Macroprudential Policies and Market Competition in Mortgage Lending Markets: Evidence for Chile¹

Pedro Roje-Larreboure

Central Bank of Chile

October 7, 2025

1. This paper's results did not involve or compromise the Central Bank of Chile or the institutions that share their data with the Central Bank of Chile.

Motivation

- Macroprudential tools promote financial stability
 - Especially encouraged after the financial crisis
 - Leverage regulation (e.g., LTV caps), capital regulations on banks, etc.
- They are usually designed to control:
 - High leverage
 - Mortgage default
 - Credit growth and house-price booms
- However, they may have unexpected and secondary effects
 - E.g., market competition
- Still lack of evidence regarding how these policies can impact on competition

Mortgage loan-loss-provisioning Policy

- ▶ LLPs are reserves that banks create to cover expected losses from their loans
- ▶ Before 2016, banks had significant discretion in their mortgage provisioning
 - By group portfolios and IRB models; LTV had a secondary role
- A new LLP policy for mortgages started in January 2016
 - For each loan, every month
 - Standardized approach: days in arrears and LTV LLP Figure
 - ▶ This policy serves as a soft LTV cap: LLP can greatly rise with LTV > 80%
 - Previous evidence: Calani and Paillacar (2022)
- ▶ The Chilean Banking Authority, pre-2016, expected that the new LLP policy:
 - Provisions reflect a correct risk in banks' portfolios
 - Minimal to no effects on prices

This Paper

- 1. How do banks adjust their originations in response to the LLP regulation?
 - → Heterogeneous effects
- 2. How does the LLP policy alter borrowers' choice sets?
 - → Estimation of borrowers' choice sets ⇒ Structural Model
 - → Meaningful effects on choice sets
- 3. How do banks modify interest rates in response to the LLP policy?
 - → Structural model ⇒ Mechanisms

MARKET FEATURES, DATA AND MOTIVATING FACTS

Market Features and Data

Chilean Mortgage Market

- ▶ In 2017, roughly 21% of households had at least one mortgage loan
- ► The Chilean mortgage market is highly concentrated upstream
- Mortgage contracts are simple and are set up in real terms (UF)
- Interest rates are set up at borrower level

Data

- Banking loan registries for mortgages and other loans Data Used Stats
- Unemployment insurance data, for all non-public formal workers, to obtain labor income and demographic characteristics
- Census of real estate transactions (F2890) and Real Property Cadastre for LTV

► For post policy period, high-LTV loans become less relevant General Share

- ► For post policy period, high-LTV loans become less relevant General Share
- Heterogeneous effects at bank level Composition Share
 - Most-reactive banks: The share in high-LTV loans (LTV>80%) plumped for three banks. From around 60% to 15%
 - ► Least-reactive banks: The share in high-LTV loans (LTV>80%) slightly decreased. From around 70% to 60%
 - Effects in choice sets?

- ► For post policy period, high-LTV loans become less relevant General Share
- Heterogeneous effects at bank level Composition Share
 - ▶ Most-reactive banks: The share in high-LTV loans (LTV>80%) plumped for three banks. From around 60% to 15%
 - ► Least-reactive banks: The share in high-LTV loans (LTV>80%) slightly decreased. From around 70% to 60%
 - Effects in choice sets?
- After 2016, most-reactive banks target high-LTV loans to higher-income borrowers
 Borrowers

- ► For post policy period, high-LTV loans become less relevant General Share
- Heterogeneous effects at bank level Composition Share
 - Most-reactive banks: The share in high-LTV loans (LTV>80%) plumped for three banks. From around 60% to 15%
 - ► Least-reactive banks: The share in high-LTV loans (LTV>80%) slightly decreased. From around 70% to 60%
 - Effects in choice sets?
- After 2016, most-reactive banks target high-LTV loans to higher-income borrowers
- Gap in average interest rates between high- and low-LTV loans Interest rates
 - ▶ Before 2016, prices move in tandem ("parallel trends")
 - ► Most-reactive banks → gap favors high-LTV loans
 - Least-reactive banks → gap favors low-LTV loans

Summary

- ► How does LLP policy explain the observed gaps in average interest rates?
 - $ightarrow \Delta$ marginal costs on high-LTV loans
 - $ightarrow \Delta$ number of products in borrowers' choice sets
 - $\rightarrow \Delta$ borrowers' attributes
 - ⇒ The need of a structural model

THE MODEL IN A NUTSHELL

The Model in a Nutshell

- Method: static partial-equilibrium model
 - ▶ Demand side
 - Four geographical markets
 - Product choice: 16 products (bank-LTV combination)
 - Loan amount
 - Default
 - Supply side
 - Nash-Bertrand competition on interest rates

Product Choice

Borrower i's indirect utility from product j in market m for period t is

$$U_{ijmt} = \beta r_{ijmt} + Y'_{ijmt} \varphi + \delta^D_j + \epsilon_{ijmt},$$

where r_{ijmt} is the interest rate, δ_j^D are product fixed-effects j, Y_{ijmt} is a vector at borrower-product-market-period, and ϵ_{ijmt} is a T1EV shock

► The probability of having product j in choice set of borrower i (consideration probability) is:

$$\phi_{ijmt} = P(A_{ijmt} = 1) = P(\pi_0 + \delta_j^A + Y'_{ijmt}\pi_1 + Z'_{jt}\pi_2 + V'_{ijmt}\pi_3 + \tau_{ijmt} > 0)$$

where δ_{j}^{A} is a product fixed effect and τ_{ijmt} is a T1EV error. Also:

- $ightharpoonup Z_{it}
 ightarrow 4$ vars: Bank type imes LTV type imes Post Detail
- $ightharpoonup ec{V}_{ijmt}
 ightarrow$ 16 vars: Log Income (Log Risk Score) imes Bank type imes LTV type imes Period

Supply Side

▶ Bank / maximizes the following expected net revenue from interest payments from a relation with borrower i

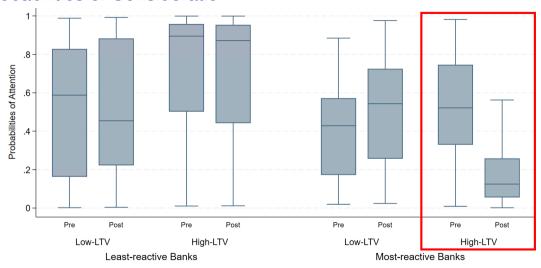
$$\max_{r_{i|\mathbb{L}mt},r_{i|\mathbb{H}mt}} \Pi_{ilmt}(r_{ijmt}) = \sum_{j \in \{\mathbb{L},\mathbb{H}\}} s_{ijmt} \times q_{ijmt} T_{imt}[r_{ijmt}(1-F_{ijmt}) - MC_{ijmt}],$$

where s_{ijmt} is the probability that borrower i chooses product j (low or high-LTV), T_{imt} is the maturity, r_{ijmt} is the interest rate, q_{ijmt} is the loan amount, F_{ijmt} is the probability of default, and MC_{ijmt} is the unobserved marginal cost

Supply Model

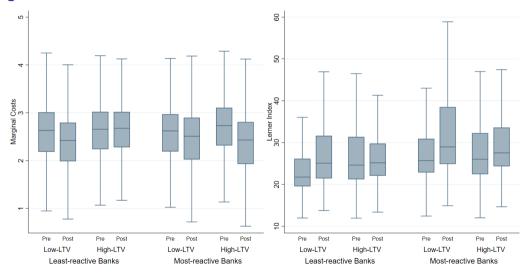
▶ The FOC delivers the following pricing equation:

$$r_{ijmt} = \underbrace{\frac{\textit{MC}_{ijmt}}{\left((1 - F_{ijmt}) + \frac{\frac{\partial (1 - F_{ijmt})}{\partial r_{ijmt}}}{\frac{\partial q_{ijmt}}{\partial r_{ijmt}} + \frac{1}{\partial r_{ijmt}} \frac{\partial s_{ijmt}}{s_{ijmt}}}\right)}_{Full \; markup} - \underbrace{\frac{1}{\left(\frac{\partial q_{ijmt}}{\partial r_{ijmt}} + \frac{\partial s_{ijmt}}{\partial r_{ijmt}} + \frac{1}{\partial r_{ijmt}} + \frac{\partial (1 - F_{ijmt})}{\partial r_{ijmt}} \frac{1}{(1 - F_{ijmt})}\right)}_{Full \; markup}$$


Effective marginal cost

$$-\underbrace{\frac{\frac{\partial s_{i-jmt}}{\partial r_{ijmt}} \times q_{i-jmt}[r_{i-jmt}(1-F_{i-jmt}) - \textit{MC}_{i-jmt}]}{\left(\frac{\partial q_{ijmt}}{\partial r_{ijmt}} s_{ijmt}(1-F_{ijmt}) + \frac{\partial s_{ijmt}}{\partial r_{ijmt}} q_{ijmt}(1-F_{ijmt}) + \frac{\partial (1-F_{ijmt})}{\partial r_{ijmt}} q_{ijmt} s_{ijmt}\right)}_{\text{Other products effect}}$$

Estimation


RESULTS

Probabilities of Consideration

Note. Weighted values are used, where the weights are the product choice probabilities from the baseline scenario. The box designates the interquartile range (IQR), and the whiskers represent the most extreme observations still within $1.5 \times IQR$ of the upper / lower quartiles.

Marginal Costs and Lerner Indexes

Note. Weighted values are used, where the weights are the product choice probabilities from the baseline scenario. The box designates the interquartile range (IQR), and the whiskers represent the most extreme observations still within 1.5×IQR of the upper / lower quartiles.

Pass-through of LLP Policy on Marginal Costs

I model the recovered marginal cost using a DID design

$$\begin{aligned} \textit{MC}_{\textit{ijmt}}(\theta) = & c_l + c_t + c_m + \textit{N}'_{\textit{ijmt}} \zeta_1 + \textit{M}'_{\textit{imt}} \zeta_2 + \zeta_3 \mathbb{1}[\textit{LTV}_{\textit{ijmt}} > 80\%] \\ & + \phi \mathbb{1}[\textit{LTV}_{\textit{ijmt}} > 80\%] \times \textit{Post}_t + \varepsilon_{\textit{ijmt}}, \end{aligned}$$

where c_l , c_t , and c_m are fixed effects, N_{ijmt} is a vector at product-borrower level, while M_{imt} is a vector at borrower level

- ϕ : differential change in MgCs for high-LTV loans relative to low-LTV loans following the implementation of LLP policy (Benetton et al. 2021)
- Parallel trends assumption is credible MgCs

Pass-through of LLP Policy on Marginal Costs

	Least-reactive Banks		Most-reactive Banks	
	(1)	(2)	(3)	(4)
LTV > 80% × Post	0.205***	0.175***	-0.160***	0.033***
	(0.005)	(0.005)	(0.005)	(0.004)
Controls		Х		X
Controls - Post		X		X
Controls - LTV>80%		Х		Х
Marginal Cost (mean)	2.409	2.409	2.307	2.307
R-squared	0.182	0.520	0.120	0.679
Number of Observations	200,000	200,000	120,000	120,000

Note. Controls include maturity, logarithm of loan amount, borrower's previous relationship with the bank, and predicted default. All regressions include market FEs, quarter FEs, bank FEs, and a *LTV* > 80% dummy. Observations are weighted by the product choice probabilities from the baseline scenario. Standard errors are reported in parentheses and clustered at the borrower level. Significance levels 10%, 5%, and 1% are denoted by *, **, and ***, respectively.

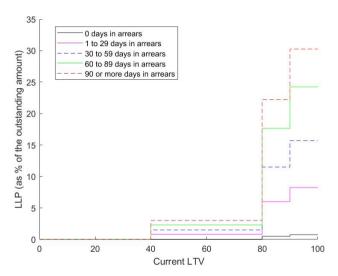
SUMMARY OF THE COUNTERFACTUALS

Summary of Counterfactuals for the Post Policy period

- ▶ Main objective: Explain the observed gap in average interest rates between high- and low-LTV loans since the policy implementation
- Counterfactuals: △ Pbbs of Consideration (PCs) + △ MgCs
 - 1. Make post-policy PCs resemble the values observed during the pre-policy period
 - 2. Counterfactual 1 + ruling out the rise in MgCs associated to the LLP regulation

Results:

Under "no other products effect" assumption, both counterfactuals explain the rate gap


Final Thought

Final Thought

When implementing and evaluating macroprudential policies, it is crucial to consider the trade-offs between competition and policy targets

APPENDIX

LLP Requirements Under the New Regulation

Note: Current LTV is in percentage. Sources: Calani and Paillacar (2022) and López et al. (2014).

Related Literature

1. Evaluating leverage regulation for mortgages using microdata

- Kinghan et al. (2019), DeFusco et al. (2020), Benetton (2021), Acharya et al. (2022), Van Bekkum et al. (2019), and Peydró et al. (2024)
 - \rightarrow Less explored way regulation impacts competition: choice set formation

2. Estimate demand models with consideration sets

- Auxiliary data: Cuesta and Sepúlveda (2019). No auxiliary data: Abaluck and Adams-Prassl (2021), Goeree (2008), and Yu (2023)
 - ightarrow Novelty by studying a policy change that influences choice sets

3. Estimation of IO structural model in credit markets

- Allen et al. (2019), Benetton et al. (2018), Robles-Garcia (2019), Buchak et al. (2018), Einav et al. (2012), and Crawford et al. (2018)
 - \rightarrow Focus on the choice set formation under the differentiated product approach

4. Literature on mortgage markets in Chile

- Avanzini et al. (2020), Madeira (2021), and Calani and Paillacar (2022)
 - → Banks' heterogeneity and change in mean prices using a structural model

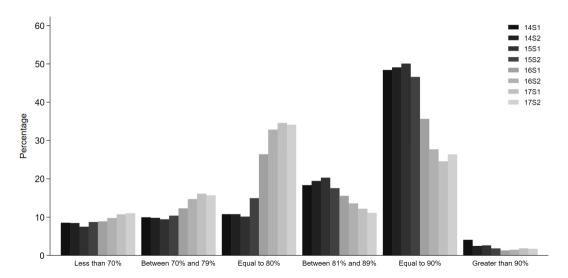
Data used

Main Sample (131k observations)

- ► For 2014-2017: Bank Registries ∩ Unemployment Ins. ∩ Census of RE Trans.
- Only First-time buyers
- Standard mortgages for the Chilean setting
 - Maturities of 15, 20, 25, and 30 years
 - ► LTVs between 70% and 90%
- Rule out mortgages associated with housing subsidies

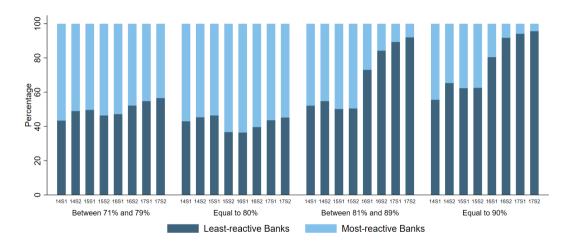
Prediction sample (356k observations)

Main sample + 2013, 2018, and 2019, and second buyers and refinancing

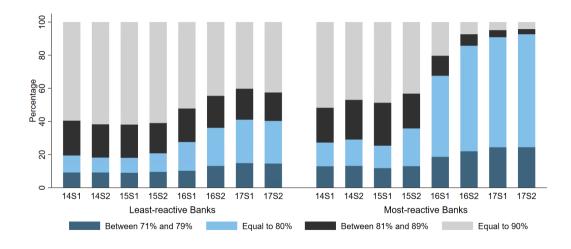


Data

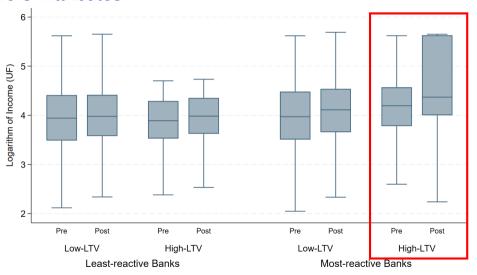
	Mean	SD	P1	P99
Panel A: Loan Attributes				
Interest Rate (%)	4.01	0.50	2.93	5.30
LTV (%)	82.63	10.27	43.26	98.41
Loan Amount (UF)	2324.44	1760.43	694.00	9600.00
Maturity (Years)	24.26	4.70	15.00	31.00
Panel B: Borrower Attributes				
Borrower is Male (%)	61.80	48.59	0.00	100.00
Age (Years)	35.07	8.07	23.00	58.00
Labor Income (UF)	84.99	81.09	11.46	284.06
Panel C: Borrower Credit History				
Previous Relation with the Bank (%)	20.85	40.62	0.00	100.00
Credit risk Score (%)	8.98	7.52	1.45	37.65
Mortgage Default (%)	9.65	29.52	0.00	100.00
Panel D: Market Features				
Branches (Number)	8.13	12.30	0.00	66.00
Metropolitan Region (%)	59.44	49.10	0.00	100.00



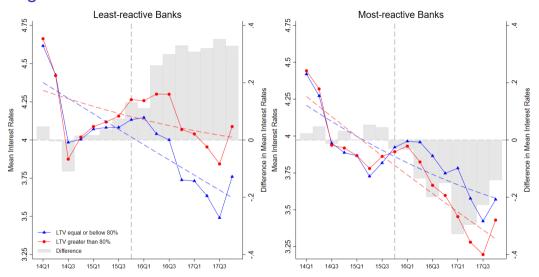
LTV Distribution at Origination



Market Share



Product Composition



Borrowers' Attributes

Note. The box represents the interquartile range (IQR), and the whiskers represent the most extreme observations still within 1.5×IQR of the upper / lower quartiles.

Average Interest Rates

LLP Variables on PA

```
Z_{it}:
           1[Least-reactive bank] \times 1[LTV < 80] \times Post
           1[Least-reactive bank] \times 1[LTV > 80] \times Post
            1 \text{ [Most-reactive bank]} \times 1 \text{ [LTV} < 80 \text{]} \times \text{Post}
            \mathbb{I}[\mathsf{Most}\text{-reactive bank}] \times \mathbb{I}[\mathsf{LTV} > 80] \times \mathsf{Post}
                                      V_{it}:
Log Risk Score \times 1[Least-reactive bank] \times 1[LTV < 80] \times Pre
Log Risk Score \times 1[Least-reactive bank] \times 1[LTV < 80] \times Post
Log Risk Score \times 1[Least-reactive bank] \times 1[LTV > 80] \times Pre
Log Risk Score × 1[Least-reactive bank] × 1[LTV > 80] × Post
Log Risk Score \times 1 [Most-reactive bank] \times 1 [LTV < 80] \times Pre
Log Risk Score \times 1 [Most-reactive bank] \times 1 [LTV \leq 80] \times Post
Log Risk Score \times 1 [Most-reactive bank] \times 1 [LTV > 80] \times Pre
Log Risk Score \times 1 [Most-reactive bank] \times 1 [LTV > 80] \times Post
  Log Income \times 1[Least-reactive bank] \times 1[LTV < 80] \times Pre
  Log Income \times 1 [Least-reactive bank] \times 1 [LTV < 80] \times Post
  Log Income \times 1 [Least-reactive bank] \times 1 [LTV > 80] \times Pre
  Log Income \times 1 [Least-reactive bank] \times 1 [LTV > 80] \times Post
   Log Income \times 1[Most-reactive bank] \times 1[LTV < 80] \times Pre
  Log Income \times 1[Most-reactive bank] \times 1[LTV < 80] \times Post
   Log Income \times 1[Most-reactive bank] \times 1[LTV > 80] \times Pre
  Log Income \times 1[Most-reactive bank] \times 1[LTV > 80] \times Post
```

Estimation and Identification

Demand:

- Random sample of 20,000 borrowers
- Prediction model for prices from unchosen products
- Product choice estimation via Maximum Likelihood Product Choice Estimation
- Loan Amount and default estimation via OLS OLS Estimation
- Endogeneity in prices
 - Control function approach
 - ► IVs Stats
 - \rightarrow Cost shifters: expenses on mortgage LLP over mortgage debt and mortgage non-performing loans ratio. Bank-time level
 - → A novel Hausman type IV: Average personal loans' interest rates in other markets. Bank-time-market level

Supply:

- Recover borrower-product marginal costs
- Measure the possible effects of the LLP regulation on marginal costs

Estimation of the Product Choice Model

- Let a borrower *i* chooses the product from a consideration set *c* that maximizes her utility
 - ▶ In this setting there are 2¹⁶ (65,536) potential consideration sets
- The conditional probability that i picks j from c before the realization of the shock ϵ_{ijmt} is

$$P^*_{ijmt}(c) = \frac{exp(\beta r_{ijmt} + Y'_{ijmt}\varphi + \delta^D_j)}{\sum_{j' \in c} exp(\beta r_{ij'mt} + Y'_{ij'mt}\varphi + \delta^D_{j'})}$$

Estimation of the Product Choice Model

- Let a borrower *i* chooses the product from a consideration set *c* that maximizes her utility
 - ▶ In this setting there are 2¹⁶ (65,536) potential consideration sets
- ▶ The conditional probability that i picks j from c before the realization of the shock ϵ_{ijmt} is

$$P^*_{ijmt}(c) = \frac{exp(\beta r_{ijmt} + Y'_{ijmt}\varphi + \delta^D_j)}{\sum_{j' \in c} exp(\beta r_{ij'mt} + Y'_{ij'mt}\varphi + \delta^D_{j'})}$$

Probability that borrower i considers product j (PA)

$$\phi_{ijmt} = \frac{exp(\pi_0 + \delta_j^A + Y'_{ijmt}\pi_1 + Z'_{jt}\pi_2 + V'_{ijmt}\pi_3)}{1 + exp(\pi_0 + \delta_j^A + Y'_{ijmt}\pi_1 + Z'_{jt}\pi_2 + V'_{ijmt}\pi_3)}$$

Estimation of the Product Choice Model

The probability that borrower *i* considers choice set *c* in *m* and *t* is defined as

$$\omega_{icmt} = \prod_{j \in c} \phi_{ijmt} \prod_{j' \notin c} (1 - \phi_{ij'mt})$$

▶ The unconditional probability that borrower *i* chooses *j* is

$$P_{\mathit{ijmt}} = \sum_{c \in \mathbb{P}(j)} \omega_{\mathit{icmt}} P^*_{\mathit{ijmt}}(c)$$

where $\mathbb{P}(j)$ is the set that includes all consideration sets that contain j

ightharpoonup To estimate the parameters, Θ , via ML, I use the log-likelihood function:

$$\mathcal{L}(\Theta) = \sum_{i} \sum_{j} \mathbb{1}_{\mathit{ijmt}} \mathit{In}(P_{\mathit{ijmt}})$$

OLS Estimation for the Loan Amount and Default

For the loan amount:

$$log(q_{ijmt}) = \alpha_0^q + \alpha_1^q r_{ijmt} + Y_{ijmt}^{q'} \alpha_2^q + \lambda_{jmt(Post)}^q + V_{ijmt}^q,$$

where q_{ijmt} is the loan amount, Y^q_{ijmt} is a vector of borrower- product- marketperiod determinants of the loan amount, and $\lambda^q_{jmt(Post)}$ corresponds to product- market- time fixed effects

Similarly, for the the default rate:

$$F_{ijmt} = \alpha_0^F + \alpha_1^F r_{ijmt} + Y_{ijmt}^{F'} \alpha_2^F + \lambda_{jmt(Post)}^F + V_{ijmt}^F,$$

where F_{ijmt} is a dummy that indicates default. The other variables are defined similarly to the previous regression

IV Statistics

	Mean	SD	P1	P99
Panel E: Bank Level				
Personal Loans' Interest Rate in other Markets (%)	20.82	4.21	12.92	31.67
Expenses on Mortgage LLP over Mortgages (%)	0.30	0.28	-0.06	1.18
Mortgage Non-performing Loans Ratio (%)	0.76	0.39	0.15	1.48

Demand Results

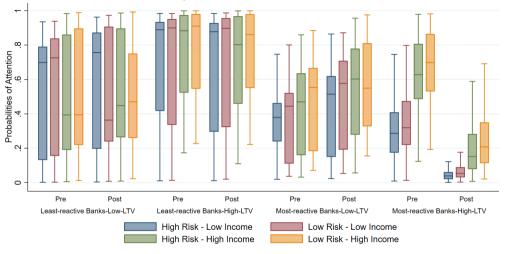
	Product Choice		Log Loan	Default
	Utility	Attention	Amount	
Interest Rate	-1.254***		-0.106***	0.043**
	(0.137)		(0.019)	(0.020)
Previous Relation with the Bank	1.984***	0.774***	-0.035***	0.013**
	(0.077)	(0.086)	(0.007)	(0.006)
Number of Branches	0.002	0.007**	0.002***	-0.000
	(0.003)	(0.003)	(0.000)	(0.000)
Controls			X	X
Product FEs	X			Χ
LTV Type-Bank Type-Post		X		
Log Risk Score-LTV Type-Bank Type-Period		X		
Log Income-LTV Type-Bank Type-Period		X		
Product-Year-Market FEs			X	Χ
Interest Rate Residual	X		X	Χ
R-Squared			0.523	0.085
Number of Observations	320,000	320,000	20,000	20,000

Note. Product choice standard errors are calculated by the inverse of the Information Matrix. Log Loan Amount and Default are robust standard errors. Significance levels 10%, 5%, and 1% are denoted by *, **, and ***, respectively.

Demand Results: First-stage regressions

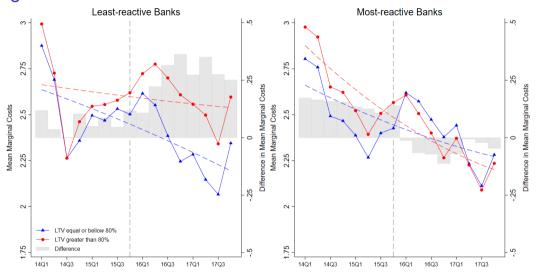
	Product Choice	Log Loan Amount and Default
Personal Loans' Interest Rate in other Markets	0.069***	0.067***
	(0.005)	(0.002)
Expenses on Mortgage LLP over Mortgages	0.198***	0.170***
	(0.010)	(0.015)
Mortgage Non-performing Loans Ratio	0.258***	0.196***
	(0.014)	(0.037)
Controls		X
Product FEs	Χ	
Product - Period - Market FEs		Χ
First-stage F stat	455.200	552.290
R-squared	0.173	0.427
Number of Observations	320,000	20,000

Note. Robusts standard errors are reported in parentheses. Significance levels 10%, 5%, and 1% are denoted by *, ***, and ****, respectively.


Demand Results: Product Choice Parameters

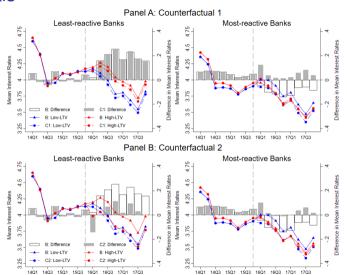
	Coefficient	Standard Errors	
Utility			
Interest Rate	-1.254***	(0.137)	
Previous Relation with the Bank	1.984***	(0.077)	
Number of Branches	0.002	(0.003)	
Attention			
Previous Relation with the Bank	0.774***	(0.086)	
Number of Branches	0.007**	(0.003)	
$\mathbb{1}[\text{Least-reactive bank}] \times \mathbb{1}[\text{LTV} \leq 80] \times \text{Post}$	1.783***	(0.662)	
1 [Least-reactive bank] \times 1 [LTV $>$ 80] \times Post	0.972	(0.864)	
1 [Most-reactive bank] \times 1 [LTV \leq 80] \times Post	-0.049	(0.576)	
1 [Most-reactive bank] × 1 [LTV > 80] × Post	-0.067	(0.755)	
Log Risk Score \times 1 [Least-reactive bank] \times 1 [LTV \leq 80] \times Pre	-0.340***	(0.106)	
Log Risk Score \times 1 [Least-reactive bank] \times 1 [LTV \leq 80] \times Post	-0.460***	(0.090)	
Log Risk Score \times 1 [Least-reactive bank] \times 1 [LTV $>$ 80] \times Pre	-0.159	(0.098)	
Log Risk Score \times 1 [Least-reactive bank] \times 1 [LTV $>$ 80] \times Post	-0.394***	(0.101)	
Log Risk Score \times 1 [Most-reactive bank] \times 1 [LTV \leq 80] \times Pre	-0.415***	(0.089)	
Log Risk Score \times 1 [Most-reactive bank] \times 1 [LTV \leq 80] \times Post	-0.550***	(0.081)	
Log Risk Score \times 1 [Most-reactive bank] \times 1 [LTV $>$ 80] \times Pre	-0.252***	(0.083)	
Log Risk Score \times 1 [Most-reactive bank] \times 1 [LTV $>$ 80] \times Post	-0.475***	(0.114)	
Log Income \times 1 [Least-reactive bank] \times 1 [LTV \leq 80] \times Pre	0.881***	(0.117)	
Log Income \times 1 [Least-reactive bank] \times 1 [LTV \leq 80] \times Post	0.649***	(0.104)	
Log Income \times 1 [Least-reactive bank] \times 1 [LTV $>$ 80] \times Pre	1.697***	(0.174)	
Log Income \times 1 [Least-reactive bank] \times 1 [LTV $>$ 80] \times Post	1.552***	(0.205)	
Log Income \times 1 [Most-reactive bank] \times 1 [LTV \leq 80] \times Pre	0.419***	(0.101)	
Log Income \times 1 [Most-reactive bank] \times 1 [LTV \leq 80] \times Post	0.714***	(0.098)	
Log Income \times 1 [Most-reactive bank] \times 1 [LTV $>$ 80] \times Pre	1.608***	(0.137)	
Log Income \times 1 [Most-reactive bank] \times 1 [LTV $>$ 80] \times Post	1.115***	(0.115)	
Constant	-5.716***	(0.601)	
Number of Observations	320,000		

Note. Estimation includes product FEs on the utility and attention sides, as well as the interest rate residual, which is located on the utility side. Significance levels 10%, 5%, and 1% are denoted by *, **, and ***, respectively.



Probabilities of Attention by Income and Risk

Note. Weighted values are used, where the weights are the product choice probabilities from the baseline scenario. "High Risk" ("Low Risk") refers to borrowers in the upper (lower) half of the credit score distribution in a given quarter; "High Income" ("Low Income") categorizes borrowers in the upper (lower) half of the income distribution, in a given quarter. The box designates the interquartile range (IQR), and the whiskers represent the most extreme observations still within 1.5xIQR of the upper / lower quartiles.


Marginal Costs

Note. Weighted averages are used, where the weights are the product choice probabilities from the baseline scenario.

Back

Counterfactuals

Note. Weighted averages are used, where the weights are the product choice probabilities from the baseline and counterfactual scenarios.

