Capital flows, financial development, and credit resilience

Alejandro Jara Central Bank of Chile **David Moreno**Central Bank of Chile

II Workshop on Financial Markets, Shocks, and Macroeconomic Policies

Central Bank of Chile

12th August 2025

Contents

- 1 Introduction
- 2 Literature review
- 3 Data, Methods, and Results
- 4 Final remarks

Introduction

- Capital flows are volatile and pose significant risks to financial stability
- Several policies in place for prevention and damage control
 - Foreign reserves, capital flow management (CFM), FX interventions
 - Less prevalent in countries with high financial market development (FMDEV)
 - High FMDEV associated with mitigation of foreign shocks (Montañez-Enríquez et al., 2024)
 In contrast with amplification of domestic shocks
- **We ask** if *FMDEV* can foster external stabilisation in the following ways:
 - Can it reduce the likelihood of experiencing extreme swings in capital flows?
 - 2 When these events materialise, does it make banking credit more resilient?
- **We find** evidence for 33 advanced and 26 emerging economies
 - 1 We define relevant *FMDEV* dimensions
 - \bigcirc Relationship between **FMDEV** and probability of extreme swings \Rightarrow **Prevention**
 - \bigcirc ... and to the impact of swings on bank credit \Rightarrow **Resilience**

Literature Review

International capital flows

- Sudden stops and sudden starts
 - Calvo (1998), Calvo et al. (2004), Calvo et al. (2008), and Calvo et al. (2012); Faucette et al. (2005), Cowan and Gregorio (2007), Cowan et al. (2008), and Rothenberg and Warnock (2011);
- Gross inflows/outflows
 - Milesi-Ferretti and Tille (2011), Forbes and Warnock (2012a, 2012b, 2021), Broner et al. (2013), Calderón and Kubota (2013), Cifuentes and Jara (2014), and Adler et al. (2016) and many others
- Role of FMDEV ⇒ Different perspectives than previous literature and its relation to offsetting capital flows.
- Credit cycles from inflow surges
 - Hernández and Landerretche (2002), Mendoza and Terrones (2012), Calderón and Kubota (2012), Lane and McQuade (2014), Caballero (2016), and Igan and Tan (2017)...
 - **Credit during inflow stops** ⇒ We ask whether FMDEV delivers resilience.
- Broadly, financial market development and international finance
 - Local-currency bond markets (Park and Shin, 2025)

Financial market development: Concepts % Measurement

Theoretical characteristics of developed financial markets:

- A State contingent assets (Mendoza et al., 2009; Caballero et al., 2008)
- B Fewer market imperfections (information, transaction costs...) (Cœurdacier and Rey, 2012)
- O Deep FX markets & low FX mismatch (Basu et al., 2020)

• Measurement in previous papers

- Bank or total credit to GDP: Non-state-contingent
 - However, relevant input to output growth
- Stock market capitalisation/GDP (partial)
- Correlation between foreign assets and liabilities (endogeneity)

Measurement in this paper

- A Financial market depth index (from IMF): stocks+bonds
- B Institutional Investors' (II) assets/GDP, and their (from GFDD)
- B II share in financial assets, proxied by II/(II+Banks) (from GFDD)
- © Share of foreign debt issued in domestic currency (from Bénétrix et al., 2019)

Financial account (FA) data

- Sample: 33 advanced and 26 emerging economies List
 - Period: 1978q2-2019q4.
 - Source: IFS, complemented with Forbes and Warnock (2021) data

We focus on non-reserve flows (closer definition to private flows)

Identification of extreme events in capital flows

- Methodology based on Calvo et al. (2004)
 - Considers time and country-varying scale of flows
- Let k_{it} be the 4-quarter accumulated capital flows.
 - Let $\Delta k_{it} = k_{it} k_{it-4}$
 - ullet Let z_{it} be Δk standardised by the 5-year average and standard deviation
- A wave occurs if $|z_{it}| > 1$, for one or more contiguous periods
- An **extreme event**, if $|z_{it}| > 2$ in at least one period

Determinants of extreme capital flow events I

- **Push variables** (*PUSH*):
 - VIX
 - G4 shadow rate (Krippner, 2016) (SSR)
 - G7 real output growth (OCDE) (Δy^*)
 - Self-out share of countries in the region experiencing the same event (CONTAGION)
- Pull variables (PULL):
 - Annual real output growth (IFS) (Δy_i)
 - Monetary policy interest rates (IFS, BIS) (r_i)
 - Change in terms of trade (IFS) (ΔTOT_i)
 - Bank credit/GDP (BIS, IFS) (BANKCREDIT;/GDP;)
- External policy framework (de jure) (XSTAB)
 - Exchange rate arrangements (Ilzetzki et al., 2019) (ERA)
 - Capital outflow/inflow restrictions (Fernández et al., 2016) (KAO, KAI)
 - Alternatively, de facto variables: foreign reserves, other foreign assets, and foreign liabilities to GDP (Lane and Milesi-Ferretti, 2018) (IR*/GDP, A*/GDP, L*/GDP)

Determinants of extreme capital flow events II

• Specification:

$$\left(Pr \left(e_{it} = 1 \right) = \Lambda \left(\alpha_{o} PUSH_{t-1} + \alpha_{1} PULL_{i,t-1} + \alpha_{2} FMDEV_{i,t-4} + \alpha_{3} XSTAB_{i,t-4} + \right) + \alpha_{4} FMDEV_{i,t-4} \times XSTAB_{i,t-4} + \varepsilon_{it} \right)$$
(1)

- Event (e = 1); indicates significant extreme capital flows events
- Λ is a cloglog function, as these events have low frequency (~ o.1)
- FMDEV is a measure of financial market development.
- Standard errors are clustered at the country level

Baseline

- Exclude safe havens (Germany, Japan, Switzerland, U.K. and U.S.) (Habib et al., 2020; Avdjiev et al., 2025)
- Events on non-reserve capital flows
- De jure XSTAB variables

Benchmark results: Margins

Financial market depth associated to lower likelihood of net stops through retrenchment

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Net Stop	Stop	Flight	Net Stop Stop	Net Stop Flight	Retrench.	Retrench. Stop
	↓ NL*	↓ L*	↑ A*	↓ NL* ↓ L*	↓ <i>NL</i> * ↑ A*	↓ A *	$\downarrow A^* \mid \downarrow L^*$
VIX_{t-1}	0.059**	0.047*	-0.046	0.106	0.132	0.062**	0.005
SSR_{t-1}	0.017**	0.010*	0.025***	0.013	0.034	0.013**	0.016
Δy_{t-1}^*	-0.008	0.008	0.004	-0.001	-0.039	-0.006	0.001
$r_{i,t-1}$	0.002	0.001	-0.001	0.016**	-0.001	-0.001	-0.010
$\Delta TOT_{i,t-1}$	0.005	-0.008	0.010*	0.010	0.027**	-0.005	-0.009
$\Delta y_{i,t-1}$	-0.005	-o.oo6 *	0.002	-0.009	0.002	-o.oo6 *	-0.008
$(BANKCREDIT/GDP)_{i,t-4}$	0.001***	0.000	0.000	0.001	0.002*	0.000*	0.000
FMDEPTH _{i,t-4}	-0.083*	-0.016	0.031	-0.271	-0.276	0.106***	0.397*
ERA _{i,t-4}	-0.018	-0.014	0.015	-0.015	0.016	-0.034	-0.274 **
$KAO_{i,t-4}$	-0.015	-0.030	0.020	0.049	-0.023	-0.049	0.200
KAI _{i,t-4}	0.065	0.020	-0.059	0.254	0.095	0.108	-0.219
$CONTAGION_{i,t-1}$	0.002**	0.003***	0.002***	0.002	0.000	0.002**	0.001
Obs.	3555	3555	3555	412	400	3555	412
AUROC	0.754	0.792	0.736	0.813	0.713	0.709	0.809

Marginal effects from the estimation of eq. (1) using baseline strategy: events on non-reserve capital flows, sample excluding safe havens and using *de jure* variables of external stabilisation.

Standard errors in parentheses. *p < 0.05,** p < 0.01,*** p < 0.001.

Alternative Results: Margins

FM Depth is the most associated factor. IIs associated a retrenchment during stops.

		S	afe	haveı	ıs exc	lude	d	All countries								
	N	on-re	serv	е		All flows				lon-r	eserv	е	All flows			
	а	b	С	d	а	b	С	d	a	b	С	d	a	b	С	d
Net Stop	-*	0	0	0	_*	0	0	0	-*	0	0	0	-*	-*	0	0
Stop	0	0	0	0	0	0	0	0	0	0	+*	0	0	0	+*	0
Flight	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Retrenchment	+***	0	0	0	0	Ο	0	0	+***	0	0	0	0	0	0	0
Net Stop Stop	0	0	0	0	_**	0	0	0	0	0	0	+*	-**	0	0	0
Retrenchment Stop	+*	+***	+*	-*	+*	Ο	0	Ο	+*	+***	+*	0	+*	0	0	0

Column letters a-d indicate an FMDEV measurement: (a) FMDEPTH, (b) II/GDP, (c) II/(II + BANK), (d) FX Risk (L_{DC}^*/L^*) . Marginal effects from the estimation of eq. (1) departing from the baseline strategy (which is the first column): safe havens excluded/included or non-reserve/total capital flows. Significance: *p < 0.05, **p < 0.01, ***p < 0.001.

Interaction coefficients

			Safe	haver	ıs exc	luded						All cou	ıntries	5		
		Non-r	eserve			All f	lows			Non-re	eserve	е		All fl	ows	
	а	b	С	d	a	b	С	d	a	b	С	d	a	b	С	d
		Net Stop														
$FMDEV_{i,t-4} \times ERA_{i,t-4}$	0	0	+*	0	0	0	0	0	0	0	0	0	0	0	0	0
$FMDEV_{i,t-4} \times KAO_{i,t-4}$	0	0	0	0	0	0	0	0	0	0	0	О	0	0	0	0
$FMDEV_{i,t-4} \times KAI_{i,t-4}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Stop														
$FMDEV_{i,t-4} \times ERA_{i,t-4}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$FMDEV_{i,t-4} \times KAO_{i,t-4}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$FMDEV_{i,t-4} \times KAI_{i,t-4}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
							-	Retrend	hmer	nt						
$FMDEV_{i,t-4} \times ERA_{i,t-4}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$FMDEV_{i,t-4} \times KAO_{i,t-4}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	О
$FMDEV_{i,t-4} \times KAI_{i,t-4}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
							Ν	let Sto	p Sto	op						
$FMDEV_{i,t-4} \times ERA_{i,t-4}$	0	-*	0	0	0	-*	0	0	0	0	0	+**	0	-*	0	О
$FMDEV_{i,t-4} \times KAO_{i,t-4}$	0	0	0	0	+*	0	0	0	0	0	0	О	0	0	0	О
$FMDEV_{i,t-4} \times KAI_{i,t-4}$	0	+*	0	$+^*$	-*	+*	0	0	0	+*	0	О	0	+*	0	О
							Retr	enchm	ent	Stop						
$FMDEV_{i,t-4} \times ERA_{i,t-4}$	0	$+^*$	0	0	0	0	0	0	0	О	0	+*	0	О	0	+**
$FMDEV_{i,t-4} \times KAO_{i,t-4}$	0	О	0	0	-*	0	0	0	0	О	0	0	0	О	0	О
$FMDEV_{i,t-4} \times KAI_{i,t-4}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Column letters a-d indicate an FMDEV measurement: (a) FMDEPTH, (b) II/GDP, (c) II/(II + BANK), (d) FX Risk (L_{DC}^*/L^*) . Coefficients of the interaction of financial market development measurements with the corresponding *de jure* measure of external stabilisation policy, using eq. (1) Significance: *p < 0.05,** p < 0.01,*** p < 0.001.

Conclusions

- Financial market depth is strongly associated to:
 - Lower probability of net stops, and higher for retrenchment stop
 - Holds when including safe havens and/or *IR** flows
 - Robust to use of *de facto* variables De facto margins
- //s' size is associated to higher likelihood of retrenchment | stop
 - Not when including IR* flows
 - Role in cross-border diversification by the private sector
 - Few significant interactions between XSTAB and FMDEV
- FX Risk is not associated to any event of extreme capital flows
 - However, it will matter for the resilience of bank credit

Credit resilience: Data & Methods I

- Now we assess the resilience of banking credit under different levels of FMDEV
- Data for bank credit
 - From BIS, complemented with data from IFS for some emerging markets
 - Corresponds to banking credit to the non-financial private sector, deflated by CPI
- **We use local projections** as in Jordà and Taylor (2016) relying on an inverse probability weighting scheme (IPW).
- We estimate the average treatment effect (ATE, with symbol Λ) over horizons $h \in \{-K, \dots, 0, \dots, H\}$ after the <u>start</u> of an event ($\Delta e_{it} = 1$).

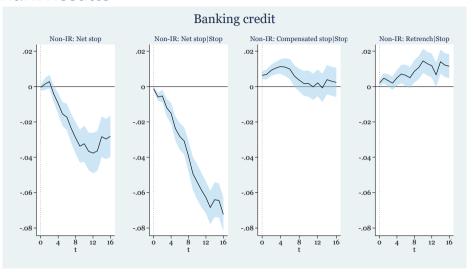
$$\Lambda^{h} = \mathbb{E}\left\{ \left(\ell_{i,t+h} - \ell_{i,t-1} \middle| X_{it} \right) \left[\frac{1\left\{ \Delta e_{it} = 1 \right\}}{p\left(X_{it}, \psi\right)} - \frac{1\left\{ \Delta e_{it} = 0 \right\}}{1 - p\left(X_{it}, \psi\right)} \right] \right\} \text{ for all } h > 0, \tag{2}$$

Credit resilience: Data & Methods II

- **Propensity scores** $p\left(X_{it}, \hat{\psi}\right)$ are estimated using eq. (1) with some changes:
 - Includes **PUSH** and **PULL** variables in changes, and lag their levels.
 - Includes XSTAB variables. FMDEV variable included in the outcome model later

• Outcome model:
$$\ell_{i,t+h} - \ell_{i,t-1} = \bigwedge^h \Delta e_{it} + \beta^h X_{it} + \alpha_i^h + \delta_t^h + u_{it}^h$$
 (3)

where X includes 2 lags of $\Delta \ell$, *PULL* and *XSTAB* variables as in eq. (1), the banking-sector Z-score (GFDD) and twoway fixed effects.


• **Heterogeneity in FMDEV** is included as follow.

$$\ell_{i,t+h} - \ell_{i,t-1} = \Lambda_0^h \Delta e_{it} + \Lambda_1^h f_{it} \Delta e_{it} + \lambda^h f_{it} + \beta^h X_{it} + \alpha_i^h + \delta_t^h + u_{it}^h$$
(4)

where $f_{it} = 1$ if $FMDEV_{i,t-4} > FMDEV_{p75}$

• ATE efficient estimator (Lunceford and Davidian, 2004)

Benchmark Results

Figure 1: Impact of an extreme event in non-reserve capital flows on real banking credit to the private non-financial sector. The sample excludes safe havens. The area indicates a confidence interval at 5% significance using standard errors of the efficient **ATE** estimator.

Benchmark Results: Heterogeneous impact of net stops

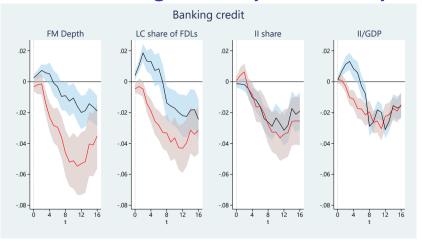


Figure 2: Impact of an extreme event in non-reserve capital flows on real banking credit to the private non-financial sector, according to the level of financial market development. This is proxied by four measures: the financial market depth index (FM Depth), the share of foreign debt liabilities in local currency (LC share of FDL), the share of the institutional investors' assets over the financial system assets (II share), and the ratio of institutional investors' assets over GDP (II/GDP). Blue lines indicates the case for high levels of financial market development (i.e., the variable is above the 75th percentile), and red for the low levels. The areas indicate a 95% confidence interval using standard errors of the efficient ATE estimator. The sample excludes safe havens.

Conclusions

- Bank credit is significantly impacted by net stops, especially net stop | stop
 - 1 Impact: 3% 4% from baseline after 12 quarters (5% 6% if conditional on stops)
 - Credit increases around 1% in averted net stops or simultaneous stop & retrench
 - 3 Results are robust to inclusion of safe havens and/or IR* ► Incl. safe havens ► Incl. IR*
- Under net stops, economies with less developed financial markets show less resilient banking credit
 - More developed economies register an initial increase before turning negative.
 - 2 This holds for FM Depth, IIs size and FX risk.
 - Results are robust for FM Depth to inclusion of safe havens and/or IR*.
 - Results are less robust for II size or FX risk, to the inclusion of safe havens

Final remarks

Financial market depth is strongly associated with:

- Lower probability of net stops
- Higher probability of retrenchments (particularly conditional on stops),
- More resilient banking credit when net stops materialise.

• This highlights the following aspects:

- Complete markets are ideal for external stability and resilient domestic bank credit
- Imperfections (informational, transaction costs, etc.) relevant for retrenchment
- Low FX risks not associated to prevention, but with resilience

Future work

- Distinguish mechanisms of bank credit resilience:
 - Stabilisation of asset prices or financial income (credit demand side)
 - Diversified bank funding, stable costs or lower exposure (credit supply side)
- Data on total credit
 - Role of non-banks
 - Data from BIS on total credit, excl. cross-border credit

Capital flows, financial development, and credit resilience

Alejandro Jara Central Bank of Chile **David Moreno**Central Bank of Chile

II Workshop on Financial Markets, Shocks, and Macroeconomic Policies

Central Bank of Chile

12th August 2025

References I

- Adler, Gustavo, Marie-Louise Djigbenou, and Sebastián Sosa. 2016. "Global financial shocks and foreign asset repatriation: Do local investors play a stabilizing role?" Journal of International Money and Finance 60:8–28.
- Avdjiev, Stefan, Leonardo Gambacorta, Linda Goldberg, and Stefano Schiaffl. 2025. The risk sensitivity of global liquidity flows: Heterogeneity, evolution, and drivers. Staff Report 1149. New York, NY: Federal Reserve Bank of New York.
- Basu, Suman, Emine Boz, Gita Gopinath, Francisco Roch, and Filiz Unsal. 2020. A Conceptual Model for the Integrated Policy Framework. IMF Working Paper 121. Washington, DC: International Monetary Fund.
- Bénétrix, Agustín, Deepali Gautam, Luciana Juvenal, and Martin Schmitz. 2019. Cross-Border Currency Exposures. IMF Working Paper 299. Washington, DC: International Monetary Fund.
- Broner, Fernando, Tatiana Didier, Aitor Erce, and Sergio L. Schmukler. 2013. "Gross capital flows: Dynamics and crises." *Journal of Monetary Economics*, Carnegie-NYU-Rochester Conference, 60 (1): 113–133.
- Caballero, Julián A. 2016. "Do Surges in International Capital Inflows Influence the Likelihood of Banking Crises?" The Economic Journal 126 (591): 281–316.
- Caballero, Ricardo, Emmanuel Farhi, and Pierre-Olivier Gourinchas. 2008. "An Equilibrium Model of "Global Imbalances" and Low Interest Rates." Publisher: American Economic Association, American Economic Review 98 (1): 358–393.
- Calderón, César, and Megumi Kubota. 2012. Gross Inflows Gone Wild: Gross Capital Inflows, Credit Booms and Crises. Policy Research Working Paper 6270. Washington, DC: World Bank.
- ------. 2013. "Sudden stops: Are global and local investors alike?" Journal of International Economics 89 (1): 122–142.
- Calvo, Guillermo, Alejandro Izquierdo, and Rudy Loo-Kung. 2012. Optimal holdings of international reserves: Self-insurance against sudden stop. NBER Working Paper 18219. Cambridge, MA: National Bureau of Economic Research.
- Calvo, Guillermo, Alejandro Izquierdo, and Luis Fernando Mejía. 2008. Systemic Sudden Stops: The Relevance of Balance-Sheet Effects and Financial Integration. NBER Working Paper 14026. Cambridge, MA: National Bureau of Economic Research.
- Calvo, Guillermo, Alejandro Izquierdo, and Luis-Fernando Mejía. 2004. On the empirics of sudden stops: The relevance of balance-sheet effects. NBER Working Paper 10520. Cambridge, MA: National Bureau of Economic Research.

References II

- Calvo, Guillermo A. 1998. "Capital flows and capital-market crises: The simple economics of sudden stops." *Journal of Applied Economics* 1 (1): 35–54.
- Cifuentes, Rodrigo, and Alejandro Jara. 2014. Facing volatile capital flows: the role of exchange rate flexibility and foreign assets.

 Documento de Trabajo 742. Santiago, Chile: Banco Central de Chile.
- Cœurdacier, Nicolas, and Hélène Rey. 2012. "Home Bias in Open Economy Financial Macroeconomics." Journal of Economic Literature 51 (1): 63–115.
- Cowan, Kevin, José De Gregorio, Alejandro Micco, and Christopher Neilson. 2008. "Financial diversification, sudden stops, and sudden starts," 159–194. Series on Central Banking, Analysis, and Economic Policies. Banco Central de Chile.
- Cowan, Kevin, and José De Gregorio. 2007. "International Borrowing, Capital Controls, and the Exchange Rate: Lessons from Chile." In Capital Controls and Capital Flows in Emerging Economies: Policies, Practices, and Consequences, edited by Sebastián Edwards, 241–296. University of Chicago Press.
- Faucette, Jillian E., Alexander D. Rothenberg, and Francis E. Warnock. 2005. "Outflows-induced sudden stops." The Journal of Policy Reform 8 (2): 119–129.
- Fernández, Andrés, Michael W Klein, Alessandro Rebucci, Martin Schindler, and Martín Uribe. 2016. "Capital control measures: A new dataset." Publisher: Springer, IMF Economic Review 64 (3): 548–574.
- Forbes, Kristin J., and Francis E. Warnock. 2012a. "Capital flow waves: Surges, stops, flight, and retrenchment." *Journal of International Economics*, NBER Global, 88 (2): 235–251.
- ———. 2012b. *Debt- and Equity-Led Capital Flow Episodes*. Working Paper 18329. Cambridge, MA: National Bureau of Economic Research.
- ———. 2021. "Capital flow waves—or ripples? Extreme capital flow movements since the crisis." *Journal of International Money and Finance* 116:102394.
- Habib, Maurizio Michael, Livio Stracca, and Fabrizio Venditti. 2020. "The fundamentals of safe assets." *Journal of International Money and Finance* 102:102119.

References III

- Hernández, Leonardo, and Óscar Landerretche. 2002. "Capital inflows, credit booms, and macroeconomic vulnerability: The cross-country experience," edited by Leonardo Hernández and Klaus Schmidt-Hebbel, 199–233. Series on Central Banking, Analysis, and Economic Policies. Banco Central de Chile.
- Igan, Deniz, and Zhibo Tan. 2017. "Capital Inflows, Credit Growth, and Financial Systems." *Emerging Markets Finance and Trade* 53 (12): 2649–2671.
- Ilzetzki, Ethan, Carmen M Reinhart, and Kenneth S Rogoff. 2019. "Exchange Arrangements Entering the Twenty-First Century: Which Anchor will Hold?*." The Quarterly Journal of Economics 134 (2): 599–646.
- Jordà, Òscar, and Alan M. Taylor. 2016. "The Time for Austerity: Estimating the Average Treatment Effect of Fiscal Policy." The Economic Journal 126 (590): 219–255.
- Krippner, Leo. 2016. Documentation for measures of monetary policy. Working Paper. Wellington, New Zealand: Reserve Bank of New Zealand.
- Lane, Philip R., and Peter McQuade. 2014. "Domestic Credit Growth and International Capital Flows." The Scandinavian Journal of Economics 116 (1): 218–252.
- Lane, Philip R., and Gian Maria Milesi-Ferretti. 2018. "The External Wealth of Nations Revisited: International Financial Integration in the Aftermath of the Global Financial Crisis." *IMF Economic Review* 66 (1): 189–222.
- Lunceford, Jared K., and Marie Davidian. 2004. "Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study." Statistics in Medicine 23 (19): 2937–2960.
- Mendoza, Enrique, and Marco Terrones. 2012. An Anatomy of Credit Booms and their Demise. Technical report w18379. Cambridge, MA: National Bureau of Economic Research.
- Mendoza, Enrique G., Vincenzo Quadrini, and José-Victor Ríos-Rull. 2009. "Financial Integration, Financial Development, and Global Imbalances." *Journal of Political Economy* 117 (3): 371–416.
- Milesi-Ferretti, Gian-Maria, and Cédric Tille. 2011. "The great retrenchment: international capital flows during the global financial crisis." *Economic Policy* 26 (66): 289–346.

References IV

Montañez-Enríquez, Ricardo, Matias Ossandon Busch, and Manuel Ramos-Francia. 2024. "Untangling the finance-growth nexus: The dual role of financial development in the transmission of shocks." *Emerging Markets Review* 63:101192.

Park, Cyn Young, and Kwanho Shin. 2025. "The development of local currency bond markets and uncovered interest rate parity." Journal of International Money and Finance 154:103310.

Rothenberg, Alexander D., and Francis E. Warnock. 2011. "Sudden Flight and True Sudden Stops." Review of International Economics 19 (3): 509–524.

Country sample Return

Emerging-market economies	Advanced economies	
Argentina (1978q2-2022q4) Bangladesh (1978q2-2022q4) Bolivia (1988q1-2022q4) Brazil (1978q2-2022q4) Brazil (1978q2-2022q4) Chile (1991q1-2022q4) Colombia (1991q1-2022q4) Costa Rica (1999q1-2022q4) Guatemala (1978q2-2022q4) Hungary (1989q4-2022q4) India (1978q2-2022q4) India (1978q2-2022q4) Mexico (1979q1-2022q4) Mexico (1979q1-2022q4) Panama (1998q1-2022q4) Philippines (1978q2-2022q4) Poland (1984q1-2022q4) Romania (1991q1-2022q4) South Africa (1985q1-2022q4) South Africa (1985q1-2022q4) Sri Lanka (1978q2-2021q1) Thailand (1978q2-2022q4) Türkiye (1984q1-2022q4) Türkiye (1984q1-2022q4) Türkiye (1984q1-2022q4) Türkiye (1984q1-2022q4) Türkiye (1984q1-2022q4)	Austracia (1978q2-2022q4) Austria (1978q2-2022q4) Belgium (2002q1-2022q4) Canada (1978q2-2022q4) Croatia (1993q1-2022q4) Croatia (1993q1-2022q4) Denmark (1978q2-2022q4) Estonia (1992q1-2022q4) Finland (1978q2-2022q4) France (1978q2-2022q4) Germany (1978q2-2022q4) Hong Kong (1998q1-2022q4) Hong Kong (1998q1-2022q4) Ireland (1978q2-2022q4) Ireland (1978q2-2022q4) Israel (1978q2-2022q4) Israel (1978q2-2022q4) Latvia (1993q1-2022q4) Latvia (1993q1-2022q4) Latvia (1993q1-2022q4) New Zealand (1980q1-2022q4) New Zealand (1980q1-2022q4) Norway (1978q2-2022q4) Portugal (1978q2-2022q4)	Slovakia (1993q1-2022q4) Spain (1978q2-2022q4) Sweden (1978q2-2022q4) Switzerland (1999q1-2022q4) Taiwan (1981q1-2022q4) United Kingdom (1978q2-2022q4) United States (1978q2-2022q4)

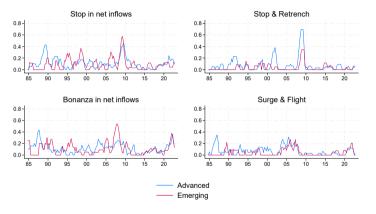
Classification as in World Economic Outlook 2023.

Events frequency

	Advanced	Emerging	Total
Net stop	0.107	0.097	0.103
Bonanza	0.114	0.110	0.112
Stop	0.118	0.093	0.108
Surge	0.122	0.133	0.127
Retrenchment	0.116	0.107	0.112
Flight	0.124	0.130	0.126
Net stop Stop	0.327	0.561	0.412
Flight Stop	0.012	0.088	0.039
Retrench Stop	0.659	0.361	0.551

The frequency corresponds to the share of observations where the country in the group under considerations was in the mentioned event, among those observations registering a stop in inflows. The samples considers data from 1978q2 until 2022q4. The classification of countries is shown in appendix 7.

Event correlations


LVCIIL	CULI	Clati	UII

	Net stop	Bonanza	Stop	Surge	Retrench	Flight
			All countrie	es		
Bonanza	-0.121***	1				
Stop	0.381***	-0.055***	1			
Surge	-0.084***	0.350***	-0.132***	1		
Retrench	0.031	0.105***	0.449***	-0.104***	1	
Flight	0.099***	-0.012	-0.088***	0.377***	-o.137***	1
			Advanced econo	omies		
Bonanza	-O.127***	1				
Stop	0.292***	-0.039	1			
Surge	-0.069***	0.284***	-O.137***	1		
Retrench	0.038	0.124***	0.587***	-0.109***	1	
Flight	0.083***	-0.006	-O.125***	0.476***	-O.139***	1
			Emerging econd	omies		
Bonanza	-O.115***	1				
Stop	0.503***	-0.077***	1			
Surge	-0.102***	0.428***	-0.126***	1		
Retrench	0.022	0.080***	0.265***	-0.098***	1	
Flight	0.120***	-0.019	-0.040	0.264***	-0.134***	1

Correlation between the variables registering the occurrence of the given event. The sample considers data from 1978q2 until 2022q4, including the sample of emerging market economies in appendix 7. Sidak-adjusted significance level: $^*p < 0.05, ^{**}p < 0.01, ^{***}p < 0.001$.

Identified events I

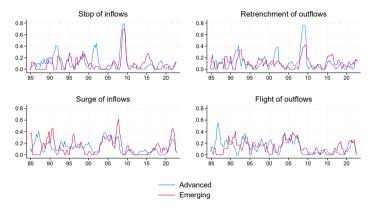


Figure 3: Share of countries in the sample that experience a given event in net non-reserve capital flows, or simultaneous compensating events in gross non-reserve capital flows. By country classification as shown in appendix 7.

Identified events II

Figure 4: Share of countries in the sample that experience a given event in gross non-reserve capital flows. By country classification as shown in appendix 7.

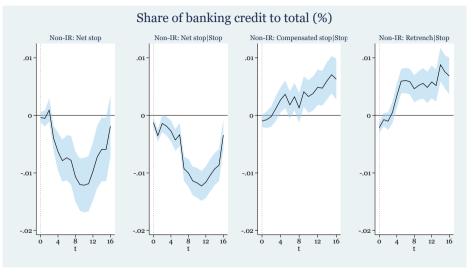
Marginal effects of FMDEV variables

De facto measurement • Return

		Safe havens excluded										All countries								
		Non-reserve				All ·	flows			lon-re	re	All flows								
	а	b	С	d	a	b	С	d	а	b	С	d	a	b	С	d				
Net Stop	-*	0	0	+*	-*	0	0	0	-**	0	0	0	-*	0	0	0				
Stop	0	0	0	+*	0	0	0	+*	0	0	0	+**	0	0	0	+**				
Flight	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
Net Stop Stop	0	-***	0	0	-***	0	0	0	0	-***	0	0	-***	0	0	0				
Net Stop Flight	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-**				
Retrenchment	+*	0	0	0	0	0	0	+***	+*	0	0	0	0	0	0	+***				
Retrenchment Stop	0	0	0	0	0	0	-*	0	0	+***	0	0	0	0	-*	+*				

Notes: a: FMDEPTH, b: II/GDP, c: II/(II + BANK), d: FX Risk (L_{DC}^*/L^*).

Significance: p < 0.05, p < 0.01, p < 0.00.


Coefficients of FMDEV and XSTAB variables

De facto measurement Return

			Safe	have	ns excl	uded						All cou	ıntries			
		Non-r	eserve	9		All flows				Non-r	eserve			All f	lows	
	a	b	С	d	a	b	С	d	a	b	С	d	a	b	С	d
								Net	Stop							
$FMDEV_{i,t-4} \times (IR/GDP)_{i,t-4}$	0	0	0	0	0	0	0	$+^*$	ll –'*	0	-*	0	0	0	0	0
$FMDEV_{i,t-4} \times (A^*/GDP)_{i,t-4}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$FMDEV_{i,t-4} \times (L^*/GDP)_{i,t-4}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Stop														
$FMDEV_{i,t-4} \times (IR/GDP)_{i,t-4}$	0	0	0	0	-**	0	0	0	0	0	-*	-*	0	0	-*	0
$FMDEV_{i,t-4} \times (A^*/GDP)_{i,t-4}$	0	0	0	+*	0	0	0	+*	0	0	+*	0	0	0	+*	0
$FMDEV_{i,t-4} \times (L^*/GDP)_{i,t-4}$	0	0	0	-*	0	0	0	-*	0	0	0	0	0	0	0	0
							Ν	let Sto	p Sto	р						
$FMDEV_{i,t-4} \times (IR/GDP)_{i,t-4}$	0	-*	-*	0	0	-*	0	0	0	0	0	0	0	0	0	0
$FMDEV_{i,t-4} \times (A^*/GDP)_{i,t-4}$	0	0	0	0	0	+*	0	0	0	0	0	0	0	0	0	0
$FMDEV_{i,t-4} \times (L^*/GDP)_{i,t-4}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
							F	Retren	chmen	t						
$FMDEV_{i,t-4} \times (IR/GDP)_{i,t-4}$	0	0	0	0	-***	-**	-**	0	0	0	0	0	-***	-*	-**	+*
$FMDEV_{i,t-4} \times (A^*/GDP)_{i,t-4}$	0	0	0	+*	0	0	0	+**	0	0	0	+*	-*	0	0	+**
$FMDEV_{i,t-4} \times (L^*/GDP)_{i,t-4}$	0	0	0	-*	0	0	0	-**	0	0	0	0	0	0	0	0
							Retr	enchn	nent S	Stop						
$FMDEV_{i,t-4} \times (IR/GDP)_{i,t-4}$	0	0	0	0	-***	-*	-**	0	0	0	0	0	0	-*	-**	0
$FMDEV_{i,t-4} \times (A^*/GDP)_{i,t-4}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	+*
$FMDEV_{i,t-4} \times (L^*/GDP)_{i,t-4}$	0	0	0	0	0	0	0	0	-**	0	0	0	0	0	0	0

Notes: a: FMDEPTH, b: II/GDP, c: II/(II + BANK) & d: FX Risk (L_{DC}^*/L^*) Significance: *p < 0.05,** p < 0.01,*** p < 0.001.

Benchmark Results

Figure 5: Impact of an extreme event in non-reserve capital flows on the share of banking credit of the total credit to the non-financial private sector. The sample excludes safe havens. The area indicates a confidence interval at 5% significance using standard errors of the efficient ATF extimator.

Benchmark Results: Heterogeneous impact of net stops

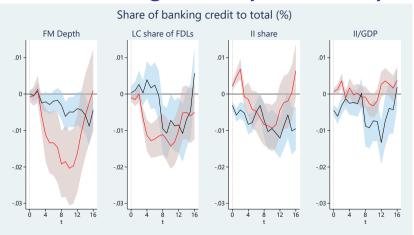



Figure 6: Impact of an extreme event in non-reserve capital flows on the share of banking credit of the total credit to the non-financial private sector, according to the level of financial market development. This is proxied by four measures: the financial market depth index (FM Depth), the share of foreign debt liabilities in local currency (LC share of FDL), the share of the institutional investors' assets over the financial system assets (II share), and the ratio of institutional investors' assets over GDP (II/GDP). Blue lines indicate the case for high levels of financial market development (i.e., the variable is above the 75th percentile), and red for the low levels. The areas indicate a 95% confidence interval using standard errors of the efficient ATE estimator. The sample

Alternative Results: Including Safe Havens I

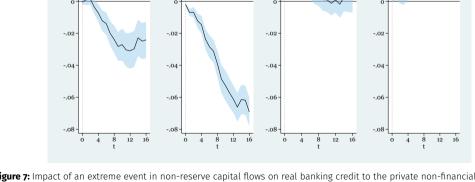
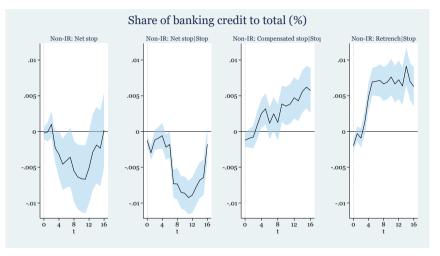



Figure 7: Impact of an extreme event in non-reserve capital flows on real banking credit to the private non-financial sector. The sample include safe havens.

Alternative Results: Including Safe Havens II

Figure 8: Impact of an extreme event in non-reserve capital flows on the share of banking credit of the total credit to the non-financial private sector. The sample include safe havens.

Alternative Results: Heterogeneous impact of net stops I

Including Safe Havens Return

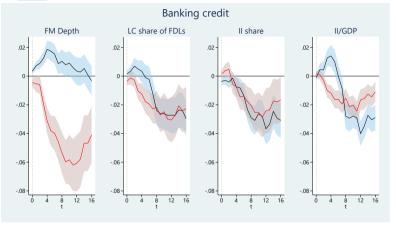


Figure 9: Impact of an extreme event in non-reserve capital flows on real banking credit to the private non-financial sector, according to the level of financial market development. This is proxied by four measures: financial market depth index (FM Depth), share of foreign debt liabilities in local currency (LC share of FDLs), share of the institutional investors assets over financial system assets (II share), and the ratio of institutional investors assets over GDP (II/GDP). Blue lines indicates the case for high levels of financial market development (i.e., the variable is above the 75th percentile), and red for the low levels. The areas indicate a 95% confidence interval. The sample includes safe havens.

Alternative Results: Heterogeneous impact of net stops II

Including Safe Havens • Return

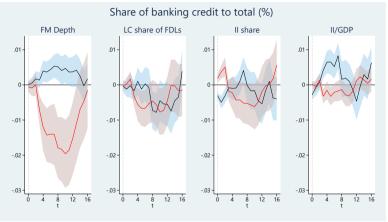
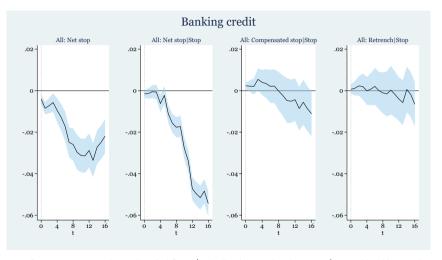



Figure 10: Impact of an extreme event in non-reserve capital flows on the share of banking credit of the total credit to the non-financial private sector, according to the level of financial market development. This is proxied by four measures: financial market depth index (FM Depth), share of foreign debt liabilities in local currency (LC share of FDLs), share of the institutional investors assets over financial system assets (II share), and the ratio of institutional investors assets over GDP (II/GDP). Blue lines indicates the case for high levels of financial market development (i.e., the variable is above the 75th percentile), and red for the low levels. The areas indicate a 95% confidence interval. The sample includes safe havens.

Alternative Results: Including IR* I

Figure 11: Impact of an extreme event in total capital flows (including international reserves) on real banking credit to the private non-financial sector. The sample excludes safe havens.

Alternative Results: Including *IR** **II**

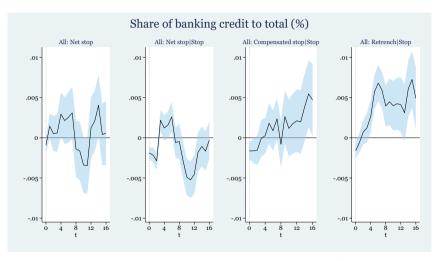


Figure 12: Impact of an extreme event in total capital flows (including international reserves) on the share of banking credit of the total credit to the non-financial private sector. The sample excludes safe havens.

Alternative Results: Heterogeneous impact of net stops I

Including IR*

✓ Return

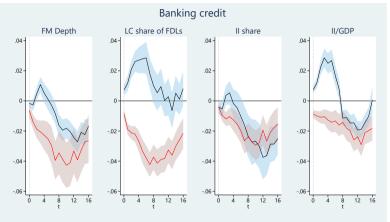
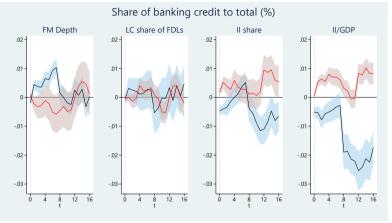
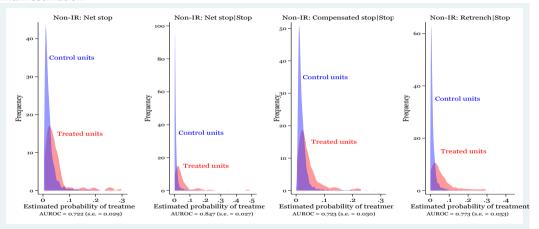


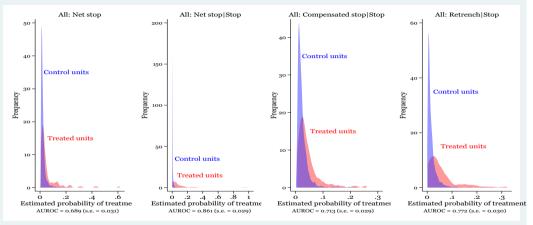
Figure 13: Impact of an extreme event in total capital flows on real banking credit to the private non-financial sector, according to the level of financial market development. This is proxied by four measures: financial market depth index (FM Depth), share of foreign debt liabilities in local currency (LC share of FDLs), share of the institutional investors assets over financial system assets (II share), and the ratio of institutional investors assets over GDP (II/GDP). Blue lines indicates the case for high levels of financial market development (i.e., the variable is above the 75th percentile), and red for the low levels. The areas indicate a 95% confidence interval. The sample excludes safe havens.

Alternative Results: Heterogeneous impact of net stops II

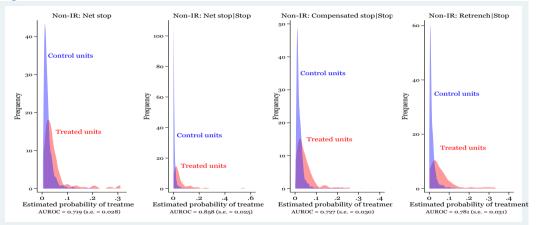
Including IR*

■ Return

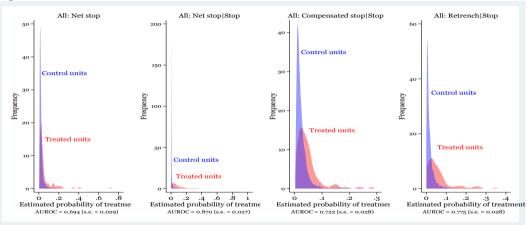




Figure 14: Impact of an extreme event in total capital flows on the share of banking credit of the total credit to the non-financial private sector, according to the level of financial market development. This is proxied by four measures: financial market depth index (FM Depth), share of foreign debt liabilities in local currency (LC share of FDLs), share of the institutional investors assets over financial system assets (II share), and the ratio of institutional investors assets over GDP (II/GDP). Blue lines indicates the case for high levels of financial market development (i.e., the variable is above the 75th percentile), and red for the low levels. The areas indicate a 95% confidence interval. The sample excludes safe havens.

Benchmark estimation


Figure 15: Distribution of control and treatment units. Treatment units are those where an extreme event in non-reserve capital flows has occurred, and the rest are controls. We exclude observations where the unit stops being in treatment, only for that period. Events included are net stops, a stop accompanied by a net stop, a compensated stop (i.e., a stop unaccompanied by a net stop), and a stop accompanied by a retrenchment. We proxy the quality of the classification using the area under the ROC curve, and its standard error. Safe havens are excluded from the sample.

Including IR*


Figure 16: Distribution of control and treatment units. Treatment units are those where an extreme event in total capital flows has occurred, and the rest are controls. We exclude observations where the unit stops being in treatment, only for that period. Events included are net stops, a stop accompanied by a net stop, a compensated stop (i.e., a stop unaccompanied by a net stop), and a stop accompanied by a retrenchment. We proxy the quality of the classification using the area under the ROC curve, and its standard error. Safe havens are excluded from the sample.

Including safe havens

Figure 17: Distribution of control and treatment units. Treatment units are those where an extreme event in non-reserve capital flows has occurred, and the rest are controls. We exclude observations where the unit stops being in treatment, only for that period. Events included are net stops, a stop accompanied by a net stop, a compensated stop (i.e., a stop unaccompanied by a net stop), and a stop accompanied by a retrenchment. We proxy the quality of the classification using the area under the ROC curve, and its standard error. Safe havens are included in the sample.

Including safe havens & IR*

Figure 18: Distribution of control and treatment units. Treatment units are those where an extreme event in total capital flows has occurred, and the rest are controls. We exclude observations where the unit stops being in treatment, only for that period. Events included are net stops, a stop accompanied by a net stop, a compensated stop (i.e., a stop unaccompanied by a net stop), and a stop accompanied by a retrenchment. We proxy the quality of the classification using the area under the ROC curve, and its standard error. Safe havens are included in the sample.