MONETARY NON-NEUTRALITY IN THE CROSS-SECTION

by Elisa Rubbo

Discussion by Ludwig Straub, Harvard

MOTIVATION: UNEQUAL TIMES . . .

- ➤ Live in unequal times ...
 - rising inequality
 - > unequal recovery from Covid pandemic
 - energy crisis
 - > climate change / green transformation

MOTIVATION: UNEQUAL TIMES . . .

- ➤ Live in unequal times ...
 - > rising inequality
 - unequal recovery from Covid pandemic
 - energy crisis
 - > climate change / green transformation
- > Only natural to ask: Does monetary policy, e.g. current monetary tightening,
 - > ... exacerbate those inequalities?
 - > ... or mitigate them?

HETEROGENEOUS EFFECTS OF MONETARY POLICY

- > Need to study the heterogenous effects of monetary policy ...
 - across industries and / or workers
- ➤ Many dimensions of heterogeneity come to mind ...
 - > durable / investment goods producers, construction

McKay-Wieland, Winberry-vom Lehn

- balance sheets, asset revaluation, unhedged interest exposures Auclert, Ottonello-Winberry, HANK...
- > exchange rate exposure, exporters vs. importers

Auclert-Rognlie-Souchier-Straub, Ottonello-Perez, Zhou

➤ heterogeneity in price or wage rigidity

Aoki, Benigno, Rubbo, Pasten-Schoenle-Weber

HETEROGENEOUS EFFECTS OF MONETARY POLICY

- > Need to study the heterogenous effects of monetary policy ...
 - across industries and / or workers
- ➤ Many dimensions of heterogeneity come to mind ...
 - > durable / investment goods producers, construction

McKay-Wieland, Winberry-vom Lehn

- balance sheets, asset revaluation, unhedged interest exposures Auclert, Ottonello-Winberry, HANK...
- > exchange rate exposure, exporters vs. importers

Auclert-Rognlie-Souchier-Straub, Ottonello-Perez, Zhou

> heterogeneity in price or wage rigidity

Aoki, Benigno, Rubbo, Pasten-Schoenle-Weber

Focus of this paper (for now)

Main finding: this channel alone can be powerful!

ROADMAP

➤ Review of the current version of the paper

Three comments on: direction of the paper, model, relation to literature

REVIEW OF THE PAPER

THE MODEL

➤ Aspiration: "Make Baqaee-Farhi useful for (monetary) policy analysis"

THE MODEL

- ➤ Aspiration: "Make Baqaee-Farhi useful for (monetary) policy analysis"
- > Specifically, start with the most complicated Baqaee-Farhi model
 - ➤ "HA-IO": many distinct consumers, producers, fixed factors
 - ➤ I-O linkages among producers, het. consumption baskets, ownership patterns

THE MODEL

- ➤ Aspiration: "Make Baqaee-Farhi useful for (monetary) policy analysis"
- > Specifically, start with the most complicated Baqaee-Farhi model
 - ➤ "HA-IO": many distinct consumers, producers, fixed factors
 - ➤ I-O linkages among producers, het. consumption baskets, ownership patterns
- ➤ Make it more complicated along four dimensions:
 - ➤ add price (+ wage) rigidities
 - > flexible labor supply and something resembling investment
 - > dynamics: full infinite horizon economy
 - > monetary policy rule (for now money supply rule)

$$\begin{cases} \boldsymbol{\pi}_t = \kappa \mathbf{l}_t - \mathcal{V} \mathbf{p}_{t-1} + (I - \mathcal{V}) \, \rho \mathbb{E} \boldsymbol{\pi}_{t+1} & \text{Phillips curves} \\ \mathbf{l}_t = (I - \mathcal{X})^{-1} \left[\mathbf{1} \bar{l} + \mathcal{F} \left(\mathbf{p}_{t-1} + \rho \mathbb{E} \boldsymbol{\pi}_{t+1} \right) \right] & \text{cross-sectional demand} \\ \boldsymbol{\pi}_t^Y + \bar{y}_t = m_t - p_{t-1}^Y & \text{aggregate demand} \end{cases}$$

$$\begin{cases} \boldsymbol{\pi}_t = \kappa \mathbf{l}_t - \mathcal{V} \mathbf{p}_{t-1} + (I - \mathcal{V}) \, \rho \mathbb{E} \boldsymbol{\pi}_{t+1} & \text{Phillips curves} \\ \mathbf{l}_t = (I - \mathcal{X})^{-1} \left[\mathbf{1} \bar{l} + \mathcal{F} \left(\mathbf{p}_{t-1} + \rho \mathbb{E} \boldsymbol{\pi}_{t+1} \right) \right] & \text{cross-sectional demand} \\ \boldsymbol{\pi}_t^Y + \bar{y}_t = m_t - p_{t-1}^Y & \text{aggregate demand} \end{cases}$$

$$\begin{cases} \Gamma \mathbf{c}_t + \Phi_L \mathbf{l}_t = \mathbf{w}_t - \beta_C^T \mathbf{p}_t & \text{consumption - leisure} \\ \Phi_K \mathbf{u}_t = \mathbf{r}_t - \beta_U^T \mathbf{p}_t & \text{capital utilization} \end{cases}$$

$$\begin{cases} \boldsymbol{\pi}_t = \kappa \mathbf{l}_t - \mathcal{V} \mathbf{p}_{t-1} + (I - \mathcal{V}) \, \rho \mathbb{E} \boldsymbol{\pi}_{t+1} & \text{Phillips curves} \\ \mathbf{l}_t = (I - \mathcal{X})^{-1} \left[\mathbf{1} \bar{l} + \mathcal{F} \left(\mathbf{p}_{t-1} + \rho \mathbb{E} \boldsymbol{\pi}_{t+1} \right) \right] & \text{cross-sectional demand} \\ \boldsymbol{\pi}_t^Y + \bar{y}_t = m_t - p_{t-1}^Y & \text{aggregate demand} \end{cases}$$

$$\begin{cases} \Gamma \mathbf{c}_t + \Phi_L \mathbf{l}_t = \mathbf{w}_t - \beta_C^T \mathbf{p}_t & \text{consumption - leisure} \\ \Phi_K \mathbf{u}_t = \mathbf{r}_t - \beta_U^T \mathbf{p}_t & \text{capital utilization} \end{cases}$$

$$\mathbf{c}_{t} + \beta_{C}^{T}\mathbf{p}_{t} = S_{C}^{-1} \left[diag\left(\mathbf{\Lambda}_{L}\right) \left(\mathbf{l}_{t} + \mathbf{w}_{t}\right) + \mathcal{Z}^{T} \frac{\Phi_{K}}{1 + \Phi_{K}} diag\left(\mathbf{\Lambda}_{K}\right) \left(\mathbf{u}_{t} + \mathbf{r}_{t}\right) - \Xi^{T} \operatorname{diag}\left(\bar{\lambda}\right) \left(\mathbf{m}\mathbf{c}_{t} - \mathbf{p}_{t}\right) + \mathbf{T}\mathbf{B}_{t} \right]$$
(14)

$$\begin{cases} \boldsymbol{\pi}_t = \kappa \mathbf{l}_t - \mathcal{V} \mathbf{p}_{t-1} + (I - \mathcal{V}) \, \rho \mathbb{E} \boldsymbol{\pi}_{t+1} & \text{Phillips curves} \\ \mathbf{l}_t = (I - \mathcal{X})^{-1} \left[\mathbf{1} \bar{l} + \mathcal{F} \left(\mathbf{p}_{t-1} + \rho \mathbb{E} \boldsymbol{\pi}_{t+1} \right) \right] & \text{cross-sectional demand} \\ \boldsymbol{\pi}_t^Y + \bar{y}_t = m_t - p_{t-1}^Y & \text{aggregate demand} \end{cases}$$

$$\begin{cases} \Gamma \mathbf{c}_t + \Phi_L \mathbf{l}_t = \mathbf{w}_t - \beta_C^T \mathbf{p}_t & \text{consumption - leisure} \\ \Phi_K \mathbf{u}_t = \mathbf{r}_t - \beta_U^T \mathbf{p}_t & \text{capital utilization} \end{cases}$$

$$\mathbf{c}_{t} + \beta_{C}^{T} \mathbf{p}_{t} = S_{C}^{-1} \left[diag\left(\mathbf{\Lambda}_{L}\right) \left(\mathbf{l}_{t} + \mathbf{w}_{t}\right) + \mathcal{Z}^{T} \frac{\Phi_{K}}{1 + \Phi_{K}} diag\left(\mathbf{\Lambda}_{K}\right) \left(\mathbf{u}_{t} + \mathbf{r}_{t}\right) - \Xi^{T} \operatorname{diag}\left(\bar{\lambda}\right) \left(\mathbf{m}\mathbf{c}_{t} - \mathbf{p}_{t}\right) + \mathbf{T}\mathbf{B}_{t} \right]$$

$$\left(I - diag\left(\mathbf{\Lambda}\right)^{-1} \alpha^{T} \lambda \begin{pmatrix} I & \mathcal{Z}^{T} \frac{\Phi_{K}}{1 + \Phi_{K}} \\ \mathbb{O} & \frac{1}{1 + \Phi_{K}} \end{pmatrix} diag\left(\mathbf{\Lambda}\right) \right) d\log\mathbf{\Lambda} =$$

$$(14)$$

$$diag\left(\mathbf{\Lambda}\right)^{-1}\left[d\left(\alpha^{T}\lambda\right)\mathbf{s}-\alpha^{T}\lambda_{C}S_{C}^{-1}\Xi^{T}diag\left(\bar{\lambda}\right)\left(\mathbf{mc}-\mathbf{p}\right)+\alpha^{T}\lambda_{C}S_{C}^{-1}\mathbf{TB}\right]$$

$$\begin{cases} \boldsymbol{\pi}_t = \kappa \mathbf{l}_t - \mathcal{V} \mathbf{p}_{t-1} + (I - \mathcal{V}) \, \rho \mathbb{E} \boldsymbol{\pi}_{t+1} & \text{Phillips curves} \\ \mathbf{l}_t = (I - \mathcal{X})^{-1} \left[\mathbf{1} \bar{l} + \mathcal{F} \left(\mathbf{p}_{t-1} + \rho \mathbb{E} \boldsymbol{\pi}_{t+1} \right) \right] & \text{cross-sectional demand} \\ \boldsymbol{\pi}_t^Y + \bar{y}_t = m_t - p_{t-1}^Y & \text{aggregate demand} \end{cases}$$

$$\begin{cases} \Gamma \mathbf{c}_t + \Phi_L \mathbf{l}_t = \mathbf{w}_t - \beta_C^T \mathbf{p}_t & \text{consumption - leisure} \\ \Phi_K \mathbf{u}_t = \mathbf{r}_t - \beta_U^T \mathbf{p}_t & \text{capital utilization} \end{cases}$$

 $diag\left(\mathbf{\Lambda}\right)^{-1} \left[Cov_s \left(\lambda^T \alpha, \frac{\partial \log \left(\text{real income} \right)}{\partial \log \left(\text{factor prices} \right)} \right) - \Theta \left((I - \Omega)^{-1} \alpha, (I - \Omega)^{-1} \alpha \right) \right] \begin{pmatrix} \mathbf{w} \\ \mathbf{r} \end{pmatrix}$ $-diag\left(\mathbf{\Lambda}\right)^{-1} \left[Cov_s \left(\lambda^T \alpha, \frac{\partial \log \left(\text{real income} \right)}{\partial \log \left(\text{real marginal cost} \right)} \right) - \Theta \left((I - \Omega)^{-1} \alpha, (I - \Omega)^{-1} \right) \right] \left(\mathbf{mc} - \mathbf{p} \right) + diag\left(\mathbf{\Lambda}\right)^{-1} \alpha^T \lambda_C S_C^{-1} \mathbf{TB}$ (20)

 $\left(I-diag\left(oldsymbol{\Lambda}
ight)^{-1}lpha^T\lambda\left(egin{array}{cc}I&\mathcal{Z}^Trac{\Phi_K}{1+\Phi_K}\ \mathbb{O}&rac{1}{1+\Phi_K}\end{array}
ight)diag\left(oldsymbol{\Lambda}
ight)\left(egin{array}{cc}\mathbf{l}\ \mathbf{u}\end{array}
ight)=0$

where

$$\mathbf{c}_{t} + \beta_{C}^{T}\mathbf{p}_{t} = S_{C}^{-1} \left[diag\left(\mathbf{\Lambda}_{L}\right) \left(\mathbf{l}_{t} + \mathbf{w}_{t}\right) + \mathcal{Z}^{T} \frac{\Phi_{K}}{1 + \Phi_{K}} diag\left(\mathbf{\Lambda}_{K}\right) \left(\mathbf{u}_{t} + \mathbf{r}_{t}\right) - \Xi^{T} \operatorname{diag}\left(\bar{\lambda}\right) \left(\mathbf{m}\mathbf{c}_{t} - \mathbf{p}_{t}\right) + \mathbf{T}\mathbf{B}_{t} \right]$$
(14)

$$\left(I - diag\left(\mathbf{\Lambda}\right)^{-1} \alpha^{T} \lambda \left(\begin{array}{cc} I & \mathcal{Z}^{T} \frac{\Phi_{K}}{1 + \Phi_{K}} \\ \mathbb{O} & \frac{1}{1 + \Phi_{K}} \end{array}\right) diag\left(\mathbf{\Lambda}\right)\right) d\log \mathbf{\Lambda} =$$

$$diag\left(\mathbf{\Lambda}\right)^{-1}\left[d\left(\alpha^{T}\lambda\right)\mathbf{s}-\alpha^{T}\lambda_{C}S_{C}^{-1}\Xi^{T}diag\left(\bar{\lambda}\right)\left(\mathbf{mc}-\mathbf{p}\right)+\alpha^{T}\lambda_{C}S_{C}^{-1}\mathbf{TB}\right]$$

$$\frac{\partial \log \left(\text{real income}\right)}{\partial \log \left(\text{factor prices}\right)} = S^{-1} \left[\left(\begin{array}{cc} I & \mathcal{Z}^T \frac{\Phi_K}{1 + \Phi_K} \\ \mathbb{O} & \frac{1}{1 + \Phi_K} \end{array} \right) diag\left(\mathbf{\Lambda}\right) \right] - \lambda^T \alpha$$

$$\frac{\partial \log (\text{real income})}{\partial \log (\text{real marginal cost})} = S^{-1} \begin{pmatrix} \Xi^T \\ \mathbb{O} \end{pmatrix} diag(\bar{\lambda}) - \lambda^T$$

$$\begin{cases} \boldsymbol{\pi}_t = \kappa \mathbf{l}_t - \mathcal{V} \mathbf{p}_{t-1} + (I - \mathcal{V}) \, \rho \mathbb{E} \boldsymbol{\pi}_{t+1} & \text{Phillips curves} \\ \mathbf{l}_t = (I - \mathcal{X})^{-1} \left[\mathbf{1} \bar{l} + \mathcal{F} \left(\mathbf{p}_{t-1} + \rho \mathbb{E} \boldsymbol{\pi}_{t+1} \right) \right] & \text{cross-sectional den} \\ \boldsymbol{\pi}_t^Y + \bar{y}_t = m_t - p_{t-1}^Y & \text{aggregate demand} \end{cases}$$

$$\begin{cases} \Gamma \mathbf{c}_t + \Phi_L \mathbf{l}_t = \mathbf{w}_t - \beta_C^T \mathbf{p}_t & \text{consumption - leisure} \\ \Phi_K \mathbf{u}_t = \mathbf{r}_t - \beta_U^T \mathbf{p}_t & \text{capital utilization} \end{cases}$$

$$\mathbf{c}_{t} + eta_{C}^{T} \mathbf{p}_{t} = S_{C}^{-1} \left[diag\left(\mathbf{\Lambda}_{L} \right) \left(\mathbf{l}_{t} + \mathbf{w}_{t} \right) + \mathcal{Z}^{T} \frac{\Phi_{K}}{1 + \Phi_{K}} diag\left(\mathbf{\Lambda}_{K} \right) \left(\mathbf{u}_{t} + \mathbf{v}_{t} \right) \right]$$

$$\left(I - diag\left(\mathbf{\Lambda} \right)^{-1} \alpha^{T} \lambda \left(\begin{array}{cc} I & \mathcal{Z}^{T} \frac{\Phi_{K}}{1 + \Phi_{K}} \\ \mathbb{O} & \frac{1}{1 + \Phi_{K}} \end{array} \right) diag\left(\mathbf{\Lambda} \right) \right) \epsilon$$

$$diag\left(\mathbf{\Lambda}\right)^{-1}\left[d\left(\alpha^{T}\lambda\right)\mathbf{s}-\alpha^{T}\lambda_{C}S_{C}^{-1}\Xi^{T}diag\left(\bar{\lambda}\right)\left(\mathbf{mc}-\mathbf{p}\right)+\alpha^{T}\lambda_{C}\right]$$

Proposition 1. Sector-by-agent Phillips curves are given by

$$\boldsymbol{\pi}_{t} = \kappa \mathbf{l}_{t} - \mathcal{V} \mathbf{p}_{t-1} + (I - \mathcal{V}) \, \rho \mathbb{E} \boldsymbol{\pi}_{t+1}$$
(23)

 $(\delta_i = 1)$, the matrix $I - \mathcal{V}$ is invertible. Moreover,

$$\kappa \equiv \Delta \left(I - \Omega \Delta \right)^{-1} \alpha \kappa^{w} \mathcal{E} \qquad \in \mathbb{R}^{N \times H + F}$$

$$\mathcal{V} \equiv \Delta \left(I - \Omega \Delta \right)^{-1} \left[I - \alpha \kappa^{w} \underline{\lambda}^{T} \left(I - \Delta \right) \left(I - \Omega \Delta \right)^{-1} \right] \left(I - \Omega \right) \qquad \in \mathbb{R}^{N \times N}$$

$$(24)$$

The matrix $\kappa^w \mathcal{E}$ is the slope of the (flexible) factor price Phillips curves. The expressions for κ^w , \mathcal{E} , and $\underline{\lambda}$ are

$$\kappa^{w} \equiv \begin{bmatrix} I - \beta^{T} \Delta (I - \Omega \Delta)^{-1} \alpha - \begin{pmatrix} wealth \ effect \\ \mathbb{O} \end{pmatrix} \end{bmatrix}^{-1}$$

$$\mathcal{E} = \begin{pmatrix} \Gamma diag \left(\frac{\mathbf{\Lambda}_{L}}{\mathbf{s}_{C}} \right) + \Phi_{L} & \Gamma S_{C}^{-1} \mathcal{Z}^{T} \frac{\Phi_{K}}{1 + \Phi_{K}} diag \left(\mathbf{\Lambda}_{K} \right) \\ \mathbb{O} & \Phi_{K} \end{pmatrix}$$

$$\leq \mathbb{R}^{H + F \times H + F}$$

$$\Delta^{T} \equiv \begin{pmatrix} (I - \Gamma) \lambda_{C}^{T} + \Gamma S_{C}^{-1} \Xi^{T} diag \left(\bar{\lambda} \right) \\ \lambda_{U}^{T} \end{pmatrix}$$

$$\in \mathbb{R}^{H + F \times N}$$

$$\textit{wealth effect} \equiv \Gamma \left(S_C^{-1} \left(\begin{array}{cc} I & \mathcal{Z}^T \frac{\Phi_K}{1 + \Phi_K} \end{array} \right) diag\left(\mathbf{\Lambda} \right) - \left[\beta^T \Delta + S_C^{-1} \Xi^T diag\left(\bar{\lambda} \right) \left(I - \Delta \right) \right] \left(I - \Omega \Delta \right)^{-1} \alpha \right) \right)$$

Phillips curves

$$\pi_{t} = \kappa \mathbf{1}_{t} - \mathcal{V}\mathbf{p}_{t-1} + (I - \mathcal{V}) \rho \mathbb{E}\pi_{t+1}$$

aggregate demand where the matrix \mathcal{V} is such that $\sum_{j} \mathcal{V}_{ij} = 0$, $(I - \mathcal{V})_{ij} \in [0,1]$ and, as long as no sector has fully flexible prices

$$\kappa \equiv \Delta (I - \Omega \Delta)^{-1} \alpha \kappa^{w} \mathcal{E}$$

$$\kappa \equiv \Delta (I - \Omega \Delta)^{-1} \alpha \kappa^{w} \mathcal{E}$$

$$\kappa \equiv \Delta (I - \Omega \Delta)^{-1} \alpha \kappa^{w} \mathcal{E}$$

$$(23)$$

$$\left(I - diag(\mathbf{\Lambda})^{-1} \alpha^{T} \lambda \begin{pmatrix} I & \mathcal{Z}^{T} \frac{\Phi_{K}}{1 + \Phi_{K}} \\ \mathbb{O} & \frac{1}{1 + \Phi_{K}} \end{pmatrix} diag(\mathbf{\Lambda}) \end{pmatrix} \begin{pmatrix} \mathbf{I} \\ \mathbf{u} \end{pmatrix} = \mathbf{I}_{t} \begin{pmatrix} \mathbf{I} \\ \mathbf{U} \end{pmatrix}$$

$$\left(I - diag(\mathbf{\Lambda})^{-1} \alpha^{T} \lambda \begin{pmatrix} I & \mathcal{Z}^{T} \frac{\Phi_{K}}{1 + \Phi_{K}} \end{pmatrix} diag(\mathbf{\Lambda}) \end{pmatrix} \begin{pmatrix} \mathbf{I} \\ \mathbf{u} \end{pmatrix} = \mathbf{I}_{t} \begin{pmatrix} \mathbf{I} \\ \mathbf{U} \end{pmatrix}$$

$$\left(I - diag(\mathbf{\Lambda})^{-1} \alpha^{T} \lambda \begin{pmatrix} I - \mathcal{Z}^{T} \frac{\Phi_{K}}{1 + \Phi_{K}} \end{pmatrix} diag(\mathbf{\Lambda}) \end{pmatrix} \begin{pmatrix} \mathbf{I} \\ \mathbf{U} \end{pmatrix}$$

$$\left(I - diag(\mathbf{\Lambda})^{-1} \alpha^{T} \lambda \begin{pmatrix} I - \mathcal{Z}^{T} \frac{\Phi_{K}}{1 + \Phi_{K}} \end{pmatrix} diag(\mathbf{\Lambda}) \end{pmatrix} \begin{pmatrix} \mathbf{I} \\ \mathbf{U} \end{pmatrix}$$

$$\left(I - diag(\mathbf{\Lambda})^{-1} \alpha^{T} \lambda \begin{pmatrix} I - \mathcal{Z}^{T} \frac{\Phi_{K}}{1 + \Phi_{K}} \end{pmatrix} diag(\mathbf{\Lambda}) \end{pmatrix} \begin{pmatrix} \mathbf{I} \\ \mathbf{U} \end{pmatrix}$$

$$\left(I - diag(\mathbf{\Lambda})^{-1} \alpha^{T} \lambda \begin{pmatrix} I - \mathcal{Z}^{T} \frac{\Phi_{K}}{1 + \Phi_{K}} \end{pmatrix} diag(\mathbf{\Lambda}) \end{pmatrix} \begin{pmatrix} \mathbf{I} \\ \mathbf{U} \end{pmatrix}$$

$$\left(I - diag(\mathbf{\Lambda})^{-1} \alpha^{T} \lambda \begin{pmatrix} I - \mathcal{Z}^{T} \frac{\Phi_{K}}{1 + \Phi_{K}} \end{pmatrix} diag(\mathbf{\Lambda}) \end{pmatrix} \begin{pmatrix} \mathbf{I} \\ \mathbf{U} \end{pmatrix}$$

$$\left(I - diag(\mathbf{\Lambda})^{-1} \alpha^{T} \lambda \begin{pmatrix} I - \mathcal{Z}^{T} \frac{\Phi_{K}}{1 + \Phi_{K}} \end{pmatrix} diag(\mathbf{\Lambda}) \end{pmatrix} \begin{pmatrix} \mathbf{I} \\ \mathbf{U} \end{pmatrix}$$

$$\left(I - diag(\mathbf{\Lambda})^{-1} \alpha^{T} \lambda \begin{pmatrix} I - \Omega \end{pmatrix} - \mathbf{I} \begin{pmatrix} I$$

$$egin{bmatrix} I & \mathcal{Z}^T rac{\Phi_K}{1+\Phi_K} \ \mathbb{O} & rac{1}{1+\Phi_K} \end{pmatrix} diag\left(oldsymbol{\Lambda}
ight) - \lambda^T lpha \ \end{pmatrix}$$

$$\mathbf{E}_{\in \, \mathbb{R}^{H+F imes H+F}} \qquad \qquad \mathbf{E}_{ar{\mathbf{t}}} = S^{-1} \left(egin{array}{c} \Xi^T \ \mathbb{O} \end{array}
ight) diag\left(ar{\lambda}
ight) - \lambda^T$$

$$\begin{cases} \boldsymbol{\pi}_t = \kappa \mathbf{l}_t - \mathcal{V} \mathbf{p}_{t-1} + (I - \mathcal{V}) \, \rho \mathbb{E} \boldsymbol{\pi}_{t+1} & \text{Phillips curves} \\ \mathbf{l}_t = (I - \mathcal{X})^{-1} \left[\mathbf{1} \bar{l} + \mathcal{F} \left(\mathbf{p}_{t-1} + \rho \mathbb{E} \boldsymbol{\pi}_{t+1} \right) \right] & \text{cross-sectional den} \\ \boldsymbol{\pi}_t^Y + \bar{y}_t = m_t - p_{t-1}^Y & \text{aggregate demand} \end{cases}$$

$$\begin{cases} \Gamma \mathbf{c}_t + \Phi_L \mathbf{l}_t = \mathbf{w}_t - \beta_C^T \mathbf{p}_t & \text{consumption - leisure} \\ \Phi_K \mathbf{u}_t = \mathbf{r}_t - \beta_U^T \mathbf{p}_t & \text{capital utilization} \end{cases}$$

$$\mathbf{c}_{t} + \beta_{C}^{T} \mathbf{p}_{t} = S_{C}^{-1} \left[diag\left(\mathbf{\Lambda}_{L}\right) \left(\mathbf{l}_{t} + \mathbf{w}_{t}\right) + \mathcal{Z}^{T} \frac{\Phi_{K}}{1 + \Phi_{K}} diag\left(\mathbf{\Lambda}_{K}\right) \left(\mathbf{u}_{t} + \mathbf{w}_{t}\right) \right] \left(I - diag\left(\mathbf{\Lambda}_{L}\right)^{-1} \alpha^{T} \lambda \begin{pmatrix} I & \mathcal{Z}^{T} \frac{\Phi_{K}}{1 + \Phi_{K}} \\ \mathbb{O} & \frac{1}{1 + \Phi_{K}} \end{pmatrix} diag\left(\mathbf{\Lambda}_{L}\right) \right) diag\left(\mathbf{\Lambda}_{L}\right) diag\left(\mathbf{\Lambda}_{$$

Proposition 1. Sector-by-agent Phillips curves are given by

$$\boldsymbol{\pi}_{t} = \kappa \mathbf{l}_{t} - \mathcal{V} \mathbf{p}_{t-1} + (I - \mathcal{V}) \rho \mathbb{E} \boldsymbol{\pi}_{t+1}$$
(23)

$$\kappa \equiv \Delta \left(I - \Omega \Delta \right)^{-1} \alpha \kappa^{w} \mathcal{E} \qquad \in \mathbb{R}^{N \times H + F}$$

$$\mathcal{V} \equiv \Delta \left(I - \Omega \Delta \right)^{-1} \left[I - \alpha \kappa^{w} \underline{\lambda}^{T} \left(I - \Delta \right) \left(I - \Omega \Delta \right)^{-1} \right] \left(I - \Omega \right) \qquad \in \mathbb{R}^{N \times N}$$

$$(24)$$

The matrix $\kappa^w \mathcal{E}$ is the slope of the (flexible) factor price Phillips curves. The expressions for κ^w , \mathcal{E} , and $\underline{\lambda}$ are

$$\kappa^{w} \equiv \begin{bmatrix} I - \beta^{T} \Delta (I - \Omega \Delta)^{-1} \alpha - \begin{pmatrix} wealth \ effect \\ \mathbb{O} \end{pmatrix} \end{bmatrix}^{-1}$$

$$\mathcal{E} = \begin{pmatrix} \Gamma diag \left(\frac{\mathbf{\Lambda}_{L}}{\mathbf{s}_{C}} \right) + \Phi_{L} & \Gamma S_{C}^{-1} \mathcal{Z}^{T} \frac{\Phi_{K}}{1 + \Phi_{K}} diag \left(\mathbf{\Lambda}_{K} \right) \\ \mathbb{O} & \Phi_{K} \end{pmatrix}$$

$$\mathbf{\Delta}^{T} \equiv \begin{pmatrix} (I - \Gamma) \lambda_{C}^{T} + \Gamma S_{C}^{-1} \Xi^{T} diag \left(\overline{\lambda} \right) \\ \lambda_{U}^{T} \end{pmatrix}$$

$$\in \mathbb{R}^{H + F \times H + F}$$

$$\in \mathbb{R}^{H + F \times N}$$

$$\begin{pmatrix} I - diag\left(\mathbf{\Lambda}\right)^{-1} \alpha^{T} \lambda \begin{pmatrix} I & \mathcal{Z}^{T} \frac{\Phi_{K}}{1 + \Phi_{K}} \\ \mathbb{O} & \frac{1}{1 + \Phi_{K}} \end{pmatrix} diag\left(\mathbf{\Lambda}\right) \end{pmatrix} \begin{pmatrix} \mathbf{l} \\ \mathbf{u} \end{pmatrix} = \mathbf{I} \alpha, \frac{\partial \log \left(\text{real income}\right)}{\partial \mathbf{l} \partial \mathbf{l} \partial \mathbf{l} \partial \mathbf{l} \partial \mathbf{l}} - \Theta\left((I - \Omega)^{-1} \alpha, (I - \Omega)^{-1} \alpha\right) \end{pmatrix} \begin{pmatrix} \mathbf{w} \\ \mathbf{v} \end{pmatrix}$$

$$\Theta\left((I-\Omega)^{-1}\alpha,(I-\Omega)^{-1}\right)\left[\left(\mathbf{mc}-\mathbf{p}\right)+diag\left(\mathbf{\Lambda}\right)^{-1}\alpha^{T}\lambda_{C}S_{C}^{-1}\mathbf{TB}\right]$$
(24)

$$\begin{bmatrix} \left(\begin{array}{cc} I & \mathcal{Z}^T \frac{\Phi_K}{1+\Phi_K} \\ \mathbb{O} & \frac{1}{1+\Phi_K} \end{array} \right) diag\left(\boldsymbol{\Lambda} \right) \end{bmatrix} - \lambda^T \alpha$$

$$\in \mathbb{R}^{H+F \times H+F}$$

$$\in \mathbb{R}^{H+F \times H+F}$$

$$\in \mathbb{R}^{H+F \times N}$$

$$\exists t = S^{-1} \begin{pmatrix} \Xi^T \\ \mathbb{O} \end{pmatrix} diag\left(\bar{\lambda} \right) - \lambda^T$$

na

$$\textit{wealth effect} \equiv \Gamma \left(S_C^{-1} \left(\begin{array}{cc} I & \mathcal{Z}^T \frac{\Phi_K}{1 + \Phi_K} \end{array} \right) diag\left(\mathbf{\Lambda} \right) - \left[\beta^T \Delta + S_C^{-1} \Xi^T diag\left(\bar{\lambda} \right) \left(I - \Delta \right) \right] \left(I - \Omega \Delta \right)^{-1} \alpha \right) \right) + C_C^{-1} \left(\left(\begin{array}{cc} I & \mathcal{Z}^T \frac{\Phi_K}{1 + \Phi_K} \end{array} \right) \right) diag\left(\mathbf{\Lambda} \right) - \left[\beta^T \Delta + S_C^{-1} \Xi^T diag\left(\bar{\lambda} \right) \left(I - \Delta \right) \right] \left(I - \Omega \Delta \right)^{-1} \alpha \right) \right)$$

- ➤ It's a lot of math and notation! Baqaee-Farhi is light afternoon reading comparatively.
- ➤ Will propose a more tractable model ...

A (SOMEWHAT) MORE TRACTABLE MODEL

- ➤ 4 simplifications:
 - ➤ Preferences + production functions are Cobb-Douglas
 - ➤ Households consume the same bundle (not crucial)
 - ➤ Complete markets ⇒ can think of this like a "big family", pooling their income
 - ➤ Infinite Frisch elasticity of labor supply

A (SOMEWHAT) MORE TRACTABLE MODEL

- ➤ 4 simplifications:
 - ➤ Preferences + production functions are Cobb-Douglas
 - ➤ Households consume the same bundle (not crucial)
 - ➤ Complete markets ⇒ can think of this like a "big family", pooling their income
 - ➤ Infinite Frisch elasticity of labor supply

Family of households

$$\max_{f} \log C + \log \frac{M}{P} - \sum_{f} N_{f}$$

$$PC + M \leq \sum_{f} W_{f} N_{f} + \sum_{i} \Pi_{i} + M_{-}$$

A (SOMEWHAT) MORE TRACTABLE MODEL

- ➤ 4 simplifications:
 - ➤ Preferences + production functions are Cobb-Douglas
 - ➤ Households consume the same bundle (not crucial)
 - ➤ Complete markets ⇒ can think of this like a "big family", pooling their income
 - ➤ Infinite Frisch elasticity of labor supply

Family of households

$$\max \log C + \log \frac{M}{P} - \sum_{f} N_{f}$$

$$PC + M \leq \sum_{f} W_{f} N_{f} + \sum_{f} \Pi_{i} + M_{-}$$

Sectors

$$\Pi_i = \max P_i \prod_f N_{if}^{\alpha_{if}} \prod_j X_{ij}^{\Omega_{ij}} - \sum_f W_f N_{if} - \sum_j P_j X_{ij}$$

$$price \ reset \ w.p. \ \Delta_i$$

- ➤ Feed in 1% increase in money supply = 1% increase in nominal spending.
 - ➤ infinite Frisch ⇒ wages in all sectors move by 1% too!

- ➤ Feed in 1% increase in money supply = 1% increase in nominal spending.
 - \blacktriangleright infinite Frisch \Rightarrow wages in all sectors move by 1% too!
- \blacktriangleright If prices were flexible, $\Delta_i = 1$, all prices also move by 1%. No quantity changes.

- ➤ Feed in 1% increase in money supply = 1% increase in nominal spending.
 - \blacktriangleright infinite Frisch \Rightarrow wages in all sectors move by 1% too!
- \blacktriangleright If prices were flexible, $\Delta_i=1$, all prices also move by 1%. No quantity changes.
- ➤ If Δ_i < 1 for some sectors:

- ➤ Feed in 1% increase in money supply = 1% increase in nominal spending.
 - \blacktriangleright infinite Frisch \Rightarrow wages in all sectors move by 1% too!
- \blacktriangleright If prices were flexible, $\Delta_i=1$, all prices also move by 1%. No quantity changes.
- ► If Δ_i < 1 for some sectors:

% change in employment =
$$(\widehat{NW})^{-1}\alpha' \cdot (\mathbf{I} - \Omega')^{-1}\widehat{PY}(\mathbf{I} - \Delta)(\mathbf{I} - \Omega\Delta)^{-1}\alpha\mathbf{1}$$

% change in employment_f =
$$\sum_{i} \frac{Sales_{i \to f}}{Income_{f}} \times (1 - \Delta_{i}) \times d \log MC_{i}$$

- ➤ Feed in 1% increase in money supply = 1% increase in nominal spending.
 - ➤ infinite Frisch \Rightarrow wages in all sectors move by 1% too!
- \blacktriangleright If prices were flexible, $\Delta_i=1$, all prices also move by 1%. No quantity changes.
- ➤ If Δ_i < 1 for some sectors:

% change in employment =
$$(\widehat{NW})^{-1}\alpha' \cdot (\mathbf{I} - \Omega')^{-1}\widehat{PY}(\mathbf{I} - \Delta)(\mathbf{I} - \Omega\Delta)^{-1}\alpha\mathbf{1}$$

% change in employment_f =
$$\sum_{i} \frac{Sales_{i \to f}}{Income_{f}} \times (1 - \Delta_{i}) \times d \log MC_{i}$$

- > Employment gains are larger where there is more price rigidity downstream
 - > weights are generalized form of "sales to income" ratios (Basu)

AN EXAMPLE

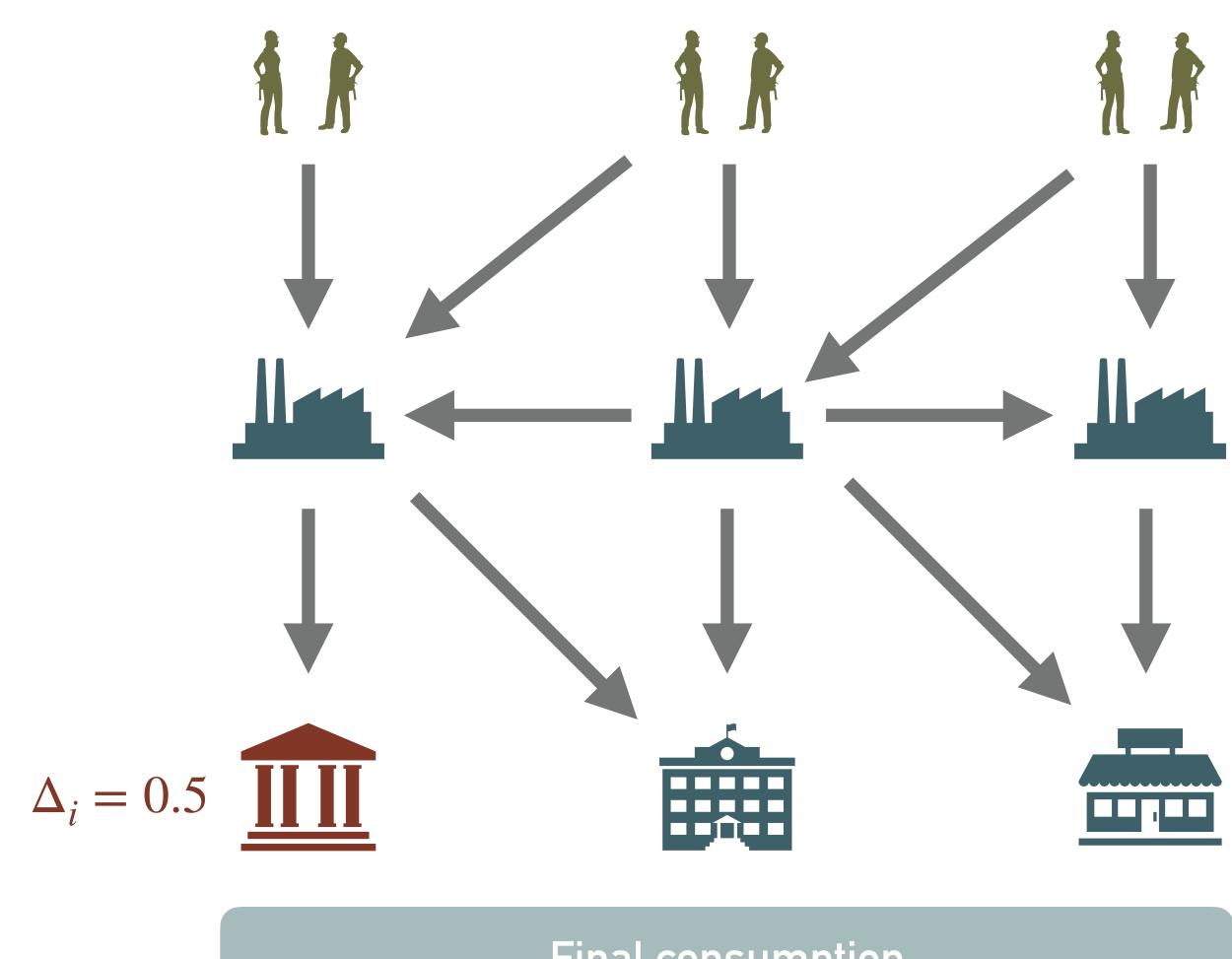
Final consumption

AN EXAMPLE

largest employment gain

Final consumption

... BUT WHAT IF STRUCTURE IS MORE COMPLEX?



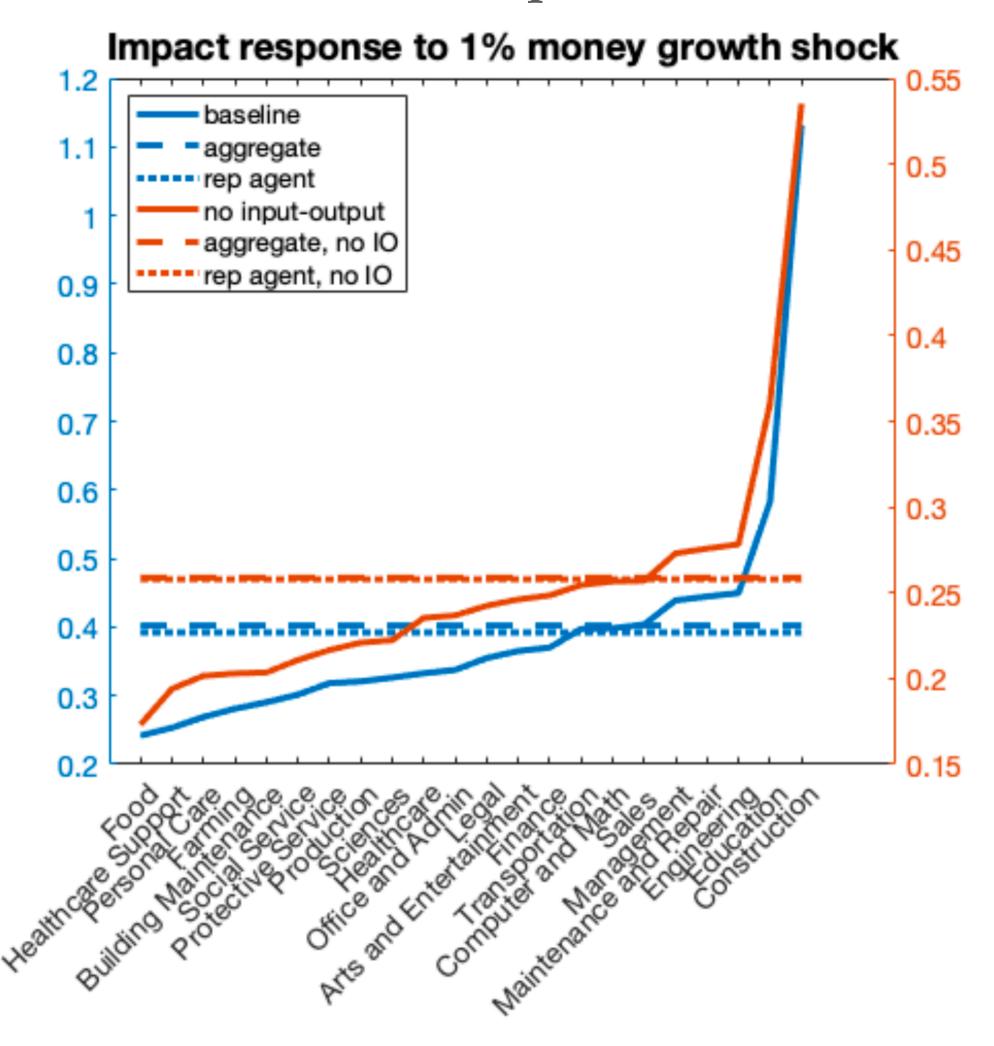
Final consumption

RELAXING THE 4 SIMPLIFICATIONS

- ➤ What about deviations from Cobb-Douglas?
 - > Since relative prices move, substitution patterns become relevant.
 - > Still remains tractable, since relative prices are not a function of substitution.
- > What about dynamics? Can probably do it closed form.
- ➤ What about finite Frisch, fixed factors?
 - This is what makes the model much less tractable.
 - ➤ <u>Simplified intuition:</u> where labor is supplied more inelastically, employment moves less, wages more
 - ➤ Unclear what happens to nominal income (depends on elasticities)

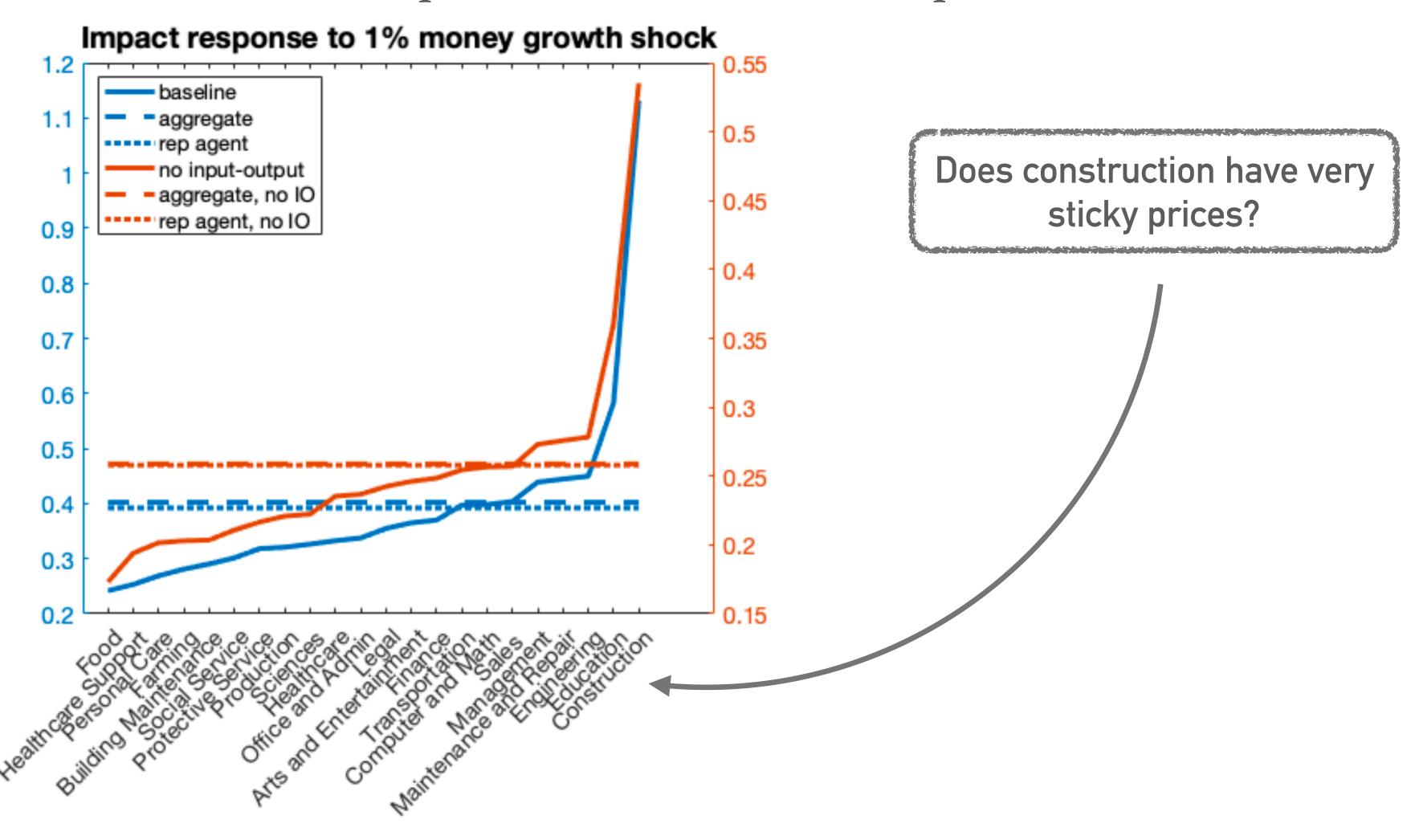
FINDINGS IN THE US

➤ Calibrate to US I-O and Chile, interpret households as occupations.



FINDINGS IN THE US

➤ Calibrate to US I-O and Chile, interpret households as occupations.



COMMENTS

> R2 might say: "Obvious that greater price rigidity means greater quantity response. Insight?"

- > R2 might say: "Obvious that greater price rigidity means greater quantity response. Insight?"
- ➤ I see two, not mutually exclusive routes:

- > R2 might say: "Obvious that greater price rigidity means greater quantity response. Insight?"
- ➤ I see two, not mutually exclusive routes:
- ➤ Route 1: Qualitative. The "Gali route".
 - ➤ Here it might help to make the theory more accessible (cf my attempt). Show it's not obvious!
 - ➤ How do supply chains matter? Decompose empl. response into what is driven by each sector?

- > R2 might say: "Obvious that greater price rigidity means greater quantity response. Insight?"
- ➤ I see two, not mutually exclusive routes:
- ➤ Route 1: Qualitative. The "Gali route".
 - ➤ Here it might help to make the theory more accessible (cf my attempt). Show it's not obvious!
 - ➤ How do supply chains matter? Decompose empl. response into what is driven by each sector?
- ➤ Route 2: Quantitative. The "CEE/SW route".
 - ➤ Here all the bells & whistles are necessary.
 - ➤ E.g. inflation is inertial in the data, but not the model.
 - ➤ Need a proper model of investment: full depreciation + no time lag kill monetary transmission through investment.
 - ➤ Need to think about all the other possible sources of heterogeneity!

COMMENT #2: PRICE RIGIDITY IS THE ONLY GAME IN TOWN

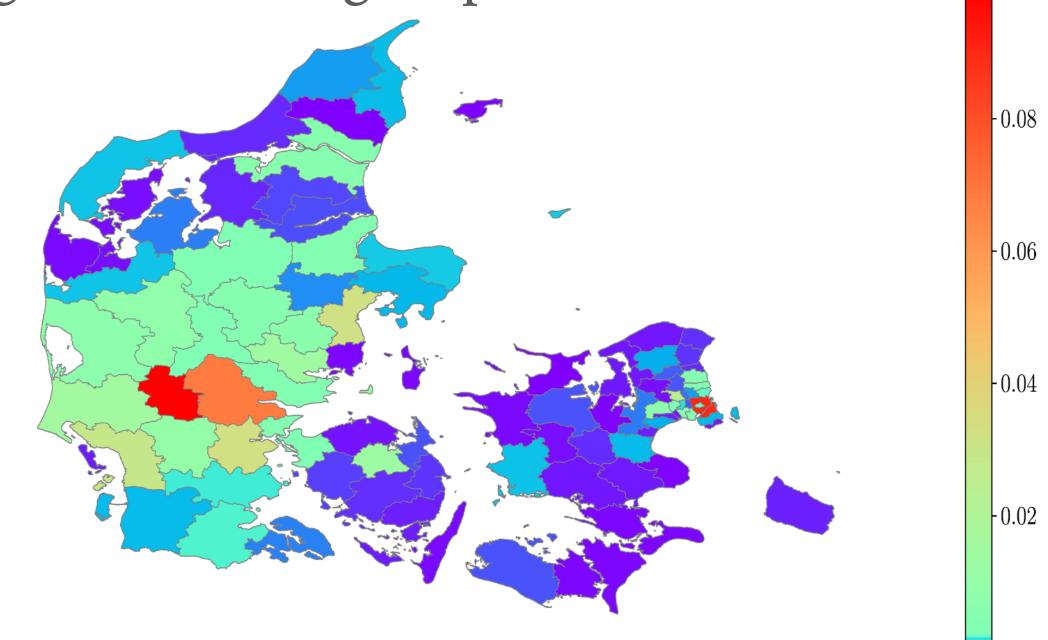
> Right now, only significant source of heterogeneity is price rigidity.

COMMENT #2: PRICE RIGIDITY IS THE ONLY GAME IN TOWN

- > Right now, only significant source of heterogeneity is price rigidity.
- In future versions, maybe other sources of heterogeneity are included.
- > Hard to get when households are split by occupation: heterogeneity in cons. baskets

COMMENT #2: PRICE RIGIDITY IS THE ONLY GAME IN TOWN

- > Right now, only significant source of heterogeneity is price rigidity.
- ➤ In future versions, maybe other sources of heterogeneity are included.
- ➤ Hard to get when households are split by occupation: heterogeneity in cons. baskets
- ➤ In recent work with Andersen, Hansen, Huber, Johannesen, we disaggregate all flows of Danish national accounts to level of small region x sector groups.
- ➤ E.g. see geographical distribution of spending:
- ➤ I imagine that such heterogeneity becomes visible once geography is included.



COMMENT #3: RUBBO 2021 VS RUBBO 2022

- In my tractable model, predictions for total employment by *sector* (not by factor) are independent of the number of factors.
 - > e.g. could collapse all factors into a single one.
- ➤ How true is this in the full Rubbo 2022 model?
- ➤ How much does Rubbo 2022 (many factors) look like Rubbo 2021 (one factor)?

CONCLUSION

CONCLUSION

➤ Very exciting new paper on heterogeneous effects of monetary policy!

- ➤ Three comments:
 - ➤ What is the nature of the paper? Gali or CEE/SW (or both)
 - ➤ Price rigidity is all there is (so far)
 - > Rubbo 2021 vs. Rubbo 2022