### Global and Local Risks in Foreign Currency Operations

Liliana Varela

Francisco Legaspe

LSE & CEPR

Universidad de San Andres

XXVII Annual Conference of the Central Bank of Chile

November 4-5 2024

| Introduction | Data   | Risk Premium | Global and Local Risk Factors | Term Structure | Chile | Conclusion |
|--------------|--------|--------------|-------------------------------|----------------|-------|------------|
| 000000       | 000000 | 000          | 000000000000                  | 000            | 0000  | 0          |
|              |        |              |                               |                |       |            |

#### Motivation

#### What are the returns when operating in a different currency?

- If risk-neutral agents, free capital mobility and no frictions, Uncovered Interest Parity condition:

$$(1+i_{\$,t,h}) = \underbrace{\frac{S_t}{\mathbb{E}_t(S_{t+h})}(1+i_{t,h})}_{\underbrace{\mathbb{E}_t(S_{t+h})}}$$

USD return on local currency asset

 $i_{\text{S,t,h}}$  USD interest rate at horizon h,  $i_{t,h}$  local interest rate at horizon h,  $S_t$  &  $\mathbb{E}_t(S_{t+h})$  spot & expected LC/ USD exchange rate

#### Motivation

#### What are the returns when operating in a different currency?

- If risk-neutral agents, free capital mobility and no frictions, Uncovered Interest Parity condition:

$$(1+i_{\$,t,h}) = \underbrace{\frac{S_t}{\mathbb{E}_t(S_{t+h})}(1+i_{t,h})}_{\underbrace{\mathbb{E}_t(S_{t+h})}}$$

USD return on local currency asset

 $i_{\pm,t,h}$  USD interest rate at horizon h,  $i_{t,h}$  local interest rate at horizon h,  $S_t \& \mathbb{E}_t(S_{t+h})$  spot & expected LC/ USD exchange rate

- Large evidence of UIP failure. Define UIP deviations/excess returns (in logs)

$$\lambda_{t+h}^e \equiv i_{t,h} - i_{s,t,h} - (s_{t+h}^e - s_t) \neq 0$$

- Kalemli-Ozcan and Varela '24 (KOV) show that UIP deviations
  - average out across time for Advanced Economies (AEs) currencies ( $\lambda_{t+h}^e \approx 0$ ), but
  - they are *systematically positive* for Emerging Market (EMs) currencies ( $\lambda_{t+h}^e \approx 3pp$ ).



#### 1. Are there UIP deviations/expected excess returns in Latin American (LATAM) currencies?



#### 1. Are there UIP deviations/expected excess returns in Latin American (LATAM) currencies?

- 2. What are the risk factors affecting of UIP deviations in LATAM?
  - Global factors: convenience yield, liquidity premium, VIX - Literat
    - $\leftarrow \text{ Literature on Advanced Economies}$



#### 1. Are there UIP deviations/expected excess returns in Latin American (LATAM) currencies?

- 2. What are the risk factors affecting of UIP deviations in LATAM?
  - Global factors: convenience yield, liquidity premium, VIX — Literature on Advanced Economies
  - Local factors: local policy uncertainty ← Update KOV '24 for EMs & focus on LATAM



#### 1. Are there UIP deviations/expected excess returns in Latin American (LATAM) currencies?

- 2. What are the risk factors affecting of UIP deviations in LATAM?
  - Global factors: convenience yield, liquidity premium, VIX — Literature on Advanced Economies
  - Local factors: local policy uncertainty ← Update KOV '24 for EMs & focus on LATAM

- 3. What is the term structure of UIP deviations in LATAM?
  - Difference across 1, 3 and 12 month horizons, and how risk factors affect them.  $\leftarrow$  This paper



#### 1. Are there UIP deviations/expected excess returns in Latin American (LATAM) currencies?

- 2. What are the risk factors affecting of UIP deviations in LATAM?
  - Global factors: convenience yield, liquidity premium, VIX — Literature on Advanced Economies
  - Local factors: local policy uncertainty ← Update KOV '24 for EMs & focus on LATAM

- 3. What is the term structure of UIP deviations in LATAM?
  - Difference across 1, 3 and 12 month horizons, and how risk factors affect them.  $\leftarrow$  This paper

- 4. UIP deviations in Chile
  - Zoom in (1), (2) and (3) for Chile.  $\leftarrow$  This paper



#### Main Results I: UIP Deviations

- LATAM: (average) expected excess returns are 3.2pp.
   LATAM
- AEs: expected excess returns average out across time.
   AEs



(1) In LATAM, local currency assets are expected to pay higher USD returns than USD assets



#### Main Results II: Global and Local Risk Factors

#### - Both Global and Local risk factors correlate with of UIP deviations in LATAM



- Global factors (VIX): explain 8% of variations in UIP deviations.
- Local factors: explain 24% (2/3 time invariant, 1/3 time variant).



#### Main Results II: Global and Local Risk Factors

#### - Both Global and Local risk factors correlate with of UIP deviations in LATAM



- Global factors (VIX): explain 8% of variations in UIP deviations.
- Local factors: explain 24% (2/3 time invariant, 1/3 time variant).

(2) Country-specific risk correlates w/excess returns, i.e. market segmentation?



#### Main Results III: Term Structure

- UIP deviations decrease for shorter horizons, from 3.2pp at 12-month to 0.3pp at one month horizon.
- Global and local risk factors have lower explanatory power at short term horizons.

| in %                                     | UIP Deviations in LATAM |          |         |
|------------------------------------------|-------------------------|----------|---------|
|                                          | 12 months               | 3 months | 1 month |
| Average UIP Deviation                    | 3.2                     | 0.8      | 0.3     |
| Adjusted $R^2$ of Global + Local Factors | 33.5                    | 4.9      | 2.8     |

(3) At shorter horizons, there is less uncertainty, and lower risk and UIP deviations



#### Excess Returns

Lustig and Verdelhan (2007), Lustig, Roussanov and Verdelhan (2011), Burnside, Eichenbaum, and Rebelo (2007 & 2008), Brunnermeier, Nagel and Pedersen (2009), Sarno, Schneider and Wagner (2012), Chinn and Meredith (2005), Hassan (2013), Hassan and Mano (2019), Colacito and Croce (2013), Gourio, Siemer and Verdelhan (2015), Maggiori (2017), Bansal and Dahlquist (2000), Kremens and Martin (2019)...

<u>Survey Expectations of Exchange Rates</u>: Dominguez (1986), Frankel and Froot (1987 & 1989), Ito (1990), Chinn and Frankel (1999 & 2006), Sarno, Valente, and Leon (2006), Bacchetta, Mertens and van Wincoop (2009), Bussiere, Chinn, Ferrara, and Heipertz (2018), Stavrakeva and Tang (2019), Candian and de Leo (2023), Kremens, Martin and Varela (2024)...

#### Financial Frictions

Alvarez, Atkeson and Kehoe (2009), Gabaix and Maggiori (2015), Fanelli and Straub (2021), Fontanier (2024), Itskhoki and Mukhin (2021, 2024)...

#### Policy Uncertainty

Backer, Bloom and Davis (2016), Cieslak, Hansen, McMahon and Xiao (2023), Du, Pflueger and Schreger (2020), Azzimonti and Mitra (2023)...

| Introduction | Data   | Risk Premium | Global and Local Risk Factors | Term Structure | Chile | Conclusion |
|--------------|--------|--------------|-------------------------------|----------------|-------|------------|
| 000000       | 000000 | 000          |                               | 000            | 0000  | O          |
|              |        |              |                               |                |       |            |

Road Map

- 1. Data
- 2. Risk Premium in LATAM
- 3. Global and Local Risk Factors
- 4. Term Structure of Excess Returns
- 5. UIP in Chile

### Data

| Introduction | Data   | Risk Premium | Global and Local Risk Factors | Term Structure | Chile | Conclusion |
|--------------|--------|--------------|-------------------------------|----------------|-------|------------|
| 0000000      | O●OOOO | 000          |                               | 000            | 0000  | O          |
|              |        |              |                               |                |       |            |

#### Data

Our Approach:

- Consensus Forecasts: Expected exchange rate at 1, 3 and 12 months horizon.
- Local and International News: Construct news-based policy uncertainty (extended from KOV '24).

Other Data:

- *Bloomberg*: Deposit interest rates and money market rates.
- International Financial Statistics (IFS), IMF: Spot exchange rates, Capital Flows.
- FRED: VIX.
- ICRG: Survey data on policy uncertainty/risk.



#### How Good are Exchange Rate Surveys?

- The correlation b/ expected & realized exchange rate changes is 0.74\*\*\* (Kremens, Martin & Varela '24)

Expected and Realized Exchange Rate Changes



#### How Do We Proxy Local Policy Uncertainty?

**Uncertainty about policies that affects investors' expected returns (monetary policy, government default** *risk, expropriation risk, war, etc.).* 

#### Follow Backer, Bloom and Davis (2016) and use:

military spending, budget deficit, government deficit, fiscal policy, money supply, quantitative easing, fed funds rate, overnight lending rate, the fed, 9/11, military procurement, terrorist attack, bank stress test, union rights, collective bargaining law, workers compensation, competition policy, monopoly, patent, copyright, immigration policy, illegal immigration, currency crisis, currency crises, currency crash, crisis, reserves, tariff, trade, devaluation, corruption...

#### Our words:

monetary policy, open market operations, central bank, interest rate, national debt, debt ceiling, sovereign debt, government deficit, money supply, capital controls, expropriation, nationalization, military embargo, no-fly zone, military invasion, war, military conflict, terrorism Introduction 0000000 Risk Premium 000

Data

000000

Global and Local Risk Factors

Term Structure

Chile 0000 Conclusion O

#### UIP Deviations in LATAM: Summary Statistics

|                                              | Mean     | Median | Std.Dev.      | p25         | p75   | Obs. |
|----------------------------------------------|----------|--------|---------------|-------------|-------|------|
|                                              |          |        | LATAN         | N           |       |      |
| UIP Deviation                                | 0.032    | 0.028  | 0.039         | -0.005      | 0.051 | 327  |
| Interest Rate Differential $(i_t - i_{s,t})$ | 0.061    | 0.051  | 0.045         | 0.037       | 0.062 | 327  |
| Exchange Rate Adjustment $(s_{t+h}^e - s_t)$ | 0.030    | 0.030  | 0.044         | 0.000       | 0.057 | 327  |
|                                              |          |        | Brazi         | I           |       |      |
| UIP Deviation                                | 0.067    | 0.059  | 0.058         | 0.026       | 0.094 | 327  |
| Interest Rate Differential                   | 0.101    | 0.093  | 0.053         | 0.070       | 0.125 | 327  |
| Exchange Rate Adjustment                     | 0034     | 0.038  | 0.060         | -0.005      | 0.081 | 327  |
|                                              |          |        | Chile         |             |       |      |
| UIP Deviation                                | 0.011    | 0.011  | 0.043         | -0.020      | 0.038 | 290  |
| Interest Rate Differential                   | 0.018    | 0.016  | 0.019         | 0.000       | 0.035 | 290  |
| Exchange Rate Adjustment                     | 0.006    | 0.010  | 0.036         | -0.020      | 0.032 | 290  |
|                                              | Colombia |        |               |             |       |      |
| UIP Deviation                                | 0.013    | 0.015  | 0.052         | -0.021      | 0.043 | 327  |
| Interest Rate Differential                   | 0.052    | 0.037  | 0.051         | 0.023       | 0.058 | 327  |
| Exchange Rate Adjustment                     | 0.038    | 0.039  | 0.055         | -0.002      | 0.081 | 327  |
|                                              | Mexico   |        |               |             |       |      |
| UIP Deviation                                | 0.030    | 0.023  | 0.044         | -0.002      | 0.052 | 326  |
| Interest Rate Differential                   | 0.059    | 0.046  | 0.045         | 0.037       | 0.058 | 326  |
| Exchange Rate Adjustment                     | 0.029    | 0.027  | 0.056         | -0.007      | 0.061 | 326  |
|                                              |          | LATAN  | /I- Ex-Post U | IIP Deviati | ons   |      |
| UIP Deviation - Realized                     | 0.018    | 0.027  | 0.107         | -0.049      | 0.095 | 315  |
| Exchange Rate Adjustment, Realized           | 0.043    | 0.043  | 0.113         | -0.044      | 0.125 | 315  |

- 3.2pp average UIP deviation (Brazil and Mexico higher).
- Using realized (ex-post) exchange rate: 1.8pp.

Notes: Summary statistics for the period 1996m11 to 2023m12, 12 months horizon.

Introduction 0000000 Risk Premium 000

Data

00000

Global and Local Risk Factors

Term Structure

Chile 0000 Conclusion O

#### UIP Deviations in LATAM: Summary Statistics

|                                              | Mean     | Median | Std.Dev.     | p25        | p75   | Obs. |
|----------------------------------------------|----------|--------|--------------|------------|-------|------|
|                                              |          |        | LATAN        | л          |       |      |
| UIP Deviation                                | 0.032    | 0.028  | 0.039        | -0.005     | 0.051 | 327  |
| Interest Rate Differential $(i_t - i_{s,t})$ | 0.061    | 0.051  | 0.045        | 0.037      | 0.062 | 327  |
| Exchange Rate Adjustment $(s_{t+h}^e - s_t)$ | 0.030    | 0.030  | 0.044        | 0.000      | 0.057 | 327  |
|                                              |          |        | Brazi        |            |       |      |
| UIP Deviation                                | 0.067    | 0.059  | 0.058        | 0.026      | 0.094 | 327  |
| Interest Rate Differential                   | 0.101    | 0.093  | 0.053        | 0.070      | 0.125 | 327  |
| Exchange Rate Adjustment                     | 0034     | 0.038  | 0.060        | -0.005     | 0.081 | 327  |
|                                              | Chile    |        |              |            |       |      |
| UIP Deviation                                | 0.011    | 0.011  | 0.043        | -0.020     | 0.038 | 290  |
| Interest Rate Differential                   | 0.018    | 0.016  | 0.019        | 0.000      | 0.035 | 290  |
| Exchange Rate Adjustment                     | 0.006    | 0.010  | 0.036        | -0.020     | 0.032 | 290  |
|                                              | Colombia |        |              |            |       |      |
| UIP Deviation                                | 0.013    | 0.015  | 0.052        | -0.021     | 0.043 | 327  |
| Interest Rate Differential                   | 0.052    | 0.037  | 0.051        | 0.023      | 0.058 | 327  |
| Exchange Rate Adjustment                     | 0.038    | 0.039  | 0.055        | -0.002     | 0.081 | 327  |
|                                              |          |        | Mexic        | D          |       |      |
| UIP Deviation                                | 0.030    | 0.023  | 0.044        | -0.002     | 0.052 | 326  |
| Interest Rate Differential                   | 0.059    | 0.046  | 0.045        | 0.037      | 0.058 | 326  |
| Exchange Rate Adjustment                     | 0.029    | 0.027  | 0.056        | -0.007     | 0.061 | 326  |
|                                              |          | LATAN  | /- Ex-Post U | IP Deviati | ions  |      |
| UIP Deviation - Realized                     | 0.018    | 0.027  | 0.107        | -0.049     | 0.095 | 315  |
| Exchange Rate Adjustment, Realized           | 0.043    | 0.043  | 0.113        | -0.044     | 0.125 | 315  |

Notes: Summary statistics for the period 1996m11 to 2023m12, 12 months horizon.

- 3.2pp average UIP deviation (Brazil and Mexico higher).
- Using realized (ex-post) exchange rate: 1.8pp.
- Accounted by high interest rate differential.

 In all cases, the interest rate differential is higher than exchange rate adjustment term



# Risk Premium in Latin American Countries

| Introduction | Data   | Risk Premium | Global and Local Risk Factors | Term Structure | Chile | Conclusion |
|--------------|--------|--------------|-------------------------------|----------------|-------|------------|
| 0000000      | 000000 | 000          | 000000000000                  | 000            | 0000  | 0          |

#### Testing UIP Deviations

Test for UIP deviations/excess returns:

$$s^{e}_{ct+1} - s_{ct} = \beta(i_{ct} - i^{US}_{ct}) + \mu_i + \varepsilon_{ct+1}$$
  $\rightarrow$  if  $\beta = 1$ , UIP holds

- If agents have full information and rational expectations (FIRE),  $s_{ct+k}^e = s_{ct+k} + \epsilon$  with  $corr(\epsilon_{ct}, info_{ct} = 0)$ .

We can then regress

$$s_{ct+1} - s_{ct} = \beta^F(i_{ct} - i_{ct}^{US}) + \mu_i + \varepsilon^F_{ct+1}$$
  $\rightarrow$  if  $\beta^F = 1$ , UIP holds

|                                                                                                                         | Exchange Rate Changes               |                                     |  |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|--|
|                                                                                                                         | Expected values                     | Realized values                     |  |
|                                                                                                                         | (1)                                 | (2)                                 |  |
| $i_{ct} - i_{ct}^{US}$                                                                                                  | <mark>0.588</mark> ***<br>(0.037)   | <mark>0.399***</mark><br>(0.099)    |  |
| p-value $(H_0: \beta^F = 1)$<br>Observations<br>Number of Countries<br>Country Fixed Effects<br>Adjusted R <sup>2</sup> | 0.000<br>1,267<br>4<br>Yes<br>0.280 | 0.000<br>1,222<br>4<br>Yes<br>0.026 |  |

Notes: \* p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01. Standard errors are clustered at the currency-month level.

| Introduction | Data   | Risk Premium | Global and Local Risk Factors | Term Structure | Chile | Conclusion |
|--------------|--------|--------------|-------------------------------|----------------|-------|------------|
| 0000000      | 000000 | 000          | 00000000000                   | 000            | 0000  | 0          |

#### Testing UIP Deviations

Test for UIP deviations/excess returns:

 $s^e_{ct+1} - s_{ct} = \beta(i_{ct} - i^{US}_{ct}) + \mu_i + \varepsilon_{ct+1}$   $\rightarrow$  if  $\beta = 1$ , UIP holds

- If agents have full information and rational expectations (FIRE),  $s^e_{ct+k} = s_{ct+k} + \epsilon$  with  $corr(\epsilon_{ct}, info_{ct} = 0)$ .

We can then regress

$$s_{ct+1} - s_{ct} = \beta^F(i_{ct} - i_{ct}^{US}) + \mu_i + \varepsilon^F_{ct+1} \longrightarrow \text{if } \beta^F = 1, \text{ UIP holds}$$

|                                                                                                                                                                                 | Exchange Rate Changes               |                                     |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|--|
|                                                                                                                                                                                 | Expected values                     | Realized values                     |  |
|                                                                                                                                                                                 | (1)                                 | (2)                                 |  |
| $i_{ct} - i_{ct}^{US}$                                                                                                                                                          | <mark>0.588</mark> ***<br>(0.037)   | <mark>0.399***</mark><br>(0.099)    |  |
| $\begin{array}{l} \mbox{p-value} \ (H_0:\beta^F=1)\\ \mbox{Observations}\\ \mbox{Number of Countries}\\ \mbox{Country Fixed Effects}\\ \mbox{Adjusted } \mbox{R}^2 \end{array}$ | 0.000<br>1,267<br>4<br>Yes<br>0.280 | 0.000<br>1,222<br>4<br>Yes<br>0.026 |  |

 $\rightarrow$  Neither with expectational or realized exchange rate the UIP holds.

 $\rightarrow$  Coeff. are similar in size!

Notes: \* p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01. Standard errors are clustered at the currency-month level.



#### Where Do UIP Deviations Come From?

 Frankel and Froot ('88): two sources of "bias" in the Fama coefficient: Systematic Forecast Errors and Risk Premium.

$$plim \ \hat{\beta}^F = 1 \underbrace{-b_{RE} - b_{RP}}_{\text{"bias"}}$$

| "Bias" | b <sub>RE</sub> | b <sub>RP</sub> |
|--------|-----------------|-----------------|
| 100%   | 32%             | 0.68%           |

 $\rightarrow$  In LATAM, deviations mainly arise from a risk premium.

## Global and Local Risk Factors

| ntroduction | Data   | Risk Premium | Global and Local Risk Factors | Term Structure | Chile | Conclusion |
|-------------|--------|--------------|-------------------------------|----------------|-------|------------|
| 000000      | 000000 | 000          | 00000000000                   | 000            | 0000  | 0          |

### Global and Local Factors

















Corr(PRP, UIP) = 0.075, P-value = 0.223

#### Global and Local Factors

 EMs: UIP dev. correlate w/both global & local risks market segmentation: idiosyncratic risk cannot be diversified away

LATAM: UIP-Global: 49%





 AEs: UIP dev. only correlate w/global risk only systemic risk matters: integrated capital markets



— UIP Premium (L)

Corr(PRP, UIP) = 0.075, P-value = 0.223

PPP (P)





| Introduction | Data   | Risk Premium | Global and Local Risk Factors | Term Structure | Chile | Conclusion |
|--------------|--------|--------------|-------------------------------|----------------|-------|------------|
| 0000000      | 000000 | 000          |                               | 000            | 0000  | O          |
|              |        |              |                               |                |       |            |

A Simple Framework

- UIP deviations arise from global and local factors:

 $\lambda_{t+h}^{e} \approx \tilde{\gamma}_{t}^{GLOBAL} + \rho_{t}^{LOCAL}$ 

where  $\tilde{\gamma}_t^{GLOBAL}$  can be then decomposed into



#### **Regression Analysis**

Run implied regression from the simple framework:

$$\begin{split} \lambda_{ct+h}^{e} &= \gamma_{1} \text{Capital Inflows/GDP}_{ct-1} + \gamma_{2} \text{Convenience Yield/Liquidity Premium}_{t-1} \\ &+ \gamma_{3} \log(VIX_{t-1}) + \gamma_{4} \text{PRP}_{ct-1} + \mu_{c} + \varepsilon_{ct}, \end{split}$$
(1)

- Global 1: Global risk factor: VIX. \_
- Global 2: Convenience vield via G10 (Cross-currency basis):

$$= (i_{c,t}^{L} - i_{t}^{US,L}) - (f_{c,t+1} - s_{c,t})$$

Global 3: Liquidity Premium via G10: \_

$$= (i_{c,t}^L - i_{c,t}^G) - (i_t^{US,L} - i_t^{US,G})$$

- $i_{c,t}^L$  is the LIBOR rate in country c,  $i_t^{US,L}$  is the LIBOR rate in the U.S.  $f_{c,t+h}$  is forward exchange rate and  $s_{c,t}$  is the spot exchange rate (logs).
- $i_{ct}^{G}$  and  $i_{t}^{US,G}$  are interest rates on government bonds in the home country and the U.S.
- Local 1: Country-specific capital flows.
- Local 2: Country-specific local risk factor: PRP.



#### **Regression Results**

- An increase in VIX from p25 to p75 associates with a 2.2 percentage points increase excess returns.
- An increase in PRP from p25 to p75 associates with 1 percentage point increase in excess returns.

|                                                            |                                                 | UIP Deviations                                        |                                                       |                                                       |  |  |  |
|------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--|--|--|
|                                                            | (1)                                             | (2)                                                   | (3)                                                   | (4)                                                   |  |  |  |
| $Inflows/GDP_{c,t-1}$ (Local)                              | $-0.177^{***}$<br>(0.0547)                      | $-0.129^{**}$<br>(0.0508)                             | $-0.125^{**}$<br>(0.0484)                             | 0.076*<br>(0.0432)                                    |  |  |  |
| Convenience/Liquidity <sub><math>t-1</math></sub> (Global) | $\begin{array}{c} 0.198 \\ (0.423) \end{array}$ | $-0.936^{**}$<br>(0.447)                              | $-0.818^{*}$<br>(0.435)                               | $-0.877^{*}$<br>(0.412)                               |  |  |  |
| VIX <sub>t-1</sub> (Global)                                |                                                 | $\begin{array}{c} 0.048^{***} \\ (0.005) \end{array}$ | $\begin{array}{c} 0.043^{***} \\ (0.005) \end{array}$ | $\begin{array}{c} 0.042^{***} \\ (0.004) \end{array}$ |  |  |  |
| $PRP_{c,t-1}$ (Local)                                      |                                                 |                                                       | $\begin{array}{c} 0.010^{***} \\ (0.002) \end{array}$ | 0.010***<br>(0.002)                                   |  |  |  |
| Adjusted R <sup>2</sup>                                    | 0.012                                           | 0.105                                                 | 0.136                                                 | 0.306                                                 |  |  |  |
| Observations                                               | 1,117                                           | 1,117                                                 | 1,113                                                 | 1,113                                                 |  |  |  |
| Number of Countries                                        | 4                                               | 4                                                     | 4                                                     | 4                                                     |  |  |  |
| Currency FE                                                | No                                              | No                                                    | No                                                    | Yes                                                   |  |  |  |

Notes: \* p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01. Standard errors in parentheses.

- $\rightarrow$  Local, country-specific risk correlates higher excess returns over and above global risk factors.
- ightarrow Adding currency FE does not affect the coefficient on policy uncertainty, but increases the  $R^2$  substantially.



#### Additional Exercises

- 1. Realized ER: parallel results using realized exchange rates to compute the UIP deviations. Realized ER
- 2. Advanced Economies: country-specific policy risk does not affect UIP deviations in AEs.
- 3. Inflation Differential: similar results when controlling for inflation differentials.
- 4. Different loadings on global risk: can the results be driven by different loadings on global risk?  $\rightarrow$  Next
- 5. Granular Policy Risk: are the results robust to other country-specific measures of risk?



#### Are Local Risk Factors a Proxy for Heterogeneous Loadings on Global Risk?

- Country-idiosyncratic risks should be diversified away, could it be that local risk factor is capturing heterogeneous loadings on global risk?
- Interact VIX & PRP w/currency dummies to allow heterogeneous slope on global factor + local factors.

 $\lambda_{c,t+h}^{e} = \gamma_1(\text{Capital Inflows/GDP}_{ct-1}) + \gamma_2 \text{Convenience Yield/Liquidity Premium}_{t-1}$ 

$$+\sum_{i=1}^{c} \gamma_{3}^{i}[1_{i}] \log(\mathsf{VIX}_{t-1}) + \sum_{i=1}^{c} \gamma_{4}^{i}[1_{i}] \mathsf{PRP}_{c,t-1} + \mu_{c} + \varepsilon_{ct},$$
(2)

| ntroduction | Data   | Risk Premium | Global and Local Risk Factors | Term Structure | Chile | Conclusion |
|-------------|--------|--------------|-------------------------------|----------------|-------|------------|
| 000000      | 000000 | 000          | 000000000000                  | 000            | 0000  | 0          |
|             |        |              |                               |                |       |            |

#### Are Local Risk Factors a Proxy for Heterogeneous Loadings on Global Risk?

|                                                   |                                                       | UIP De              | viations                                              |                     |
|---------------------------------------------------|-------------------------------------------------------|---------------------|-------------------------------------------------------|---------------------|
|                                                   | (1)                                                   | (2)                 | (3)                                                   | (4)                 |
| VIX <sub>t-1</sub> (Global)                       | $\begin{array}{c} 0.042^{***} \\ (0.004) \end{array}$ |                     | $\begin{array}{c} 0.042^{***} \\ (0.004) \end{array}$ |                     |
| $PRP_{c,t-1}$ (Local)                             | $\begin{array}{c} 0.010^{***} \\ (0.002) \end{array}$ | 0.011***<br>(0.002) |                                                       |                     |
| VIX × Mexico <sub><math>t-1</math></sub> (Global) |                                                       | 0.040***<br>(0.008) |                                                       | 0.040***<br>(0.008) |
| $VIX \times Brazil_{t-1} \text{ (Global)}$        |                                                       | 0.078***<br>(0.008) |                                                       | 0.073***<br>(0.008) |
| $VIX \times Chile_{t-1}$ (Global)                 |                                                       | 0.024***<br>(0.008) |                                                       | 0.025***<br>(0.008) |
| VIX × Colombia $_{t-1}$ (Global)                  |                                                       | 0.020**<br>(0.009)  |                                                       | 0.022**<br>(0.009)  |
| $PRP \times Mexico_{c,t-1} (Local)$               |                                                       |                     | 0.005**<br>(0.003)                                    | 0.005**<br>(0.003)  |
| $PRP \times Chile_{c,t-1} (Local)$                |                                                       |                     | 0.008***<br>(0.002)                                   | 0.010***<br>(0.002) |
| $PRP \times Brazil_{c,t-1} \ (Local)$             |                                                       |                     | 0.021***<br>(0.004)                                   | 0.019***<br>(0.004) |
| $PRP \times Colombia_{c,t-1} \text{ (Local)}$     |                                                       |                     | 0.007**<br>(0.003)                                    | 0.008***<br>(0.003) |
| $Inflows/GDP_{c,t-1}$                             | Yes                                                   | Yes                 | Yes                                                   | Yes                 |
| Convenience/Liquidity $_{t-1}$                    | Yes                                                   | Yes                 | Yes                                                   | Yes                 |
| Adjusted R <sup>2</sup>                           | 0.307                                                 | 0.327               | 0.319                                                 | 0.335               |
| Observations                                      | 1,113                                                 | 1,113               | 1,113                                                 | 1,113               |
| Currencies                                        | 4<br>Voc                                              | 4<br>Voc            | 4<br>Vec                                              | 4<br>Voc            |
| Currency FE                                       | res                                                   | res                 | res                                                   | res                 |

- Heterogeneous loadings on VIX do not affect the coefficient on local factors.
- PRP coeff. are significant for all countries, independently on whether heterogeneous loadings on VIX are included.



#### Explanatory Power of Global and Local Factors

- Global factors (VIX): explain 8.4% of variations in UIP deviations.
- Local factors: explain 24.1% (time-variant 6.8% + time-invariant 17.3%).
- Global and local factors: explain 30.7% of variations in UIP deviations.

|                                     |       | $R^2$ for d | lifferent | specifications |
|-------------------------------------|-------|-------------|-----------|----------------|
|                                     | (1)   | (2)         | (3)       | (4)            |
| Adjusted R <sup>2</sup>             | 0.084 | 0.068       | 0.241     | 0.307          |
| $Inflows/GDP_{c,t-1}$               | No    | Yes         | Yes       | Yes            |
| Convenience/Liquidity $_{t-1}$      | Yes   | No          | No        | Yes            |
| $VIX_{t-1}$                         | Yes   | No          | No        | Yes            |
| $PRP_{c,t-1}$                       | No    | Yes         | Yes       | Yes            |
| $VIX_{t-1} \times Currency Dummy$   | No    | No          | No        | No             |
| $PRP_{c,t-1} \times Currency Dummy$ | No    | No          | No        | No             |
| Currency FE                         | No    | No          | Yes       | Yes            |
| Month FE                            | No    | No          | No        | No             |



#### Explanatory Power of Global and Local Factors

- Global factors (VIX): explain 8.4% of variations in UIP deviations.
- Local factors: explain 24.1% (time-variant 6.8% + time-invariant 17.3%).
- Global and local factors: explain 30.7% of variations in UIP deviations.
- Adding global loadings and local heterogeneous slopes: explains 33.5%.
- Adding time (month) FE to account for all global factors (+ USD factor) and local factor: explains 63.1%.

|                                     | $R^2$ for different specifications |       |       |       |       |       |       |       |  |
|-------------------------------------|------------------------------------|-------|-------|-------|-------|-------|-------|-------|--|
|                                     | (1)                                | (2)   | (3)   | (4)   | (5)   | (6)   | (7)   | (8)   |  |
| Adjusted R <sup>2</sup>             | 0.084                              | 0.068 | 0.241 | 0.307 | 0.327 | 0.319 | 0.335 | 0.631 |  |
| $Inflows/GDP_{c,t-1}$               | No                                 | Yes   |  |
| Convenience/Liquidity $_{t-1}$      | Yes                                | No    | No    | Yes   | Yes   | Yes   | Yes   | Yes   |  |
| $VIX_{t-1}$                         | Yes                                | No    | No    | Yes   | Yes   | Yes   | Yes   | Yes   |  |
| $PRP_{c,t-1}$                       | No                                 | Yes   |  |
| $VIX_{t-1} \times Currency Dummy$   | No                                 | No    | No    | No    | Yes   | No    | Yes   | Yes   |  |
| $PRP_{c,t-1} \times Currency Dummy$ | No                                 | No    | No    | No    | No    | Yes   | Yes   | Yes   |  |
| Currency FE                         | No                                 | No    | Yes   | Yes   | Yes   | Yes   | Yes   | Yes   |  |
| Month FE                            | No                                 | No    | No    | No    | No    | No    | No    | Yes   |  |



#### Additional Exercises

- 1. Realized ER: parallel results using realized exchange rates to compute the UIP deviations. Realized ER
- 2. Advanced Economies: country-specific policy risk does not affect UIP deviations in AEs.
- 3. Inflation Differential: similar results when controlling for inflation differentials.
- 4. Different loadings on global risk: can the results be driven by different loadings on global risk?
- 5. Granular Policy Risk: are the results robust to other country-specific measures of risk?  $\rightarrow$  Next

#### Policy Risk: A Granular View

- Use International Country Risk Guide (ICRG) to further break down local risk factors.
- ICRG provides country-specific index of a risk at monthly frequency. We use four indexes:
  - 1. Composite index: proxy for overall country risk (incl. political, economic and financial risks)
  - 2. Economic risk: proxy for general economic conditions (incl. GDP growth, inflation, fiscal balance...)
  - 3. Political risk: proxy for general policy conditions (incl. investment profile, conflict, corruption ...)
  - Financial risk: proxy for risk of debt repayment (incl. foreign debt/GDP, foreign debt service/ exports...)
- We replace *PRP* with these indexes and include them all together.

ICRG- Definitions

#### Introduction 0000000

Risk Premium 000 Global and Local Risk Factors

Term Structure

Chile 0000 Conclusion O

#### Policy Risk: A Granular View

- All composite, economic, political and financial risks correlate w/excess returns, but...

...fundamentals and risk of debt repayment are key in LATAM.

|                                        |                           | UIP Deviation             |                           |                           |                           |  |  |  |
|----------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--|--|--|
|                                        | (1)                       | (2)                       | (3)                       | (4)                       | (5)                       |  |  |  |
| $Inflows/GDP_{c,t-1}$                  | 0.013<br>(0.054)          | -0.022<br>(0.054)         | -0.010<br>(0.054)         | 0.013<br>(0.054)          | 0.011<br>(0.054)          |  |  |  |
| $Convenience/Liquidity_{t-1}$          | $-2.301^{***}$<br>(0.609) | $-2.400^{***}$<br>(0.617) | $-2.227^{***}$<br>(0.620) | $-2.545^{***}$<br>(0.616) | $-2.688^{***}$<br>(0.621) |  |  |  |
| $VIX_{t-1}$                            | 0.050***<br>(0.005)       | 0.053***<br>(0.005)       | 0.051***<br>(0.005)       | 0.046***<br>(0.005)       | 0.047***<br>(0.005)       |  |  |  |
| Composite Risk $Rate_{c,t-1}$          | 0.026*** (0.007)          |                           |                           |                           |                           |  |  |  |
| Economic Risk $Rating_{c,t-1}$         |                           | 0.014***<br>(0.004)       |                           |                           | 0.012**<br>(0.005)        |  |  |  |
| Political Risk Rating <sub>c,t-1</sub> |                           |                           | 0.016***<br>(0.004)       |                           | 0.000 (0.007)             |  |  |  |
| Financial Risk $Rating_{c,t-1}$        |                           |                           | . /                       | 0.017***<br>(0.005)       | 0.015***<br>(0.005)       |  |  |  |
| Adjusted R <sup>2</sup>                | 0.317                     | 0.3174                    | 0.315                     | 0.318                     | 0.323                     |  |  |  |
| Observations                           | 957                       | 957                       | 957                       | 957                       | 957                       |  |  |  |
| Currency FE                            | 4<br>Yes                  | 4<br>Yes                  | 4<br>Yes                  | 4<br>Yes                  | 4<br>Yes                  |  |  |  |

Notes: \* p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01. Period 1996m11 to 2019m6. Standard clustered at the currency-month level.

Introduction 0000000 Risk Premium 000 Global and Local Risk Factors

Term Structure

Chile 0000 Conclusion O

# Term Structure

#### 

#### Term Structure of UIP

- Smaller UIP deviations at shorter horizons (0.3pp at 1 month, 0.8pp at 3 months vs 3.2pp at 12 months).
- Exchange rate adjustment averages out and lower interest rate differentials.

|                                              | 1 month | 3 months | 12 months |
|----------------------------------------------|---------|----------|-----------|
| UIP deviations                               | 0.003   | 0.008    | 0.032     |
| nterest Rate Differential $(i_t - i_{\$,t})$ | 0.003   | 0.015    | 0.061     |
| Exchange Rate Adjustment $(s^e_{t+h}-s_t)$   | 0.000   | 0.007    | 0.030     |
|                                              |         |          |           |

1 months



#### 12-months







0

Chile

Conclusior O

#### **Regression Analysis**

#### As the horizon shortens,

- $1. \$  the correlation with global factors lowers.
- 2. the correlation with local factors vanishes.
- 3. the explanatory power of these factors drops.

|                               | UIP Deviations                                      |                                                       |                                                       |  |  |
|-------------------------------|-----------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--|--|
|                               | 12 months                                           | 3 months                                              | 1 month                                               |  |  |
| $Inflows/GDP_{c,t-1}$         | $\begin{array}{c} 0.076^{*} \\ (0.043) \end{array}$ | $\begin{array}{c} 0.152^{***} \\ (0.038) \end{array}$ | $\begin{array}{c} 0.127^{***} \\ (0.038) \end{array}$ |  |  |
| $Convenience/Liquidity_{t-1}$ | $egin{array}{c} -0.877^{**} \ (0.412) \end{array}$  | $-1.017^{**}$<br>(0.426)                              | $-0.836^{**}$<br>(0.413)                              |  |  |
| $VIX_{t-1}$                   | $\frac{0.042^{***}}{(0.004)}$                       | 0.020***<br>(0.005)                                   | 0.010**<br>(0.005)                                    |  |  |
| $PRP_{c,t-1}$                 | 0.010***<br>(0.002)                                 | $\begin{array}{c} 0.002 \\ (0.001) \end{array}$       | $\begin{array}{c} 0.001 \\ (0.001) \end{array}$       |  |  |
| Observations                  | 1,113                                               | 1,019                                                 | 885                                                   |  |  |
| Number of Currencies          | 4                                                   | 4                                                     | 4                                                     |  |  |
| Currency Fixed Effects        | Yes                                                 | Yes                                                   | Yes                                                   |  |  |
| Adjusted R <sup>2</sup>       | 0.307                                               | 0.041                                                 | 0.025                                                 |  |  |



Notes: \* p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01. Standard errors are clustered at currency and month level.

Introduction<br/>000000Data<br/>000000Risk Premium<br/>000Global and Local Risk Factors<br/>000000000000Term Structure<br/>000Chile<br/>000Conclusion<br/>000

## Chile



#### UIP premium in Chile

#### - Lower UIP deviations than other LATAM, but still correlated with global and local risk factors.



#### 

#### Global and Local Risk Factors in Chile

#### - UIP deviations in Chile are correlated w/ both global (36%) and local (33%) risk factors.





#### Chile regressions

- UIP deviations correlate with local and global factors.

|                               | UIP deviations |              |               |              |                     |  |  |  |  |
|-------------------------------|----------------|--------------|---------------|--------------|---------------------|--|--|--|--|
|                               |                | 12 month     | 3 months      | 1 month      |                     |  |  |  |  |
|                               | (1)            | (2)          | (3)           | (4)          | (5)                 |  |  |  |  |
| Inflows/GDP <sub>c,t-1</sub>  | 0.026          | 0.059        | 0.039         | $0.074^{*}$  | 0.090**             |  |  |  |  |
|                               | (0.068)        | (0.062)      | (0.063)       | (0.042)      | (0.041)             |  |  |  |  |
| $Convenience/Liquidity_{t-1}$ | -1.062         | $-1.856^{*}$ | $-2.096^{**}$ | $-1.116^{*}$ | $-1.060^{*}$        |  |  |  |  |
|                               | (0.879)        | (0.962)      | (0.929)       | (0.625)      | (0.565)             |  |  |  |  |
| $VIX_{t-1}$                   | , ,            | 0.037***     | 0.025***      | 0.005        | -0.001              |  |  |  |  |
|                               |                | (0.008)      | (0.008)       | (0.006)      | (0.006)             |  |  |  |  |
| $PRP_{c,t-1}$                 |                | × /          | 0.011***      | 0.005***     | 0.004* <sup>*</sup> |  |  |  |  |
|                               |                |              | (0.002)       | (0.002)      | (0.002)             |  |  |  |  |
| Adjusted R <sup>2</sup>       | 0.071          | 0.113        | 0.116         | 0.067        | 0.064               |  |  |  |  |
| Observations                  | 277            | 277          | 277           | 311          | 261                 |  |  |  |  |

Notes: \* p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01. Standard errors in parentheses.

Realized ER



#### Conclusion

#### We show that

- 1. Expected excess returns persistently positive in LATAM ( $\approx$  3pp).
  - $\rightarrow$  There is excess returns from investing in local currency assets.
- 2. Local risk factors (above and beyond global factors) affect these excess returns.
  - $\rightarrow \approx 2/3$  are country-time invariant factor.
  - $\rightarrow \approx 1/3$  time-variant policy risk.
    - ightarrow Policy uncertainty and, in particular, to risk on future fundamentals and debt repayment are key

 $\rightarrow$  How can we think of this risk premium in an global, integrated capital market? Our work indicates that there has to be market segmentation in EMs.

Policy implication:

 Reduce local policy uncertainty and frictions in world capital market integration to lower risk premium on local-currency assets. Appendix •00000000

# Appendix

#### Appendix 00000000

#### Additional Exercise: Realized Exchange Rates

|                                                            |                | Realized UIP Premium |                |                |  |  |  |
|------------------------------------------------------------|----------------|----------------------|----------------|----------------|--|--|--|
|                                                            | (1)            | (2)                  | (3)            | (4)            |  |  |  |
| Inflows/GDP <sub><math>it-1</math></sub> (Local)           | $-0.818^{***}$ | $-0.758^{***}$       | $-0.753^{***}$ | $-0.838^{***}$ |  |  |  |
|                                                            | (0.127)        | (0.122)              | (0.122)        | (0.120)        |  |  |  |
| Convenience/Liquidity <sub><math>t-1</math></sub> (Global) | 6.562***       | 5.121***             | 5.208***       | 5.249***       |  |  |  |
| , , , , , , , , , , , , , , , , , , , ,                    | (1.295)        | (1.243)              | (1.254)        | (1.255)        |  |  |  |
| $VIX_{t-1}$ (Global)                                       | · /            | 0.062***             | 0.058***       | 0.058***       |  |  |  |
| ,                                                          |                | (0.012)              | (0.012)        | (0.012)        |  |  |  |
| $PRP_{t-1}$ (Local)                                        |                | · /                  | 0.007*         | 0.007*         |  |  |  |
|                                                            |                |                      | (0.004)        | (0.004)        |  |  |  |
| Adjusted R <sup>2</sup>                                    | 0.085          | 0.106                | 0.109          | 0.107          |  |  |  |
| Observations                                               | 1,117          | 1,117                | 1,113          | 1,113          |  |  |  |
| Number of Currencies                                       | 4              | 4                    | 4              | 4              |  |  |  |
| Currency FE                                                | Yes            | Yes                  | Yes            | No             |  |  |  |
| Month FE                                                   | No             | No                   | No             | No             |  |  |  |
|                                                            |                |                      |                |                |  |  |  |

Notes: \* p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01. Standard errors clustered at the country-month level.

#### 

|                         |         |             |          |              |         | D 11 11 |          |                |
|-------------------------|---------|-------------|----------|--------------|---------|---------|----------|----------------|
|                         |         | OIP Premium |          |              |         |         |          |                |
|                         | (1)     | (2)         | (3)      | (4)          | (5)     | (6)     | (7)      | (8)            |
| $Inflows/GDP_{it-1}$    | -0.016  | -0.010      | -0.002   | -0.002       | -0.047  | -0.044  | -0.024   | -0.021         |
|                         | (0.015) | (0.014)     | (0.013)  | (0.013)      | (0.043) | (0.042) | (0.040)  | (0.040)        |
| Treasury Basis $t-1$    |         | 2.831***    | 0.655    | 0.554        |         | 1.450   | -3.905** | $-4.303^{***}$ |
|                         |         | (0.586)     | (0.660)  | (0.670)      |         | (1.567) | (1.564)  | (1.577)        |
| $\log(VIX_{t-1})$       |         |             | 0.034*** | 0.036***     |         |         | 0.085*** | 0.092***       |
|                         |         |             | (0.004)  | (0.004)      |         |         | (0.010)  | (0.010)        |
| $EPU_{t-1}$             |         |             |          | $-0.002^{*}$ |         |         |          | $-0.008^{**}$  |
|                         |         |             |          | (0.001)      |         |         |          | (0.003)        |
| Observations            | 1,389   | 1,385       | 1,385    | 1,377        | 1,360   | 1,356   | 1,356    | 1,348          |
| Number of Currencies    | 6       | 6           | 6        | 6            | 6       | 6       | 6        | 6              |
| Currency FE             | Yes     | Yes         | Yes      | Yes          | Yes     | Yes     | Yes      | Yes            |
| R <sup>2</sup> Within   | 0.092   | 0.021       | 0.079    | 0.081        | 0.001   | 0.002   | 0.061    | 0.064          |
| Adjusted R <sup>2</sup> | 0.088   | 0.106       | 0.158    | 0.160        | 0.044   | 0.044   | 0.100    | 0.101          |

#### Additional Exercises: Advanced Economies

Notes: \* p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01. Standard errors are in parentheses. In all cases, country-fixed effects were used. Errors are clustered at the country-month level. The table shows the impact of various factors on the UIP premium in emerging markets.

#### Appendix 000000000

#### Additional Exercise: Inflation Differential

- Results holds when controlling for inflation differential. Similar size of global and local risk factors.

|                          | UIP deviation                                         |                                                       |  |
|--------------------------|-------------------------------------------------------|-------------------------------------------------------|--|
|                          | (1)                                                   | (2)                                                   |  |
| $Inflows/GDP_{c,t-1}$    | $0.076^{*}$<br>(0.043)                                | $\begin{array}{c} 0.013 \\ (0.051) \end{array}$       |  |
| Treasury $Basis_{t-1}$   | $\begin{array}{c} -0.877^{**} \\ (0.412) \end{array}$ | $-2.223^{***}$<br>(0.774)                             |  |
| $VIX_{t-1}$              | $\begin{array}{c} 0.042^{***} \\ (0.004) \end{array}$ | $\begin{array}{c} 0.042^{***} \\ (0.005) \end{array}$ |  |
| $PRP_{t-1}$              | $0.010^{***}$<br>(0.002)                              | $0.010^{***}$<br>(0.002)                              |  |
| Inflation $Diff_{c,t-1}$ |                                                       | $1.635^{***}$<br>(0.303)                              |  |
| Observations             | 1,113                                                 | 916                                                   |  |
| Number of Countries      | 4                                                     | 4                                                     |  |
| Adjusted R <sup>2</sup>  | 0.307                                                 | 0.370                                                 |  |
| Country FE               | Yes                                                   | Yes                                                   |  |

Notes: \* p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01. Standard errors in parentheses. All regressions include country fixed effects, with errors clustered at the country level.



Appendix 000000000

#### International Country Risk Guide- ICRG

- It provides data on country's political, economic and financial risks for more than than 140 countries at monthly frequency.
- Composite Risk: proxy for overall country risk: political, economic and financial risks. Political risk contributes 50% to the composite rating, while financial and economic risk ratings each contribute 25%.
- Political Risk: the assessment is made on the basis of subjective analysis of the available information. It considers government stability, socioeconomic conditions, investment profile, internal and conflict, democratic accountability, corruption, military in politics, religious tensions, law and order, ethnic tensions, and bureaucracy quality.
- Financial Risk: it includes foreign debt over GDP, foreign debt service over exports of goods and services, current account over exports of goods and services, net international liquidity as months of import cover, exchange rate stability.
- Economic risk: it includes GDP per capita, real GDP growth, inflation rate, budget balance over GDP, current account over GDP.

Return

### Term Structure: Descriptive statistics

|                            | Mean      | Median   | Std.Dev. | p25    | p75   | Obs. |
|----------------------------|-----------|----------|----------|--------|-------|------|
|                            |           | 1 month  |          |        |       |      |
| UIP Deviation              | 0.003     | 0.001    | 0.028    | -0.012 | 0.017 | 274  |
| Interest Rate Differential | 0.003     | 0.003    | 0.001    | 0.002  | 0.004 | 274  |
| Exchange Rate Adjustment   | 0.001     | 0.004    | 0.027    | -0.014 | 0.020 | 337  |
|                            |           | 3 months |          |        |       |      |
| UIP Deviation              | 0.008     | 0.006    | 0.030    | -0.012 | 0.026 | 337  |
| Interest Rate Differential | 0.015     | 0.012    | 0.009    | 0.010  | 0.016 | 337  |
| Exchange Rate Adjustment   | 0.007     | 0.011    | 0.030    | -0.007 | 0.028 | 337  |
|                            | 12 months |          |          |        |       |      |
| UIP Deviation              | 0.032     | 0.028    | 0.039    | -0.005 | 0.051 | 327  |
| Interest Rate Differential | 0.049     | 0.035    | 0.047    | 0.025  | 0.047 | 329  |
| Exchange Rate Adjustment   | 0.029     | 0.026    | 0.043    | -0.002 | 0.057 | 337  |



Appendix 0000000000

#### Term- Structure: Realized Exchange Rates

- As the horizon shortens, the correlation of global and local risk factors with UIP deviations lowers.

|                                                   | UIP Deviations - Realized |                |          |  |
|---------------------------------------------------|---------------------------|----------------|----------|--|
|                                                   | 12 months                 | 3 months       | 1 month  |  |
| $Inflows/GDP_{c,t-1}$                             | $-0.753^{***}$            | $-0.173^{***}$ | -0.023   |  |
| , .,                                              | (0.122)                   | (0.057)        | (0.030)  |  |
| Convenience/Liquidity <sub><math>t-1</math></sub> | 5.208***                  | 3.080***       | 0.946**  |  |
|                                                   | (1.254)                   | (0.571)        | (0.378)  |  |
| $VIX_{t-1}$                                       | 0.058***                  | 0.025***       | 0.010*** |  |
|                                                   | (0.012)                   | (0.006)        | (0.003)  |  |
| $PRP_{c,t-1}$                                     | 0.007*                    | 0.004**        | 0.002**  |  |
| -,                                                | (0.004)                   | (0.002)        | (0.001)  |  |
| Obs.                                              | 1,113                     | 1,019          | 885      |  |
| Number of Currencies                              | 4                         | 4              | 4        |  |
| Currency Fixed Effects                            | Yes                       | Yes            | Yes      |  |
| Adjusted R <sup>2</sup>                           | 0.109                     | 0.080          | 0.033    |  |

Notes: \* p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01. Errors are clustered at currency and month level.



### Chile: UIP Deviations (Realized Exchange Rates)

|                                 | UIP Deviations - Realized |                           |                                                      |  |
|---------------------------------|---------------------------|---------------------------|------------------------------------------------------|--|
|                                 | 12 months                 | 3 months                  | 1 month                                              |  |
| $Inflows/GDP_{ct-1}$            | $-0.600^{***}$<br>(0.127) | $-0.354^{***}$<br>(0.078) | $-0.089^{**}$<br>(0.037)                             |  |
| Treasury $Basis_{t-1}$          | 0.464<br>(1.882)          | $1.368 \\ (0.948)$        | $0.636 \\ (0.640)$                                   |  |
| $VIX_{t-1}$                     | 0.057***<br>(0.021)       | $0.020^{*}$<br>(0.010)    | $\begin{array}{c} 0.012^{**} \\ (0.005) \end{array}$ |  |
| PRP <sub>ct-1</sub>             | 0.009<br>(0.006)          | -0.001<br>(0.003)         | -0.001<br>(0.002)                                    |  |
| Obs.<br>Adjusted R <sup>2</sup> | 277<br>0.116              | 311<br>0.105              | 261<br>0.045                                         |  |

Notes: \* p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01. Standard errors are shown in parentheses.



| Advanced Economies       |                          |                          | Emerging Markets         |                          |                          |  |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--|
| Euro                     | Yen                      | UK Pound                 | Korean Won               | Turkish Lira             | Other EMs*               |  |
| (1)                      | (2)                      | (3)                      | (4)                      | (5)                      | (6)                      |  |
| Goldman Sachs            |  |
| HSBC                     | HSBC                     | HSBC                     | HSBC                     | HSBC                     | HSBC                     |  |
| General Motors           |  |
| ING Financial Markets    | ING Financial Markets    | ING Financial Markets    | ING Financial Markets    |                          | ING Financial Markets    |  |
| BNP Paribas              | BNP Paribas              | BNP Paribas              |                          | BNP Paribas              | BNP Paribas              |  |
| JP Morgan                |  |
| Allianz                  | Allianz                  | Allianz                  |                          |                          | Allianz                  |  |
| Oxford Economics         | Oxford Economics         | Oxford Economics         |                          | Oxford Economics         | Oxford Economics         |  |
| Morgan Stanley           | Morgan Stanley           | Morgan Stanley           |                          | Morgan Stanley           | Morgan Stanley           |  |
| Bank of Tokio Mitsubishi |  |
| Credit Suisse            | Credit Suisse            | Credit Suisse            |                          | Credit Suisse            |                          |  |
| Citigroup                | Citigroup                | Citigroup                | Citigroup                | Citigroup                | Citigroup                |  |
| Societe Generale         | Societe Generale         | Societe Generale         |                          | Societe Generale         | Societe Generale         |  |
| Royal Bank of Canada     | Royal Bank of Canada     | Royal Bank of Canada     |                          |                          | Royal Bank of Canada     |  |
| Royal Bank of Scotland   | Royal Bank of Scotland   | Royal Bank of Scotland   |                          |                          | Royal Bank of Scotland   |  |
| ABN Amro                 | ABN Amro                 | ABN Amro                 |                          |                          | ABN Amro                 |  |
| Barclays Capital         | Barclays Capital         | Barclays Capital         |                          | Barclays Capital         | Barclays Capital         |  |
| Commerzbank              | Commerzbank              | Commerzbank              |                          |                          | Commerzbank              |  |
| UBS                      | UBS                      | UBS                      | UBS                      | UBS                      | UBS                      |  |
| IHS Global Insight       |  |
| Nomura Securities        | Nomura Securities        | Nomura Securities        | Nomura Economics         | Nomura Securities        | Nomura Securities        |  |
|                          |                          |                          | Macquarie Capital        |                          | Macquarie Capital        |  |
|                          |                          |                          | ANZ Bank                 |                          | ANZ Bank                 |  |

#### How good is data on expectations: Who are the forecasters?

Notes: \*Other emerging market currencies' include: Argentinean Peso, Brazilian Real, Chilean Peso, Chinese Renminbi, Colombian Peso, Czech Koruna, Hungarian Forint, Indian Rupee, Indonesian Rupiah, Malaysian Ringgit, Mexican Peso, Peruvian Sol, Polish Zloty, Romanian Leu, Russian Rouble, South African Rand, Ukrainian HRYVNIA. Source: Consensus Forecast.