Weinberg (2017), De Loecker & Eeckhout (2018)

- Focus on credit markets
- Consider personalized pricing and study heterogeneity of effects

#### Aggregate effects of frictions on allocative efficiency

Hsieh & Klenow (2009), Asker et al. (2014), Midrigan & Xu (2014), Buera et al. (2015), Asker et al. (2019), Rotemberg (2019), Catherine et al. (2022), Sraer & Thesmar (2023), Bau & Matray (2023)

Simulate effects of anti-trust policy

### **Outline**

Policy reform and data

Pass-through estimates

Sketch of model

**Estimation** 

Welfare effects of competition

**Aggregate allocative effects** 

### **Outline**

Policy reform and data

**Pass-through estimates** 

Sketch of model

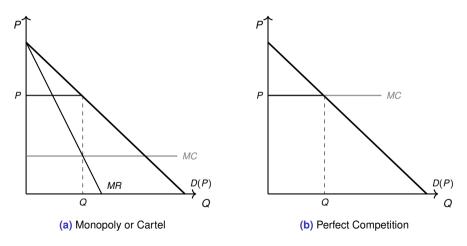
**Estimation** 

Welfare effects of competition

**Aggregate allocative effects** 

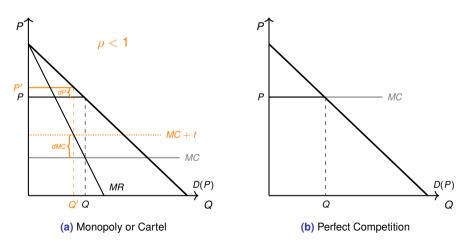
## Using tax pass-throughs to test lender competition

 At least since Sumner (1981) and Bresnahan (1982), interest in testing firm conduct consistent with observed outcomes


 Conduct can be identified from exclusion restriction that shifts markups but not marginal costs (Berry and Haile (2014); Duarte et al. (2024); Backus et al. (2021) )

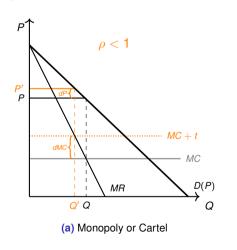
**BUT** instruments are difficult to find in markets with selection!

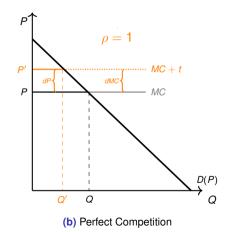
Instead, we look at changes in taxes as a markup shifter


### Illustrative example

 $\textbf{Demand} \ \textit{D(P)}, \textbf{prices} \ \textit{P}, \textbf{and quantities} \ \textit{Q} \ \textbf{not sufficient to identify both marginal costs} \ \textit{MC} \ \textbf{and lender competition}$ 




## Illustrative example


But with demand D(P) and prices P + pass-throughs  $\rho \equiv dP/dMC$  we can test/identify lender competition and estimate marginal costs MC



## Illustrative example

*But* with demand D(P) and prices P + pass-throughs  $\rho \equiv dP/dMC$  we can test/identify lender competition and estimate marginal costs MC





## **Cancer treatment tax (SOLCA tax)**

1964 - 2008: Ecuador uses financial taxes to fund cancer treatment

- September 2014: SOLCA tax reintroduced as a last-minute amendment to new law "Código Orgánico Monetario y Financiero"
  - New loans granted by private banks carry a tax of 0.5% of the value of transaction (proportionally reduced for maturities <1 year)</li>
  - Law specifies borrower pays the tax on the date the loan is contracted

October 2014: The SOLCA tax comes into force

#### Data

Combine two sources of administrative data from Ecuador for 2010-2017

- Loan registry from Superintendencia de Bancos (bank regulator):
  - Bank ID, borrower ID, date, interest rates, amount, term-to-maturity, credit score, default & repayment history

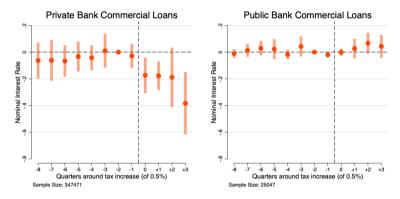
- Firm dataset from Superintendencia de Compañías (business bureau):
  - Firm ID, year, industrial sector, revenue, assets, debt, wages



### **Outline**

Policy reform and data

Pass-through estimates


Sketch of mode

**Estimation** 

Welfare effects of competition

**Aggregate allocative effects** 

## **Motivation: Event study**



Note: Includes firm-bank fixed effects and nonparametric controls for loan maturity and face value.

Indicative of *incomplete* pass-through Magnitude: On average, the pass-through is approximately (0.5-0.2) / 0.5 = 0.6



# Tax pass-through regression

To estimate the pass through to final prices:

$$\tilde{r}_{\mathit{fibt}} = \rho taxRate_{\mathit{libt}} + \sum_{a=1}^{20} \alpha_a 1\{A \in j\} + \sum_{m=1}^{20} \eta_m 1\{M \in z\} + \eta DP + \delta_{\mathit{fib}} + \epsilon_{\mathit{libt}}$$

- $\tilde{r}$ : gross interest rate  $\equiv$  pre-tax nominal interest rate + tax rate
- Tax rate is proportional to the maturity (in years) of the loan M, after the tax is implemented (Post = 1):

$$taxRate = 0.5 \times min\{M, 1\} \times Post$$

- Coefficient  $\rho$  captures the pass through of taxes to final prices
  - $\rho > 1$ : more-than-complete
  - $\rho = 1$  : complete
  - $\rho < 1$  : incomplete

# **Pass-through estimates**

| Tax-inclusive inte             | erest rate |         |
|--------------------------------|------------|---------|
|                                | (1)        | (2)     |
| Pass-through ( $\rho$ )        | 0.529      | 0.536   |
|                                | (0.137)    | (0.150) |
| [T-value for null $\rho = 1$ ] | [3.438]    | [3.093] |
| Pr(Default) Control            | No         | Yes     |
| Maturity & Amount Controls     | Yes        | Yes     |
| Pair FE                        | Yes        | Yes     |
| Observations                   | 378,747    | 347,471 |
| R-squared                      | 0.783      | 0.777   |

### **Outline**

Policy reform and data

**Pass-through estimates** 

Sketch of model

**Estimation** 

Welfare effects of competition

**Aggregate allocative effects** 

# Quantitative model of credit demand & supply

#### **Demand**

- Borrowers have heterogeneous preferences over loan terms
- Simultaneously choose loan size & lender

### Supply

- Differentiated banks with asymmetric marginal costs
- Compete on interest rates
- Maximize profits subject to conduct and heterogeneous borrower default probability

Pass-through depends on demand/supply parameters and conduct

Additional moment allowing exactly identified system of equations

### **Sketch model: Demand**

 Borrowers with heterogeneous preferences over interest rates and other characteristics

$$\Pi_{ikmt} = \overline{\Pi}_{ikmt}(X_{it}, r_{ikmt}, X_{ikmt}, N_{kmt}, \psi_i, \xi_{kmt}; \beta) + \varepsilon_{ikmt},$$

- Choose bank k in market m that gives them highest expected return  $\Pi_{ikmt} > \Pi_{ik'mt}$  over all available banks  $k' \in m$
- Make continuous choice over loan size

$$L_{ikmt} = -\frac{\partial \Pi_{ikmt}}{\partial r_{ikmt}}$$

• Total demand  $Q_{ikmt}(r) = L_{ikmt} Prob(\Pi_{ikmt} \geq \Pi_{ik'mt}) = L_{ikmt} s_{ikmt}$ 

# Sketch of model: Supply

Banks compete on interest rates while maximizing bank profits subject to conduct

$$\begin{aligned} \max_{r_{ikmt}} B_{ikmt} &= (1 - d_{ikmt}) r_{ikmt} Q_{ikmt}(r) - m c_{ikmt} Q_{ikmt}(r) \\ \text{s.t. } v_{m} &= \frac{\partial r_{ikmt}}{\partial r_{iimt}} \text{ for } j \neq k, \end{aligned}$$

- d: bank's expectation of default probability at loan grant
- Q: bank's total expected loan demand at each r
- mc: pair-market-time varying marginal cost of lending
- Market conduct parameter,  $v_m$ , defined as in Weyl and Fabinger (2013); Kroft et al. (2023):

$$v_{m} = \frac{\partial r_{ijmt}}{\partial r_{ikmt}} (j \neq k)$$

#### where

- $v_m = 0 \implies$  Bertrand-Nash competition
- $v_m = 1 \implies \text{ioint-maximization}$

## **Conduct and markup: Intuition**

After rearranging the banks' FOC:

$$r_{ikmt} = rac{mc_{ikmt}}{1 - d_{ikmt}} - rac{Q_{ikmt}}{\underbrace{rac{\partial Q_{ikmt}}{\partial r_{ikmt}}}} + \underbrace{rac{\partial Q_{ikmt}}{\partial r_{ijmt}}}_{ ext{Alternative Conduct}}$$

- ▶  $v_m$ > 0  $\implies$  bank considers joint losses from competition when setting  $r_{ikmt}$
- Note that, in terms of own and cross price elasticities,

$$\frac{Q_{\textit{ikmt}}}{\frac{\partial Q_{\textit{ikmt}}}{\partial r_{\textit{ikmt}}} + \upsilon_m \sum_{j \neq k} \frac{\partial Q_{\textit{ikmt}}}{\partial r_{\textit{ijmt}}} = \frac{1}{\frac{\epsilon_{\textit{kk}}}{r_{\textit{ikmt}}} + \upsilon_m \sum_{j \neq k} \frac{\epsilon_{\textit{kj}}}{r_{\textit{ijmt}}}}$$

### **Outline**

Policy reform and data

**Pass-through estimates** 

Sketch of mode

#### **Estimation**

Welfare effects of competition

**Aggregate allocative effects** 

## **Estimation steps**

 Create matched non-borrowers group to allow for demand for outside option (Crawford et al. (2018)) Matching

2. Predict prices for unobserved offers (Crawford et al. (2018)); choice set for each firm are all banks active in HQ's province Price Prediction

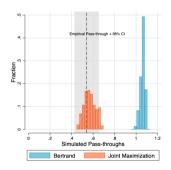
 Estimate discrete-continuous demand model using maximum likelihood by region (Benetton (2021); Benetton et al. (2021))

- 4. Recover endogenous price coefficient through instrumental variables
  - Instruments for bank-province-level prices: average price of commercial, sole-proprietorship, and household loans by same bank in other provinces; aggregate default rate in non-commercial loan products in bank Instrumented Alphas: Region Avg.

### **Demand-side**

• Estimate demand parameters for each province using IO tools (Train 1986, Berry et al. 1995, Benetton 2021)

Model delivers reasonable elasticities


The model fits the data well

# **Supply-side: Conduct**

We *simulate* the introduction of the tax in the model and obtain Nash-equilibrium prices under two modes of conduct:

- **1.** Bertrand-Nash:  $v_m = 0$
- **2.** Joint-Maximization:  $v_m = 1$

and compare it to observed pass-throughs.



⇒ Rejects Bertrand; fails to reject Joint-Maximization

Consistent with findings in Brugués & De Simone (2024), which use internalization approach looking at partial cartels

### **Outline**

Policy reform and data

**Pass-through estimates** 

Sketch of model

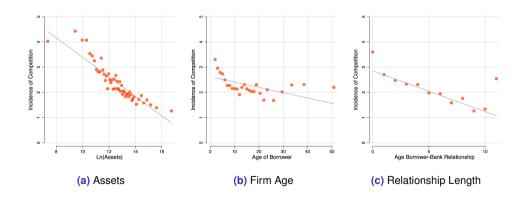
**Estimation** 

Welfare effects of competition

**Aggregate allocative effects** 

# **Simulate Antitrust Policy: Marginal costs and prices**

|                                            | Mean            | Median       |
|--------------------------------------------|-----------------|--------------|
|                                            | Panel A: Ma     | arginal Cost |
| Marginal Cost - Not Accounting for Conduct | 8.82            | 9.30         |
| Marginal Cost - Accounting for Conduct     | 4.87            | 3.10         |
| % Change in Marginal Cost                  | -50.57          | -55.75       |
| Deposit Interest Rates                     | 3.79            | 3.81         |
|                                            | Panel B: Prices |              |
| Prices - Base Prices                       | 11.25           | 11.56        |
| Prices - Moving to Bertrand-Nash           | 9.43            | 10.34        |
| % Change in Equilibrium Prices             | -17.18          | -5.36        |


# **Decompose Markups**

|                                      | Mean             | Median |
|--------------------------------------|------------------|--------|
|                                      | Panel C: Markups |        |
| Markup - Not Accounting for Conduct  | 2.43             | 2.30   |
| Markup - Accounting for Conduct      | 6.38             | 4.79   |
| Markup - Moving to Bertrand-Nash     | 4.56             | 2.43   |
| % Share of Markup due to Conduct     | 25.46            | 19.18  |
| % Share of Markup due to Preferences | 70.27            | 72.62  |
| % Share of Markup due to Risk        | 4.26             | 0.33   |

# **Simulate Antitrust Policy: Demand and welfare effects**

|                                                         | Mean                                  | Median |
|---------------------------------------------------------|---------------------------------------|--------|
|                                                         | Panel D: Intensive & Extensive Margin |        |
| % Change in Continuous Loan Use - Move to Bertrand-Nash | 21.39                                 | 20.29  |
| Market Share Outside Option - Predicted Prices          | 0.033                                 |        |
| Market Share Outside Option - Move to Bertrand-Nash     | 0.029                                 |        |
| % Change in Risk in Borrowers (Adverse Selection)       | 0.45                                  |        |
|                                                         | Panel E: Welfare and Incidence        |        |
| Incidence of Competition (-ΔCS/ΔPS)                     | 2.81                                  | 1.62   |

# Heterogeneity in welfare effects: Incidence ( $-\triangle CS/\triangle PS$ )



### **Outline**

Policy reform and data

**Pass-through estimates** 

Sketch of model

**Estimation** 

Welfare effects of competition

**Aggregate allocative effects** 

# **Aggregating productivity growth**

$$APG = \sum_{i} (D_i \Delta \ln TFPR_i) + \sum_{i} D_i \left[ \sum_{\mathsf{Input}} (\alpha_{\mathsf{Input}} - s_{\mathsf{Input}_i}) \Delta \ln Input_i \right]$$

- Aggregate productivity following literature (Petrin & Levinsohn (2012);Rotemberg (2019); Bau & Matray (2023))
- Combines estimates of how changed credit usage from increased lender competition affects:
  - Technical efficiency: Firm internal efficiency improvements
  - Allocative efficiency: Shift resources between firms

# Aggregating productivity growth

$$APG = \sum_{i} (D_i \Delta \ln TFPR_i) + \sum_{i} D_i \left[ \sum_{\mathsf{Input}} (\alpha_{\mathsf{Input}} - s_{\mathsf{Input}_i}) \Delta \ln Input_i \right]$$

- D<sub>i</sub>: firm's i share of total sales in industry observed
- \( \Delta \) In TFPR<sub>i</sub>: the causal change in productivity from anti-trust policy estimated through production function estimation (PFE) and instrumental variable (IV) models
- $\alpha_{lnput}$ : revenue elasticity with respect to input estimated through PFE
- $s_{Input}$ : firm-level revenue share of input observed
- Δ In Input<sub>i</sub>: causal change in input from policy estimated via IV

## **Step 1: Production function estimation: Elasticities**

Capital

Observations

Consider Cobb-Douglas revenue production function for firms (borrowers):

| lphaInput |
|-----------|
| 0.321     |
| (0.032)   |
| 0.701     |
| (0.006)   |
|           |

0.120 (0.005)

334,732

 $Revenue_{it} = TFPR_{it}K_{it}^{\alpha_k}L_{it}^{\alpha_l}M_{it}^{\alpha_m}$ 

Note: Labor Measured in # Employees

## **Step 2: Constructing instrument**

1. Create *firm-level* instruments for credit usage based on *supply-side* instruments used in demand estimation:

$$In(Credit_{ispt}) = \alpha r_{ispt} + \gamma_t + \gamma_s + \gamma_p + \varepsilon_{ijpt},$$

to obtain  $\widehat{\mathit{In(Credit)}}^{\mathit{supply}}_{\mathit{ispt}}$  netting out residuals  $\varepsilon_{\mathit{ijpt}}$ 

- ⇒ Isolates variations in credit that are driven by credit supply factors
- lacktriangledown lpha=-0.34 [consistent with structural demand estimates for loan use]
- ► F-stat = 102

2. Regress  $TFPR_{ispt}$  on lagged  $In(\widehat{Credit})_{ispt}^{supply}$  + controls

Step 3: Regress firm  $TFPR_{ispt}$  on lagged  $In(\widehat{Credit})_{ispt}^{supply}$  + controls

|                         | (1)         | (2)         | (3)           | (4)           |
|-------------------------|-------------|-------------|---------------|---------------|
| VARIABLES               | F. In(TFPR) | F. In(TFPR) | F. ∆ In(TFPR) | F. ∆ In(TFPR) |
| Instrumented In(Credit) | 0.0208***   | 0.0189***   | 0.0175***     | 0.0224**      |
|                         | (0.00508)   | (0.00703)   | (0.00467)     | (0.00953)     |
| In(TFPR)                | 0.441***    | -0.0125     |               |               |
|                         | (0.00844)   | (0.0107)    |               |               |
| Observations            | 70,065      | 63,285      | 70,065        | 63,285        |
| R-squared               | 0.343       | 0.625       | 0.016         | 0.175         |
| Year FE                 | YES         | YES         | YES           | YES           |
| Sector FE               | YES         | NO          | YES           | NO            |
| Province FE             | YES         | NO          | YES           | NO            |
| Firm FE                 | NO          | YES         | NO            | YES           |

Robust standard errors clustered at the firm-level in parentheses

20% loan use ↑ 0.4% firm TFPR

<sup>\*\*\*</sup> p<0.01, \*\* p<0.05, \* p<0.1

## Step 4: Estimating aggregate productivity growth

$$APG = \sum_{i} (D_i \Delta \ln TFPR_i) + \sum_{i} D_i \left[ \sum_{\mathsf{Input}} (\alpha_{\mathsf{Input}} - s_{\mathsf{Input}_i}) \Delta \ln Input_i \right]$$

| Estimated and Calibrated Targets |                      |                       |                        |  |  |  |  |
|----------------------------------|----------------------|-----------------------|------------------------|--|--|--|--|
| Target                           | Elasticity to Credit | Input Elasticity      | Mean Shares of Revenue |  |  |  |  |
| TFPR                             | 0.02                 | -                     | -                      |  |  |  |  |
| Capital                          | 0.09                 | 0.12                  | 0.06                   |  |  |  |  |
| Expenditures                     | 0.10                 | 0.70                  | 0.62                   |  |  |  |  |
| Labor                            | 0.02                 | 0.32                  | 0.27                   |  |  |  |  |
|                                  | p25                  | Median                | p75                    |  |  |  |  |
| % Change in Credit               | 3.42                 | 20.28                 | 61.19                  |  |  |  |  |
| APG Estimates (%)                |                      |                       |                        |  |  |  |  |
| Type of Effect of Credit         | Total Effect         | Allocative Efficiency | Reallocation           |  |  |  |  |
| Homogeneous at 20%               | 0.35                 | 0.23                  | 0.12                   |  |  |  |  |
| Heterogeneous                    | 0.71                 | 0.46                  | 0.25                   |  |  |  |  |

**Benchmark:** Aggregate TFPR growth between 2010 to 2017 = 1.26%

#### **Overview**

#### Novel evidence:

- Decompose markups into demand-side, supply-side, and risk-adjustment
- ► Find supracompetitive pricing from reduced competition (↑ 17%)

#### • Implications for credit allocation:

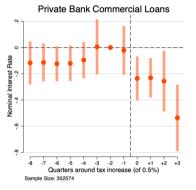
- Reduced loan use (↓ 21%) and demand use (↓ 13%)
- Welfare effects are not equally distributed smaller/younger firms more distorted

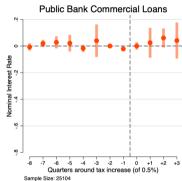
#### Implications for aggregate economy:

- APG 0.7 p.p. smaller than in competitive benchmark (56% of Ecuador TPFR growth in 2010-2017)
- 2/3 from direct effect on within-firm productivity
- 1/3 from reallocation between firms

Thank you! Contact us at: felipe.brugues@itam.mx — rdesimone@london.edu

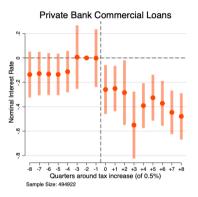
#### **Event-study regression**


For loan *I* to firm *f* from bank *k* at quarter *t* 


$$r_{lfbt} = \sum_{k=-8}^{3} \frac{\delta_k}{1} \{ t \in k \}$$

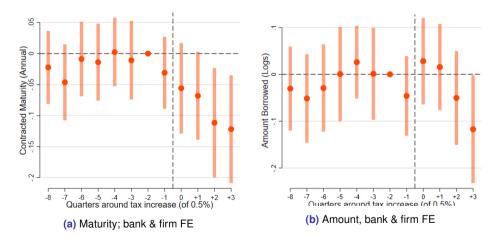
$$+\sum_{a=1}^{20}\beta_a\mathbf{1}\{A\in j\}+\sum_{m=1}^{20}\gamma_m\mathbf{1}\{M\in Z\}+\lambda DP+\alpha_f+\alpha_b+\varepsilon_{lfbt}$$

- r: pre-tax nominal interest rate (in percentage points)
- $\delta_k$ : dynamic coefficients; normalize  $\delta_k = 0$  for k = -2
- A & M: amount borrowed & maturity buckets
- DP: Default probability
- $\alpha_f$ : firm fixed-effects
- α<sub>b</sub>: bank fixed-effects
- Standard-errors clustered at bank-quarter level


#### **Event study: Bank+Firm FE**

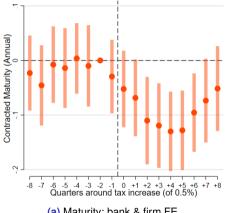




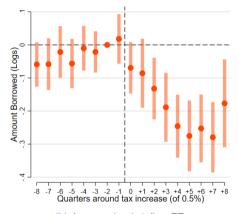

Return

## **Event study: Long-term**





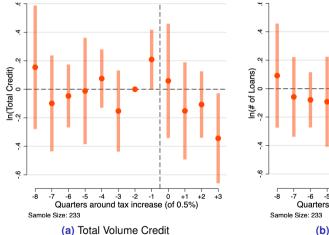

## **Event study: Maturity and amount**

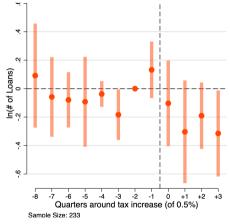





## **Event study: Long-term maturity and amount**

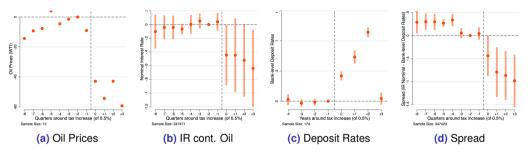



(a) Maturity; bank & firm FE




(b) Amount, bank & firm FE




## **Event study: Aggregate**





(b) Total # Loans

#### **Event study: Threats to identification**



- Oil price collapse in 2014: pattern of oil prices is not sufficient to explain changes in interest rates (panel a) + pass-through is still incomplete after controlling for flexible oil price trend (panel b)
- Bank-level yearly deposit rates also adjust in 2015 (panel c), though effect is further evidence against complete pass-through
- Spreads (transaction-level interest rates minus bank-year-level deposit rates) consistent with incomplete pass-through (panel d)



# **Event study: Robustness**

|                              | Outcome: Tax-inclusive interest rate |         |         |            |  |  |  |
|------------------------------|--------------------------------------|---------|---------|------------|--|--|--|
|                              | (1)                                  | (2)     | (3)     | (4)        |  |  |  |
|                              | Oil                                  | GDP     | Year-Q  | Short-term |  |  |  |
| Pass-through ( p )           | 0.609                                | 0.408   | 0.705   | 0.702      |  |  |  |
|                              | (0.387)                              | (0.214) | (0.372) | (0.159)    |  |  |  |
| WTI Oil Price                | 0.128                                |         |         |            |  |  |  |
|                              | (0.043)                              |         |         |            |  |  |  |
| (WTI Oil Price) <sup>2</sup> | -0.002                               |         |         |            |  |  |  |
|                              | (0.001)                              |         |         |            |  |  |  |
| (WTI Oil Price)3             | 0.000                                |         |         |            |  |  |  |
|                              | (0.000)                              |         |         |            |  |  |  |
| Province GDP Growth          |                                      | -0.013  |         |            |  |  |  |
|                              |                                      | (0.026) |         |            |  |  |  |
| (Province GDP Growth)2       |                                      | -0.003  |         |            |  |  |  |
|                              |                                      | (0.006) |         |            |  |  |  |
| (Province GDP Growth)3       |                                      | -0.000  |         |            |  |  |  |
|                              |                                      | (0.004) |         |            |  |  |  |
| Pr(Default) Control          | Yes                                  | Yes     | Yes     | Yes        |  |  |  |
| Maturity & Amount Controls   | Yes                                  | Yes     | Yes     | Yes        |  |  |  |
| Pair Fixed Effect            | Yes                                  | Yes     | Yes     | Yes        |  |  |  |
| Year-quarter Fixed Effect    | No                                   | No      | Yes     | No         |  |  |  |
| Observations                 | 347,471                              | 489,251 | 489,251 | 287,070    |  |  |  |

#### **Summary statistics: Commercial loan market**

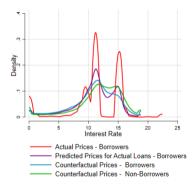
| Variable                 | Below Median HHI | Above Median HHI |
|--------------------------|------------------|------------------|
|                          | Panel A: Bran    | ch Information   |
| # Branches               | 5.16             | 2.69             |
| # Other Private Banks    | 15.93            | 10.45            |
| # Other Private Branches | 104.13           | 43.32            |
| Observations             | 891              | 880              |
|                          | Panel B: Cred    | dit Information  |
| Total Volume             | 105,000,000      | 12,600.000       |
| # Clients                | 141.53           | 25.37            |
| # Loans                  | 937.30           | 93.01            |
| Av. Loan                 | 182,430.30       | 99,334.42        |
| Av. Maturity             | 1.09             | 0.92             |
| Av. Interest Rate        | 9.99             | 11.01            |
| # Loans per Client       | 114.79           | 12.97            |
| Observations             | 891              | 880              |

# **Summary statistics: borrowers**

| Variable     | Mean  | Median                                     | SD           | Min.        | Max.         | Obs     |  |  |  |
|--------------|-------|--------------------------------------------|--------------|-------------|--------------|---------|--|--|--|
|              |       | Panel A: Firm-Level Data: Active Borrowers |              |             |              |         |  |  |  |
| Firm Age     | 12.25 | 9.00                                       | 11.14        | 0.00        | 96.00        | 97,796  |  |  |  |
| Total Assets | 2.05  | 0.40                                       | 4.22         | 0.00        | 20.66        | 97,796  |  |  |  |
| Total Sales  | 2.57  | 0.62                                       | 4.86         | 0.00        | 23.14        | 97,796  |  |  |  |
| Total Wages  | 0.36  | 0.10                                       | 0.63         | 0.00        | 2.98         | 97,796  |  |  |  |
| Total Debt   | 1.31  | 0.28                                       | 2.61         | 0.00        | 12.65        | 97,796  |  |  |  |
| Leverage     | 0.66  | 0.71                                       | 0.28         | 0.00        | 1.19         | 97,796  |  |  |  |
|              |       | Panel B: Fir                               | m-Level Data | a: Non Acti | ve Borrowers |         |  |  |  |
| Firm Age     | 9.92  | 7.00                                       | 10.09        | 0.00        | 93.00        | 359,827 |  |  |  |
| Total Assets | 0.46  | 0.05                                       | 1.73         | 0.00        | 20.66        | 359,827 |  |  |  |
| Total Sales  | 0.43  | 0.03                                       | 1.70         | 0.00        | 23.14        | 359,827 |  |  |  |
| Total Wages  | 0.07  | 0.01                                       | 0.25         | 0.00        | 2.98         | 359,827 |  |  |  |
| Total Debt   | 0.26  | 0.02                                       | 1.01         | 0.00        | 12.65        | 359,827 |  |  |  |
| Leverage     | 0.54  | 0.58                                       | 0.40         | 0.00        | 1.19         | 359,827 |  |  |  |



# **Summary statistics: Loans**


| Variable                     | Mean | Median | SD           | Min.         | Max.     | Obs.    |
|------------------------------|------|--------|--------------|--------------|----------|---------|
|                              |      |        | Panel C: Loa | n-Level Data |          |         |
| Number of Bank Relationships | 1.38 | 1.00   | 0.79         | 1.00         | 7.00     | 97,796  |
| Number Loans                 | 8.88 | 2.00   | 100.66       | 1.00         | 9,195.00 | 97,796  |
| Age Bank Relationship        | 2.31 | 2.00   | 2.41         | 0.00         | 16.00    | 135,091 |
| Loan Interest Rate           | 9.20 | 8.95   | 3.48         | 0.00         | 25.50    | 885,229 |
| Loan Amount                  | 0.10 | 0.01   | 1.73         | 0.00         | 466.00   | 885,229 |
| Annual Loan Maturity         | 0.51 | 0.25   | 0.80         | 0.00         | 27.39    | 885,229 |
| 1(Loan with Rating < B)      | 0.02 | 0.00   | 0.14         | 0.00         | 1.00     | 885,229 |
| Default Observed             | 0.00 | 0.00   | 0.06         | 0.00         | 1.00     | 744,257 |



# **Matching process**

|                   | Unmatched | Me      | an      |        | % Reduction | t-te   | est   |
|-------------------|-----------|---------|---------|--------|-------------|--------|-------|
| VARIABLE          | Matched   | Treated | Control | % bias | in bias     | t      | p>t   |
| Age - Bucket 1    | U         | 0.155   | 0.305   | -36.3  |             | -31.39 | 0     |
| -                 | M         | 0.155   | 0.154   | 0.4    | 98.9        | 0.96   | 0.335 |
| Debt - Bucket 1   | U         | 0.073   | 0.220   | -42.5  |             | -41.51 | 0     |
|                   | M         | 0.073   | 0.073   | 0.1    | 99.9        | 0.14   | 0.885 |
| Assets - Bucket 1 | U         | 0.073   | 0.206   | -39.2  |             | -37.77 | 0     |
|                   | M         | 0.073   | 0.073   | -0.1   | 99.8        | -0.19  | 0.85  |
| Sales - Bucket 1  | U         | 0.063   | 0.207   | -42.9  |             | -42.98 | 0     |
|                   | M         | 0.063   | 0.063   | 0.2    | 99.6        | 0.49   | 0.622 |
| Wages - Bucket 1  | U         | 0.075   | 0.232   | -44.7  |             | -43.88 | 0     |
|                   | M         | 0.075   | 0.073   | 0.4    | 99.1        | 1.1    | 0.273 |
| Age - Bucket 2    | U         | 0.379   | 0.381   | -0.3   |             | -0.25  | 0.804 |
|                   | M         | 0.379   | 0.380   | -0.1   | 58.9        | -0.28  | 0.778 |
| Debt - Bucket 2   | U         | 0.423   | 0.455   | -6.5   |             | -5     | 0     |
|                   | M         | 0.423   | 0.425   | -0.4   | 94.4        | -0.77  | 0.443 |
| Assets - Bucket 2 | U         | 0.436   | 0.466   | -6     |             | -4.61  | 0     |
|                   | M         | 0.436   | 0.436   | -0.1   | 98.7        | -0.17  | 0.868 |
| Sales - Bucket 2  | U         | 0.373   | 0.460   | -17.8  |             | -13.91 | 0     |
|                   | M         | 0.373   | 0.374   | -0.2   | 98.7        | -0.52  | 0.606 |
| Wages - Bucket 2  | U         | 0.389   | 0.484   | -19.2  |             | -15    | 0     |
|                   | M         | 0.389   | 0.390   | -0.2   | 99.1        | -0.38  | 0.707 |
| Age - Bucket 3    | U         | 0.465   | 0.314   | 31.5   |             | 23.59  | 0     |
|                   | M         | 0.465   | 0.466   | -0.2   | 99.3        | -0.42  | 0.671 |
| Debt - Bucket 3   | U         | 0.504   | 0.325   | 37     |             | 27.74  | 0     |
|                   | M         | 0.504   | 0.502   | 0.3    | 99.1        | 0.68   | 0.495 |
| Assets - Bucket 3 | U         | 0.491   | 0.328   | 33.6   |             | 25.25  | 0     |
|                   | M         | 0.491   | 0.490   | 0.1    | 99.6        | 0.26   | 0.792 |
| Sales - Bucket 3  | U         | 0.563   | 0.333   | 47.7   |             | 36.03  | 0     |
|                   | M         | 0.563   | 0.563   | 0.1    | 99.7        | 0.26   | 0.794 |
| Wages - Bucket 3  | U         | 0.536   | 0.285   | 53     |             | 39.22  | 0     |
|                   | M         | 0.536   | 0.537   | -0.1   | 99.8        | -0.21  | 0.835 |

## **Predicted prices**



$$r_{ikmt} = \gamma_0 + \gamma_x X_{ikmt} + \gamma_2 In(L_{ikmt}) + \gamma_3 In(M_{ikmt}) + \lambda_{kmt} + \omega_i^r + \tau_{ikmt}$$

 $\bullet$  Explains  ${\approx}65\%$  of the variation in observed commercial loan prices



# Over-identification tests for instrumented price parameter ( $\alpha$ )

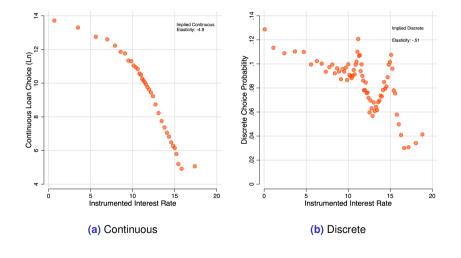
| Region    | $\widehat{\alpha}$ | t-statistic | F-statistic<br>(Cragg-Donald) | P-value over-identification<br>(Sargen-Hansen) |
|-----------|--------------------|-------------|-------------------------------|------------------------------------------------|
| Azuay     | -0.245             | -4.47       | 246                           | 0.249                                          |
| Costa     | -0.048             | -2.30       | 1,756                         | 0.214                                          |
| Guayas    | -0.434             | -2.75       | 816                           | 0.341                                          |
| Pichincha | -0.386             | -3.83       | 305                           | 0.753                                          |
| Sierra    | -0.091             | -7.71       | 3,841                         | 0.666                                          |



#### **Demand-side: Parameters**

| <b>V</b> ariable                            | (1)<br>Mean<br>Across Markets | (2)<br>Standard Error<br>(1,000 Bootstraps) |
|---------------------------------------------|-------------------------------|---------------------------------------------|
| Price                                       | -0.24                         | 0.08                                        |
| Sigma (unobserved heterogeneity)            | 0.81                          | 0.05                                        |
| Scaling factor (match proportion borrowers) | 1.06                          | 0.39                                        |
| Log(Branches)                               | 2.26                          | 1.02                                        |
| Age Firm                                    | -0.03                         | 0.01                                        |
| Age Relationship                            | 0.39                          | 0.04                                        |
| Assets                                      | 0.24                          | 0.11                                        |
| Debt                                        | -0.01                         | 0.05                                        |
| Expenditures                                | 0.06                          | 0.04                                        |
| Revenues                                    | -0.02                         | 0.04                                        |
| Wages                                       | 0.01                          | 0.03                                        |

#### **Demand-side: Elasticities**


| Elasticities | Mean   | Median | Std. Dev. | Min.   | Max.  | Count   |
|--------------|--------|--------|-----------|--------|-------|---------|
| Continuous   | -4.63  | -4.50  | 2.68      | -9.58  | -0.86 | 628,450 |
| Discrete     | -6.01  | -0.55  | 11.33     | -42.80 | 0.00  | 628,450 |
| Total        | -10.71 | -7.31  | 10.21     | -44.68 | -2.81 | 628,450 |
| Cross        | 0.17   | 0.01   | 0.36      | 0.00   | 1.38  | 627,704 |

#### A 1% increase in price results in a:

- 4.50% decrease in loan size demanded
- 0.55% decrease in market share
- Increases competitor's market shares by 0.01%



## **Demand-side: Elasticities (Reduced-form)**



Return

#### **Demand-side: Fit**

|                       | Mean  | SD   | Count   |
|-----------------------|-------|------|---------|
| Observed Market Share | 0.06  | 0.25 | 681,722 |
| Model Market Share    | 0.06  | 0.15 | 681,722 |
| Observed Loan Use     | 9.43  | 2.33 | 39,586  |
| Predicted Loan Use    | 9.42  | 1.49 | 39,586  |
| Observed Prices       | 11.27 | 4.42 | 39,586  |
| Predicted Prices      | 11.21 | 3.54 | 39,586  |
| Observed Default      | 0.02  | 0.14 | 39,586  |
| Predicted Default     | 0.02  | 0.04 | 39,586  |