Discussion of "Risk Management in Monetary Policy: A Review with Asset Pricing Implications"

Jordi Galí

CREI, UPF and BSE

Santiago, November 2025

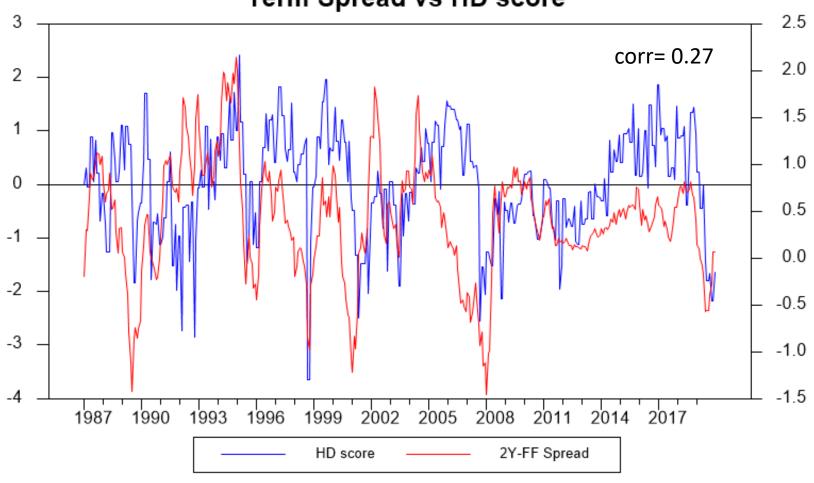
What the Paper Does

- Monetary policy tilt: forward-looking component of monetary policy, over and above current policy actions. Generally in the form of directional bias (towards tightening or easing). Revealed through communication.
- Empirical properties of two language-based measures of the tilt: the HD score (Hawkish minus Dovish statements) and an LLM-based indicator (+1,0,-1).
- Key findings
 - (i) MP tilt explained by perceptions of risk and uncertainty, over and above expectations \Rightarrow risk management
 - (ii) MP tilt has an impact on financial markets: a tightening tilt reduces the term premium
- Two case studies in risk management: 1990s productivity miracle and 2000s post-covid episode

General Comments

- 1) Review of a very interesting research program, with some new results
- 2) Focus: risk management and the tilt
- But risk management factors can also drive current policy actions, and current policy actions can presumably influence risk.
- So why a (nearly) exclusive focus of the paper on the "tilt"?
 - 3) Languaged-based measures from FOMC transcripts (5 year lag).
- Why not real-time communications? (press conference, speeches, etc.)
 - 4) Missing: financial crises
- Key aspect of risk management in monetary policy
- Woodford (2012), Svensson (2017),..., Boissay-Collard-Galí-Manea (2025)
 - 5) Presentation
- Long list of empirical findings, new and old. All interesting.
- But the order of presentation may not be the most logical

3 / 9


1) HD score explains the "official tilt" (83-99)

- Both reflect intentions.
- Not much surprising, but sanity check

2) HD score explains future changes in Federal Funds rate

- Fed tilt is informative, not just verbal noise.
- Not addressed: Are language-based measures of the tilt reflected in corresponding market-based measures? Intended vs perceived
- Evidence: HD score vs 2Y-Yield minus FFR Spread

1) HD score explains the "official tilt" (83-99)

- Both reflect intentions.
- Not much surprising, but sanity check

2) HD score explains future changes in Federal Funds rate

- Fed tilt is informative, not just verbal noise.
- Not addressed: Are language-based measures of the tilt reflected in corresponding market-based measures? Intended vs perceived
- Evidence: HD score vs 2Y-Yield minus FFR Spread
- Forecasting policy rate changes:

$$\begin{split} \textit{f}_{t+12} - \textit{f}_t &= \begin{array}{c} -0.70^{**} + 1.29^{**} \textit{spread}_t &; \quad R^2 = 0.31 \\ \\ \textit{f}_{t+12} - \textit{f}_t &= \begin{array}{c} -0.16^{**} + 0.44^{**} \textit{HD}_t &; \quad R^2 = 0.09 \\ \\ (0.06) & (0.07) \end{array} \\ \textit{f}_{t+12} - \textit{f}_t &= \begin{array}{c} -0.67^{**} + 1.19^{**} \textit{spread}_t + 0.25^{**} \textit{HD}_t &; \quad R^2 = 0.34 \\ \\ (0.07) & (0.09) & (0.09) \\ \end{split}$$

3) HD score explains Romer-Romer monetary policy shocks

- Interesting, but not obvious interpretation
- Consistent with exogenous MP shocks being persistent, with MP driven by first moments and disconnected from risk factors
- Suggestion: explore whether RR shocks are explained by uncertainty and tail risk factors

4) Inflation uncertainty and real economy sentiment explain HD score and LLM-based measures of tilt

- Key finding of the paper
- But LLM-based tilt also explains *current* policy actions (Table 1)

A. Dependent variable: FOMC policy action, ΔFFR_t or $Action LLM_t$

	ΔFI	$=R_{t-1,t}$	$ActionLLM_t$		
	(1)	(2)	(3)	(4)	
$BoRLLM_t$	0.12*** (5.45)		0.29*** (7.59)		
$InfPMU_t$		0.045** (2.48)		0.096** (2.32)	
$EcoSent_t$		0.052** (2.31)		0.11** (2.47)	
Controls	Yes	Yes	Yes	Yes	
R ² ΔR ² N	0.43 0.073 259	0.39 0.053 259	0.39 0.12 259	0.36 0.11 259	

B. Dependent variable: FOMC policy tilt, $TiltLLM_t$

		$TiltLLM_t$						
	(1)	(2)	(3)	(4)	(5)	(6)		
$BoRLLM_t$	0.68***	0.60***	0.58***					
	(11.15)	(7.58)	(7.96)					
$ActionLLM_t$		0.22*	0.017					
		(1.67)	(0.13)					
HD_t				0.42***				
				(7.09)				
$InfPMU_{t}$					0.32***	0.27***		
					(4.26)	(4.38)		
$EcoSent_t$					0.30***	0.16**		
					(4.25)	(2.46)		
$F_t(\pi_4) - \tau_t$			0.49***	0.31***		0.48***		
1, 1,			(5.66)	(3.08)		(3.89)		
Controls	No	No	Yes	Yes	No	Yes		
R^2	0.49	0.51	0.62	0.50	0.40	0.51		
N	259	259	259	259	259	259		

3) HD score explains Romer-Romer monetary policy shocks

- Interesting, but not obvious interpretation
- Consistent with exogenous MP shocks being persistent, with MP driven by first moments and disconnected from risk factors
- Suggestion: explore whether RR shocks are explained by uncertainty and tail risk factors

4) Inflation uncertainty and real economy sentiment explain HD score and LLM-based measure of tilt

- Key finding of the paper
- But LLM-based tilt also explains current policy actions (Table 1)
- Suggestions:
 - (i) show corresponding evidence for HD score
 - (ii) use same explanatory variables in regressions for current action as used for tilt
 - (iii) show increase in R^2 resulting from uncertainty and sentiment variables

5) A tilt towards tigthening reduces the term premium

- Authors' interpretation: ↑ policy credibility, ↓ uncertainty, etc
- Interpreted as suggesting effectiveness of MP tilts...
- ... but it works against policymakers' intentions!

Why would a Fed in an easing mood (e.g. ZLB) want to see an increase in term premia?

Concluding Remarks

- Great paper
- Big picture and detailed findings about a very interesting research program
- I look forward to further instalments!