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Goals of the paper

1 Describe a set of tools that central banks can use both to estimate HANK on a routine
basis and to assess their ability to fit and forecast objects of interest

• Forecasting comparisons (making them feasible computationally)

• DSGE-VARs

2 Use these tools to kick the tires of a frontier HANK model
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Kicking HANK’s tires

• Bayer, Born, and Luetticke (2020, 2022; BBL) “Shocks, Frictions, and Inequality in US
Business Cycles” is a riff off Smets and Wouters (2007; SW) “Shocks and Frictions in US
Business Cycles,” in the sense that it provides HANK’s interpretation of the business
cycle—and contrasts it with RANK’s interpretation

• But SW “validated” their interpretation by showing that their model could forecast
business cycle variables as well as if not better than reduced form models such as VARs
• ... and this validation was a key reason why SW-style DSGE models became used in

central banks

• How does BBL’s HANK fare in terms of forecasting accuracy compared to SW?

• Does incorporating distributional data/measures of inequality help or hinder the forecast
accuracy for business cycle variables?
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• To be clear, even if forecasting is not the objective per se, assessing a model’s forecasting
accuracy is a way to learn about its successes and failures, and figure out where it can be
improved

• Regardless of how well HANK forecasts business cycle variables, heterogeneity/inequality
is important for policy makers, and RANK models are silent about it
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The model: Bayer, Born, and Luetticke (2020)

• Heterogeneous agents version of Smets & Wouters

• Heterogeneity arises from i) (persistently) different productivity across workers, and ii)
(randomly à la Calvo) being workers or entrepreneurs (get profits from monopolistically
competitive firms)

• Agents trade liquid bonds (government plus borrowing households) and illiquid capital
(illiquidity modeled à la Calvo)

• Households borrow at a penalty rate

→ Heterogeneity in MPCs as some agents are at (or close to) the borrowing constraint
(including some owning illiquid assets)
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The model: Bayer, Born, and Luetticke (2020)

+ (most of) Smets & Wouters’ bells and whistles:

real rigidities nominal rigidities

investment adjustment costs price stickiness

variable capital utilization wage stickiness

partial indexation to lagged inflation

• Key difference with SW is that the representative agent’s Euler equation determining
aggregate consumption is replaced by heterogeneous consumption decisions by agents,
which changes the transmission mechanism of a variety of shocks (see the original HANK:
Kaplan, Moll, and Violante, 2018 )

• Shocks: SW shocks (tfp, mon. pol., MEI, risk premium, price and wage markup) +
income risk shock (volatility of productivity) + tax level and progressivity shocks + deficit
+ meas. errors for non-SW observables

6



Estimation: Time series data

• With HANK models we have two datasets that “inform” the model’s parameters:

• Time series (Y (ts)) and cross-sectional moments (Y (m))

Y (ts): macro time series (Y (ts) = y
(ts)
1:T )

• in BBL, same observables as Smets and Wouters (2007): output, consumption,
investment, and wage growth, total hours worked, inflation, and the federal funds rate, for
the period 1954Q3-2015Q4

• plus: federal tax receipts, idiosyncratic income uncertainty (1983Q1-2013Q1), highest
bracket of the US individual income tax (tax progressivity, 1954-2015 annual), wealth and
income shares of the top 10% (1954-2014, annual)

⇒ Likelihood of time series (as in standard DSGE models estimation):

p(y
(ts)
1:T |θ)
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Cross-sectional and other steady state moments Y (m)

• in BBL, a few moments/targets from steady state distribution (vector Y (m)): Top 10
wealth share, fraction of borrowers, liquid assets/GDP, and illiquid assets/GDP

⇒ Penalty function for micro moments (quasi-likelihood of micro data):

log p(Y (m)|θ) = −1

2
(logm̄(θ)− logY (m))′ Σ−1

d (logm̄(θ)− logY (m))

where m̄(θ) are the model implied (steady state) moments
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Combining time series and moments

• Posterior:
p(θ|Y (ts),Y (m)) ∝ p(y

(ts)
1:T |θ)︸ ︷︷ ︸

Likelihood

p(Y (m)|θ) p(θ)︸ ︷︷ ︸
Prior

• p(Y (m)|θ) is viewed as a prior (Del Negro and Schorfheide, 2008, “Forming priors for

DSGE models”): p(Y (m)|θ) ∝ p(θ|Y (m)) implicitly generates a prior for all parameters
affecting the steady state

• p(θ) is the “standard” prior (generally same as in Smets and Wouters) for those
parameters that do not affect the steady state, or that enter the RANK version of the
model

• Note, Liu and Plagborg-Møller, 2022 propose an approach involving fitting the time series
of the entire cross sectional distribution



Combining time series and moments

• Posterior:
p(θ|Y (ts),Y (m)) ∝ p(y

(ts)
1:T |θ)︸ ︷︷ ︸

Likelihood

p(Y (m)|θ) p(θ)︸ ︷︷ ︸
Prior

• p(Y (m)|θ) is viewed as a prior (Del Negro and Schorfheide, 2008, “Forming priors for

DSGE models”): p(Y (m)|θ) ∝ p(θ|Y (m)) implicitly generates a prior for all parameters
affecting the steady state

• p(θ) is the “standard” prior (generally same as in Smets and Wouters) for those
parameters that do not affect the steady state, or that enter the RANK version of the
model

• Note, Liu and Plagborg-Møller, 2022 propose an approach involving fitting the time series
of the entire cross sectional distribution



Is a trade-off between fitting macro and micro data?

• In order to formally investigate whether there is a trade-off between fitting macro and
micro data one can introduce a parameter Υd that controls the weight on the prior
p(Y (m)|θ):

p(θ|Y (ts),Y (m)) ∝ p(y
(ts)
1:T |θ)︸ ︷︷ ︸

Likelihood

p(Y (m)|θ)Υd p(θ)︸ ︷︷ ︸
Prior

• As Υd →∞ we force the model to meet the micro targets Y (m) (equivalent to Σd → 0 in
the penalty function)

• BBL indeed use Υd →∞ and also use a degenerate prior (Dirac distribution) for all
steady state parameters, so the steady state does not need to be recomputed when
estimating the model

• But in future research (after figuring out how to deal with the computational challenge of
steady steady computations) it would be interesting to investigate whether there is a
trade-off
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Making (repeated) estimation feasible

• The posterior p(θ|Y (ts),Y (m)) does not have a known form → Monte Carlo methods
• Standard approach to obtaining draws from the posterior distribution in DSGE estimation:

Markov Chain Monte Carlo (Random Walk Metropolis Hastings; e.g., Dynare)

• Start with one particle
θ and let it travel the
posterior distribution
(always accept moves
“up” and only
sometimes accept
moves “down”)

• Problem for HANK: It
is difficult to parallelize
(it’s Markov!)
... and it can get stuck!
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Different approach: Sequential Monte Carlo

• Relatively “new” to the DSGE
estimation literature (Creal, 2007;
Herbst and Schorfheide, 2014, 2015);
old for the statistics
literature (Gordon et al., 1993;
Chopin, 2002, ...)

• Start with a swarm of particles
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SMC in a nutshell

• Sequential/“incremental” importance sampling using likelihood tempering
• Importance sampling: get a bunch of draws {θi}Ni=1 from a proposal distribution q(θ) and

compute the associated weights W i
n ∝ π(θi )/q(θi )

• Problem: effective sample size ESS = N
/(

1
N

∑N
i=1(W i

n)2
)
<< N if the proposal is “bad”
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SMC: A graphical illustration
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• πn(θ) is represented by a swarm of particles {θin,W i
n}Ni=1

• C is Correction; S is Selection; and M is Mutation.
15



How fast does φn → 1?
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• If φn increases rapidly, ESS deteriorates quickly

• Fixed schedule (Herbst and Schorfheide, 2014): φn =
(

n
Nφ

)λ
, λ ∼ 2
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Adaptive likelihood tempering
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• Choose φn to target a desired level of ESS decrease:

f (φn) = ÊSS(φn)− αÊSSn−1 = 0

• See also Jasra et al., 2011, Del Moral et al., 2012, Schafer and Chopin, 2013, Geweke and
Frischknecht, 2014, and Zhou et al., 2015
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Generalized tempering/Online estimation

• The initial proposal distribution does not have to be the prior!

• It can be some other distribution, e.g., some other posterior: p̃(Ỹ |θ)p(θ)

πn(θ) ∝ p(y1:T |θ)φn p̃(Ỹ |θ)1−φnp(θ)

• If it is the posterior from a shorter sample: e.g., p̃(Ỹ |θ) = p(y1:T0 |θ), T0 < T → data
tempering (but smoother!)
• Very useful for forecasting, as you do not have to start from scratch
• ... and the adaptive tempering (unlike in standard data tempering) assures that the

particles survive

• But it can be something else entirely, e.g., estimation obtained using a slightly different
model, a different prior, a coarser solution method ...
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Summing up

• Reasons to use SMC for HA models in particular, and in general models whose likelihood
is costly to evaluate

1 It can be parallelized

2 Robust to multimodality

3 Previous estimations (swarm of particles) can be re-used as a bridge for new
estimations (“online” estimation)

• new data → routine estimation (and forecasting evaluation exercises) becomes
feasible

• “Online estimation of DSGE models” Cai, Del Negro, Herbst, Matlin, Sarfati, Schorfheide,
2019; see also our blog and our Julia SMC package on GitHub
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Why estimation matters
GDP growth GDP deflator

FFR Consumption growth
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RMSEs: BBL vs SW and vs BBL w/o distributional data
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DSGE-VAR as a measure of fit
• How misspecified is my model? A linear DSGE implies restricted VARs. The question

about misspecification becomes: How binding are these cross-equation restrictions?

• Think of these restrictions as a prior for the VAR parameters, whose tightness is controlled
by the hyperparameter λ (λ =∞ dogmatically imposes the cross-eq. restrictions).

• Then assessing misspecification boils down to the optimal choice of λ
VAR Likelihood and DSGE-based prior:

Φ*Φ

Prior

λ = ∞Likelihood

λ → 0



Marginal likelihood as a function of λ for the SW model
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Learning about deviations from the cross-equation restrictions

• Given the optimal λ, posterior estimates for the VAR parameters provide information on
Φ∆: How dynamics in the data differ from dynamics in the model

Φ = Φ∗(θ) + Φ∆

 

φ2 

subspace generated by the 
DSGE model restrictions  

Φ∆ 

Prior for misspecification 
parameters Φ∆: Shape of contours 
determined by Kullback-Leibler 
distance.

Φ∗(θ ): Cross-equation 
restriction for given value 
of θ 

φ1 

Φ∗(θ )+Φ∆ 
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• Use DSGE-VAR(λ̂) as a benchmark: From the IRFs comparison for DSGE-VAR(λ̂) and
DSGE we can learn about Φ∆

• CEE have a favorite VAR, and see if the DSGE model can replicate the “VAR facts”.

• Here, we have a candidate DSGE model and ask: How much does relaxing the
cross-equation restrictions change the fit and IRFs?

No Habit Formation Model Technology Shock IRFs: DSGE-VAR(∞) vs. DSGE-VAR(λ̂)
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Conclusions

1 We described a set of tools that central banks can use both to estimate HANK on a
routine basis and to assess their ability to fit and forecast objects of interest

• Forecasting comparisons (making them feasible computationally)

• DSGE-VARs

2 We used these tools to kick the tires of a frontier HANK model: So far, the tires look
pretty good
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