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Introduction

@ Recent literature on BigData & Nowcasting .

@ Role of Big Data from Financial Transactions including:

o Consumer-to-Individual Transactions Consumption to mimic Consumption
o Consumer-to-Individual + Firm-To-Firm Transactions to mimic Investment.

@ Test: Out-of-Sample errors of Big Data information in Nowcasting
e Standard Linear Models (DFM, BVAR)

e Machine Learning: Linear Non-Linear Models (Linear, Random Forest Gradient Boost)
using Bridge Equations

@ Results
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Recent Literature

@ Developing higher frequency models (Weekly/Daily Economic Indexes by Cen-
tral Banks).

FED Weekly Economic Index (Lewis Stock, 2020)
BundesBank Weekly Activity Index (Eraslan and Gozt,2020)
Central Bank of Portugal Daily GDP (Lourenco and Rua, 2020)

@ Developing New Big Data Indicators: (Banking Transactions, Mobility. . .)

A. B. Barlas (1),5.

Financial Transactions

@ Alternative Sources for US. Cards PoS: Chetty et Al (2020).

@ Developed and EM countries. Cards PoS: Carvalho et al (2020).
@ Consumption including Cards Other Transfers (2021).

Other

@ Mobility indicators (Woloszko,2020)...
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cardholders

Garanti BBVA Transaction Data: Card & Money Transfers

659 Mill

transactions

Table 1 Investment Firms Statistics: Garanti BBVA vs Central Bank of Turkey (CBRT) & Turk-

stats Survey

Garanti BBVA CBRT-Turkstat
Variable Tot. Machinery Constr. | Tot. Machinery Constr.
Transactions(000s) | 24.6 22.3 2.3
Amount(US Bn) 308 280 28 440 257 183
Firms(000s) 179.7 156.5 232 | 730.2 614.4 115.8
Firms(% CBRT) 24.6 25.5 19.8

Source: Garanti Bank and CBRT- Turkstat Survey.
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Cross Validation: BigData Consumption & Investment

Big Data Consumption & Investment vs National Accounts
(1Q-2015 to 2Q-2021, % YoY)

Aggregate Consumption Consumption Goods Consumption Services

Mar-15

—Big Data — Official Data

—Big Data — Official Data —Big Data — Official Data
Source: Own Elaboration & Turkstat

A. B. Barlas 1S, Guler @), B. Orkun ), A. Ortiz @), T. Rodrigo @ B

Big Data Information & Nowcasting:



Results by Assets in Real Time & High Definition (Provinces

Figure 3 Big Data Investment Sectoral HeatMap
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Figure 4 Big Data Regional Investment Maps
(% Yo Light Colours stand for positive growth rates and Dark Colours for negative rates)
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Methodology: Testing BigData in a Horse Race of Models

@ A Horse Race including Bridge Linear (OLS) and Non-Linear Bridge equation
models (Random Forest (RF) & Gradient Boost (GB)) , Dynamic Factor Mod-
els (DFM), and Bayesian Vector Autoregressive models (BVAR) to nowcast
GDP YoY growth rates.

@ While DFM can deal with the missing data at the start of the dataset, we need
to have a balanced dataset to estimate Bridge Equation models and BVAR.

@ As our dataset is highly unbalanced, we follow Stekhoven and Biihlmann
(2012) to fill out the missing data at the beginning of the dataset.
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Data included in the Model

Table 2 Detail of Variables Included in the Nowcasting Models

Variable Type Frequency StartDate Transformation
GDP Hard Quarterly 2003 YoY Growth
Industrial Production Hard  Monthly 2006 YoY Growth
Auto Imports Hard  Monthly 2006 YoY Growth
Auto Sales Hard  Monthly 2003 YoY Growth
Auto Exports Hard  Monthly 2006 ‘oY Growth
Non Metalllic Minerals | Hard  Monthly 2006 YoY Growth
Electricity Production Hard Daily 2003 YoY Growth
Number of Employed Hard  Monthly 2006 YoY Growth
NUmber of Unemployed | Hard  Monthly 2006 YoY Growth
PMI Soft Monthly 2006 Level
Real Sector Confidence Soft  Monthly 2003 Level
Loans (Credit) Hard  Weekly 2006 Ann 13-week Growth
Big Data Consumption | Hard Daily 2015 YoY Growth
Big Data Investment Hard Daily 2015 YoY Growth

Source: Own Elaboration
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Description of Models: Linear and Non-Linear Bridge Equations

e Monthly Vector: X, = (X1,t,, X2.tss - s Xnt) s tm = 1,2,..., Ty as n
monthly standardized explanatory variables.

o Quarterly Vector: x;, = (X1,¢,, X0,t,5- -5 Xnt,)  tq = 1,2,..., Tq, by taking
simple averages of x;,. Missing data for the reference quarter(s) will be filled
by an AR(p) model (p chosen according to AIC)

@ The Linear & Non-linear function between the Output y;, and the Input x;,
will be given by g():

ye, = 8(xe,) + ¢, (1)

@ Where g() defines a linear (OLS) or or a nonlinear functional form random

forests (RF) and gradient boosted decision trees (GBM).
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Description of Models: Dynamic Factor Models (DFM)

@ We model the DFM with idiosyncratic components ¢; ; as:
Xt = N, + €t
€, = €y, 1+ Ve, Ve, ~ i.i.d. N(0,0°),

@ The unobserved common factors vector f; evolves as:

fon = (L) et + Mt Mt ~ ii.d- N(0, R),
@ We transform to quarterly GDP growth rates by:
Vo = Mol fiafy o] +
e =a% [+ 72 vl ~iid N(0,5%),
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Description of Models: BVAR

° Yt(,?,, denotes a partially observed monthly counterpart of GDP growth rates
that can only be observed in the third month of the respective quarter and
linked its unobserved monthly counterpart as follows:

1
ytﬁ = g(Xt?,, + Xtc,,)q—l + Xt(i_z)~ (7)

@ We assume xt?nM follow a VAR(p) process as:
xt, = o(L)xe, 1+ g, ; U, ~i.d.d. N(0,X), (8)
@ The BVAR's state-space transition and measurement equation evolves as:

Ztm =T + |_|Ztm_1 + Ctm; Ctm ~ Ild N(O, Q), (9)
Xtm = MtO{Ztm (].O)
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Nowcasting Performance: Mean Absolute Errors (MAE)

2020Q3 .
MAE® = (1/n) Y |, - 9P i=12,...5.
1,=2016Q1

Table 3 MAESs of the models for successive nowcasting horizons between 2006Q1 and 2020Q3

AR DFM BVAR LM RF GBM
1st Nowcast 3.71 1.92 1.77 3.46 2.60 3.13
2nd Nowcast 3.71 1.85 2.29 3.07 2.32 2.55
3rd Nowcast 3.80 1.72 1.52 1.70 1.53 1.71
4th Nowcast 3.80 1.58 1.45 1.42 1.74 1.83
5th Nowcast 3.80 1.38 1.64 1.46 1.65 1.49

Abbreviations: AR, the benchmark autoregressive model; DFM, the dynamic factor model; BVAR, the
Bayesian vector autoregressive model; LM, the linear bridge equation model; RF, the random forest based

bridge equation model; GBM, the gradient tree boosted bridge equation model.
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Nowcasting Performance: Alternative Models vs Official

Figure: Alternative Models vs Official(2006Q1 to 2020Q3)

1st Nowcast 2nd Nowcast
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3rd Nowcast

Source: Own Elaboration
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Nowcasting Performance: Combination vs Individual Models

Table 4 MAEs of nowcasting combinations for successive nowcasting horizons between 2008Q2

Figure: MAE for Alternative Models (2008Q1 to 2020Q3)

and 2020Q3
Averaging Models* **Individual Nowcasting Models

Simple Median RPW Rank DFM BVAR LM RF GBM
1st Nowcast 2.67 3.29 2.53 2.30 2.01 2.16 4.37 3.18 4.20
2nd Nowcast 2.03 2.40 1.95 1.89 2.09 2.65 3.40 2.20 2.69
3rd Nowcast 139 1.65 1.32 1.34 1.92 1.95 1.99 1.80 1.68
4th Nowcast 1.44 1.43 1.44 1.45 1.59 1.57 1.22 2.06 1.88
5th Nowcast 1.36 1.43 1.38 143 148 1.82 1.44 1.77 L.75

*Averaging Models: Simple Averaging (Simple), Median (Median), Relative Performance Weight (RPW) , Rank based Weight (Rank)
**Individual Models: Dynamic Factor Model (DFM), Bayesian VAR (BVAR) , Bridge Linear (LM), Bridge Random Forest (RF), Bridge Gradient Boost Model (GBM)

Source: Own Elaboration
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Nowcasting Performance: Pre Selection of Variables (Lasso)

Figure: MAE for Models with Pre-Selection of Variables (2006Q1 to 2020Q3)

AR DFM BVAR LM RF GBM
1st Nowcast 3.71 2.52 2.17 3.24 2.81 3.47
2nd Nowcast 3.71 2.15 1.45 2.63 2.07 2.57
3rd Nowcast 3.80 1.72 1.64 1.36 1.48 1.62
4th Nowcast 3.80 1.73 1.38 1.28 1.73 1.76
5th Nowcast 3.80 1.64 1.36 1.08 1.56 1.56

Individual Models: Dynamic Factor Model (DFM), Bayesian VAR (BVAR) , Bridge Linear (LM), Bridge Random Forest (RF), Bridge Gradient Boost
Model (GBM)
Source: Own Elaboration
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BigData & Nowcasting:Variable Selection (Linear & Non-Linear

Table 7: Selection Ration by Linear Model (Lasso)

(% Periods variables chosen by Linear Model (Lasso))

Name Selection Ratio
i 100.0%
Car Imports 0.0%
P . N
Ei ;;fﬁuscli:' Non-Metallic Minerals 91873«71“ Figure 6 Big Data Investment and Consumption variables selection by Lasso Regression
Electricity Demand 18.3%
Number of Employed 8.3%
Number of Unemployed 15.0%
Car Exports 0.0%
PMI 98.3%
Total Loans 13week 83.3%
Real Sector Confidence Index 100.0%
Big Data Consumption 55.0%
Big Data Investment 68.3%

L ]
Table C1: Selection Ration by Non-Linear Model (RF)

(% mean decrease in MSE calculated from out-of-bag sample in Random Forest Model)

Name Selection Ratio
P 17.4%
Car Imports 0.2%
Ind. Production Non-Metallic Minerals 11.2%
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Contribution BigData to Nowcasting: Models & Periods

Mean Absolute Error Difference (MAED): Traditional Information vs Big Data

MAED® = MAE®) - MAEY,: i=1,2..5.

RD: Models without Big data

Table 8 MAEDs of the models for successive nowcasting horizons between 2006Q1 and 2020Q3

Linear Models Non-Linear Models
DFM BVAR LM RF GBM
1st Nowcast 0.09 0.57 0.39 0.51 0.28
2nd Nowecast 0.09 -0.60 0.26 0.22 0.03
3rd Nowcast 0.07 -0.13 0.01 0.12 -0.04
4th Nowcast 0.06 0.11 0.00 0.02 -0.29
5th Nowcast 0.05 -0.01 0.06 -0.20 0.01
Abbreviations: DFM, the dynamic factor model; BVAR, the Bayesian vector au-
toregressive model; LM, the linear bridge equation model; RF, the random forest

based bridge equation model; GBM, the gradient tree boosted bridge equation model.
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Contribution BigData to Nowcasting: Time Advantage

Table A.1 Announcement days and delays of the monthly variables Figure 7 Daily MAEs of equally weighted nowcast combinations between 2006Q1 and
202003
Name Announcement Lag in | Announcement;
Months Day . Nowcast 1m Nowcast 2m Nowcast 3m Backcast 4m Backcast 5m
Industrial Production (IP) 2 13 g
Car Tmports 2 15 .
IP Non Metallic Minerals 2 13 .
Car Sales 2 15
Electricity Demand 0 30
Number of Employed 3 12
Number of Unemployed 3 12 25
Car Exports 2 15
Manufacturing PMI 1 1 gch'a'
Total Loans 13weck 1 10 20 il
Real Sector Confidence Index 0 26
Big Data Consumption 0 Daily Big Data Advantage
Big Data Investment 0 Daily .

Source: Own Elaboration through Turkstat, OSD, Markit, CBRT and own Big Data

* We run the models on daily basis assuming that big data variables are released daily but the rest of variables are announced at a specific date as shown in Table A1. For the sake of
simplicity, we assume that each month consists of 30 days and calculate nowcasts for the reference quarter for 150 days until GDP is announced.Instead of showing each model
individually, we take simple averages of all models' nowcasts.
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Conclusions

e Financial Transactions” BigData improve accuracy of Nowcasting models in
Turkey. It is useful more than 50% of the time (even with prevalence).

@ The contribution is more relevant during the first 45 days (when Hard relevant
Data is scarce) and uncertain crisis times.

@ The Standard Nowcasting Models as Dynamic Factor Model (DFM) & Bayesian
VARs (BVAR) appears to be a good alternative model even in a volatile en-
vironment (Turkey has been exposed to relevant shocks during last 4 years).

@ Nowcast combination outperform most of the single models in many cases
but not in short term.Non-Linear Models will be more useful during shocks
and Turning Points.
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