Discussion of "Capital Controls, Domestic Macroprudential Policy and the Bank Lending Channnel of Monetary Policy" by Andrea Fabiani, Martha Lez-Piros, Jose-Luis Peydro, and Paul E. Soto

Bent E. Sørensen

University of Houston

May 13, 2021

Empirical: Does Capital Controls (CC) and Reserve Requirements (RR) amplify the effect of

 interest rates- Very nice empirical paper
- Very rich dataset
- Limited time. I focus on nerdy stuff about regression specifications.

Econometric issues

- Impressive firm-bank dataset, but the main regressor only take 5 observations (quarters after CC/RR imposed).
- Note simple OLS fact: Regression $y_{i t}=\beta X_{t}+e_{i t}$ for demeaned variables gives

$$
\hat{\beta}=\frac{\sum_{t} \sum_{i} x_{i t} y_{i t}}{\sum_{t} \sum_{i} x_{i t}^{2}}=\frac{\sum_{t} x_{t}\left(\sum_{i} y_{i t}\right)}{N \sum_{t} x_{t}^{2}}=\frac{\sum_{t} x_{t}\left(\frac{1}{N} \sum_{i} y_{i t}\right)}{\sum_{t} x_{t}^{2}},
$$

which is a regression with T observations. T is very short. 5 quarters past tightening.

Standard errors not quite believable to me

- OLS works fine in this situation (by LLN $\frac{1}{N} \sum_{i} y_{i t}$ will be right on true regression line if N large, errors i.d.).
- But that independence assumption is shaky here. Acknowledge by using clustered standard errors.
- Cluster by firm and by bank-industry. Why would shocks/noise not be by bank? Argues, number of bank too low (40). Rule of thumb is 50, but not set in stone.
- At very least show cluster by bank. Maybe only do this.
- Could model the correlation parametrically using few degrees of freedom. (Or e.g. aggregate to bank-level.)

Controls

- Many controls, so by Frisch-Waugh theorem, de facto regressor will be " i, t " because the coefficient are determined by residuals from regressing on controls.
Controls should be discussed.
- regressions have form (simplified)

$$
\text { loans }_{f, b, t}=\text { controls }+\beta_{1} * i_{t}+\beta_{2} * \text { Post } * i_{t}+\text { error } .
$$

A negative significant coefficient is interpreted as interest rate ("monetary policy") is now effective. But β_{1} is impact before tightening and $\beta_{1}+\beta_{2}$ is impact after tightening.

- Actually interest rate lagged one period, why? (slow moving variable).

More on specification

- Strange that in many specifications β_{1} is positive.
$>$ Reverse causality? Omitted variable? Can we ignore this?

More worrisome? In many specifications the estimated value of $\beta_{1}+\beta_{2} \approx 0$. No effect?
$>$ Higher interest rate leads to higher lending before tightening? I assume this is due to omitted variables. But then do those become non-omitted after tightening?

- Discuss main result a lot more before moving to potential mechanism.

Mechanism

- Regressions of bank-firm lending over time as function of FX-funds ${ }_{b, t-1}{ }^{*}$ Interest $^{S_{p r e a d ~}^{t-1}}$ (to U.S.).
- As before, the post effect is the sum of coefficients that will not be significant. Strange?
$>$ Why switch from interest to spread if testing mechanism from previous (can control for U.S. rate).

Mechanism 2

- Does FX-funds ${ }_{t} \times$ interest $^{\text {rate }}{ }_{t}$ capture role of interest for given FX-funds?
> Maybe captures role of FX-funds for given rate of interest? (If subtract aggregate level from bank
FX-funds before interacting, then that is unlikely.)
$>$ In general, interpretation easier if demean variables before interacting (Ozer-Balli and Sørensen, "Interaction Effects in Econometrics." Empirical Economics, 2013).
> Can think of each panel variable as the sum of an aggregate component and an agent specific component.
Which matters?
> Are FX-funds randomly assigned to banks? Worry?
Why not use start of sample pre-determined values?

More on macro controls

- OK to include Δi_{t} and $\Delta^{2} i_{t}$ when i_{t} is regressor of interest?
> The logic of the discussion, as I read it, is that it this about the effect of Δi_{t} pre- and post- tightening. i_{t} is good if it is stationary, not very persistent, so it moves about. But that is not the case, the interest rate hardly changes.
> Should Post be interacted with change in interest rate?
> Can hardly-changing interest rate after tightening capturing efficiency of interest rate policy?

Mechanism

- Regressions with large number of interactions. Some terms get hard to interpret.
- Main: Regressions of bank-firm lending over time as function of FX-funds*Interest Spread (to U.S.).
$>$ FX normalized by assets. Pick up variation in denominator? Use average or inititial assets?

Banks with more deposits affected more post tightening?

- Interact deposits with Post variable.
- Are these variables correlated with FX? (Correlation matrix would be good. Esp. correlations after fixed effects removed).
$>$ Role of aggregate component as before (demean FX level each period)?

"Horse Race" between RR and CC

- One regression with Post interaction with 1) FX,

2) Savings Deposits, and 3) Checking Deposits

- FX wins.
- Splitting deposits into two parts that are highly correlated(?) is unfair to RR?
$>$ Again: FX_{t}, Deposits exogenous? Bank vs. aggregate $^{\text {ent }}$ component in interaction.

Stronger lending contraction for risky firms

- Regressions separately for firms sorted into quarters by risk measure.
- Stronger contractions/interest rate effect for more risky firms.
- Somewhat hard to know what is going on.
$>$ All fixed effects etc. re-estimated by risk group.
$>$ What if this is pooled?
- What about heterogeneity by bank in terms of risk portfolio?

Conclusions

- Interesting paper. Rich data. Some of the many results may be a bit hard to interpret.
- I would do different types of robustness tests.
- A bit overwhelming number of numbers in main text. Maybe use appendix for some.
- Some more theoretical background, maybe in form of a "toy-model" would help to fix ideas.

