Interest Rate Risk and Cross-Sectional Effects of Micro-Prudential Regulation (by Begenau, Elenev and Landvoigt)

Discussion by Maxi San Millán

Workshop on The Micro and Macro of Financial Intermediation Central Bank of Chile

October 6, 2025

Disclaimer: The views presented here are my own and do not necessarily reflect those of the Central Bank of Chile or its Board Members.

Brief overview of the paper

- Research question(s):
 - ▶ What are the connections between bank interest rate exposure, the cross sectional heterogeneity in bank portfolios and funding choices, and financial stability?
- Strategy: Build a two period heterogeneous bank model which can replicate important features of the cross sectional distribution of bank balance sheets.
 - Large banks → use more uninsured funding → more run risk → hold more securities as insurance → more exposure to interest rate risk.
 - Policy implications: size dependent capital requirements are effective from a micropru perspective.

Key model elements

- ▶ Banks choose funding mix and portfolio: (D^U, D^I, S, K, B) .
- ► Capital and liquidity requirements:

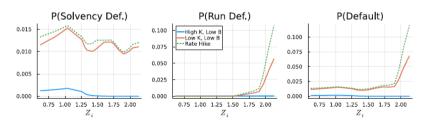
$$D^U + D^I \le \theta^K K + \theta^B B \qquad (1)$$

$$\theta^D(D^U + D^I) \le B \tag{2}$$

Simplified balance sheet	
Loans: K	Insured: ${\cal D}^I$
Bonds: B	Uninsured: $D^{\cal U}$
	Equity: S

Key model elements

► **Heterogeneous productivity** + decreasing returns to scale:


$$\underbrace{A_i}_{productivity} \underbrace{R_k}_{agg.\ risk} \underbrace{\epsilon_i}_{idios.\ risk} (K_i - \underbrace{\hat{K}_i}_{liquidations})^{1-\kappa}$$
(3)

- ⇒ heterogeneity in bank sizes.
- Local market power in insured and uninsured deposits.
- **Small** bank: relatively unproductive in loan business → invest relatively more in securities, use cheap insured funding.
- Large bank: very productive in loan business → use also uninsured deposits (runnable) in the funding mix (intuition of a monopolist in both insured and uninsured with ≠ elasticities). → Higher exposure to runs.

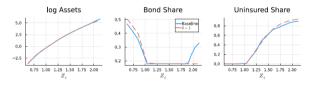
Key model elements

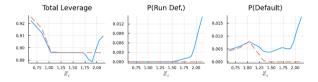
- ▶ Costly loan liquidations (fire sale discount δ).
- lacktriangle Multiplicity of equilibria for some realizations of $\epsilon_i \to \text{sunspot coordinates a run.}$
- ► Securities *B* do not suffer from a fire sale discount and help insure (to some extent) against runs.
- Large banks hold bonds as insurance against run risk, but makes them more exposed to interest rate risk.

Figure 10: Default Probabilities After Rate Hike

Comment 1: What about other liquid assets?

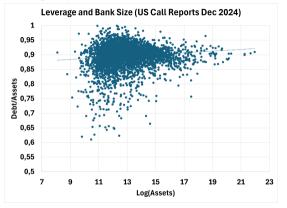
▶ In the model returns on securities are determined by


$$\bar{R}_B = \omega \underbrace{R_B}_{risky} + (1 - \omega)(1 + r). \tag{4}$$


- ▶ If banks liquidate bonds during a run, they get the risky return.
- ightharpoonup is treated as exogenous.
- Possibly important to either show sensitivity with respect to ω or think about endogenizing it.
- ▶ Central bank reserves are absent from the analysis, but they are available to banks.
- Scantly used, very low yield assets, but: banks do have incentives to insure against risk in bond returns in the model.

Comment 2: Distribution of capital buffers in the model vs data

- Leverage choices are crucial to determine run risk in the model.
- ▶ Does the model yield a realistic distribution of bank leverage, and more importantly a realistic correlation with bank size?


Figure 6: Equilibrium in Baseline and Without Runs

Comment 2: Distribution of capital buffers in the model vs data

▶ Model predicts binding requirements for small banks, at odds with the data:

- ► Large banks may be better diversified (sectoral, geography, scope) → somewhat smaller buffers.
- In the model, large, more productive banks are the more likely to default and hold more buffers.

Comment 3: Drivers of bank failure - Runs vs insolvency

- Recent empirical evidence on the drivers of bank failures:
 - Most failures are driven by solvency issues, even if they become runs at some point (Correia, Luck and Verner, QJE fortchoming)
 - Moreover: determinants of failure seem to be similar for large and small banks (weak fundamentals).
- Model predicts large banks are more exposed to run risk.
- Empirical evidence supporting this point would strengthen your story.

Additional comments

- Interesting laboratory to analyze regulation that links liquidity and solvency:
 - Chilean law: Banks with short term liabilities in excess of 2.5 times their net worth must hold additional reserves at the CB.
- Dynamic considerations: higher franchise value might lead to more prudent behavior by banks. Quantitative effects?
- ▶ Lender of last resort/ discount window absent in the model. Relevant to include it?

Conclusion

- Very creative and thought-provoking paper.
- ▶ Would benefit from providing some additional empirical support and showing the fit of untargeted moments.
- ightharpoonup Endogenizing ω would further strengthen the story.
- Congratulations and looking forward to the next iteration!