"Volatility and Pass-Through" by David Berger and Joseph Vavra

> Discussion by Carlos Carvalho PUC-Rio

> > Central Bank of Chile August 2014

- Time-variation in the reponse of inflation to nominal shocks
- Documenting of such time variation has been model-based ("indirect")
- Use BLS micro data to document such time variation
- Dispersion of price changes varies over time; FX pass-through varies over time
- Positive correlation between dispersion of price changes and FX pass-through
- Use model to interpret "model-free" evidence

- Confidential BLS micro data on import prices, collected on monthly basis: 1994–2011. Voluntary confidential surveys.
- Target Universe: all items purchased from abroad by US residents. Item is defined as unique combination of a firm, a product and a shipping country.
- 10,000 imported goods. Prices collected FOB. \approx 90% of US imports have reported price in dollars.
- Sample: exclude intrafirm transactions; exclude goods that show no price change; exclude goods for which prices are not in dollars; excludes petroleum.

- Two measures of price dispersion
- Item-Level: dispersion of all non-zero price changes for item j across time. $DI_j = disp(\Delta p_{i,t}|i=j) = std(\Delta p_{i,t})$
- Month-Level: Fix month and calculate the dispersion of price changes across all items. $DM_k = disp(\Delta p_{i,t}|t=k) = IQR_t$.

Regression:

$$\Delta p_{i,t} = \beta \Delta_c e_{i,t} + Z'_{i,t} \gamma + \epsilon_{i,t} \tag{1}$$

 $\Delta p_{i,t}$ is log price; $\Delta_c e_{i,t}$ is cumulative change in FX; $Z'_{i,t}$ controls;

• Result: $\hat{\beta} = 0.144^{***}$. When a price changes, it only passes through about 0.14% of a 1% increase in the nominal exchange rate.

- Item-level: Split sample into $std(\Delta p_{i,t})$ quintiles and run regression (1) separetely for each one.
- Month-level: Split sample into IQR_t quintiles and run regression (1) separetely for each one.

- Regressions with continuous measures of price change dispersion (interaction terms)
- Combining regression of item-level and month-level (interactions)
- Restrict sample to a balanced panel (it was not the case before because of sample rotation)
- Split sample into periods of FX appreciation and periods of depreciation
- Alternative pass-through specifications (rolling window, inclusion of lags)
- Restrict sample to items with more than 3, 5 price changes
- Etc.

Time Variation in Pass-Through

- Positive relationship between price dispersion and pass-through generates significant variation at business cycle frequencies.
- Implied time-series for FX pass-through: $M\hat{R}PT_t = \hat{\beta} \times IQR_t$.
- Main Conclusion: Pass-through varies dramatically over time and is strongly correlated w/ price change dispersion.

Pass-Through Estimate (IQR effects)

• Basic flex-price model. Foreign firm selling goods to US importers. Dollar marginal cost $mc_i(e, \eta_i)$ depends on exchange rate (e) and item-specific component orthogonal to exchange rate (η_i) .

$$p_i = \mu_i + mc_i(e, \eta_i) \tag{2}$$

Taking total derivative:

$$\Delta p_i = -\Gamma_i \left(\Delta p_i - \Delta p \right) + \alpha_i \Delta e + \Delta \eta_i \tag{3}$$

where

• $\Gamma_i = \frac{\partial \mu_i}{\partial (\Delta p_i - \Delta p)}$: "responsiveness"; $\alpha_i = \frac{\partial mc_i}{\partial e}$: "import intensity"; $\Delta \eta_i$: idiosyncratic innovation to marginal cost

• Direct effect of a change in exchange rate on prices ($\Delta p = 0$ and $\Delta \eta_i = 0$):

$$\frac{\Delta p_i}{\Delta e} = \frac{\alpha_i}{1 + \Gamma_i} \tag{4}$$

- If marginal cost is entirely denominated in dollars ($\alpha_i = 0$), fluctuations in exchange rate are irrelevant. Pass-through increases with import intensity.
- If $\Gamma_i > 0$, then as the price of the foreign firm increases relative to its competitors, the elasticity of its demand rises, lowering its optimal markup.
- When Γ_i is large, foreign firm will move its price less than one-for-one in response to cost shocks. Therefore, lower Γ_i means greater "responsiveness". This implies a positive relationship between responsiveness and pass-through.

• Also, taking the variance of equation (3), we have:

$$Var\left(\Delta p_{i}\right) = \left(\frac{\alpha_{i}}{1+\Gamma_{i}}\right)^{2} Var\left(\Delta e\right) + \left(\frac{1}{1+\Gamma_{i}}\right)^{2} Var\left(\Delta \eta_{i}\right)$$
(5)

widthheightitemize

Price dispersion increases with volatility of idiosyncratic shock and exchange-rate.

Factors that increase exchange rate pass-through (greater responsiveness), also increase the variance of price changes

- Industry is characterized by a continuum of varities j. Unit measure of US varieties and measure $\omega < 1$ of foreign varieties.
- Variable Markups Kimball (1995) aggregator with demand elasticity σ and markup elasticity ε .
 - Γ_i is increasing in ε and decreasing in σ .
 - Assume variation in Γ_i is solely driven by ε .
- Firm's marginal cost depends on idiosyncratic productivity, A_{jt} (AR(1) in logs) and on the exchange rate $e_t = log(W_t^*/W_t)$ (Random Walk in logs).
- Firms face a menu cost κ when adjusting prices.
- Joint calibration of α , ε and σ_A to match: average level of passthrough, R^2 of regression (5) and average standard-deviation of item-level price changes.

Tuble 6. Turumeter Vulueb			
Parameter	Symbol	Menu Cost Model	Source
Discount Factor	β	$0.96^{1/12}$	Annualized interest rate of 4%
Fraction of imports	$\omega/(1+\omega)$	16.5%	BEA input-output table
Cost sensitivity to ER shock			
Foreign firms	α^*	0.18	Estimation (see text)
U.S. firms	α	0	
Menu cost	κ	4.3%	Estimation (see text)
markup elasticity	ε	2.5	Estimation (see text)
Demand elasticity	σ	5	Broda and Weinstein (2006)
Std. dev. Exchange rate shock, \boldsymbol{e}_t	σ_e	2.5%	Match bilateral RER
Idio syncratic productivity process, \boldsymbol{a}_t			
Std. dev. of shock	σ_A	7.0%	Estimation (see text)
Persistence of shock	ρ_A	0.85	Gopinath and Itshkoki (2010)

Table 8: Parameter Values

State vector: $S_{jt} = (P_{j,t-1}, A_{jt}; P_t, e_t)$. The firm's problem is characterized by the following value functions.

$$V(S_{jt}) = \max\{V^{N}(S_{jt}), V^{A}(S_{jt}) - \kappa\}$$
(6)

$$V^{N}(S_{jt}) = \Pi_{jt}(S_{jt}) + E[Q(S_{jt+1})V(S_{jt+1})]$$
(7)

$$V^{A}(S_{jt}) = \max_{P_{jt}} \{\Pi_{jt}(S_{jt}) + E[Q(S_{jt+1})V(S_{jt+1})]\}$$
(8)

Solution Method: Krussel and Smith (1998) $E_t [\log P_{t+1}] = \gamma_0 + \gamma_1 \log P_t + \gamma_2 e_t.$

Comparative Statics Menu-Cost Model

Given the parameters ε , κ , α , σ_A , consider fixing three of them and varying the fourth. For each set of parameters, simulate a panel of firms and compute MRPT and the standard deviation of price changes as in BLS data.

Mechanisms: κ and σ_A

By definition, estimated coefficient in regression (5) is:

$$\hat{\beta} = \frac{Cov(\Delta p_{i,t}, \Delta_c e_{i,t})}{Cov(\Delta_c e_{i,t}, \Delta_c e_{i,t})} = \beta + Cov(\Delta_c e_{i,t}, \epsilon_{i,t})$$
(9)

- Menu-costs induce Cov (Δ_ce_{i,t}, ε_{i,t}) > 0 because of SELEC-TION! Firms are more likely to adjust when the idiosyncratic shock and the x-rate movement reinforce each other.
- Higher κ lead firms to adjust less often and by larger amounts, thus increasing $\Delta p_{i,t}$. Higher κ also increases selection bias (inaction region widens), which increases MRPT (via β).
- Higher σ_A lowers MRPT because the selection bias is decreasing in σ_A : firms become more likely to adjust based on idiosyncratic reasons. At the same time, higher σ_A increases $\Delta p_{i,t}$, which yields the negative correlation.

Indirect Inference

- It appears that variation in either ε or κ might explain the relationship between MRPT and price change dispersion.
- However, note that variation in κ induces a strong negative correlation between dispersion and adjustment frequency. In the data, on the other hand, such correlation is positive.

Indirect Inference Exercise: allow for permanent firm heterogeneity (not observable by the econometrician).

- Firms can differ by κ , ε and σ_A . Each parameter can take one of two values uniformly distributed around the previous mean.
- Eight different types of firms in the model.
- Solve sectoral equilibrium for each type of firm and simulate firm panel like the BLS data.
- From this simulated panel they calculate some moments, sorting firms into five bins according to price change dispersion.
- Also simulate models where there is heterogeneity in only 2 of those 3 parameters.

Comments

- Very interesting paper
- Striking empirical results
- Discussion of "story"
- Needs some reorganization + polishing, but should fly!

Connecting to other literature

- Literature on non-linearities and time-variation in pass-through (e.g. Shintani et al. 2013, Sekine 2006)
- Different objects:
 - Standard pass-through measure with aggregate data
 - Hence PT depends on frequency of price changes and "responsiveness"
 - E.g., changes in inflation can affect frequency of price changes, and hence "unconditional pass-through"
- But should relate to that literature; explore whether some of the stories behind time-variation in that literature can explain your findings (e.g., non-linearities in the size of the FX change)
- Also, settle on the issue of cyclicality versus time-variation (recessions, business cycle fluctuations)

Nominal-rigidity-free measure

- Argument that measure of pass-through is "nominal-rigidity free"
- Not convinced
- If some nominal rigidities and some strategic complementarities, hard to separate the two even conditional on a price change
- A given extent of pass-through can arise because
 - Adjusting firm cares only some about other firms' prices, but those will change only very infrequently; hence adjusting firm responds to some given extent
 - Adjusting firm cares a lot about other firm's prices, but those will change somewhat more frequently than above; adjusting firm responds to the same extent
- True that without complementarities response should be complete; but in the presense of complementarities they interact with nominal rigidities
- Should discuss how looking only at price changes gets rid of this interaction (I don't think it does)

About the story

- Nice that same mechanism that succeeds in making sense of cross-sectional PT facts in menu-cost model works to account for time-variation
- But idea that structural determinants of degree of strategic complementarities (real rigidities) vary at such high frequencies might be less appealing
- Useful to think about alternative stories
 - Informational stories? Allocation of attention affecting degree of responsiveness?
 - Different dimensions of strategic interactions among price-setting decisions; different composition of shocks over time =>> as if degree of strategic complementarities varied over time