Discussion of: "The Financial (In)Stability Real Interest Rate, r**" by Ozge Akinci, Gianluca Benigno, Marco del Negro, Albert Queralto

Alonso Villacorta UC Santa Cruz

XXVII Annual Conference of the Central Bank of Chile 2024

Large literature highlights:

- Health of banks balance sheets matters for credit supply and the real economy
- Bank lending channel: Monetary policy may affect banks' balance sheets

How much of an interest rate increase can banks' balance sheets handle?

Large literature highlights:

- Health of banks balance sheets matters for credit supply and the real economy
- Bank lending channel: Monetary policy may affect banks' balance sheets

How much of an interest rate increase can banks' balance sheets handle?

- \Rightarrow This paper proposes r^{**} :
 - Novel measure of financial stability (i.e. health of banks' balance sheet) \rightarrow mapped on interest rate space

Large literature highlights:

- Health of banks balance sheets matters for credit supply and the real economy
- Bank lending channel: Monetary policy may affect banks' balance sheets

How much of an interest rate increase can banks' balance sheets handle?

- \Rightarrow This paper proposes r^{**} :
 - Novel measure of financial stability (i.e. health of banks' balance sheet) → mapped on interest rate space
 - if $r < r^{**} \Rightarrow$ financial Stability \rightarrow strong balance sheets
 - if $r > r^{**} \Rightarrow$ financial INstability \rightarrow weak balance sheets

Summary: How to measure r^{**}

Model-based approach:

- (Quasi) standard model with financial constraints (Gertler & Kiyotaki 2010)
- Define *r*** as the interest rate at which the constraint is *just* binding

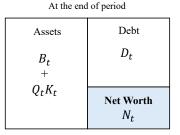
Quantification of *r***:

- Calibrate the model
- Measure *r*^{**} by looking at financial data

Outline

- What is *r***?
 - Model and definition
 - Comment: Why is it useful?
- Identification and estimation of *r***

Model in a nutshell



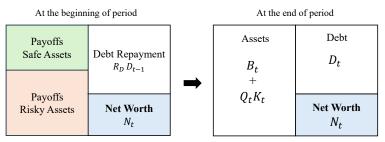
Models with borrowing constraints:

$$\underbrace{B_t + Q_t K_t}_{\text{Asserts}} \leq \overline{\phi_t} N_t$$

Assets

• N_t is key \Rightarrow Determines asset demand (credit supply) & Investment (K_t)

Model in a nutshell

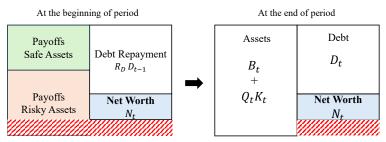


Models with borrowing constraints:

$$\underbrace{B_t + Q_t K_t}_{\text{Assets}} \le \overline{\phi_t} N_t$$

- N_t is key \Rightarrow Determines asset demand (credit supply) & Investment (K_t)
- Endogenous Net Worth dynamics: $N_t = R_t^{\text{Assets}} \text{Assets}_{t-1} R_D D_{t-1}$

Model in a nutshell



Models with borrowing constraints:

$$\underbrace{B_t + Q_t K_t}_{\text{Assets}} \le \overline{\phi_t} N_t$$

- N_t is key \Rightarrow Determines asset demand (credit supply) & Investment (K_t)
- Endogenous Net Worth dynamics: $N_t = R_t^{\text{Assets}} \text{Assets}_{t-1} R_D D_{t-1}$

Main mechanism (Valuation effect):

• Higher $R_t \Rightarrow$ lower price of long-term/risky assets Q_t

$$\mathbf{R}_t \uparrow \Rightarrow Q_t \downarrow \Rightarrow \mathbf{N}_t \downarrow$$

Model in a nutshell: Implications of a drop in net worth

Case I. Without borrowing constraint (or, N_t large so we are far from the constraint)

- Changes in net worth play no role
- Investment K_t is determined by:

$$E[\Lambda_{t+1}\left(R_{t+1}^K - R_t\right)] = 0$$

Model in a nutshell: Implications of a drop in net worth

Case I. Without borrowing constraint (or, N_t large so we are far from the constraint)

- Changes in net worth play no role
- ▶ Investment *K*^{*t*} is determined by:

$$E[\Lambda_{t+1}\left(R_{t+1}^K - R_t\right)] = 0$$

Case II. With borrowing constraints:

Financial accelerator kicks in: fire sales and deeper recession

$$N_t \downarrow \Rightarrow K_t \downarrow \Rightarrow Q_t \downarrow \Rightarrow N_t \downarrow \dots$$

Model in a nutshell: Implications of a drop in net worth

Case I. Without borrowing constraint (or, N_t large so we are far from the constraint)

- Changes in net worth play no role
- ▶ Investment *K*^{*t*} is determined by:

$$E[\Lambda_{t+1}\left(R_{t+1}^K - R_t\right)] = 0$$

Case II. With borrowing constraints:

Financial accelerator kicks in: fire sales and deeper recession

$$N_t \downarrow \Rightarrow K_t \downarrow \Rightarrow Q_t \downarrow \Rightarrow N_t \downarrow \dots$$

Investment K_t is determined by the constraint (by net worth)

$$Q_t K_t = \phi_t N_t$$

while risk-premium:

$$E[\Lambda_{t+1}\Omega_{t+1}\left(R_{t+1}^{K}-R_{t}\right)] = \underbrace{\mu_{t}}_{k} > 0$$

Lagrange multiplier

Definition *r***

- Define *r*^{**} as the rate at which constraint *just* binds
 - ► *r* < *r*^{**}: constraint is NOT binding
 - $r > r^{**}$: constraint is binding

Definition r^{**}

- Define *r*^{**} as the rate at which constraint *just* binds
 - r < r**: constraint is NOT binding</p>
 - ▶ r > r^{**}: constraint is binding
- *r*^{**} is a function of state variables (e.g. *N*_t):

$$r^{**} = f($$
 $\mathbf{S}_{\mathbf{t}}$, $\mathbf{Z}_{\mathbf{t}}$ $)$

endog states exog shocks

Authors solve the model allowing for occasionally binding constraints
 Identify regions of the state space in which constraint binds

Definition r^{**}

- Define *r*^{**} as the rate at which constraint *just* binds
 - r < r**: constraint is NOT binding</p>
 - $r > r^{**}$: constraint is binding
- *r*^{**} is a function of state variables (e.g. *N*_t):

$$r^{**} = f($$
 $\mathbf{S}_{\mathbf{t}}$, $\mathbf{Z}_{\mathbf{t}}$ $)$

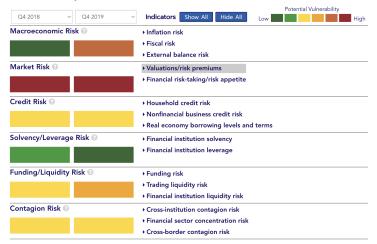
endog states exog shocks

- Authors solve the model allowing for occasionally binding constraints
 Identify regions of the state space in which constraint binds
- For every state (**S**_t, **Z**_t): Find "distance to the constraint":

$$\underbrace{r^{**} - r}_{\text{measure of resilience of banking sector}}$$

I. Regulators already monitor financial vulnerabilities:

I. Regulators already monitor financial vulnerabilities:



 \Rightarrow *r*^{**}: Summarizes vulnerabilities into a simple indicator on the interest rate space!

• Very useful!

- II. Regulators already perform stress testing:
 - How much bank capital (net worth) is depleted in adverse scenarios?
 - Adverse scenarios may include high rates + other factors

- II. Regulators already perform stress testing:
 - How much bank capital (net worth) is depleted in adverse scenarios?
 - Adverse scenarios may include high rates + other factors
- \Rightarrow r^{**} is very useful:
 - Focus exclusively in the interest rate
 - Immediacy and availability of measurement (given author's estimation method)
 - Accounts for GE effects (overall banking sector deleveraging & fire sales)

- II. Regulators already perform stress testing:
 - How much bank capital (net worth) is depleted in adverse scenarios?
 - Adverse scenarios may include high rates + other factors
- \Rightarrow r^{**} is very useful:
 - Focus exclusively in the interest rate
 - Immediacy and availability of measurement (given author's estimation method)
 - Accounts for GE effects (overall banking sector deleveraging & fire sales)
- III. r^{**} is a useful benchmark to think about a trade-off... but not efficiency
 - ▶ $r > r^{**} \rightarrow$ worry about balance sheets
 - ▶ $r < r^{**} \rightarrow$ don't worry about balance sheets... but maybe "excessive" risk-taking

- II. Regulators already perform stress testing:
 - How much bank capital (net worth) is depleted in adverse scenarios?
 - Adverse scenarios may include high rates + other factors
- \Rightarrow r^{**} is very useful:
 - Focus exclusively in the interest rate
 - Immediacy and availability of measurement (given author's estimation method)
 - Accounts for GE effects (overall banking sector deleveraging & fire sales)
- III. r^{**} is a useful benchmark to think about a trade-off... but not efficiency
 - ▶ $r > r^{**} \rightarrow$ worry about balance sheets
 - ▶ $r < r^{**} \rightarrow$ don't worry about balance sheets... but maybe "excessive" risk-taking
 - $\rightarrow~$ Paper is silent about what is optimal

- II. Regulators already perform stress testing:
 - How much bank capital (net worth) is depleted in adverse scenarios?
 - Adverse scenarios may include high rates + other factors
- \Rightarrow r^{**} is very useful:
 - Focus exclusively in the interest rate
 - Immediacy and availability of measurement (given author's estimation method)
 - Accounts for GE effects (overall banking sector deleveraging & fire sales)
- III. r^{**} is a useful benchmark to think about a trade-off... but not efficiency
 - ▶ $r > r^{**} \rightarrow$ worry about balance sheets
 - ▶ $r < r^{**} \rightarrow$ don't worry about balance sheets... but maybe "excessive" risk-taking
 - $\rightarrow~$ Paper is silent about what is optimal
- IV. Other mechanisms not considered by the model:
 - Credit risk
 - Franchise value effects

Outline

- What is *r***?
 - Model and definition
 - Comment: Why is it useful?
- Identification and estimation of *r***

• Authors solve the model and find *r*^{**} as a function of state variables:

$$r^{**} = \underbrace{f}_{\text{transmitted}} \underbrace{(\mathbf{S}_{t}, \mathbf{Z}_{t})}_{\text{transmitted}}$$

known unknown

• Authors solve the model and find *r*^{**} as a function of state variables:

$$r^{**} = \underbrace{f}_{\text{known unknown}} \underbrace{(\mathbf{S}_{t}, \mathbf{Z}_{t})}_{\text{unknown}}$$

Possible estimation approach:

- Use data to estimate/back-up latent variables (S_t, Z_t)
- Is it computationally challenging? \rightarrow requires non-linear filter

• Authors solve the model and find *r*^{**} as a function of state variables:

$$r^{**} = \underbrace{f}_{\text{known}} \underbrace{(\mathbf{S}_{t}, \mathbf{Z}_{t})}_{\text{unknown}}$$

Possible estimation approach:

- Use data to estimate/back-up latent variables (S_t, Z_t)
- Is it computationally challenging? \rightarrow requires non-linear filter

Approach proposed by authors:

- 1. Simulate shocks $\{\mathbf{Z}_s\}_{s=0}^S$
 - Simulation based on **two** main shocks: $\mathbf{Z} = \{Z_{TFP}, Z_R\}$... (+ Z_{ζ} with low vol)
 - For each simulated $(\mathbf{S}_s, \mathbf{Z}_s)$: Compute r_s^{**} and equilib. variables (vars_s)

• Authors solve the model and find *r*^{**} as a function of state variables:

$$r^{**} = \underbrace{f}_{\text{known}} \underbrace{(\mathbf{S}_{t}, \mathbf{Z}_{t})}_{\text{unknown}}$$

Possible estimation approach:

- Use data to estimate/back-up latent variables (S_t, Z_t)
- Is it computationally challenging? \rightarrow requires non-linear filter

Approach proposed by authors:

- 1. Simulate shocks $\{\mathbf{Z}_s\}_{s=0}^S$
 - Simulation based on **two** main shocks: $\mathbf{Z} = \{Z_{TFP}, Z_R\}$... (+ Z_{ζ} with low vol)
 - For each simulated $(\mathbf{S}_s, \mathbf{Z}_s)$: Compute r_s^{**} and equilib. variables (vars_s)
- 2. Estimate relationship between $r_s^{**} = \hat{g}(\text{vars}_s)$ in simulated data
 - Find ĝ using machine learning techniques

• Authors solve the model and find *r*^{**} as a function of state variables:

$$r^{**} = \underbrace{f}_{\text{known}} \underbrace{(\mathbf{S}_{t}, \mathbf{Z}_{t})}_{\text{unknown}}$$

Possible estimation approach:

- Use data to estimate/back-up latent variables (S_t, Z_t)
- Is it computationally challenging? \rightarrow requires non-linear filter

Approach proposed by authors:

- 1. Simulate shocks $\{\mathbf{Z}_s\}_{s=0}^S$
 - Simulation based on **two** main shocks: $\mathbf{Z} = \{Z_{TFP}, Z_R\}$... (+ Z_{ζ} with low vol)
 - For each simulated $(\mathbf{S}_s, \mathbf{Z}_s)$: Compute r_s^{**} and equilib. variables (vars_s)
- 2. Estimate relationship between $r_s^{**} = \hat{g}(\text{vars}_s)$ in simulated data
 - ▶ Find *ĝ* using machine learning techniques
- 3. Extrapolate estimated function \hat{g} to the data $r^{**} = \hat{g}(\text{vars}_{\text{data}})$

• Authors solve the model and find *r*^{**} as a function of state variables:

$$r^{**} = \underbrace{f}_{\text{known}} \underbrace{(\mathbf{S}_{t}, \mathbf{Z}_{t})}_{\text{unknown}}$$

Possible estimation approach:

- Use data to estimate/back-up latent variables (S_t, Z_t)
- Is it computationally challenging? \rightarrow requires non-linear filter

Approach proposed by authors:

- 1. Simulate shocks $\{\mathbf{Z}_s\}_{s=0}^S$
 - Simulation based on **two** main shocks: $\mathbf{Z} = \{Z_{TFP}, Z_R\}$... (+ Z_{ζ} with low vol)
 - For each simulated $(\mathbf{S}_s, \mathbf{Z}_s)$: Compute r_s^{**} and equilib. variables (vars_s)
- 2. Estimate relationship between $r_s^{**} = \hat{g}(\text{vars}_s)$ in simulated data
 - ► Find *ĝ* using machine learning techniques
- 3. Extrapolate estimated function \hat{g} to the data $r^{**} = \hat{g}(\text{vars}_{\text{data}})$

 \Rightarrow This is great! \rightarrow with \hat{g} we don't need to reestimate model to find indicator!

Approximated function $r^{**} = \hat{g}(\text{vars})$ is very accurate in simulated data! A. Using $r^{**} = \hat{g}(\text{leverage, safe assets ratio}) \rightarrow R^2 = 99.7\%$

B. Using: $r^{**} = \hat{g}(\text{spreads, interest rate}) \rightarrow R^2 = 99.2\%$

Approximated function $r^{**} = \hat{g}(\text{vars})$ is very accurate **in simulated data!** A. Using $r^{**} = \hat{g}(\text{leverage, safe assets ratio}) \rightarrow R^2 = 99.7\%$ High leverage \rightarrow indicates $\underbrace{r^{**} - r}_{\text{dist. to const.}} < 0 \rightarrow \text{constraint is binding}$

B. Using:
$$r^{**} = \hat{g}(\text{spreads, interest rate}) \rightarrow R^2 = 99.2\%$$

High spreads \rightarrow indicate $\underbrace{r^{**} - r}_{\text{dist. to const.}} < 0 \rightarrow \text{constraint is binding}$

Approximated function $r^{**} = \hat{g}(\text{vars})$ is very accurate **in simulated data!** A. Using $r^{**} = \hat{g}(\text{leverage, safe assets ratio}) \rightarrow R^2 = 99.7\%$ High leverage \rightarrow indicates $\underbrace{r^{**} - r}_{\text{dist. to const.}} < 0 \rightarrow \text{constraint is binding}$

B. Using:
$$r^{**} = \hat{g}(\text{spreads, interest rate}) \rightarrow R^2 = 99.2\%$$

High spreads \rightarrow indicate $\underbrace{r^{**} - r}_{\text{dist. to const.}} < 0 \rightarrow \text{constraint is binding}$

But, what if other shocks hit the economy?

- A. Shocks to leverage or collateral limits
 - ▶ Leverage could change for exogenous reasons \rightarrow affect relation with $r^{**} r$
- B. Risk or uncertainty shocks:
 - Spreads could change for other reasons \rightarrow affect relation with $r^{**} r$

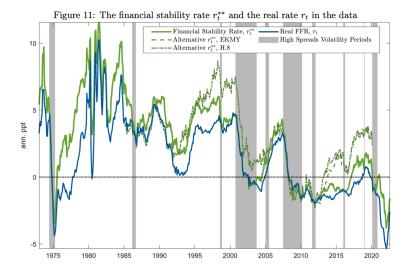
Approximated function $r^{**} = \hat{g}(vars)$ is very accurate **in simulated data!** A. Using $r^{**} = \hat{g}(vars) = \hat{g}(vars) \rightarrow R^2 = 99.7\%$ \blacktriangleright High leverage \rightarrow indicates $\underbrace{r^{**} - r}_{\text{dist. to const.}} < 0 \rightarrow \text{constraint is binding}$ B. Using: $r^{**} = \hat{g}(vars) \rightarrow R^2 = 99.2\%$

► High spreads \rightarrow indicate $\underbrace{r^{**} - r}_{\text{dist. to const.}} < 0 \rightarrow \text{constraint is binding}$

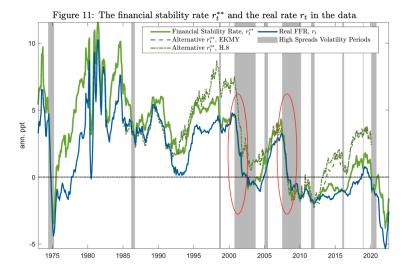
But, what if other shocks hit the economy?

- A. Shocks to leverage or collateral limits
 - ▶ Leverage could change for exogenous reasons \rightarrow affect relation with $r^{**} r$
 - Most important shocks in: Jermann & Quadrini (2014, AER), Liu et al (2014, Ecma)
- B. Risk or uncertainty shocks:
 - Spreads could change for other reasons \rightarrow affect relation with $r^{**} r$
 - Most important shocks for: Christiano et al (2014, AER), Arellano et al (2018, AER)

Comment III: What shocks drive financial instability r^{**} in data?



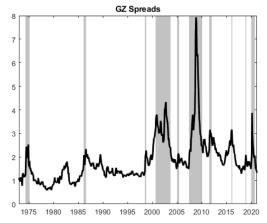
Comment III: What shocks drive financial instability r^{**} in data?



• Constraint is binding in 2001 & 2008 recessions

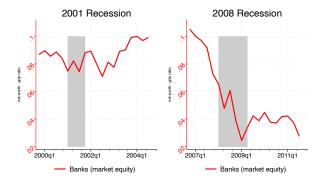
* According to the model, what generated the drop of *r*^{**} in these recessions?

• High spreads in 2001 & 2008 recessions $\Rightarrow \text{low } r^{**} - r$ (binding constraint)

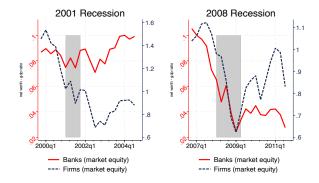


- High spreads in 2001 & 2008 recessions $\Rightarrow \text{low } r^{**} r$ (binding constraint)
- Were banks' balance sheets weak in these recessions?

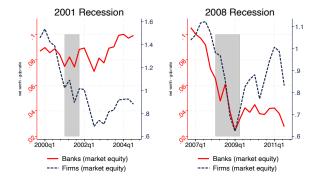
- High spreads in 2001 & 2008 recessions $\Rightarrow \text{low } r^{**} r$ (binding constraint)
- Were banks' balance sheets weak in these recessions?
 - ▶ In 2001: Banks balance sheets were not affected ... firms were



- High spreads in 2001 & 2008 recessions $\Rightarrow \text{low } r^{**} r$ (binding constraint)
- Were banks' balance sheets weak in these recessions?
 - In 2001: Banks balance sheets were not affected ... firms were



- High spreads in 2001 & 2008 recessions $\Rightarrow \text{low } r^{**} r$ (binding constraint)
- Were banks' balance sheets weak in these recessions?
 - ▶ In 2001: Banks balance sheets were not affected ... firms were



- Villacorta (2023, R&R JF): Differential importance of bank vs firm constraints:
 - ▶ In 2001: weak firms' balance sheets \rightarrow credit demand & high spreads
 - ▶ In 2008: weak banks' balance sheets → credit supply & high spreads

★ Very useful indicator of financial stability → will become a reference in the near future

- ★ Very useful indicator of financial stability → will become a reference in the near future
- Model simulations could be extended to allow for more shocks

- ★ Very useful indicator of financial stability → will become a reference in the near future
- Model simulations could be extended to allow for more shocks
- ML method → will probably include additional observables to disentangle shocks to banks' borrowing capacity (*r***) vs other shocks

$$r^{**} = \hat{g}(\text{spreads}, R, ...)$$

- ★ Very useful indicator of financial stability → will become a reference in the near future
- Model simulations could be extended to allow for more shocks
- ML method → will probably include additional observables to disentangle shocks to banks' borrowing capacity (*r***) vs other shocks

$$r^{**} = \hat{g}(\text{spreads}, R, \dots \text{ bank & firm net worth?})$$