QE, Bank Liquidity Risk Management, and Non-Bank Funding: Evidence From Administrative Data

R. M. Darst, S. Kokas, A. Kontonikas, JL Peydró, A. Vardoulakis

Discussion by **Juan Pablo Gorostiaga** (PUC Chile) *jgorostiaga@uc.cl*

The Micro and Macro of Financial Intermediation Workshop Central Bank of Chile - October 7th, 2025

► Main RQ: How do banks manage liquidity risk in response to a fragile funding shock?

- ► Main RQ: How do banks manage liquidity risk in response to a fragile funding shock?
 - Pandemic QE increased the fragility of banks' UD

- ► Main RQ: How do banks manage liquidity risk in response to a fragile funding shock?
 - ▶ Pandemic QE increased the fragility of banks' UD
 - lacktriangle Exploit across bank variation ightarrow high pre-exposure to NBFI

- ► Main RQ: How do banks manage liquidity risk in response to a fragile funding shock?
 - ▶ Pandemic QE increased the fragility of banks' UD
 - lacktriangle Exploit across bank variation ightarrow high pre-exposure to NBFI
- \rightarrow **Active** LR management

- ► Main RQ: How do banks manage liquidity risk in response to a fragile funding shock?
 - Pandemic QE increased the fragility of banks' UD
 - ightharpoonup Exploit across bank variation ightarrow high pre-exposure to NBFI
- → **Active** LR management describing the whole sequence:
 - ► Tilting the composition of their deposit base (↓ UD, ↑ ID)
 - Increasing their holdings of high quality liquid assets (HQLA)
 - ► Adjusting lending behavior: ↓ undrawn credit lines

- ► Main RQ: How do banks manage liquidity risk in response to a fragile funding shock?
 - Pandemic QE increased the fragility of banks' UD
 - lacktriangle Exploit across bank variation ightarrow high pre-exposure to NBFI
- → **Active** LR management describing the whole sequence:
 - ► Tilting the composition of their deposit base (↓ UD, ↑ ID)
 - Increasing their holdings of high quality liquid assets (HQLA)
 - Adjusting lending behavior: ↓ undrawn credit lines

Implications

Real Effects: firms lose liquidity insurance and invest less

- ► Main RQ: How do banks manage liquidity risk in response to a fragile funding shock?
 - ▶ Pandemic QE increased the fragility of banks' UD
 - ightharpoonup Exploit across bank variation ightarrow high pre-exposure to NBFI
- → **Active** LR management describing the whole sequence:
 - ► Tilting the composition of their deposit base (↓ UD, ↑ ID)
 - Increasing their holdings of high quality liquid assets (HQLA)
 - ► Adjusting lending behavior: ↓ undrawn credit lines

Implications

- ▶ Real Effects: firms lose liquidity insurance and invest less
- Complementarities: deposits and liquidity (insurance) provision

- ► Main RQ: How do banks manage liquidity risk in response to a fragile funding shock?
 - Pandemic QE increased the fragility of banks' UD
 - ightharpoonup Exploit across bank variation ightarrow high pre-exposure to NBFI
- → **Active** LR management describing the whole sequence:
 - ► Tilting the composition of their deposit base (↓ UD, ↑ ID)
 - Increasing their holdings of high quality liquid assets (HQLA)
 - ► Adjusting lending behavior: ↓ undrawn credit lines

Implications

- ▶ Real Effects: firms lose liquidity insurance and invest less
- ► Complementarities: deposits and liquidity (insurance) provision
- Effectiveness of UMP

- ► Main RQ: How do banks manage liquidity risk in response to a fragile funding shock?
 - Pandemic QE increased the fragility of banks' UD
 - lacktriangle Exploit across bank variation ightarrow high pre-exposure to NBFI
- → **Active** LR management describing the whole sequence:
 - ► Tilting the composition of their deposit base (↓ UD, ↑ ID)
 - Increasing their holdings of high quality liquid assets (HQLA)
 - ► Adjusting lending behavior: ↓ <u>undrawn</u> credit lines

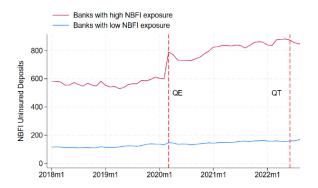
Implications

- ► Real Effects: firms lose liquidity insurance and invest less
- Complementarities: deposits and liquidity (insurance) provision
- Effectiveness of UMP

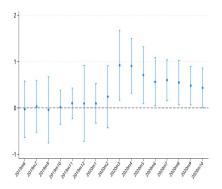
Takeaways

- Extensive, clean and thoughtful analysis on a relevant question
- Now, playing "devil's advocate"

QE, NBFI and a funding shock for banks

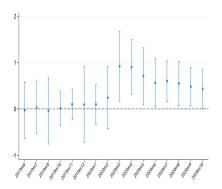

Non-Bank Financial Institutions (NBFI) cannot hold reserves

- QE is implementated through banks:
 - ▶ NBFI sell secutirities and own deposits (UD_{NBFI})
 - Banks hold reserves in exchange


QE, NBFI and a funding shock for banks

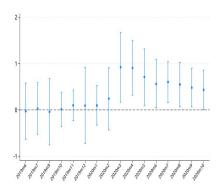
Non-Bank Financial Institutions (NBFI) cannot hold reserves

- QE is implementated through banks:
 - ▶ NBFI sell secutirities and own deposits (UD_{NBFI})
 - ► Banks hold reserves in exchange



Shock to *UD_{NBFI}*

Liquidity risk issue since UD_{NBFI} are remarkably "flighty"


Shock to UD_{NBFI}

Liquidity risk issue since UD_{NBFI} are remarkably "flighty"

- ▶ Holding reserves is not mandatory and cannot hedge 1 to 1
- Unprofitable to hold (negative interest margin)

Shock to UD_{NBFI}

Liquidity risk issue since UD_{NBFI} are remarkably "flighty"

- ▶ Holding reserves is not mandatory and cannot hedge 1 to 1
- Unprofitable to hold (negative interest margin)
- Mechanically reduction of liquidty buffers
 - ▶ Initially: \$110 of safe assets for each \$100 expected outflows: \$10 increase of UD & reserves \Rightarrow LCR from 10% to 9.1%

$$log(y_{i,t+1}) = \beta QE \times \frac{UD_{NBFI}}{D_{Total}} + \alpha_{bank} + \alpha_{month}$$

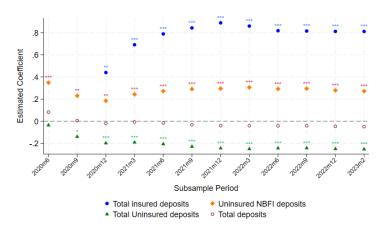
$$log(y_{i,t+1}) = \beta QE \times \frac{UD_{NBFI}}{D_{Total}} + \alpha_{bank} + \alpha_{month}$$

- 1. Strong inflow of NBFI's uninsured deposits (UD_{NBFI})
- 2. Tiltling BS composition:

$$log(y_{i,t+1}) = \beta QE \times \frac{UD_{NBFI}}{D_{Total}} + \alpha_{bank} + \alpha_{month}$$

- 1. Strong inflow of NBFI's uninsured deposits (UD_{NBFI})
- 2. Tiltling BS composition:
 - ▶ **LS**: $\downarrow i^{UD} \Rightarrow \downarrow UD_{ALL/OTHER}$ while also $\uparrow i^{ID} \Rightarrow \uparrow ID$

$$log(y_{i,t+1}) = \beta QE \times \frac{UD_{NBFI}}{D_{Total}} + \alpha_{bank} + \alpha_{month}$$


- 1. Strong inflow of NBFI's uninsured deposits (UD_{NBFI})
- 2. Tiltling BS composition:
 - ▶ **LS**: $\downarrow i^{UD} \Rightarrow \downarrow UD_{ALL/OTHER}$ while also $\uparrow i^{ID} \Rightarrow \uparrow ID$
 - ► AS Securities: Exchange of FED Reserves for other HQLA (Treasuries and Agencies)

$$log(y_{i,t+1}) = \beta QE \times \frac{UD_{NBFI}}{D_{Total}} + \alpha_{bank} + \alpha_{month}$$

- 1. Strong inflow of NBFI's uninsured deposits (UD_{NBFI})
- 2. Tiltling BS composition:
 - ► **LS**: $\downarrow i^{UD} \Rightarrow \downarrow UD_{ALL/OTHER}$ while also $\uparrow i^{ID} \Rightarrow \uparrow ID$
 - ► AS Securities: Exchange of FED Reserves for other HQLA (Treasuries and Agencies)
 - AS Loans: Gradual reduction in undrawn CL
 - no difference for TL and utilized CL
 - ⇒ Stable Liquidity Ratios

Deposits volume, by type (rolling window)

NBFI pre-exposed banks respond quickly adjusting interest rates

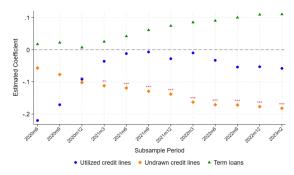
- 1. Persistence of UD_{NBFI} after $\downarrow i^{UD}$
 - ▶ I would have expected some convergence between UD types

- 1. Persistence of UD_{NBFI} after $\downarrow i^{UD}$
 - ▶ I would have expected some convergence between UD types
 - What's so unique about NBFIs that leads to segmentation?

- 1. Persistence of UD_{NBFI} after $\downarrow i^{UD}$
 - ▶ I would have expected some convergence between UD types
 - What's so unique about NBFIs that leads to segmentation?
 - Suggestion: exploit rich counter-party heterogeneity

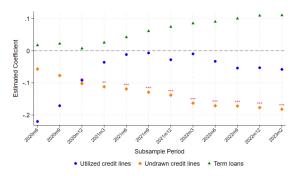
- 1. Persistence of UD_{NBFI} after $\downarrow i^{UD}$
 - ▶ I would have expected some convergence between UD types
 - What's so unique about NBFIs that leads to segmentation?
 - Suggestion: exploit rich counter-party heterogeneity
- 2. Total UD more than compensates NBFI
 - ▶ In which case, NBFI must be a very "flighty" source

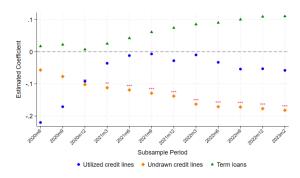
- 1. Persistence of UD_{NBFI} after $\downarrow i^{UD}$
 - ▶ I would have expected some convergence between UD types
 - What's so unique about NBFIs that leads to segmentation?
 - Suggestion: exploit rich counter-party heterogeneity
- 2. Total UD more than compensates NBFI
 - ▶ In which case, NBFI must be a very "flighty" source
 - But way less sensitive to interest rates than UD_{OTHER}


- 1. Persistence of UD_{NBFI} after $\downarrow i^{UD}$
 - ▶ I would have expected some convergence between UD types
 - What's so unique about NBFIs that leads to segmentation?
 - Suggestion: exploit rich counter-party heterogeneity
- 2. Total UD more than compensates NBFI
 - ▶ In which case, NBFI must be a very "flighty" source
 - But way less sensitive to interest rates than UD_{OTHER}
 - So what does "flighty" really mean? (Retail vs Hedge-fund)

- 1. Persistence of UD_{NBFI} after $\downarrow i^{UD}$
 - ▶ I would have expected some convergence between UD types
 - What's so unique about NBFIs that leads to segmentation?
 - Suggestion: exploit rich counter-party heterogeneity
- 2. Total UD more than compensates NBFI
 - ▶ In which case, NBFI must be a very "flighty" source
 - But way less sensitive to interest rates than UD_{OTHER}
 - So what does "flighty" really mean? (Retail vs Hedge-fund)
- 3. Intrinsic difference betwen low and high pre-exposed banks?
 - Liquidity management ability allowing to hold more UD_{NBFI}

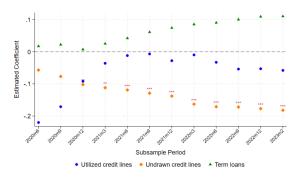
- 1. Persistence of UD_{NBFI} after $\downarrow i^{UD}$
 - ▶ I would have expected some convergence between UD types
 - What's so unique about NBFIs that leads to segmentation?
 - Suggestion: exploit rich counter-party heterogeneity
- 2. Total UD more than compensates NBFI
 - ▶ In which case, NBFI must be a very "flighty" source
 - But way less sensitive to interest rates than UD_{OTHER}
 - So what does "flighty" really mean? (Retail vs Hedge-fund)
- 3. Intrinsic difference betwen low and high pre-exposed banks?
 - Liquidity management ability allowing to hold more UD_{NBFI}
 - Matching (Schwert, 2018); Diversification (Doerr, 2024)


- 1. Persistence of UD_{NBFI} after $\downarrow i^{UD}$
 - ▶ I would have expected some convergence between UD types
 - What's so unique about NBFIs that leads to segmentation?
 - Suggestion: exploit rich counter-party heterogeneity
- 2. Total UD more than compensates NBFI
 - In which case, NBFI must be a very "flighty" source
 - But way less sensitive to interest rates than UD_{OTHER}
 - ▶ So what does "flighty" really mean? (Retail vs Hedge-fund)
- 3. Intrinsic difference betwen low and high pre-exposed banks?
 - Liquidity management ability allowing to hold more UD_{NBFI}
 - ► Matching (Schwert, 2018); Diversification (Doerr, 2024)
 - Policy implication: would have non-exposed banks responded so effectively if they had experienced an equivalent shock?
 - Easy check: are results driven by large shares? or banks with smaller shares rebalance their BS proportionally?


"Curtailing (UCL) allows banks to reduce liquidity mistmach"

Less <u>undrawn credit lines</u> (but steady utilitized credit lines)

"Curtailing (UCL) allows banks to reduce liquidity mistmach"


- Less <u>undrawn credit lines</u> (but steady utilitized credit lines)
- ▶ The credit line is the same, borrower decides how much to use

"Curtailing (UCL) allows banks to reduce liquidity mistmach"

- Less undrawn credit lines (but steady utilitized credit lines)
- ▶ The credit line is the same, borrower decides how much to use
- How can the bank influence this decision?
 - Curtail new originations? raise/lower commitment/draw fees?
 - ightharpoonup no eq in interest rates, nor new origination

"Curtailing (UCL) allows banks to reduce liquidity mistmach"

- Less undrawn credit lines (but steady utilitized credit lines)
- ▶ The credit line is the same, borrower decides how much to use
- How can the bank influence this decision?
 - Curtail new originations? raise/lower commitment/draw fees?
 - lacktriangle no eq in interest rates, nor new origination \Rightarrow What's going on?

Asset Side: Securities

Table 8: Liquidity Buffers and High-Quality Liquid Assets

	1	2	3	4	5	6	7	8
Dependent variable:	Log (Reserves)		Log (OMO)		Log (HQLA)		Liquidity buffer ratio	
QE*Shares	-1.178***		0.073*		-0.354***		0.075	
March 2020*Shares	(-8.826)	0.702***	(1.909)	-0.055	(-6.966)	0.249***	(1.19)	0.203***
QE ex March 2020*Shares		(7.979) -1.258***		(-1.525) 0.078**		(8.214) -0.379***		(3.382) 0.07
-		(-11.185)		(2.057)		(-8.276)		(1.099)

Asset Side: Securities

Table 8: Liquidity Buffers and High-Quality Liquid Assets

	1	2	3	4	5	6	7	8
Dependent variable:	Log (Reserves)		Log (OMO)		Log (HQLA)		Liquidity buffer ratio	
QE*Shares	-1.178***		0.073*		-0.354***		0.075	
March 2020*Shares	(-8.826)	0.702***	(1.909)	-0.055	(-6.966)	0.249***	(1.19)	0.203***
QE ex March 2020*Shares		(7.979) -1.258*** (-11.185)		(-1.525) 0.078** (2.057)		(8.214) -0.379*** (-8.276)		(3.382) 0.07 (1.099)

'Las negras tambien juegan': UMP's bank lending channel

ightarrow bank's incentives and asset choice (Chakraborty et al., 2020)

Table 8: Liquidity Buffers and High-Quality Liquid Assets

	1	2	3	4	5	6	7	8
Dependent variable:	Log (R	eserves)	Log (OMO)	Log (I	IQLA)	Liquidi	ty buffer ratio
QE*Shares	-1.178*** (-8.826)		0.073* (1.909)		-0.354*** (-6.966)		0.075	
March 2020*Shares	(-0.020)	0.702***	(1.909)	-0.055	(-0.900)	0.249***	(1.19)	0.203***
QE ex March 2020*Shares		(7.979) -1.258*** (-11.185)		(-1.525) 0.078** (2.057)		(8.214) -0.379*** (-8.276)		(3.382) 0.07 (1.099)

- → bank's incentives and asset choice (Chakraborty et al., 2020)
 - ightharpoonup Capital gain (Treasuries): FED Purchase ightharpoonup CA appreciation

Table 8: I	Liquidity	Buffers and	High-Quality	Liquid Assets
------------	-----------	-------------	--------------	---------------

	1	2	3	4	5	6	7	8
Dependent variable:	Log (R	eserves)	Log (OMO)	Log (I	HQLA)	Liquidi	ty buffer ratio
QE*Shares	-1.178*** (-8.826)		0.073*		-0.354*** (-6.966)		0.075	
March 2020*Shares	(-0.020)	0.702*** (7.979)	(1.909)	-0.055 (-1.525)	(-0.900)	0.249*** (8.214)	(1.19)	0.203*** (3.382)
QE ex March 2020*Shares		-1.258*** (-11.185)		0.078** (2.057)		-0.379*** (-8.276)		0.07 (1.099)

- → bank's incentives and asset choice (Chakraborty et al., 2020)
 - ► Capital gain (Treasuries): FED Purchase → CA appreciation
 - Origination (MBS): asset type eligible for FED purchase
 - Internal capital market frictions → C&I decline

Table 8: Liquidity Buffers and High-Quality Liquid Ass
--

	1	2	3	4	5	6	7	8
Dependent variable:	Log (R	eserves)	Log (OMO)	Log (l	IQLA)	Liquidi	ty buffer ratio
QE*Shares	-1.178*** (-8.826)		0.073* (1.909)		-0.354*** (-6.966)		0.075	
March 2020*Shares	(-8.826)	0.702***	(1.909)	-0.055	(-6.966)	0.249***	(1.19)	0.203***
QE ex March 2020*Shares		(7.979) -1.258*** (-11.185)		(-1.525) 0.078** (2.057)		(8.214) -0.379*** (-8.276)		(3.382) 0.07 (1.099)

- → bank's incentives and asset choice (Chakraborty et al., 2020)
 - ightharpoonup Capital gain (Treasuries): FED Purchase ightharpoonup CA appreciation
 - ▶ Origination (MBS): asset type eligible for FED purchase
 - ► Internal capital market frictions → C&I decline
 - Authors bundle treasuries and agencies ('Asset Swap')
 - Interwined predictions that cancel each other if tested in cluster

	1	2	3	4	5	6	7	8
Dependent variable:	Log (R	eserves)	Log (OMO)	Log (l	IQLA)	Liquidi	ty buffer ratio
QE*Shares	-1.178*** (-8.826)		0.073* (1.909)		-0.354*** (-6.966)		0.075	
March 2020*Shares	(-8.826)	0.702***	(1.909)	-0.055	(-6.966)	0.249***	(1.19)	0.203***
QE ex March 2020*Shares		(7.979) -1.258*** (-11.185)		(-1.525) 0.078** (2.057)		(8.214) -0.379*** (-8.276)		(3.382) 0.07 (1.099)

- → bank's incentives and asset choice (Chakraborty et al., 2020)
 - ightharpoonup Capital gain (Treasuries): FED Purchase ightharpoonup CA appreciation
 - Origination (MBS): asset type eligible for FED purchase
 - ▶ Internal capital market frictions → C&I decline
 - Authors bundle treasuries and agencies ('Asset Swap')
 - Interwined predictions that cancel each other if tested in cluster
 - May be driving BS tiltling: from Asset to Liability side

	1	2	3	4	5	6	7	8
Dependent variable:	Log (R	eserves)	Log (OMO)	Log (I	HQLA)	Liquidi	ty buffer ratio
QE*Shares	-1.178*** (-8.826)		0.073*		-0.354*** (-6.966)		0.075	
March 2020*Shares	(-8.826)	0.702*** (7.979)	(1.909)	-0.055 (-1.525)	(-6.966)	0.249*** (8.214)	(1.19)	0.203*** (3.382)
QE ex March 2020*Shares		-1.258*** (-11.185)		0.078** (2.057)		-0.379*** (-8.276)		0.07 (1.099)

- → bank's incentives and asset choice (Chakraborty et al., 2020)
 - ► Capital gain (Treasuries): FED Purchase → CA appreciation
 - Origination (MBS): asset type eligible for FED purchase
 - ▶ Internal capital market frictions → C&I decline
 - Authors bundle treasuries and agencies ('Asset Swap')
 - Interwined predictions that cancel each other if tested in cluster
 - ▶ May be driving BS tiltling: **from** Asset **to** Liability side
 - ► Easy to test if pre-holdings of Treasuries vs. MBS moderate or expand results on *UD_{NBFI}* pre-exposure

	1	2	3	4	5	6
Dependent variable:	Log(Utilized credit lines)	Log(Undrawn credit lines)	Log(Term loans)	Log(Total commitments)	Log(Other borrowing)	Investment
QE *Bank-firm relationship shares	-0.014	-0.071***	0.001	-0.014*	-0.006	-0.354***
	(-0.515)	(-2.926)	(0.072)	(-1.800)	(-0.226)	(-4.130)
QT *Bank-firm relationship shares	-0.105**	-0.095***	0.036	-0.029**	-0.080**	-0.454***
	(-2.729)	(-3.507)	(1.428)	(-2.301)	(-2.710)	(-3.573)
Observations	223,976	256,001	122,718	497,200	264,437	43,199
R-squared	0.820	0.798	0.929	0.951	0.914	0.817

Confirm borrowing patterns, with weak funding substitution

	1	2	3	4	5	6
Dependent variable:	Log(Utilized credit lines)	Log(Undrawn credit lines)	Log(Term loans)	Log(Total commitments)	Log(Other borrowing)	Investment
QE *Bank-firm relationship shares	-0.014	-0.071***	0.001	-0.014*	-0.006	-0.354***
om to 1 a 1 1 1 1	(-0.515)	(-2.926)	(0.072)	(-1.800)	(-0.226)	(-4.130)
QT *Bank-firm relationship shares	-0.105** (-2.729)	-0.095*** (-3.507)	0.036 (1.428)	-0.029** (-2.301)	(-2.710)	(-3.573)
Observations	223.976	256.001	122.718	497.200	264.437	43.199
R-squared	0.820	0.798	0.929	0.951	0.914	0.817

Confirm borrowing patterns, with weak funding substitution

Investment result is reassuring (LT). Would be nice to see some more direct effect on cash holdings and payout policy

	1	2	3	4	5	6
Dependent variable:	Log(Utilized credit lines)	Log(Undrawn credit lines)	Log(Term loans)	Log(Total commitments)	Log(Other borrowing)	Investment
QE *Bank-firm relationship shares	-0.014	-0.071***	0.001	-0.014*	-0.006	-0.354***
	(-0.515)	(-2.926)	(0.072)	(-1.800)	(-0.226)	(-4.130)
QT *Bank-firm relationship shares	-0.105**	-0.095***	0.036	-0.029**	-0.080**	-0.454***
	(-2.729)	(-3.507)	(1.428)	(-2.301)	(-2.710)	(-3.573)
Observations	223,976	256,001	122,718	497,200	264,437	43,199
R-squared	0.820	0.798	0.929	0.951	0.914	0.817

Confirm borrowing patterns, with weak funding substitution

- ▶ Investment result is reassuring (LT). Would be nice to see some more direct effect on cash holdings and payout policy
- Result on QT and credit line raises two questions:
 - 1. Back to the concern about how do banks effectively reduce their off-BS exposure to undrawn CL

	1	2	3	4	5	6
Dependent variable:	Log(Utilized credit lines)	Log(Undrawn credit lines)	Log(Term loans)	Log(Total commitments)	Log(Other borrowing)	Investment
QE *Bank-firm relationship shares	-0.014	-0.071***	0.001	-0.014*	-0.006	-0.354***
	(-0.515)	(-2.926)	(0.072)	(-1.800)	(-0.226)	(-4.130)
QT *Bank-firm relationship shares	-0.105**	-0.095***	0.036	-0.029**	-0.080**	-0.454***
	(-2.729)	(-3.507)	(1.428)	(-2.301)	(-2.710)	(-3.573)
Observations	223,976	256,001	122,718	497,200	264,437	43,199
R-squared	0.820	0.798	0.929	0.951	0.914	0.817

Confirm borrowing patterns, with weak funding substitution

- Investment result is reassuring (LT). Would be nice to see some more direct effect on cash holdings and payout policy
- Result on QT and credit line raises two questions:
 - 1. Back to the concern about how do banks effectively reduce their off-BS exposure to undrawn CL
 - 2. Whats the interpretation of QT: new shock or lagged effect from QE shock? absent through-out the paper

Conclusions

- Very interesting paper, I enjoyed reading it!
- Important research question and interesting empirics
- Unconventional shock to answer a core question
 - Complementarities between deposits and liquidity provision
 - Effectiveness of UMP
 - Insightful in both ways

Minor Comments

- 1. Low hanging fruits bank-month level specifications:
 - Clustering SE by bank and month
 - Bank level controls for ROE, Leverrage and Liquidity (Cash over deposits)
- 2. Typos: p13, p29

References

- Chakraborty, I. Goldstein, and A. MacKinlay. Monetary stimulus and bank lending. Journal of Financial Economics, 136(1):189–218, 2020.
- M. Di Maggio, A. Kermani, and C. J. Palmer. How quantitative easing works: Evidence on the refinancing channel. The Review of Economic Studies, 87(3):1498–1528, 2020.
- S. Doerr. Bank geographic diversification and funding stability. Available at SSRN 4788627, 2024.
- A. Rodnyansky and O. M. Darmouni. The effects of quantitative easing on bank lending behavior. The Review of Financial Studies, 30(11):3858–3887, 2017.
- M. Schwert. Bank capital and lending relationships. The Journal of Finance, 73(2):787-830, 2018.