Discussion of: Debt and Liquid Wealth: Evidence from Pension Fund Withdrawals

Jorge Sabat Universidad Andres Bello

September 2025

What the Paper Does

- Use Chile's COVID-era pension withdrawals as a quasi-natural experiment to study changes on the liquidity of wealth on household propensity to borrow.
- Policy design had "kinks" in withdrawal rules ⇒ Fuzzy Regression Kink Design (RKD).
- Withdrawals are endogenous to unobserved income shocks/job loss, health problems, or changes in expectations are related to withdrawals.
- Main question: How does liquid wealth affect household borrowing behavior?
- Findings:
 - At first kink -low balances (young, low-income, women): liquidity reduces borrowing (elasticity ≈ -0.39).
 - At second or third kinks or higher balances: effects are small, indistinguishable from zero.

Why is this Study Innovative?

- This paper studies a different unexpected shock to household liquidity on household financial decisions:
 - Cash transfers / windfalls: lottery winners (Imbens, Rubin, and Sacerdote 2001), dividend from Alaska Permanent Fund (Hsieh 2003).
 - Public health insurance eligibility: Medicaid expansions (Gallagher, Gopalan, Grinstein-Weiss & Sabat, 2020).
 - Minimum wage increases: borrowing for durable consumption (Aaronson, Agarwal, and French 2012) and student debt repayment (Gopalan, Hamilton, Sabat & Sovich, 2024).
 - Exogenous credit limit shocks: RCT on credit card limits (Aydin, 2022).
- This paper instead leverages pension wealth liquidity: 100% illiquid (e.g. long-term savings).
- Provides new evidence on how relaxing illiquidity in retirement accounts affects household balance sheets.

Borrowing in the life-cycle

Horizon t = 0, ..., T; state: liquid wealth W_t , pension wealth W_t^P , debt b_t .

$$\max_{\{d_t,\phi_t\}} \ E \sum_{i=0}^T \beta^i \Big[u(c_{t+i}) - \lambda b_{t+i} \Big], \quad u(c) = \frac{c^{1-\gamma}}{1-\gamma}$$

 λ proxy of shadow cost of holding debt and γ controls risk aversion and IES; **Budget constraint**:

$$c_t = y_t + T_t(\phi_t) - r_D b_t + d_t, \quad b_{t+1} = (b_t - d_t)(1 + r_D) \ge 0$$
 $W_{t+1}^P = (W_t^P - T_t(\phi_t) + \tau_t)(1 + r^*), \quad T_t(\phi_t) = \phi_t W_t^P$

Income process: $y_t = y_t^{lc} \cdot \delta(\omega_t)$, life-cycle growth : y_t^{lc} , AR(1) shocks $\delta(\omega_t)$ with persistence (ρ) .

Bellman equation:

$$V_t(W_t, W_t^P, b_t) = \max\{u(c_t) - \lambda b_t + \beta E[V_{t+1}]\}$$

Terminal Payoff with Pension Subsidies

At T, annuitize wealth at price $a(r^*)$. First pillar provides PBS/PMAS floors:

$$F(W_T^P, W_T, r^*) = \begin{cases} \left(p_l + \frac{p_l}{p_m} \frac{W_T^P}{a(r^*)} + \frac{W_T}{a(r^*)}\right)^{\nu}, & 0 < \frac{W_T^P}{a(r^*)} \leq p_m, \\ \left(\frac{W_T^P}{a(r^*)} + \frac{W_T}{a(r^*)}\right)^{\nu}, & \frac{W_T^P}{a(r^*)} > p_m. \end{cases}$$

Terminal value:

$$V_T = u(c_T) + \theta F(W_T^P, W_T, r^*), \quad c_T = y_T - b_T \ge 0.$$

Implication: Higher pension subsidies \Rightarrow more insurance \Rightarrow less repayment.

Liquidity Experiment: Transferring Pension Wealth

Policy: allow fraction ϕ_t of pension wealth to become liquid:

$$T_t(\phi_t) = \phi_t W_t^P.$$

Target object: Marginal Propensity to Borrow (MPB):

$$\mathsf{MPB}_t = \frac{\partial d_t}{\partial T_t(\phi_t)}.$$

Prediction: With costly debt $(r_D > r)$ and/or debt aversion $(\lambda > 0)$,

 $MPB_t \leq 0 \quad \Rightarrow \quad \text{Liquidity used to repay debt.}$

Heterogeneity:

- ullet Highly indebted \Rightarrow sharp deleveraging (more negative MPB).
- Low debt / high $W^P \Rightarrow MPB$ closer to zero.

Economic Mechanisms

- Permanent Income Hypothesis: Liquidity
 ↓ borrowing for smoothing shocks (e.g. transitory versus persistent).¹
- Buffer stock model: Households do value having unused borrowing capacity / savings.
- Self-control models: Ex ante higher indebtedness and low pension savings; but why repay then?
- **Wealth effect:** At lowest kink, withdrawals are offset by future pension subsidies. Wouldn't this bias towards borrowing?
- Mental accounting: Withdrawals were mentally labeled as saving money, making debt repayment more desirable?;
- Option to default: Debt overhang? Costly personal bankruptcy (?);

7 / 8

Concluding Comments

- Important contribution to the literature on pension design and household finance.
- Sample Selection: Sample with debt > 0 three months before withdrawals.
 - Does this create a self-selected sample of debt-active households?
 - Identification via RKD is valid if selection is smooth around thresholds;
 - How sensitive are estimates to including those without prior debt?
- Smooth probability of receiving Emergency Income recipients or expected pension subsidies around the kink?
- Probability of getting the COVID soft-loans?
- Policy implications: One-size-fits-all illiquidity rules may not be optimal: Beshears et al. (2024)