DOES THE COMMODITY SUPER CYCLE MATTER?

DISCUSSION

Roberto Chang Rutgers University and NBER

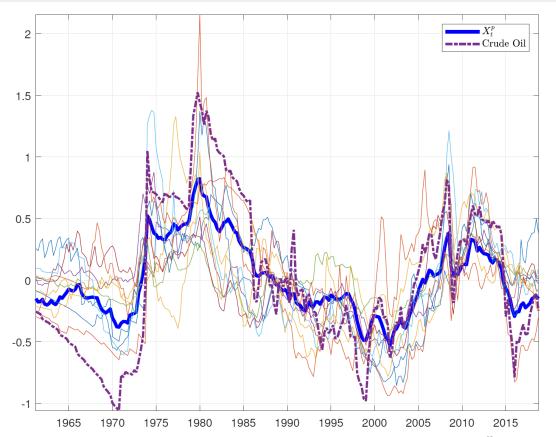
XXIV Annual Conference of the Central Bank of Chile, Nov 2021

THE BIG QUESTIONS

- This paper attempts to characterize and evaluate the impact of long term cycles in world commodity prices
- A central question in the debate on business cycles in emerging economies:
- 1. Home vs Foreign Shocks (Calvo, Leiderman, Reinhart 1993)
- 2. Transitory vs Permanent (Aguiar and Gopinath 2007)
- 3. Financial versus Real (Chang and Fernandez 2013, Fernandez, Schmitt-Grohe, and Uribe 2017)

THE BIG QUESTIONS

- In developing economies, also, the long term behavior of commodity prices is central because of its close connection to the Prebisch-Singer hypothesis of a secular deterioration of the terms of trade
- 1. Prebisch's ideas "gave rise to heterodox notions about asymmetries in the global economic system, unequal exchange between the center and the periphery, dependencia theories, and economic structuralism" (Irwin 2020)
- 2. Enourmous policy impact: import substitution


DEFINING THE COMMODITY SUPER CYCLE

• Price of a commodity:

$$p_t^i = \hat{p}_t^i + X_t^p$$

- X_t^p a **common "stochastic trend"**, stationary in differences (i.e. $\Delta X_t^p = X_t^p X_{t-1}^p$ stationary)
- \hat{p}_t^i stationary, function of own lags, the **trend component** ΔX_t^p , and stationary shocks z_t^p
- (Plus a constant, which adds a drift that is a function of time...
- ...one can argue that it is that drift which corresponds to the Prebisch-Singer hypothesis)

WHAT THE SUPERCYCLE LOOKS LIKE

Notes. The permanent component of the eleven real commodity prices, X_t^p is computed by Kalman smoothing using the posterior mean of the parameter estimates. The thin solid lines are the eleven observed real commodity prices (beverages, food, agricultural raw materials, fertilizers, metal and minerals, gold, platinum, silver, coal, crude oil, and natural gas). All time series are constructed as sumulated demonand growth rates

Table 2: Percent of Variance of the Growth Rate of Real Commodity Prices Explained by ΔX^p_t

Price of	Mean	Std. Dev.
Coal	26	3
Crude Oil	60	2
Natural Gas	20	3
Beverages	11	1
Food	21	2
Agr. Raw Materials	20	3
Fertilizers	33	2
Metal and Minerals	30	2
Gold	30	2
Silver	28	2
Platinum	19	1
Mean across prices	27	2
Median of prices	26	2
Real Rate	15	8

WHAT DRIVES THE SUPERCYCLE?

Not the main objective of the paper, but it may be worth thinking about. "Obvious" candidates:

1. Oil

2. Big financial regime changes (collapse of Bretton Woods; the Global Financial Crisis)

IMPACT OF SUPERCYCLE

 For each country, GDP is decomposed into a trend and a stationary component:

 $y_t^i = (X_t^i + \alpha_i X_t^p) + \hat{y}_t^i$

• The stationary component given by

$$\hat{y}_t = \sum_{i=1}^4 B_{yp}^i \hat{p}_{t-i} + \sum_{i=1}^4 B_{yy}^i \hat{y}_{t-i} + C_{yX^p} \Delta X_t^p + C_{yz^p} z_t^p + C_{yX} \Delta X_t + z_t,$$

MAIN FINDINGS

1. World vs Home shocks: World wins

2. Transitory vs Permanent: Transitory wins

	Shock			
Country	ΔX_t^p	z_t^p	ΔX_t^i	z_t^i
Australia	7	61	1	32
Austria	10	67	1	22
Belgium	8	84	7	1
Canada	10	71	1	19
Denmark	7	65	0	28
Finland	6	68	17	8
France	8	60	1	31
Greece	7	63	30	0
Iceland	5	47	45	2
Ireland	6	42	51	2
Italy	10	74	0	17
Korea, Rep.	11	60	10	20
Luxembourg	10	50	23	18
Mexico	7	71	0	22
Netherlands	8	58	33	1
New Zealand	5	51	36	8
Norway	4	55	19	22
Portugal	13	63	0	24
South Africa	9	61	0	29
Spain	12	69	0	19
Sweden	8	54	0	37
Switzerland	6	62	0	31
Turkey	4	51	0	44
United Kingdom	7	74	1	19
Mean	8	62	12	19
Median	8	62	1	20

	Shock			
Country	ΔX_t^p	z_t^p	ΔX_t^i	z_t^i
Australia	7	61	1	32
Austria	10	67	1	22
Belgium	8	84	7	1
Canada	10	71	1	19
Denmark	7	65	0	28
Finland	6	68	17	8
France	8	60	1	31
Greece	7	63	30	0
Iceland	5	47	45	2
Ireland	6	42	51	2
Italy	10	74	0	17
Korea, Rep.	11	60	10	20
Luxembourg	10	50	23	18
Mexico	7	71	0	22
Netherlands	8	58	33	1
New Zealand	5	51	36	8
Norway	4	55	19	22
Portugal	13	63	0	24
South Africa	9	61	0	29
Spain	12	69	0	19
Sweden	8	54	0	37
Switzerland	6	62	0	31
Turkey	4	51	0	44
United Kingdom	7	74	1	19
Mean	8	62	12	19
Median	8	62	1	20

World shocks account for
 70 percent of output
 variance

	Shock			
Country	ΔX_t^p	z_t^p	ΔX_t^i	z_t^i
Australia	7	61	1	32
Austria	10	67	1	22
Belgium	8	84	7	1
Canada	10	71	1	19
Denmark	7	65	0	28
Finland	6	68	17	8
France	8	60	1	31
Greece	7	63	30	0
Iceland	5	47	45	2
Ireland	6	42	51	2
Italy	10	74	0	17
Korea, Rep.	11	60	10	20
Luxembourg	10	50	23	18
Mexico	7	71	0	22
Netherlands	8	58	33	1
New Zealand	5	51	36	8
Norway	4	55	19	22
Portugal	13	63	0	24
South Africa	9	61	0	29
Spain	12	69	0	19
Sweden	8	54	0	37
Switzerland	6	62	0	31
Turkey	4	51	0	44
United Kingdom	7	74	1	19
Mean	8	62	12	19
Median	8	62	1	20

- World shocks account for
 70 percent of output
 variance
- Permanent shocks account for (only) 20 percent of output variance, or less

	Shock			
Country	ΔX_t^p	z_t^p	ΔX_t^i	z_t^i
Australia	7	61	1	32
Austria	10	67	1	22
Belgium	8	84	7	1
Canada	10	71	1	19
Denmark	7	65	0	28
Finland	6	68	17	8
France	8	60	1	31
Greece	7	63	30	0
Iceland	5	47	45	2
Ireland	6	42	51	2
Italy	10	74	0	17
Korea, Rep.	11	60	10	20
Luxembourg	10	50	23	18
Mexico	7	71	0	22
Netherlands	8	58	33	1
New Zealand	5	51	36	8
Norway	4	55	19	22
Portugal	13	63	0	24
South Africa	9	61	0	29
Spain	12	69	0	19
Sweden	8	54	0	37
Switzerland	6	62	0	31
Turkey	4	51	0	44
United Kingdom	7	74	1	19
Mean	8	62	12	19
Median	8	62	1	20

- World shocks account for
 70 percent of output
 variance
- Permanent shocks account for (only) 20 percent of output variance, or less
- Some interesting outliers (Iceland, New Zealand, Ireland)

INCLUDING DEVELOPING COUNTRIES

 To include developing countries, the empirical analysis must move to annual frequency...

 ...and also aggregate 11 commodity prices into three indices (energy, non energy, metals)

Table 5: Percent of Variance of the Growth Rate of Annual World Prices Explained by ΔX_t^p

Price of	Mean	Std. Dev.
Energy Commodities	98	1
Non Energy Commodities	94	2
Precious Metals	94	1
Mean	95	1
Median	94	1
Real Rate	25	18

Table 6: Variance Decomposition of Output Growth — Annual Data

	Shock			
Country	ΔX_t^p	z_t^p	ΔX_t^i	z_t^i
Mean Emerging	18	32	24	25
Mean Developed	19	48	13	20

 Table 6: Variance Decomposition of Output Growth — Annual Data

	Shock			
Country	ΔX_t^p	z_t^p	ΔX_t^i	z_t^i
Mean Emerging	18	32	24	25
Mean Developed	19	48	13	20

- World shocks still beat home shocks (but by less)
- Transitory still beats permanent (also by less, and tie for EMEs)
- These patterns seem less pronounced for emerging countries

ADDITIONAL DETAILS

• Measures of uncertainty in estimation?

• Implications of drift: balanced growth, Prebisch-Singer

FINAL REMARKS

- Excellent contribution, lots of food for thought
- Paper very well written, technical details clearly explained
- On the whole, reinforces primary role of foreign, stationary shocks for small economies business cycles
- Might want to compare commodity cycles against Rey's global financial cycles
- Discuss drift component and implications for the secular terms of trade hypothesis

MUCHAS GRACIAS Y SALUDOS!!