UNDERSTANDING AGGREGATE ECONOMIC IMPACTS OF CLIMATE

Marshall Burke Stanford University & NBER

With thanks to co-authors S. Hsiang, T. Miguel, N. Diffenbaugh, M. Zahid

Central Bank of Chile | Santiago, Chile, Nov 30th 2023

Historical guidance from IAMs on aggregate climate damages

Stylized facts: minimal damages below 2-3C, accelerating after that

Consider: a 2% effect on GDP by 2100.

An economy growing at 1%/year is 170% richer in 100 years.

With climate change: "only" 166% richer.

Consider: a 2% effect on GDP by 2100.

An economy growing at 1%/year is 170% richer in 100 years.

With climate change: "only" 166% richer.

Not everyone is on board:

- Pindyck (JEL, 2013): "The damage functions used in most IAMs are completely made up, with no theoretical or empirical foundation."
- Revesz, Arrow, Goulder et al (*Nature*, 2014): "The models should be revised more frequently to accommodate scientific developments."

Some relevant scientific developments

How to improve damage functions?

Option 1: bottom up

- Uses trusted micro-data, econometrics
- Almost always sectorally focused, so requires (a) explicitly enumerating measurement of affected sectors, and (b) integration of many partial equilibrium estimates over sectors and across space

Option 1: bottom up

- Uses trusted micro-data, econometrics
- Almost always sectorally focused, so requires (a) explicitly enumerating measurement of affected sectors, and (b) integration of many partial equilibrium estimates over sectors and across space

Option 2: top down

- Study aggregates (e.g. GDP)
- Adding up is done for you, many costs/benefits of adaptation (e.g. sectoral reallocation) are embedded
- Will miss stuff not in GDP (e.g. mortality VSL)

We pursue top-down, using micro-econometric approach

Goal: using aggregate data, identify *causal* effect of temperature on economic growth **Difficulty**: lots of variation in temperature possibly correlated with other determinants of growth

We pursue top-down, using micro-econometric approach

Goal: using aggregate data, identify *causal* effect of temperature on economic growth **Difficulty**: lots of variation in temperature possibly correlated with other determinants of

Estimate: using annual panel data at country level

$$\Delta Y_{it} = g(T_{it}) + \lambda_1 P_{it} + \lambda_2 P_{it}^2 + \mu_i + \gamma_t + \theta_i t + \theta_{i2} t^2 + \varepsilon_{it}$$
(1)

What this does

growth

- uses within-country variation over time, detrended
- allows within-county effect to vary as a function of average temperature

Data: Annual WDI growth data for 190 countries, ERA5 temp/precip, 1960-2019

Growth or level effects?

Growth on dependent variable, but really growth effects?

Growth or level effects?

Growth on dependent variable, but really growth effects? To understand, add lags of temperature (Dell et al 2012).

Global non-linear response

Marginal effects with increasing lags indicate growth effects

Compare: impulse response

Following Jordà (2005), we use local projections to estimate impulse response:

 $log(y_{i,t+j}) - log(y_{i,t-1}) = \rho \Delta y_{i,t-1} + \beta_1 T_{it} + \beta_2 T_{it} * \overline{T}_i + FE + \varepsilon_{it}$

Compare: impulse response

Following Jordà (2005), we use local projections to estimate impulse response:

$$log(y_{i,t+j}) - log(y_{i,t-1}) = \rho \Delta y_{i,t-1} + \beta_1 T_{it} + \beta_2 T_{it} * \overline{T}_i + FE + \varepsilon_{it}$$

Conventional wisdom(s), common among economists:

Wealth insulates you from the effects of climate

 explicitly built into some IAMs (e.g. FUND)

Conventional wisdom(s), common among economists:

Wealth insulates you from the effects of climate

 explicitly built into some IAMs (e.g. FUND)

We've become less sensitive to climate over time: richer, lots of experience with temperature, lots of science on impacts

M. Burke et al

Wealthier countries are a bit flatter, but not significantly different:

No change in sensitivity over time:

Conventional wisdom(s), evaluated:

(1) Wealth insulates you from the effects of climate.

• No strong evidence: flatter response for richer countries, but statistically indistinguishable from poorer

② We've become less sensitive over time.

• No, not for this outcome anyway.

We can (heroically) run the world forward:

$$GDPcap_{it} = GDPcap_{it-1} * (1 + \eta_{it} + \delta_{it})$$

$$\delta_{it} = g(T_{it}^+) - g(\bar{T})$$

(1) g(.): from historical response function(s)

- allowing rich and poor to respond differently, or not
- allowing for persistent effects, or not
- bootstrapping to incorporate uncertainty
- 2) T_{it}^+ : from CMIP 6
- 3) η_{it} : 'Shared Socioeconomic Pathways'' (SSP3), or fixed (e.g 2%)

Can calculate various quantities: SCC, total aggregate damages

Things you might worry about with this exercise

(1) g(.) is a SR response function, LR response will look different

Things you might worry about with this exercise

- (1) g(.) is a SR response function, LR response will look different
 - No strong evidence that response changes otherwise (over time, space)
 - SR responses allowed to vary as a fnc of \bar{T}_i

Things you might worry about with this exercise

- (1) g(.) is a SR response function, LR response will look different
 - No strong evidence that response changes otherwise (over time, space)
 - SR responses allowed to vary as a fnc of \bar{T}_i
- 2 Spillovers. g(.) estimated off within-country variation, but countries trade and future shocks will be correlated

Things you might worry about with this exercise

- (1) g(.) is a SR response function, LR response will look different
 - No strong evidence that response changes otherwise (over time, space)
 - SR responses allowed to vary as a fnc of \bar{T}_i
- 2 Spillovers. g(.) estimated off within-country variation, but countries trade and future shocks will be correlated
 - But: past temperature shocks are highly correlated among trading partners too, so g(.) arguably picks up reduced form effect of covariate shocks

$$SCC = \sum_{t=2020}^{\tilde{t}} \sum_{i} \frac{1}{(1+\delta)^{t}} \frac{\Delta D_{it}}{\Delta T_{it}} \frac{\Delta T_{it}}{\Delta T_{t}} \frac{\Delta T_{t}}{\Delta CO2_{2020}}$$

$$SCC = \sum_{t=2020}^{\tilde{t}} \sum_{i} \frac{1}{(1+\delta)^{t}} \frac{\Delta D_{it}}{\Delta T_{it}} \frac{\Delta T_{it}}{\Delta T_{t}} \frac{\Delta T_{t}}{\Delta CO2_{2020}}$$

Many researcher degrees of freedom:

• δ

- end year \tilde{t}
- secular growth rate
- regression model

$$SCC = \sum_{t=2020}^{2\times00} \sum_{i} \frac{1}{(1+\delta)^{t}} \frac{\Delta D_{it}}{\Delta T_{it}} \frac{\Delta T_{it}}{\Delta T_{t}} \frac{\Delta T_{t}}{\Delta CO2_{2020}}$$

Many researcher degrees of freedom:

- $\delta = \text{Ramsey}$ (calibrated to 2%)
- end year $\tilde{t} = 2100$
- secular growth rate = SSP3 (\sim 1% by 2100)
- regression model = no lags

$$SCC = \sum_{t=2020}^{2\times00} \sum_{i} \frac{1}{(1+\delta)^{t}} \frac{\Delta D_{it}}{\Delta T_{it}} \frac{\Delta T_{it}}{\Delta T_{t}} \frac{\Delta T_{t}}{\Delta CO2_{2020}}$$

Many researcher degrees of freedom:

- $\delta = \text{Ramsey}$ (calibrated to 2%)
- end year $\tilde{t} = 2100$
- secular growth rate = SSP3 (\sim 1% by 2100)
- regression model = no lags

SCC = \$275

Can get much higher numbers under less conservative choices:

SCENARIO	DISCOUNT RATE						
	DISCOUNT RATE AT 1%	DISCOUNT RATE AT 2%	DISCOUNT RATE AT 3%	RAMSEY DISCOUNT (0.2%,1.24)	TIME HORIZON	POST-2100 GROWTH	REGRESSION MODEL
Growth at 2100 rate	\$2,910	\$680	\$242	\$1,459	through 2300	SSP 2100 growth rate	0-lag BHM model
Growth at 1%	\$4,276	\$854	\$270	\$2,008	through 2300	1% growth rate	0-lag BHM model
Growth at 2%	\$14,482	\$1,966	\$422	\$1,626	through 2300	2% growth rate	0-lag BHM model
Growth at 2100 + clamping	\$2,577	\$591	\$206	\$1,296	through 2300	SSP 2100 clamped rate	0-lag BHM model
Growth at 2100 + 5lag BHM	\$15,111	\$3,301	\$1,153	\$8,059	through 2300	SSP 2100 rates	5-lag BHM model
Growth at 2100 + 5lag BHM + No impacts > 2100	\$1,617	\$975	\$612	\$1,421	through 2100	SSP 2100 rates	5-lag BHM model
No growth effects > 2100	\$1,607	\$482	\$203	\$907	through 2300	SSP 2100 rates	0-lag BHM model
No impacts > 2100	\$346	\$203	\$124	\$275	through 2100		0-lag BHM model

Aggregate global damages

Again under conservative assumptions (2100, no-lag model):

Country-level benefits of aggressive mitigation

Benefits of limiting warming to 1.5C vs 3C by 2100

Conclusions

(1) Non-linear effect of temperature on production historically

- Growth effects, at least out a decade
- Limited evidence of adaptation
- Wigh likelihood of losses under future climate change
 under current "business as usual", even odds of losses greater than ~10% of GDP
- ③ Damage estimates are much higher than historical damage functions in IAMs, somewhat higher than bottom-up SCCs
 - this despite fact that our estimates are only through temperature, only on GDP