A Model of U.S. Monetary Policy and the Global Financial Cycle

Rohan Kekre Chicago Booth & NBER Princeton & NBER

Moritz Lenel

November 2025

Motivation

U.S. MP has large effects on risky asset prices in rest of world.
 Rey (15), Mueller-Tahbaz-Salehi-Vedolin (17),
 Albagli-Ceballos-Claro-Romero (19), Gilchrist-Yue-Zakrajsek (19),
 Kalemli-Ozcan (20), Miranda-Agrippino-Rey (20), Boehm-Kroner (25), ...

Motivation

- U.S. MP has large effects on risky asset prices in rest of world. Rey (15), Mueller-Tahbaz-Salehi-Vedolin (17), Albagli-Ceballos-Claro-Romero (19), Gilchrist-Yue-Zakrajsek (19), Kalemli-Ozcan (20), Miranda-Agrippino-Rey (20), Boehm-Kroner (25), ...
- No GE model explaining global risk pricing effects of U.S. MP.

Motivation

- U.S. MP has large effects on risky asset prices in rest of world.
 Rey (15), Mueller-Tahbaz-Salehi-Vedolin (17),
 Albagli-Ceballos-Claro-Romero (19), Gilchrist-Yue-Zakrajsek (19),
 Kalemli-Ozcan (20), Miranda-Agrippino-Rey (20), Boehm-Kroner (25), ...
- No GE model explaining global risk pricing effects of U.S. MP.
- Such a framework needed to understand
 - why U.S. MP is special;
 - implications for macro spillovers;
 - if these spillovers might change in future.

Propose model of U.S. monetary transmission in open-economy NK with global intermediaries that price risky assets globally.

- When intermediaries are short dollar, dollar appreciation upon U.S. MP tightening erodes net worth, raises global price of risk.
- Quantitative relevance of mechanism:
 - FX, yield curve resp. to U.S. MP line up with avg excess returns.
 - intermediaries indeed short dollar if portfolio mean-var. efficient.
 - spillovers through risk pricing matter for real outcomes.
- Potential future with higher dollar interest rates:
 - \Rightarrow lower intermediary dollar funding, so smaller U.S. MP spillovers.
 - can arise from lower dollar demand, consistent with 2025 data.

- *n*-country NK model in which:
 - households supply labor and consume local, imported goods;
 - firms set sticky prices in each destination market ("LCP");
 - central banks follow standard Taylor (93) rules.

- *n*-country NK model in which:
 - households supply labor and consume local, imported goods;
 - firms set sticky prices in each destination market ("LCP");
 - central banks follow standard Taylor (93) rules.
- Key distinction from standard model: asset markets.

- *n*-country NK model in which:
 - households supply labor and consume local, imported goods;
 - firms set sticky prices in each destination market ("LCP");
 - central banks follow standard Taylor (93) rules.
- Key distinction from standard model: asset markets.
 - households frictionlessly trade local short bond, but have exogenous positions in local consol and all foreign bonds.

- n-country NK model in which:
 - households supply labor and consume local, imported goods;
 - firms set sticky prices in each destination market ("LCP");
 - central banks follow standard Taylor (93) rules.
- Key distinction from standard model: asset markets.
 - households frictionlessly trade local short bond, but have exogenous positions in local consol and all foreign bonds.
 - global intermediaries trade all bonds frictionlessly to maximize

$$E_t(\text{profits})_{t+1} - \frac{\gamma}{(\text{wealth})_t} Var_t(\text{profits})_{t+1}.$$

wealth accumulates over time, subject to entry/exit at rate ξ .

- *n*-country NK model in which:
 - households supply labor and consume local, imported goods;
 - firms set sticky prices in each destination market ("LCP");
 - central banks follow standard Taylor (93) rules.
- Key distinction from standard model: asset markets.
 - households frictionlessly trade local short bond, but have exogenous positions in local consol and all foreign bonds.
 - global intermediaries trade all bonds frictionlessly to maximize

$$E_t(\text{profits})_{t+1} - \frac{\gamma}{(\text{wealth})_t} Var_t(\text{profits})_{t+1}.$$

wealth accumulates over time, subject to entry/exit at rate ξ .

• builds on Gabaix-Maggiori (15), Itskhoki-Mukhin (21), Kekre-Lenel (24); Gourinchas-Ray-Vayanos (25), Greenwood-Hanson-Sunderam-Stein (23).

- *n*-country NK model in which:
 - households supply labor and consume local, imported goods;
 - firms set sticky prices in each destination market ("LCP");
 - central banks follow standard Taylor (93) rules.
- Key distinction from standard model: asset markets.
 - households frictionlessly trade local short bond, but have exogenous positions in local consol and all foreign bonds.
 - global intermediaries trade all bonds frictionlessly to maximize

$$E_t(\text{profits})_{t+1} - \frac{\gamma}{(\text{wealth})_t} Var_t(\text{profits})_{t+1}.$$

wealth accumulates over time, subject to entry/exit at rate ξ .

- builds on Gabaix-Maggiori (15), Itskhoki-Mukhin (21), Kekre-Lenel (24);
 Gourinchas-Ray-Vayanos (25), Greenwood-Hanson-Sunderam-Stein (23).
- ⇒ Global macro model w/ currency, bond risk premia. Many uses.

The key mechanism in this paper

• $E_{j,t} \equiv j$ currency per dollar, $ex_{j,t+1} \equiv excess$ return on short-term j bond less dollar bond.

- $E_{j,t} \equiv j$ currency per dollar, $ex_{j,t+1} \equiv excess\ return\ on\ short-term\ j\ bond\ less\ dollar\ bond.$
- **Prop:** given U.S. tightening at t,

$$\hat{\mathcal{E}}_{j,t} = A + B \times (1 - \xi) \times \left(\frac{\sum \text{ non-dollar positions}}{\text{wealth}} \right) \times ex_j,$$

- $E_{j,t} \equiv j$ currency per dollar, $ex_{j,t+1} \equiv excess$ return on short-term j bond less dollar bond.
- **Prop:** given U.S. tightening at t,

$$\hat{E}_{j,t} = A + B \times (1 - \xi) \times \left(\frac{\sum \text{ non-dollar positions}}{\text{wealth}}\right) \times ex_j,$$

• Stronger dollar lowers wealth if \sum non-dollar positions > 0.

- $E_{j,t} \equiv j$ currency per dollar, $ex_{j,t+1} \equiv excess\ return\ on\ short-term\ j\ bond\ less\ dollar\ bond.$
- **Prop:** given U.S. tightening at t,

$$\hat{\mathcal{E}}_{j,t} = A + B \times (1 - \xi) \times \left(\frac{\sum \text{ non-dollar positions}}{\text{wealth}} \right) \times \frac{ex_j}{t}$$

Stronger dollar lowers wealth if ∑ non-dollar positions > 0.
 ⇒ Raises risk premium on currency j if ex_j > 0.

- $E_{j,t} \equiv j$ currency per dollar, $ex_{j,t+1} \equiv excess\ return\ on\ short-term\ j\ bond\ less\ dollar\ bond.$
- **Prop:** given U.S. tightening at t,

$$\hat{\mathcal{E}}_{j,t} = A + B \times (1 - \xi) \times \left(\frac{\sum \text{ non-dollar positions}}{\text{wealth}}\right) \times ex_j,$$

- Stronger dollar lowers wealth if \sum non-dollar positions > 0.
 - \Rightarrow Raises risk premium on currency j if $ex_i > 0$.
 - \Rightarrow *j* depreciates so can be expected to appreciate going forward.

- $E_{j,t} \equiv j$ currency per dollar, $ex_{j,t+1} \equiv excess\ return\ on\ short-term\ j\ bond\ less\ dollar\ bond.$
- **Prop:** given U.S. tightening at t,

$$\hat{E}_{j,t} = A + B \times (1 - \xi) \times \left(\frac{\sum \text{ non-dollar positions}}{\text{wealth}}\right) \times ex_j,$$

- Stronger dollar lowers wealth if \sum non-dollar positions > 0.
 - \Rightarrow Raises risk premium on currency j if $ex_i > 0$.
 - \Rightarrow *j* depreciates so can be expected to appreciate going forward.
- Mechanism amplified with high leverage

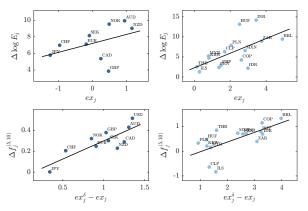
- $E_{j,t} \equiv j$ currency per dollar, $ex_{j,t+1} \equiv excess\ return\ on\ short-term\ j\ bond\ less\ dollar\ bond.$
- **Prop:** given U.S. tightening at t,

$$\hat{E}_{j,t} = A + B \times (1 - \xi) \times \left(\frac{\sum \text{ non-dollar positions}}{\text{wealth}}\right) \times ex_j,$$

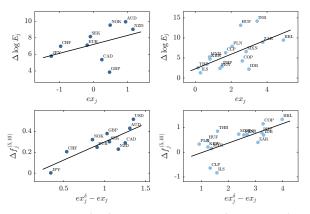
- Stronger dollar lowers wealth if \sum non-dollar positions > 0.
 - \Rightarrow Raises risk premium on currency j if $ex_i > 0$.
 - \Rightarrow *j* depreciates so can be expected to appreciate going forward.
- Mechanism amplified with high leverage, persistent wealth.

- $E_{j,t} \equiv j$ currency per dollar, $ex_{j,t+1} \equiv excess\ return\ on\ short-term\ j\ bond\ less\ dollar\ bond.$
- **Prop:** given U.S. tightening at t,

$$\hat{E}_{j,t} = A + B \times (1 - \xi) \times \left(\frac{\sum \text{ non-dollar positions}}{\text{wealth}} \right) \times ex_j,$$


- Stronger dollar lowers wealth if \sum non-dollar positions > 0.
 - \Rightarrow Raises risk premium on currency j if $ex_i > 0$.
 - \Rightarrow *j* depreciates so can be expected to appreciate going forward.
- Mechanism amplified with high leverage, persistent wealth.
- Similar mechanism applies to risk premia on long-term bonds.

• Given 1pp Bauer-Swanson (23) surprise increase in 2y U.S. yield:


- Currencies paying higher excess returns depreciate by more.
 Long yields on bonds paying higher excess returns rise by more.
- ⇒ Consistent w/ higher price of risk.

• Given 1pp Bauer-Swanson (23) surprise increase in 2y U.S. yield:

- Currencies paying higher excess returns depreciate by more.
 Long yields on bonds paying higher excess returns rise by more.
- ⇒ Consistent w/ higher price of risk. Not portfolio balance

• Given 1pp Bauer-Swanson (23) surprise increase in 2y U.S. yield:

- Currencies paying higher excess returns depreciate by more.
 Long yields on bonds paying higher excess returns rise by more.
- ⇒ Consistent w/ higher price of risk.

• Who are intermediaries? How to deal with derivatives?

- Who are intermediaries? How to deal with derivatives?
- Complementary approach leveraging mean-variance efficiency: excess returns, covariances pin down portfolio up to leverage.

- Who are intermediaries? How to deal with derivatives?
- Complementary approach leveraging mean-variance efficiency: excess returns, covariances pin down portfolio up to leverage.
- Mean-variance efficient portfolio shares with unit risk aversion:

USD	CHF, EUR, JPY	Other G10	EM
-3.5	-2.1	-2.7	9.2

- Who are intermediaries? How to deal with derivatives?
- Complementary approach leveraging mean-variance efficiency: excess returns, covariances pin down portfolio up to leverage.
- Mean-variance efficient portfolio shares with unit risk aversion:

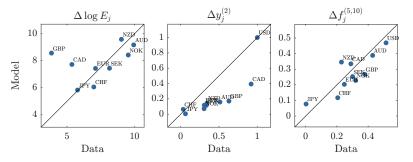
USD	CHF, EUR, JPY	Other G10	EM
-3.5	-2.1	-2.7	9.2

• Dollar has low interest rate *relative to risk*, complementing CIP-based "dollar convenience" (Jiang-Krishnamurthy-Lustig (21)).

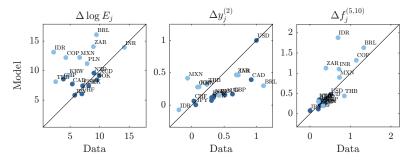
- Who are intermediaries? How to deal with derivatives?
- Complementary approach leveraging mean-variance efficiency: excess returns, covariances pin down portfolio up to leverage.
- Mean-variance efficient portfolio shares with unit risk aversion:

USD	CHF, EUR, JPY	Other G10	EM
-3.5	-2.1	-2.7	9.2

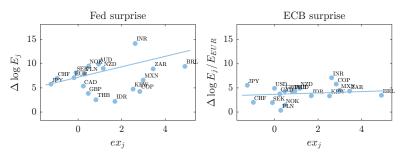
- Dollar has low interest rate relative to risk, complementing CIP-based "dollar convenience" (Jiang-Krishnamurthy-Lustig (21)).
- Structure of portfolio robust to base currency; using IBOR yields; excluding long bonds; sample period.


We discipline model to match excess returns, cov's as in data.
 What remains is to discipline intermediary leverage, persistence.

- We discipline model to match excess returns, cov's as in data.
 What remains is to discipline intermediary leverage, persistence.
- \Rightarrow Estimate risk aversion Γ , entry/exit ξ , and persistence of U.S. MP shock to match G10 exchange rate and yield responses.

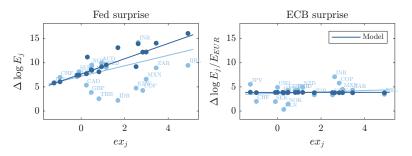

- We discipline model to match excess returns, cov's as in data.
 What remains is to discipline intermediary leverage, persistence.
- \Rightarrow Estimate risk aversion Γ , entry/exit ξ , and persistence of U.S. MP shock to match G10 exchange rate and yield responses.

• Implied leverage \approx 30.


- We discipline model to match excess returns, cov's as in data.
 What remains is to discipline intermediary leverage, persistence.
- \Rightarrow Estimate risk aversion Γ , entry/exit ξ , and persistence of U.S. MP shock to match G10 exchange rate and yield responses.

• Implied leverage \approx 30. EM "misses" may be FX intervention (Albagli-Ceballos-Claro-Romero (19, 24)) or mis-measurement.

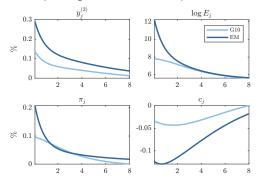
The specialness of U.S. MP


Responses to Fed vs. ECB surprises (from Altavilla et al (2019)):

• Unlike Fed surprises, x-section doesn't line up with avg returns.

The specialness of U.S. MP

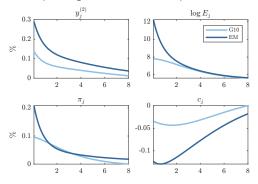
Responses to Fed vs. ECB surprises (from Altavilla et al (2019)):



- Unlike Fed surprises, x-section doesn't line up with avg returns.
- Model explains this (untargeted!), given dollar funding.

Real and policy implications

• Effects on risk pricing ⇒ "sudden stop" in EMs vs. G10:

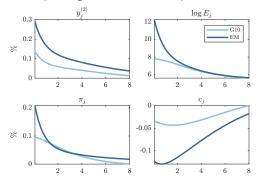


• Inflation vs. consumption. Can mitigate via FX intervention.

Real and policy implications

▶ Details

• Effects on risk pricing \Rightarrow "sudden stop" in EMs vs. G10:



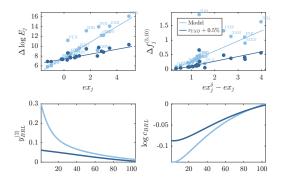
Inflation vs. consumption. Can mitigate via FX intervention.
 à la Farhi-Werning (12), Bianchi-Lorenzoni (22), Corsetti-Dedola-Leduc (23),...

Real and policy implications

• Effects on risk pricing ⇒ "sudden stop" in EMs vs. G10:

- Inflation vs. consumption. Can mitigate via FX intervention.
 à la Farhi-Werning (12), Bianchi-Lorenzoni (22), Corsetti-Dedola-Leduc (23),...
- Here conjecture distinct gains from coordination: countries do not internalize effect of broad dollar on intermediary wealth.

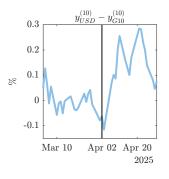
What might the future hold?

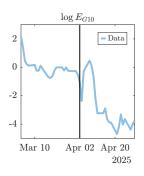


• Dollar interest rates may rise (fiscal, dollar demand, ...).

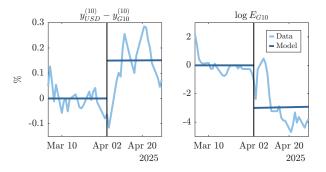
What might the future hold?

- Dollar interest rates may rise (fiscal, dollar demand, ...).
- Model implies weaker U.S. monetary spillovers, because mean-variance efficient portfolio features smaller dollar funding:





 Lower foreign demand for dollar-denominated assets may be one reason dollar interest rates rise.


 Lower foreign demand for dollar-denominated assets may be one reason dollar interest rates rise.

 Lower foreign demand for dollar-denominated assets may be one reason dollar interest rates rise.

• Can match with decline in foreign ownership of dollar bonds equal to 3.1% of annual U.S. output (half-life \approx 3 years).

- Magnitude of foreign sales to match asset prices depends on:
 - 1 intermediary wealth, governing response of risk premia to flows;
 - 2 persistence, since prices depend on expected path of risk premia.

- Magnitude of foreign sales to match asset prices depends on:
 - 1 intermediary wealth, governing response of risk premia to flows;
 - 2 persistence, since prices depend on expected path of risk premia.
- #1 matches impact of QE1. #2 uncertain.

- Magnitude of foreign sales to match asset prices depends on:
 - 1 intermediary wealth, governing response of risk premia to flows;
 - 2 persistence, since prices depend on expected path of risk premia.
- #1 matches impact of QE1. #2 uncertain. Sensitivity:

	persistence (ann.)			
wealth/ GDP	0.85	0.90	0.95	0.9999
0.1%	-2.3%	-2.1%	-1.8%	-1.6%
0.2%	-3.0%	-2.6%	-2.3%	-2.0%
0.3%	-4.5%	-3.9%	-3.3%	-2.7%
0.8%	-9.4%	-7.8%	-6.3%	-4.8%

- Magnitude of foreign sales to match asset prices depends on:
 - 1 intermediary wealth, governing response of risk premia to flows;
 - 2 persistence, since prices depend on expected path of risk premia.
- #1 matches impact of QE1. #2 uncertain. Sensitivity:

	persistence (ann.)			
wealth/ GDP	0.85	0.90	0.95	0.9999
0.1%	-2.3%	-2.1%	-1.8%	-1.6%
0.2%	-3.0%	-2.6%	-2.3%	-2.0%
0.3%	-4.5%	-3.9%	-3.3%	-2.7%
0.8%	-9.4%	-7.8%	-6.3%	-4.8%

• vs. foreign-owned Treasuries (debt, assets): 25% (50%, 200%).

- Magnitude of foreign sales to match asset prices depends on:
 - 1 intermediary wealth, governing response of risk premia to flows;
 - 2 persistence, since prices depend on expected path of risk premia.
- #1 matches impact of QE1. #2 uncertain. Sensitivity:

	persistence (ann.)			
wealth/ GDP	0.85	0.90	0.95	0.9999
0.1%	-2.3%	-2.1%	-1.8%	-1.6%
0.2%	-3.0%	-2.6%	-2.3%	-2.0%
0.3%	-4.5%	-3.9%	-3.3%	-2.7%
0.8%	-9.4%	-7.8%	-6.3%	-4.8%

- vs. foreign-owned Treasuries (debt, assets): 25% (50%, 200%).
- News of future rebalancing is what matters for asset prices.

Conclusion

Extended canonical NKOE w/ global intermediaries pricing risk.

- When intermediaries are short dollar, U.S. MP tightening erodes net worth and raises global price of risk.
- Consistent w/ FX, yield responses. Matters for real spillovers.
- Dampened w/ higher dollar rates, as from lower dollar demand.

APPENDIX

Exchange rates and balance sheet effects in open economies.

Bruno-Shin (15), Miranda-Agrippino-Rey (20), Jiang-Krishnamurthy-Lustig (24). Aghion-Bacchetta-Banerjee (07), Gertler-Gilchrist-Natalucci (07),...

Here: GE; imperfect asset substitutability from risk.

Int'l capital flows and risk premia in segmented markets.

Gabaix-Maggiori (15), Itskhoki-Mukhin (21), Kekre-Lenel (24). Gourinchas-Ray-Vayanos (22), Greenwood-Hanson-Sunderam-Stein (23).

Here: multiple risky assets in GE; endog. risk-bearing capacity.

Risk premium effects of MP in closed economy.

Hanson-Stein (15), Hanson-Lucca-Wright (21). Bianchi-Lettau-Ludvigson (21),Bauer-Pflueger-Sunderam (24),Bianchi-Ludvigson-Ma (24). Pflueger-Rinaldi (22), Kekre-Lenel (22), Kekre-Lenel-Mainardi (25).

Here: open economy; wealth reval'n explains why U.S. MP special.

- Representative household in each country j:
 - separable utility in consumption (IES ψ) and labor supply.
 - CES consumption over goods from each country (elast. σ).
 - asset markets are only difference from standard NKOE models.
 - in each currency k, agents trade short bond paying $i_{k,t}$ at t+1, consol at price $P_{k,t}^{\delta}$ and paying $1, \delta, \delta^2, \ldots$ from t+1 onwards.
 - households frictionlessly trade local currency short bond;
 - households have exog. positions in foreign short bonds, consols:

$$B_{jk,t} = P_{k,t}\bar{b}_{jk}, \ \forall k \neq j,$$

$$B_{jk,t}^{\delta} = P_{k,t}\bar{b}_{jk}^{\delta}, \ \forall k.$$

can easily generalize as "demand shifters", w/ adj. costs.

Model (2/3)

- Intermediaries trade all bonds and facilitate int'l capital flows:
 - rep. intermediary at t has wealth $W_{m,t}$ (in dollars) and trades in all bonds to maximize

$$E_t\Pi_{m,t+1} - \frac{\gamma}{W_{m,t}} Var_t\Pi_{m,t+1},$$

where $\Pi_{m,t+1}$ is dollar value of intermediary's portfolio at t+1.

- share ξ exit at t+1, rebate wealth to U.S. households.
- new intermediaries endowed w/ $P_{1,t+1}\omega_m$ from U.S. households.
- ⇒ wealth of rep. intermediary evolves as

$$W_{m,t+1} = \xi P_{1,t+1} \omega_m + (1 - \xi) \Pi_{m,t+1}.$$

Assuming profits rebated to U.S. households is not important;
 objective denominated in dollars can be important.

- Continuum of firms in each *j* owned by domestic households:
 - produce variety with linear technology in labor.
 - face price adjustment costs in each destination (LCP).
- Taylor (93) rules: inertia ρ_i , inflation coeff. ϕ_{π} , U.S. shock $\nu_{i1,t}$.
 - later consider foreign policies that target exchange rate, FXI.
- Market clearing: labor, goods, one-period bonds, consols.

• Defn's:
$$q_{j,t} \equiv E_{j,t} P_{1,t} / P_{j,t},$$

$$ex_{j,t+1} \equiv \frac{E_{j,t}}{E_{j,t+1}} (1+i_{j,t}) - (1+i_{1,t}),$$

$$ex_{j,t+1}^{\delta} \equiv \frac{E_{j,t}}{E_{j,t+1}} \frac{1+\delta P_{j,t+1}^{\delta}}{P_{j,t}^{\delta}} - (1+i_{1,t}).$$

Solution approach

• First-order approx. around SS with $\gamma \sigma_{shocks}^2 \to \Gamma$ as $\sigma_{shocks} \to 0$ (Itskhoki-Mukhin (21), Borovicka-Hansen-Sargent (23), KL (24)).

Solution approach

- First-order approx. around SS with $\gamma \sigma_{shocks}^2 \to \Gamma$ as $\sigma_{shocks} \to 0$ (Itskhoki-Mukhin (21), Borovicka-Hansen-Sargent (23), KL (24)).
- In SS,

$$ex_{j} = \frac{\Gamma}{w_{m}} \left[\sum_{k=2}^{n} Cov(ex_{j,+1}, ex_{k,+1}) q_{k}^{-1} b_{mk} + \sum_{k=1}^{n} Cov(ex_{j,+1}, ex_{k,+1}^{\delta}) q_{k}^{-1} b_{mk}^{\delta} \right],$$

where $w_{m,t} \equiv W_{m,t}/P_{1,t}$, $b_{mk,t} \equiv B_{mk,t}/P_{k,t}$, $b_{mk,t}^{\delta} \equiv B_{mk,t}^{\delta}/P_{k,t}$, and

$$E_t \hat{ex}_{j,t+1} = -ex_j \hat{w}_{m,t} + \frac{\Gamma}{w_m} \sum_{k=2}^n Cov(ex_{j,+1}, ex_{k,+1}) q_k^{-1} \hat{b}_{mk,t} + \dots$$

and analogously for ex_j^{δ} , $E_t e\hat{x}_{j,t+1}^{\delta}$.

Solution approach

- First-order approx. around SS with $\gamma \sigma_{shocks}^2 \to \Gamma$ as $\sigma_{shocks} \to 0$ (Itskhoki-Mukhin (21), Borovicka-Hansen-Sargent (23), KL (24)).
- In SS,

$$ex_{j} = \frac{\Gamma}{w_{m}} \left[\sum_{k=2}^{n} Cov(ex_{j,+1}, ex_{k,+1}) q_{k}^{-1} b_{mk} + \sum_{k=1}^{n} Cov(ex_{j,+1}, ex_{k,+1}^{\delta}) q_{k}^{-1} b_{mk}^{\delta} \right],$$

where $w_{m,t} \equiv W_{m,t}/P_{1,t}$, $b_{mk,t} \equiv B_{mk,t}/P_{k,t}$, $b_{mk,t}^{\delta} \equiv B_{mk,t}^{\delta}/P_{k,t}$, and

$$E_t \hat{ex}_{j,t+1} = -ex_j \hat{w}_{m,t} + \frac{\Gamma}{w_m} \sum_{k=2}^n Cov(ex_{j,+1}, ex_{k,+1}) q_k^{-1} \hat{b}_{mk,t} + \dots$$

and analogously for ex_j^{δ} , $E_t \hat{ex}_{j,t+1}^{\delta}$.

 \Rightarrow Cov's summarize role of other shocks in propagation of $\nu_{i1,t}$. We treat these as parameters and discipline directly with data.

- Consider fully sticky prices, small $\{ex_j, b_{jk}, \Gamma/w_m\}, \{b_{ik}^{\delta} = 0\}.$
- **Prop:** given U.S. monetary tightening $d\nu_{i1,t}$,

$$\begin{split} \hat{E}_{j,t} &= \hat{q}_{j,t} = \left(\left[\beta^{-1} - \rho_{i1} \right]^{-1} \left[1 + (\beta^{-1} - 1)(1 - \rho_{i1})^{-1} \psi \right] \right. \\ &+ \left[\beta^{-1} - \rho_{i1} \right]^{-1} \left[1 + (\beta^{-1} - 1)(1 - \rho_{i1})^{-1} \psi \right] \beta \frac{1 - \xi}{\xi} \frac{\sum_{k=2} q_k^{-1} b_{mk}}{w_m} e x_j \\ &+ \left[\beta^{-1} - \rho_{i1} \right]^{-2} \left[\beta^{-1} - 1 \right]^{-1} \left[\psi - 1 \right] \frac{\Gamma}{w_m} Cov \left(e x_{j,+1}, \sum_{k=2}^n \eta_{1k} e x_{k,+1} \right) \right) d\nu_{1,t}. \end{split}$$

- Consider fully sticky prices, small $\{ex_j, b_{jk}, \Gamma/w_m\}, \{b_{ik}^{\delta} = 0\}.$
- **Prop:** given U.S. monetary tightening $d\nu_{i1,t}$,

$$\hat{\mathcal{E}}_{j,t} = \hat{q}_{j,t} = \left(\left[eta^{-1} -
ho_{i1}
ight]^{-1} \left[1 + (eta^{-1} - 1)(1 -
ho_{i1})^{-1} \psi
ight]$$

$$\Bigg) d
u_{1,t}.$$

- Absent change in risk pricing, foreign depreciation.
- Arbitrarily large as $\beta \to 1$, $\rho_{i1} \to 1$ (à la Engel-West (05)).
- Does not depend on trade w/ U.S. b/c of fully sticky prices.

- Consider fully sticky prices, small $\{ex_j, b_{jk}, \Gamma/w_m\}$, $\{b_{ik}^{\delta} = 0\}$.
- **Prop:** given U.S. monetary tightening $d\nu_{i1,t}$,

$$\hat{\mathcal{E}}_{j,t} = \hat{q}_{j,t} = \left(\left[\beta^{-1} - \rho_{i1} \right]^{-1} \left[1 + (\beta^{-1} - 1)(1 - \rho_{i1})^{-1} \psi \right] \beta \frac{1 - \xi}{\xi} \frac{\sum_{k=2} q_k^{-1} b_{mk}}{w_m} ex_j \right) d\nu_{1,t}.$$

- Dollar appreciation reduces wealth if $\sum_{k=2}^{n} q_k^{-1} b_{mk} > 0$.
- Raises risk premium (\Rightarrow bigger depreciation) if $ex_j > 0$.
- Magnified as ξ falls, since risk premium persistently rises.

- Consider fully sticky prices, small $\{ex_j, b_{jk}, \Gamma/w_m\}$, $\{b_{ik}^{\delta} = 0\}$.
- **Prop:** given U.S. monetary tightening $d\nu_{i1,t}$,

$$\hat{\mathcal{E}}_{j,t}=\hat{q}_{j,t}= igg($$

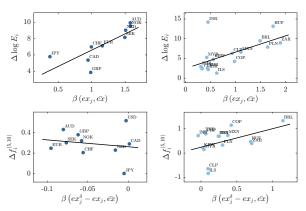
$$\left[\beta^{-1} - \rho_{i1}\right]^{-2} \left[\beta^{-1} - 1\right]^{-1} \left[\psi - 1\right] \frac{\Gamma}{w_m} Cov\left(ex_{j,+1}, \sum_{k=2}^n \eta_{1k} ex_{k,+1}\right) d\nu_{1,t}.$$

- If $\psi < 1$, U.S. inflows \Rightarrow intermediary holds less foreign bonds.
- Currencies w/ high "dollar beta" fall in risk and appreciate.
- ⇒ "Dollar beta" (Verdelhan (18)) is exposure to U.S. inflows in GE.

• **Prop:** given U.S. monetary tightening $d\nu_{i1,t}$,

$$\begin{split} \hat{\rho}_{j,t}^{\delta} &= \left(-[1-\delta\beta\rho_{i1}]^{-1}\,\mathbf{1}\{j=1\}\right. \\ &- \left[\beta^{-1}-\rho_{i1}\right]^{-1}\left[1+(\beta^{-1}-1)(1-\rho_{i1})^{-1}\psi\right]\,\frac{1-\xi}{1-\delta(1-\xi)}\frac{\sum_{k=2}q_k^{-1}b_{mk}}{w_m}\left(\mathsf{ex}_j^{\delta}-\mathsf{ex}_j\right) \\ &- \left[\beta^{-1}-\rho_{i1}\right]^{-1}\left[\beta^{-1}-\delta\rho_{i1}\right]^{-1}\left[\psi-1\right]\frac{\Gamma}{w_m}\mathsf{Cov}\left(\mathsf{ex}_{j,+1}^{\delta}-\mathsf{ex}_{j,+1},\sum_{k=2}^n\eta_{1k}\mathsf{ex}_{k,+1}\right)\right)d\nu_{1,t}. \end{split}$$

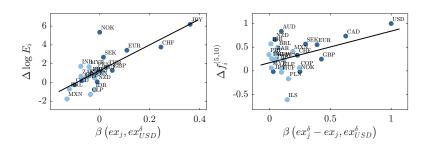
Taking stock, and quantitative approach


- U.S. monetary policy affects global risk pricing through
 - \bigcirc revaluation of intermediary wealth \Rightarrow change in price of risk;
 - 2 capital flows \Rightarrow change in quantity of risk ("portfolio balance").
- #2 depends on *Cov*'s and (standard) preference parameters.
- #1 depends on ex's, $\frac{\sum_{k=2}^{n}q_{k}^{\perp}b_{mk}}{w_{m}}$, and ξ .
 - recall portfolios solve (in matrix notation) $ex = \frac{\Gamma}{w_m} C(q^{-1}b_m)$.

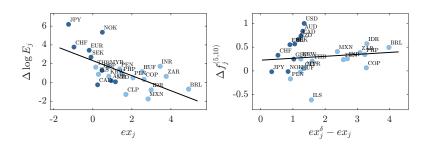
$$\Rightarrow \frac{1}{w_m}(\boldsymbol{q}^{-1}\boldsymbol{b}_m) = \frac{1}{\Gamma}\boldsymbol{C}^{-1}\boldsymbol{e}\boldsymbol{x}.$$

 \Rightarrow estimated \boldsymbol{C} and \boldsymbol{ex} pins down currency exposure. then we estimate Γ, ξ to match asset price effects of U.S. MP.

Asset price responses to U.S. tightening in data

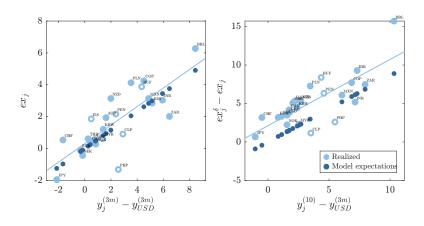


- Currencies covarying more with broad dollar depreciate by more.
- ⇒ Portfolio balance not dominant (assuming U.S. inflows).
- But consistent w/ comovements induced by MP being "typical".


Asset price responses to U.S. QT in data

Asset price responses to U.S. QT in data

Mean-variance efficient portfolios (1/3)


• Daily data on G10 + EM yield curves, exchange rates, 91-24.

	CHF, EUR, JPY	Other non- U.S. G10	EM
Avg 3m interest rate diff. (ann.)	-1.4%	0.9%	4.0%
Avg 3m excess return (ann.)	-0.5%	1.0%	2.7%
Daily s.d. of log exchange rate (ann.)	10.1%	11.0%	10.8%

- Estimate ex using fitted value from x-sectional reg. of avg. excess returns on interest rate diff. and slope of yield curve.
- Estimate *C* using cov's of daily changes in log exchange rates and 10-year bond prices, aggregated to quarter.

Mean-variance efficient portfolios (2/3)

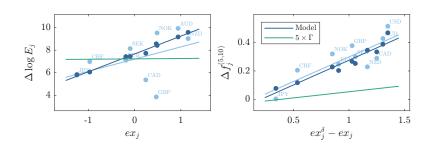
Mean-variance efficient portfolios (3/3)

• Resulting mean-variance efficient portfolio shares:

9.2	4.5
9.2	4.5
92.2	44.6
92.2	35.6
6.3	2.5
9.7	5.9
9.9	3.5
	9.2 92.2 92.2 6.3 9.7

Why not measure portfolios directly?

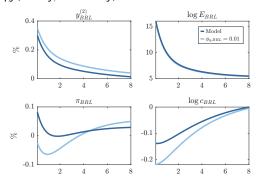
- Growing literature measuring international portfolios.
 Maggiori-Neiman-Schreger (20), Koijen-Yogo (22), Du-Fontana-Jakubik-Koijen-Shin (23), Hacioglu-Ostry-Rey-Rousset Planat-Stavrakeva-Tang (24), Rey-Stavrakeva (24), Dao-Gourinchas-Itskhoki (25), ...
- But even using administrative data:
 - how to measure exposure given (opaque) trading in derivatives?
 - who are the "intermediaries"? (i.e., who enforces no arbitrage?)
- Solving for optimal portfolios can be useful complementary tool.
 Downside: potential instability. Robustness ongoing.


Model parameterization

- Externally set parameters:
 - $\psi=$ 0.5, $\sigma=$ 1.5, Calvo-equiv. 5 qtrs, $\xi\approx$ half-life 2 qtrs.
- Calibrated parameters without reference to U.S. MP shocks:
 - discount factors and $\{ar{b}_{1j}^{\delta}\}$ matching ${\it ex}$;
 - $\{ar{b}_{1j},ar{b}_{jk},ar{b}_{jk}^{\delta}\}=0\ \, orall j>1$ for now (intend to match NFAs);
 - C directly taken from data;
 - tastes in CES aggregators matching trade shares (IMF DOTS).
- $\{\Gamma, \xi, \rho_{i1}\}$ estimated on high-freq. G10 responses to U.S. MP:
 - project $\Delta y_{j,t}^{(2)}$, $\Delta f_{j,t}^{(5,10)}$, $\Delta \log E_{j,t}$ on Bauer-Swanson (22) surp.
 - responses which follow scaled to correspond to $\Delta y_{USD,t}^{(2)} = 1pp$.
- ω_m estimated on high-freq. U.S. response to QE1.

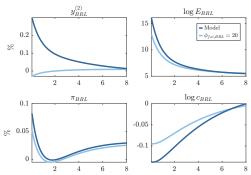

Identification of Γ

Identification of ξ



Role of exchange rate targeting

• Add $+\phi_{q,i}(\log q_{i,t} - \log q_i)$ to monetary policy rule.



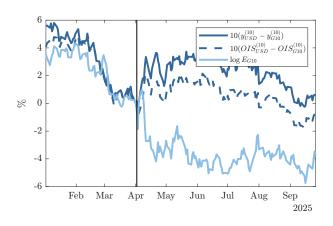
• $\phi_{q,BRL}>0$ dampens depreciation but worsens real contraction.

Role of FXI

• New FXI rule: $\bar{b}_{j1,t} = -\phi_{fxi,j}(\log q_{j,t} - \log q_j)$.

• $\phi_{fxi,BRL} > 0$ dampens depreciation and lowers domestic yields.

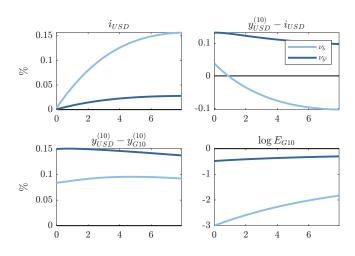
A future with higher dollar interest rates



- Going forward, dollar rates may rise (fiscal, dollar demand, ...).
- Mean-variance efficiency implies shift away from dollar funding:

	CHF, EUR, JPY	Other non- U.S. G10	EM	Sum
$\Gamma = 1$	-2.1	-2.7	9.2	4.5
$\Gamma=1$, $0.5 pp$ higher dollar rate	-2.9	-3.0	6.7	8.0

- Recall Δ risk pricing from U.S. MP depends on $\frac{\sum_{k=2}^{n}q_{k}^{-1}b_{mk}}{w_{m}}ex_{j}$
- ⇒ Dampened with smaller leverage in non-dollar bonds.


Recall

$$E_t \hat{ex}_{j,t+1} = \frac{\Gamma}{w_m} \sum_{k=2}^n Cov(ex_{j,+1}, ex_{k,+1}) q_k^{-1} \hat{b}_{mk,t} + \dots$$

- \Rightarrow given other targets, w_m controls price impact per dollar flow.
- We discipline endowment ω_m to match effect of U.S. QE1:
 - $\approx 6.5\%$ of ann. GDP worth of 10-year Treasuries purchased.
 - simulate equivalent $\bar{b}_{11,t}^{\delta}$ innovation in model with half-life ≈ 3 years, and estimate ω_m to match $\Delta f_{USD,t}^{(5,10)} = -1.2\%$.

Impulse responses to foreign flows

