Motivation/Question

Bank FX hedging and the impact on covered interest parity, an Emerging Market perspective

Georgia Bush

Banco de México

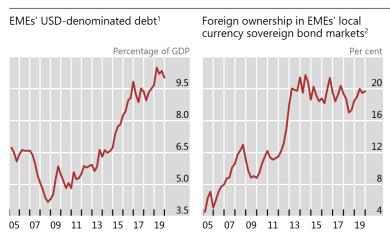
May 13, 2021

Disclaimer: The views in this presentation are those of the author and are not necessarily reflective of views at the Banco de México.

- 1. Motivation & Research Question
- 2. Data & Methodology
- 3. Results: EM 10 panel
- 4. Results: Mexico
 - System as a whole
 - Global banks
- 4. Conclude

Mexico

Motivation & Research Question

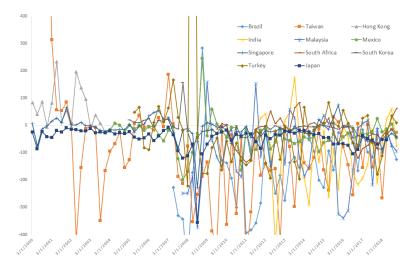

External vulnerabilities

- since the global financial crisis, banks and firms increasingly using external funding sources
- EMEs have mostly flexible exchange rate regimes
- bank (or firm) negative balance sheet effects from currency depreciation
- -> a need to hedge currency exposures

Financial stability policies: restrictions on bank currency mismatch, the banks use hedging to manage their foreign currency core balance sheet

EMEs Exposure to the US dollar

Median values



Source: BIS Quarterly Review, December 2020

Aim of this paper:

- i) Document deviations in EME Covered Interest Parity (CIP)
- ii) Does resident bank behavior have an impact on the deviations, and
- iii) Are there offsetting forces at work (foreign investors, arbitrageurs)

Emerging market CIP deviations for EM10 (3m, USD)

Source: Bloomberg, author calculations

Estimate econometric model of $b = g(Hedge, \mathbf{X})$, for a panel of emerging economies and a Mexico case study

- evidence that resident banking sector widens CIP deviations, even net of foreign investor hedging
- evidence that global banks are driving this effect
- mixed evidence on arbitrageur constraints

Contribution:

Motivation/Question

-focus on emerging economies, arguably more vulnerable -exploits micro data for Mexico to test effect of foreign hedging demand, and global bank hypothesis (Bank level balance sheet data, FX derivatives transactions by counterparty)

Data/Methodology

Related literature (in brief)

- Ivashina, Scharfstein and Stein (2015) "Dollar funding and the Lending Behavior of Global Banks", Quarterly Journal of Economics
- Brauning and Ivashina (2019) "US monetary policy and emerging market credit cycles", Journal of Monetary Economics
- Bruno and Shin (2015) "Capital flows and the risk-taking channel of monetary policy", Journal of Monetary Economics
- Du, Tepper, Verdelhan (2018) "Deviations from Covered Interest Rate Parity", The Journal of Finance, June 2018
- Dagfinn, Schrimpf, Syrstad (2017) "Segmented money markets and covered interest parity arbitrage", BIS Working Papers No. 651
- Borio, McCauley, McGuire, Sushko (2016) "Covered interest parity lost: understanding the cross-currency basis", BIS Quarterly

Motivation/Question

- -CIP deviations: need risk free interest rate and interest rate implied in forward market for same tenor
- -construct hedging measures for
 - resident banking sector (whole system, global banks)
 - foreign investors
- -measures for transaction costs, and arbitrageur constraints as highlighted in AE literature: relative funding for arbitrage trades, balance sheet costs (counterparty and market risk)
- -regression analysis that addresses potential endogeneity of hedging, stationarity issues, country heterogeneity, and auto-correlation

Empirical model, panel setting

$$b_{i,t} = \alpha_i + \beta_1 Hedge_{i,t} + \beta_2 \mathbf{X_{i,t}} + \epsilon_{i,t}$$

 $-b_{i,t}$, CIP deviation for country i CIP details

Data/Methodology

- $-\alpha_i$, country fixed effect i
- $Hedge_{i,t}$, variable of interest: hedging measures
- X_{i,t} includes other potential drivers of CIP deviations:
 - transaction or liquidity costs
 - relative funding conditions
 - arbitrageur balance sheet constraints
 - Counterparty risk
 - Market risk for foreign currency collateral

Hypothesis:

 β_1 significant (resident banks vs foreigners, opposite sign) Alternative: Hedge has no identifiable effect.

Motivation/Question

- Endogeneity of bank hedging and foreign hedging: estimated using IV 2SLS, instruments are lagged values
- relax homoscedastic errors assumption (variances of market variables versus balance sheet variables likely vary)
- allow for autocorrelation, persistence over time (monthly frequency, end-month value)
- test for stationarity, first difference if unit root suspected
- in panel setting:
 - country heterogeneity: country fixed effect, country factors (financial centers, global bank presence)
 - country outliers, crisis years Country details

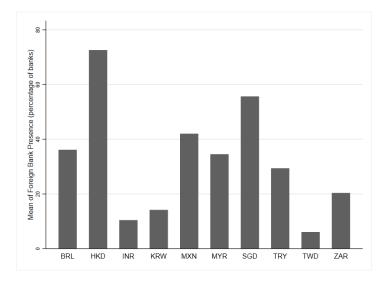
Data

- $-b_{i.t}$, cross-currency basis (Bloomberg)
- $Hedge_{i.t}$
 - resident banking sector USD core assets liabilities (Banking statistics from the BIS)

EM 10 panel

- Global banks USD core assets liabilities (Banxico)
- FX derivative position with foreign counterparties (Banxico)
- X_{i.t} (Bloomberg data)
 - bid ask spreads in the spot and forward markets
 - relative repo funding costs
 - arbitrageur balance sheet constraints
 - Counterparty risk, LIBOR-OIS spread
 - Market risk, FX Implied Volatility

EM10 panel: unbalanced, March 2000-December 2008 Mexico: July 2013- November 2017


Mexico

Data/Methodology

	(1)	(2)
Hedge, Resident Banks	-0.0214*	-0.0209*
	(0.0115)	(0.0114)
Bid-ask spreads	-1.142	1.019
	(14.57)	(16.38)
FX Implied Vol		0.906
		(1.569)
Observations	516	516
Adjusted R^2	0.176	0.175
\mathbf{F}	10.38	9.768

^{*} p < 0.10, ** p < 0.05, *** p < 0.01. HAC robust standard errors. Country fixed effects, excluding 2000, 2008.

Foreign bank presence, period avg % of total number of banks

Source: The World Bank

EM10: Resident bank hedging effect on 3-month CIP deviation: financial sector heterogeneity

	(1)	(2)	(3)	
Hedge, Resident banks	-0.0209*	0.0334	-0.0131	
	(0.0114)	(0.0416)	(0.0207)	
Financial Center	159.3***	143.6***		
	(26.51)	(31.53)		
$Hegde \times Financial Center$		-0.0706*		
		(0.0424)		
Foreign Banks, no. as pct. of total			-4.808**	
			(1.993)	
Observations	516	516	316	
Adjusted R^2	0.175	0.179	0.225	
F	9.768	11.32	6.963	
* $p < 0.10, *** p < 0.05, **** p < 0.01$. HAC robust standard errors.				
Country fixed effects, excluding 2000, 2008.				

EM panel results:

Evidence that

- bank hedging needs have a direct impact on CIP deviation,
- foreign bank presence is relevant, and

Data/Methodology

• arbitrageur variables weak

Why using micro data is essential:

- test directly the impact of foreign banks, versus that of the system as a whole
- test the effect of foreign investors on FX hedging

Mexico

- i) confirm the bank hedge effect on CIP deviations
- ii) test the importance of arbitrageur variables
- iii) test whether foreign counterparties offset the bank effect
- iv) test for global bank effect

Since the 1990s, in Mexico the currency mismatch policy: $|A_{USD} - L_{USD}| < 15\% * Tier1Capital$

Mexico, Resident bank hedging needs and CIP deviations

	$3\mathrm{m}$	$1 \mathrm{m}$	$3\mathrm{m}$	$6\mathrm{m}$
Bid-ask spreads	-0.166	-0.181	-0.062	-0.134
	(0.115)	(0.110)	(0.104)	(0.098)
Relative Repo	-0.007	0.034	-0.058	-0.042
	(0.121)	(0.108)	(0.123)	(0.092)
LIBOR_OIS	-0.225*	-0.055	-0.206*	0.001
	(0.133)	(0.083)	(0.106)	(0.158)
FX Implied Vol.	0.087	-0.058	-0.117	0.187
	(0.116)	(0.119)	(0.125)	(0.154)
Hedge, Domestic Banks		-0.357*	-0.603***	-0.514**
		(0.216)	(0.201)	(0.201)
Observations	53	51	51	51
Root Mean Sqrd. Error	0.971	0.933	0.915	0.807
H0:exogeneity		0.81	0.17	0.26
p-values				

^{*} p < 0.10, ** p < 0.05, *** p < 0.01. HAC robust standard errors. Hegde, Res. Bank instrumented by 1st and 2nd lags.

	$3 \mathrm{m}$	$1 \mathrm{m}$	$3\mathrm{m}$	$6\mathrm{m}$
Transaction Cost	-0.166	-0.087	0.071	0.029
	(0.115)	(0.103)	(0.114)	(0.101)
Relative Repo	-0.007	0.038	-0.102	-0.011
	(0.121)	(0.110)	(0.103)	(0.080)
LIBOR_OIS	-0.225*	-0.035	-0.150	-0.134
	(0.133)	(0.070)	(0.122)	(0.113)
FX Implied Vol.	0.087	-0.107	-0.109	0.111
	(0.116)	(0.127)	(0.139)	(0.118)
Hedge, Foreign		0.596***	0.771***	0.738***
		(0.151)	(0.184)	(0.181)
Observations	53	49	49	49
RMSE	0.971	0.858	0.754	0.629
H0:exogeneity		0.33	0.24	0.28
p-values				

^{*} p < 0.10, ** p < 0.05, *** p < 0.01. HAC robust standard errors. Hegde, Foreign instrumented by its 3rd and 4th lags.

Conclusion

	(1)	(2)	(3)	(4)
	System	Global	Sys. excl. Global	Agg. Hedge
Hedge	-0.603***	-0.727***	-0.156	-0.480***
	(0.201)	(0.193)	(0.110)	(0.159)
Bid-ask spreads	-0.062	-0.045	-0.004	0.058
	(0.104)	(0.104)	(0.121)	(0.133)
RelRepoFF	-0.058	-0.067	-0.211	-0.107
	(0.123)	(0.118)	(0.134)	(0.122)
LIBOR_OIS 3M	-0.206*	-0.177*	0.056	-0.148
_	(0.106)	(0.106)	(0.115)	(0.138)
FX Implied Vol.	-0.117	-0.296**	0.153	-0.293
	(0.125)	(0.121)	(0.170)	(0.200)
Observations	51	52	53	49
Root Mean Sqrd. Error	0.915	0.870	0.925	0.824

^{*} p < 0.10, ** p < 0.05, *** p < 0.01. HAC robust standard errors. Aggregate Hegde, defined as Global resident bank - Foreign hedging. Aggregate Hegde is instrumented by its 4th lag, passing exogeneity tests.

Mexico, Interacting Agg. Hedge with arbitrageur balance sheet costs

	(1)	(2)	(3)	(4)
LIBOR_OIS 3M	-0.214*	-0.212**	-0.185**	-0.229**
	(0.107)	(0.097)	(0.087)	(0.103)
FX Implied Vol.	-0.133	-0.142	-0.137	-0.101
	(0.096)	(0.085)	(0.086)	(0.100)
Agg Hedge	-0.303***	-0.298***	-0.294***	-0.327***
	(0.058)	(0.054)	(0.052)	(0.076)
$AggHedge \times LIBOR_OIS$	-0.025		0.053	0.083
_	(0.054)		(0.045)	(0.056)
$AggHedge \times FX$ Implied Vol.		0.113***	0.140***	0.150***
		(0.033)	(0.038)	(0.040)
Triple Interaction				-0.080
				(0.075)
Observations	53	53	53	53
Adjusted R^2	0.271	0.319	0.311	0.305
Root Mean Sqrd. Error	0.846	0.818	0.822	0.826

^{*} p < 0.10, ** p < 0.05, *** p < 0.01. HAC robust standard errors.

Aggregate Hedge defined as Resident bank - foreign hedging.

Summarizing Mexico results

Resident bank Hedging associated with deviation from CIP at short end

- 1. Resident bank hedging,
- Estimated impact on the 3-month basis: -19.54, (1 s.d. increase in Hedge, CIP deviation wider by 0.603 s.d.s)
- 2. Foreign hedging, Estimated impact on the 3-month basis is 24.10, (1 s.d. increase in Hedge, CIP deviation narrower by 0.771 s.d.s)
- 3. Global banks driving the effect
- 4. Arbitrageur constraints, inconclusive
- -joint tests: yes, these variables matter
- -interactions model: mixed evidence

• bank hedging needs affect the cost of hedging, evidence that global banks driving this

EM 10 panel

- arbitrageur constraints don't seem of first order importance
- changes to foreign participation are relevant

Caveats:

- Data frequency
- Currency in isolation vs. overall balance sheet
- Other regulatory effects, ie non-FX related

Thank You

 $CIP\ deviation\ measure = cross\ currency\ basis\ b:$

Forward market implied rate (synthetic) minus observed risk free rate (cash)

Derived by the standard covered interest parity equation,

$$(1 + r_{t,m}) + b_m = (1 + r_{t,m}^*) \frac{F_{t,m}}{S_t}$$

where b is approximately 0 under CIP.

1. Foreign FX derivatives endogeneity with CIP deviation: Evidence of reverse causality for contemporaneous values

-> Instrument:

-exclusion restriction satisfied for lagged values (L.3, L.4, L.5)

	Endogeneity ¹	$Overidentification^2$
No. of instruments	H0:exogeneity	H0:well-identified
3	0.47	0.04
2	0.23	0.15
1	na	0.11

Results reported are with IV 2SLS with 2 instruments: L.3 and L.4

2. LIBOR_OIS spread endogeneity with CIP deviation: Hausman augmented regression tests: passed with p-values from 0.48 to 0.58

 2 Wooldridge

¹Hausman augmented regression test