FROM TRENDS IN INTEREST **RATES TO INFLATION, AND BACK**

Ricardo Reis I SF

> 4 of November, 2024 Santiago, Chile

Where is the interest rate converging to?

Figure 2. FOMC participants' assessments of appropriate monetary policy: Midpoint of target range or target level for the federal funds rate

A key question for monetary policy in 2025: when to stop easing? ... for fiscal policy: will debt revenues sustain public debt with persistent deficits? ... for <u>economists</u>: has the savings-investment balance changed?

Policy rate path and risk-free curve

(percentages per annum)

Sources: Bloomberg and ECB calculations. Notes: The cut-off dates for the data used for the €STR forward curves are 17 December 2021, 16 December 2022, 15 September 2023, and 27 August 2024

Three r^{*} in the measurement literature

There are (at least) three r^* in the literature

- (1) <u>Steady-state</u> or long-run value component of realized returns. Measured with time series models to separate trends from cycles
- (2) <u>Counterfactual</u> interest rate where investment equals savings Measured using models of capital markets and investment
- (3) If policy rate is above (below) it, the inflation will fall (rise) Measured using expectations and financial conditions, models of inflation

Sources of confusion:

- If the long-run is frictionless, then (1) = (2)
- If monetary policy works through frictions, then (2) = (3).

Conceptually also hard to get head around

- Every asset gives a different return r_i . Which of the r_i is the r^* ?
- One tempting but flawed strategy:
 - Every $r_i = r^* + premium_i$
 - The *r** is the safest, most liquid, shorter-term one, so its *premium=0*
 - But... that is the policy rate!
 - We wanted to calculate where policy rate will be heading in the future, but end up saying the current policy rate as the answer!
- This talk: home in on a few conceptual r^* 's that answer different questions
- Distinguish them, measure their trends, interpret the data, guess where they are

FACTS FROM 1995-2019

The four r-stars... (1) investment, m

Average return on private capital minus expected inflation US

The four r-stars... (1) investment, m Longer trend for US and the UK

The four r-stars... (1) investment, m

Other countries, namely the G-7 and Chile

The four r-stars... (2) government bonds, y

10-year yield on Treasuries minus expected inflation

The four r-stars... (2) government bonds, y

Very uniform across advanced economies

The four r-stars... (2) government bonds, y

Considering trends in output and inflation softens trend

Holston-Laubach-Williams

The four r-stars... (3) realized return ρ

Annual realized return on holding bonds, reverts in 2015 US

The four r-stars... (4) policy rate, i

Short-term policy rate in real terms US

Term premium falling with unconventional monetary policy

Conclusions for 1995-2019 The four r*

- y: Real yield on government bonds declined throughout The r* that matches finance models of safe returns
- ρ : Realized return on government bonds mirror yields until 2010-15 The r* that captures role of unexpected inflation in business cycle
- The r* that captures role of monetary policy in inflation

• m: Expected return on productive investment was roughly stable throughout. The r* that matches long-run macro models of savings and investment

• i: Policy rates fell even faster until 2010-15, but then rose as yields kept falling

Other indicators: (5) output / potential

Output has been mostly below potential, especially in 2010-15

Other indicators (6) investment/GDP, k

Investment subdued throughout

Other indicators (7) unproductive savings, b/k

Government debt rising

Wealth to capital stock mixed

Other indicators (8) external finance, γ

interest/income

Non-financial corporate sector interest payments to income

(trend)

AN EXTENDED I-S FRAMEWORK

Productive savings and investment

- Investment in productive capital is higher the lower the cost paid to the financier
- *m* for marginal product of capital, marked up by markup
- Shifts left / down when:
 - TFP growth and population growth fall
 - Price of capital goods falls
 - Public investment falls
 - Depreciation rises

k

Productive savings and investment

- In neoclassical growth model, horizontal at the discount rate
- Incomplete markets are classic reason for upward-sloping
- Shift right / down when:
 - More savings in total (demography, inequality, TFP)
 - More competition, less regulation, lower taxes.
 - Productive means attractive

k

Productive versus storage savings

- Instead of productive capital stock can use storage (government debt + housing + financial monopoly rents)
- Not 45 degree line because differ in their non-return features
- Shifts right / down when:
 - Productive investments are perceived as riskier or less liquid, higher premium
 - Global imbalances and asymmetric information

m

Productive versus storage savings

- Ramsey-Euler equation: total return on savings equals discount rate plus growth times inverse IES.
- Total savings are a weighted average of returns on the two forms of savings
- Shifts right / up:
 - Growth rises, demography
 - Financial frictions rise (m>y)

m

Side note

- so that *m* rises, and so savings slopes up.
- Conversely, more supply of non-productive assets shifts savings left / up

• More investment in productive assets (k) means PA shifts left (and maybe RE),

Realized returns and output

- Given productive capital, get output **x** equals potential **x**^p
- Potential output shifts left:
 - Productivity falls
 - Markups rise
 - Higher norm remuneration of variable factors
 - When capital payment *m* is higher and there is less *k*

Realized returns and output

- Variable inputs as well. Require a ex post return, through a norm.
- Say inflation is lower than norm. Then realized returns ρ are high.
- Variable inputs still get paid their norm. Are less used, output is below potential
- Leading example: wages. But other downward nominal rigidities leading to too little use of variable inputs.

Realized returns and output

- Policy targets: trade-off costs of inflation versus costs of underemployment.
- Ideal: when target inflation equals inflation norm, and target output equals potential output, then intersect at kink.
- Shift right / down when
 - underestimate potential
 - overestimate inflation norm
 - |970s?

Policy rate and unexpected inflation

- Easier, standard
- Lower policy interest rate (*i*) means higher demand, which pushes inflation above its expected value by pricesetting firms
- Shifts right / up if:
 - Expected inflation (π^e) rises
 - Term premia (*tp*) falls
 - Wicksellian rate (y) is higher

 π

Policy rate and inflation

- Taylor rule for policy rate: higher inflation, then higher policy rate, as usual.
- Shifts right /down when higher target inflation rate (π^T)
- When target (π^{T}) equals expected equals actual inflation: policy rate (i) is equal to Wicksellian rate (y) times expected inflation (π^e) divided by the term premium (tp).

30

 π

All together: four r*'s

<u>Three exogenous forces</u>

- Structural determinants: Growth, Demographics, Productivity, Competition, Inequality, Global imbalances, Price of inv. goods
- Perceptions: Taste for safety/liquidity, Norm on compensation, Term premia, Expected inflation
- Policy goals / targets Estimates of potential output, inflation target, hawkishness

USING THE FRAMEWORK TO ACCOUNT FOR THE 1995-2019 TRENDS

Fundamentals from literature on investment

- Rachel Smith (17), Rachel (23). (1) Fall in relative price of capital (2) Lower economy and population growth rate. (3) Decline in public investment
- I would add: (4) Higher depreciation (5) Higher markups

k

But data says m constant or barely fell

- Therefore Savings curve either very flat (consistent)...
- Or it shifted left
- Consistent with data on depressed investment
- To see why **S** may have shifted left and what about **y** turn to the next plot...

k

Fundamentals from the literature on savings

- Rachel Smith (17), Rachel (23).
- (1) Demographics: ageing RE left
- (2) Productivity and population RE left
- (3) Rising inequality RE left, PB left

Global imbalances RE left

But would lead to *m* falling as much (or more) than y.

Fundamentals from the literature on savings Why PB shifted right

Why RE shifted left by less

(1) Demographics: ageing Goodhart: cost of providing for the old

(2) Decline in leverage Lowered overall return

(3) Tighter financial frictions Reshuffling of total

(I) Global imbalances

State-controlled foreign investors prefer storage: more exposed to information asymmetry lemons and desire liquidity.

(2) Global financial crisis Risk aversion and regulation rise

(3) Increase in supply of storage Government bonds

The following is consistent with the m-r facts

- Also consistent with the Savings curve shifting left
- More speculative (harder to model) factor: increase in use of asset markets for pursuit of rents from monopoly power
 - Evidence from syndicated loans that associated with his market power
 - Evidence on rise of markups

m

Policy challenge of low r, high m world

- AS vertical segment shifts left (1) less investment means less productive capacity (2) higher markups (3) higher depreciation rate
- Vertical kink is lower (1) as y is lower
- Underemployment with unchanged policy, maybe 2010-15

Policy challenge of low r, high m world

- Eventually **PT** shifts right as:
 - Persistently lower returns lower inflation norm (also loss of union power, Chinese 'deflation'' forces)
 - Fiscal policy pushing up aggregate demand
 - Monetary policy pushing for higher inflation (maybe also steeper if more doveish)
 - 2015-20?

Inflation and the ZLB problem

 π^e

- With a lower **y**, had to adjust policy to a lower interest rate
- If ZLB binds, find yourself at deflation trap.
- The low inflation delivered the realized returns that led to the under-employment in the previous graph. So, lack of PT curve shift may well have been because policy was constrained by the ZLB

The term premium to the rescue

- Unconventional monetary policy (QE and others) lowered term premium to get out of it and raise inflation.
- Fiscal policy can help raise expected inflation to leave trap as well.

THE FUTURE

What are the data indicating?

10-year yield on Treasuries minus expected inflation US

Return on private capital

• Why rise **y** and slight fall **m**?

- Possibilities for shift right in PB:
 (1) Government bonds no
 - longer perceived as being as safe and liquid (Truss event)
- (2) Global imbalances reversal
- (3) Elections and fiscal/monetary mix going forward
- **RE** could shift slightly right or left, it depends.

m

- Shift right of **S**avings line from previous slide
- Shift right in Investment as a result of: (i) Al optimism (ii) rise in public investment
- These are small for now, but if keep on picking up, rise in investment and gradual drive down of *m*

- With persistently higher y, then vertical kink becomes higher.
- Say policy happy with higher inflation: (i) to avoid any under-employment (ii) pressure to inflate debt (iii) other temporary supply shocks: tariffs, immigration, re-shoring
- **PT** stays in same place, low returns.
- Eventually norms adjust to higher inflation, or policy returns to inflation target, **PT** shifts left

- One scenario: point A
- Effectively having higher inflation target
- Allows higher inflation by, setting interest rates too low for a while.
- Then inflation expectations will adjust up, and eventually policy settles for persistently higher inflation rate.

 π

Alternative scenario

- Scenario above: inflation high, full use of resources and as for the r*'s
 - *m*: lower as investment picks up

 - y: higher, and in nominal terms much higher • ρ : low as for a little while inflate the debt, then back to normal • *i*: at first too low, then settle too high
- Alternative:
 - Policy revises its y up, keep policy rates i high, bring inflation π to target. • Challenges along the way: investment picking up, potential rising, policy creating some temporary under-employment, maybe even some temporary undershoot of inflation relative to target.

Alternative scenario: the double trap

- But, say term premium (*tp*) rises: (i) unwinding QE, (ii) higher inflation risk premia after recent inflation disaster, (iii) financial repression coming
- Point **B**: end up at ZLB again. The higher term premium offsets the higher long-term interest rate to leave policy rate close to zero.
- No longer QE tool to fight it

 π

Alternative scenario: the double trap

- Monetary policy cannot move PT to the right because of ZLB, so the economy is stuck to left of kink, with underemployment of resources
- Fiscal policy cannot help, as high ρ means large losses in fiscal budgets, ruling out stimulus on account of fear of sovereign default
- A double trap:
 - ZLB and
 - no fiscal space

CONCLUSION

Where is r* going?

- Forecasting may be hard, but ignoring the question is foolish
- trends, looked into the future.
- investment, AI optimism, (demography and inequality?)
- Two scenarios for ρ and i via π

 - Persistent low inflation, stagnation with under-employment, high returns

• This talk: distinguished four r^* 's, proposed a framework, calibrated it with past

• Scenario where y rises a lot, m falls some: loss of safety, global imbalances, public

• Persistent higher inflation, low-then-high policy rates, low-then-normal returns

