Sovereign Debt Crises and Floating-Rate Bonds

Mark Aguiar Manuel Amador Ricardo Alves Monteiro

XXIV Annual Conference of the Central Bank of Chile
November 29-30, 2021

The views expressed here are those of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System

Overview

- Sovereign debt markets plagued by numerous "frictions"
(i) No or limited state contingency
(ii) An incentive to "dilute" legacy creditors
(iii) Large deadweight costs to default and lengthy renegotiations
(iv) Vulnerability to self-fulfilling crises
(v) Currency mismatch
(vi) Political economy distortions

Maturity Choice

- Short maturity:
- Provides correct incentives to government regarding fiscal policy
- Minimizes risk of inefficient "fundamental" default
- Long maturity:
- Safety from rollover risk
- Good hedge

Maturity Choice

- Short maturity:
- Provides correct incentives to government regarding fiscal policy
- Minimizes risk of inefficient "fundamental" default
- Long maturity:
- Safety from rollover risk
- Good hedge
- Floating rate bonds
- A happy medium?

Environment

- SOE facing endowment fluctuations
- Trades non-contingent bond with risk-neutral lenders
- Contracts:
- Perpetual youth bonds that mature with probability λ
- Pay coupon κ

Equilibrium Objects

No Rollover Risk

$$
V^{R}(s, b)=\max _{c, b^{\prime}}\left\{\begin{array}{l}
u(c)+\beta \mathbb{E} V\left(s^{\prime}, b^{\prime}\right) \\
\text { subject to: } c=y(s)-(\kappa+\lambda) b+q\left(s, b^{\prime}\right) *\left(b^{\prime}-(1-\lambda) b\right)
\end{array}\right.
$$

$$
\begin{gathered}
V(s) \equiv \max \left\{V^{R}(s, b), V^{D}(s)\right\} \\
q\left(s, b^{\prime}\right)=R^{-1} \mathbb{E}_{s}\left[\left(1-\mathcal{D}\left(s^{\prime}, b^{\prime}\right)\right)\left(\kappa+\lambda+(1-\lambda) q\left(s^{\prime}, \mathcal{B}(\cdot)\right)\right]\right.
\end{gathered}
$$

Short-maturity Bonds

- One-period bonds solve a pseudo-planning problem
- Equilibrium "as if" lender sets fiscal policy
- Absent rollover risk, equilibrium is constrained efficient

Efficiency Logic

- There is no endowment risk
- Suppose $V^{D}(s)$ is a random draw from a distribution with cdf F
- Defaults with probability $1-F\left(v^{\prime}\right)$ where $v^{\prime}=V^{R}\left(b^{\prime}\right)$
- Consider a planner solving a Pareto problem:

$$
\begin{aligned}
& B(v)=\max _{c, v^{\prime}}\left\{y-c+\left(1-F\left(v^{\prime}\right) R^{-1} B\left(v^{\prime}\right)\right\}\right. \\
& \quad \text { subject to: } v=\log (c)+\beta \mathbb{E} \max \left\{v^{\prime}, V^{D}\left(s^{\prime}\right)\right\}
\end{aligned}
$$

Efficiency Logic

$$
\begin{aligned}
& B(v)=\max _{c, v^{\prime}}\left\{y-c+\left(1-F\left(v^{\prime}\right) R^{-1} B\left(v^{\prime}\right)\right\}\right. \\
& \quad \text { subject to: } v=\log (c)+\beta \mathbb{E} \max \left\{v^{\prime}, V^{D}\left(s^{\prime}\right)\right\}
\end{aligned}
$$

- $\operatorname{FOC}(\beta R=1)$:

$$
c^{\prime}=c+\frac{f\left(v^{\prime}\right) B\left(v^{\prime}\right)}{F\left(v^{\prime}\right)} .
$$

- Default risk induces savings

Efficiency Logic

- Result: Planning allocation can be implemented with one-period bond
- Why does government save in equilibrium?
- No precautionary reason
- Strategic default: defaults when V^{D} high
- Key is prices: Government bears entire cost or benefit from marginal change in default risk
- Reflects that all debt is rolled over every period

Variable Rate Coupon

- Index κ to yield on one-period bond

$$
\begin{aligned}
\kappa\left(s, b^{\prime}\right) & =\frac{1}{q_{s}}-1 \\
& =\frac{R}{\mathbb{E}_{s}\left(1-\mathcal{D}\left(s^{\prime}, b^{\prime}\right)\right)}-1
\end{aligned}
$$

- Any change in default risk generates a change in the promised coupon
- Result: Planning allocation can be implemented with floating-rate console

Assessment

- Floating rate coupon provides same incentive as one-period bond
- Maturity irrelevant - all that matters is the government internalizes any change in the probability of default due to fiscal policy
- Lose hedging properties of long-maturity bonds
- Open the door to "Calvo" multiplicity: Need a cap on κ

Adding Rollover Risk

- Add rollover risk as in Cole-Kehoe (2000)
- Failed auction can be self-fulfilling
- Zero price: Need to pay maturing liabilities out of endowment
- Forces government to default
- Maturity is key to vulnerability
- Long-maturity floating rate bonds provide protection and incentives

Quantitative Examples

- Calibration as in Chatterjee-Eyigungor (2012)
- Short- and long-term bonds
- With and without rollover risk (CK vs. EG)

Simulated Moments

FR	EG-ST	CK-ST	EG-LT	CK-LT
			0.015	

$\mathbb{E}\left[\frac{b^{\prime}}{y}\right]$	0.77	0.82	0.38	0.94	0.94	0.87
$\mathbb{E}\left[\frac{q * b^{\prime}}{y}\right]$	0.77	0.82	0.37	0.72	0.72	0.78
Default $^{\prime}$ Rate †	0.002	0.003	0.002	0.067	0.067	0.033
$\mathbb{E}\left[r-r^{\star}\right]^{\dagger}$	0.003	0.003	0.002	0.080	0.080	0.038
$\operatorname{StDev}\left(r-r^{\star}\right)^{\dagger}$	0.004	0.004	0.003	0.044	0.044	0.029
$\mathbb{E} \kappa$	0.011	0.010	0.010	0.010	0.010	0.011
StDev (κ)	0.001	0	0	0	0	0.002
Max κ	0.023	0.010	0.010	0.010	0.010	0.015
Fraction Runs $\dagger=$ Annualized 0.775	0	1.00	0	0.003	0.003	

Simulated Moments

	FR	EG-ST	CK-ST	EG-LT	CK-LT	$\begin{array}{r} \text { FR } \\ \bar{\kappa}=0.015 \end{array}$
$\mathbb{E}\left[\frac{b^{\prime}}{y}\right]$	0.77	0.82	0.38	0.94	0.94	0.87
$\mathbb{E}\left[\frac{q * b^{\prime}}{y}\right]$	0.77	0.82	0.37	0.72	0.72	0.78
Default Rate ${ }^{\dagger}$	0.002	0.003	0.002	0.067	0.067	0.033
$\mathbb{E}\left[r-r^{\star}\right]^{\dagger}$	0.003	0.003	0.002	0.080	0.080	0.038
$\operatorname{StDev}\left(r-r^{\star}\right)^{\dagger}$	0.004	0.004	0.003	0.044	0.044	0.029
$\mathbb{E} \kappa$	0.011	0.010	0.010	0.010	0.010	0.011
StDev (κ)	0.001	0	0	0	0	0.002
Max κ	0.023	0.010	0.010	0.010	0.010	0.015
Fraction Runs $\dagger=$ Annualized	0.775	0	1.00	0	0.003	0.003

Simulated Moments

$$
\begin{array}{lllll}
\text { FR } & \text { EG-ST } & \text { CK-ST } \quad \text { EG-LT } & \text { CK-LT } & \text { FR } \\
& & & \bar{\kappa}=0.015
\end{array}
$$

$\mathbb{E}\left[\frac{b^{\prime}}{y}\right]$	0.77	0.82	0.38	0.94	0.94	0.87
$\mathbb{E}\left[\frac{q * b^{\prime}}{y}\right]$	0.77	0.82	0.37	0.72	0.72	0.78
Default Rate †	0.002	0.003	0.002	0.067	0.067	0.033
$\mathbb{E}\left[r-r^{\star}\right]^{\dagger}$	0.003	0.003	0.002	0.080	0.080	0.038
StDev $\left(r-r^{\star}\right)^{\dagger}$	0.004	0.004	0.003	0.044	0.044	0.029
$\mathbb{E} \kappa$	0.011	0.010	0.010	0.010	0.010	0.011
StDev (κ)	0.001	0	0	0	0	0.002
Max κ	0.023	0.010	0.010	0.010	0.010	0.015
Fraction						
Runs	0.775	0	1.00	0	0.003	0.003
$\dagger=$ Annualized						

Welfare Gains

Vs. Short-term Debt with Rollover Risk

Welfare Gains

Vs. Long-term Debt with Rollover Risk

Pareto Frontier

Vs. Short-term Debt with Rollover Risk

Pareto Frontier

Vs. Long-term Debt with Rollover Risk

Caveats

- Hedging interest rate or risk premia shocks
- Calvo multiplicity
- Italy's experience

