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Abstract

Using time-varying BVARs, we find that oil price increases caused by oil supply disruptions did

not affect food commodity prices before the start of the millennium, but had positive spillover

effects in more recent periods. Likewise, shortfalls in global food commodity supply—resulting

from bad harvests—have positive effects on crude oil prices since the early 2000s, in contrast

to the preceding era. Remarkably, we also document greater spillover effects of both supply

shocks on other commodity prices since the 2000s, as well as a stronger impact on the own price

compared to earlier decades. This (simultaneous) time variation of commodity price dynamics

cannot be explained by the biofuels revolution. Instead, we show that the spillovers are more

likely the consequence of heightened informational frictions and information discovery in more

globalized and financialized commodity markets. Moreover, we provide causal evidence that

these commodity price spillovers significantly pass-through to consumer prices.

Keywords: commodity markets, food prices, oil prices, spillovers, consumer prices.

JEL: E31, F30, G15, Q11, Q41.

Conflict-of-interest disclosure statement

Declarations of interest: none.

?This project received financial support from the Mecenaat portfolio of the National Bank of Belgium and the
Ghent University Special Research Fund (BOF). The funding sources had no involvement in the study design; in
the collection, analysis and interpretation of data; in the writing of the report; or in the decision to submit the
article for publication.

??We thank Christiane Baumeister, Marco Bernardini, Hilde Bjørnland, Fabio Canova, Christian Conrad,
Selien De Schryder, Jonas Dovern, Juan Rubio-Ramirez, James Stock, Carsten Trenkler, and conference/seminar
participants at the 5th HeiKaMEtrics workshop in Heidelberg, the 6th Belgian Macroeconomics Workshop in
Antwerp, the 5th Ghent University Workshop on Empirical Macroeconomics, the 24th Spring Meeting of Young
Economists, the IAAE 2019 Annual Conference, Queen Mary’s second Workshop in Structural VAR models, the
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1. Introduction

As can be observed in Figure 1 (panel A), the global prices of crude oil and food commodities

have experienced dramatic rollercoaster rides in recent decades. Another striking observation

is that the comovement of both prices has varied considerably over time. In particular, panel

B of the figure shows that several measures of time-varying unconditional correlations of the

changes in both commodity prices were negative in the 1990s, and shifted into positive territory

from the early 2000s onward.

The reasons for the increased synchronization of the prices of crude oil and food commodities

since the 2000s have received a lot of attention by academics, practitioners and policymakers.

A first possible explanation is an increasing importance of common demand factors relative to

idiosyncratic or supply shocks that have driven both commodity prices. There are two popular

hypotheses that could rationalize this interpretation. On one hand, the stronger comovement

may be induced by macroeconomic fundamentals; that is, global business cycle fluctuations that

jointly induce shifts in oil and food commodity demand, which moves both prices in the same

direction.1 On the other hand, the enlarged synchronization may be caused by strong demand

due to the worldwide financialization of commodity markets and the associated large capital

inflows from the early 2000s onward, which is illustrated in panel C of Figure 1.2 To the extent

that the contribution of common demand factors to commodity price variation has increased

relative to the contribution of supply and idiosyncratic commodity price shocks, a rise in the

comovement of these prices is conceivable.

An alternative explanation for an enhanced positive link between crude oil and food com-

modity prices—beyond any common demand narrative—is the existence of direct price spillover

effects of idiosyncratic and/or supply shocks that, at the same time, became stronger since the

2000s. In this vein, the soaring biofuels revolution represents a candidate to trigger (stronger)

spillover effects of autonomous oil and food commodity shocks in recent periods. In particular,

1Hamilton (2009) and Kilian and Murphy (2014) document that the run-up of oil prices in 2007-08 was
mainly caused by global economic activity growth, while Abbott et al. (2011) ascribe the considerable rise of
food commodity prices since the 2000s to high income growth in emerging economies. Fernández et al. (2018)
highlight the importance of common factors in business cycles of emerging economies more generally.

2Tang and Xiong (2012) find that the prices of non-energy commodities became increasingly correlated with oil
prices since 2004, and attribute this comovement to the rapidly growing index investment in commodity markets.
Other studies that have found that the flows of financial investors have impacted commodity prices are Lombardi
and Van Robays (2011), Singleton (2013), Henderson et al. (2015) and Cheng et al. (2015). On the other hand,
Hamilton and Wu (2015) find no evidence that the positions of index traders affected agricultural commodity
prices. See Cheng and Xiong (2014) for an overview of the consequences of the financialization of commodity
markets.
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besides crude oil, agricultural sector output has increasingly been used as an input factor for

the energy producing industry since the early 2000s. For example, as shown in Figure 1 (panel

D), the share of biofuels in U.S. petroleum consumption rose from roughly 0.5 percent in 2000

to more than 5 percent in 2010. With a higher degree of substitutability, any shock affecting the

price of one commodity will more likely shift the price of the substitute in the same direction,

increasing their correlation. Numerous empirical studies conclude that this has indeed been the

case; that is, biofuels appear to have played an important role for an increased synchronization

between oil and agricultural commodity prices.3

Notwithstanding the overwhelming empirical support for price spillovers, several caveats

apply to the methods that have been used so far in the literature. First, most existing em-

pirical studies are based on reduced-form time series models that only explore unconditional

comovement in the data.4 Accordingly, it is not possible to establish causal links that have an

economic interpretation. In particular, these methods cannot disentangle a rise in the comove-

ment between oil and food commodity prices that is caused by the common demand factors

discussed above and stronger spillover effects as a consequence of biofuels. To uncover causal

relationships between oil and food commodity prices, it is crucial to isolate price shifts that are

strictly exogenous, which requires a structural econometric framework.

Second, the existing studies that evaluate changes over time are based on simple sample

splits, such as the periods before and after the introduction of the U.S. Energy Policy Act of 2005

to promote the use of biofuels. However, the influence of biofuels on the relationship between oil

and food commodities does not necessarily represent a one-time structural break in the data. In

particular, as illustrated in panel D of Figure 1, the increase in the use of biofuels occurred over

several years, which suggests a gradual transition process. Moreover, since food commodities are

a substitute for oil to produce energy goods, but crude oil cannot be used as food, the influence

of the biofuels revolution should also depend on the relative level of both commodity prices.

3For example, Tyner (2010), Mallory et al. (2012) and Avalos (2014) document a link between crude oil and
corn prices since 2006 that did not exist historically and attribute this link to developments in biofuels markets,
while Du et al. (2011) and Hertel and Beckman (2012) find that increases in biofuels production have resulted in
volatility spillovers from energy markets to food markets. For a review of the biofuels-related price transmission
literature, see Serra and Zilberman (2013). For a theoretical exposition, see Hassler and Sinn (2016).

4Examples are reduced-form Granger causality tests (e.g. Avalos 2014) and reduced-form or semi-structural
VARs (e.g. Baumeister and Kilian 2014). Notice there also exists a literature that uses partial or general
equilibrium models to calibrate the impact of biofuels on price spillovers between energy and food commodities
(e.g. Hassler and Sinn 2016). Since these models are usually calibrated using annual data, they are not suitable
to examine short-run price dynamics (Serra and Zilberman 2013). Moreover, these models are often criticized for
being insufficiently validated and for performing poorly to reproduce historical outcomes (Beckman et al. 2011).
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Specifically, the unidirectional substitutability implies that substitution could only take place

when the price of oil is equal or higher than the price level of food commodities (measured per

unit of energy), while the substitutability becomes non-operational when oil prices are below

food commodity prices (Hassler and Sinn 2016). In addition, the existence of a blend wall;

that is, refineries are unable to blend more than 10 percent ethanol into gasoline, could weaken

the relationship between oil and food commodity prices when the wall becomes binding (Tyner

2010; Abbott 2014). These features suggest that the best modeling approach is one that allows

for slow-moving but continuous changes, as well as for possible jumps and nonlinearities.

Finally, there has been another transformation in commodity markets that could have led

to a larger direct contagion between both commodity prices in recent periods. In particular, a

mechanism that has been ignored so far is that, in the presence of informational frictions, the

globalization and financialization of commodity markets since the 2000s could also have resulted

in enhanced spillover effects of idiosyncratic or supply shocks. Sockin and Xiong (2015) develop

a model in which commodity prices serve as signals of the strength of the economy for goods

producers that do not perfectly observe fundamentals. In their model, commodity price shifts

that are not the consequence of changes in economic activity can be misinterpreted as signals

about the strength of the economy, causing goods producers to change their commodity demand,

which influences prices. Since goods producers cannot differentiate a price increase caused by

an unfavorable supply shock from an increase triggered by an expansion in the global economy,

they partly attribute the supply shock to the demand shock. As a result, they raise their

commodity demand despite the price increase, which amplifies the impact of the supply shock

on commodity prices.

Even though the model of Sockin and Xiong (2015) assumes that there is only one commod-

ity, it can also be applied to many commodities; that is, price signals in one commodity class

may be used to determine the demand for other commodities. For example, an unfavorable oil

supply shock that raises oil prices may be interpreted as a signal of global economic strength,

increasing the demand for food commodities and their prices. Clearly, the extent of informa-

tional frictions and such spillover effects likely vary over time. For example, macroeconomic

uncertainty and the usefulness of commodity price signals to assess the state of the economy

were probably higher in the era surrounding the Great Recession. In addition, the increased

globalization (e.g. the participation of several emerging countries) should have increased infor-

mational frictions of market participants, while the financialization of commodity markets since
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the 2000s should have facilitated and encouraged information discovery in commodity markets.

In sum, studies that attribute the increased synchronization of oil and food commodity prices to

the biofuels revolution may be spuriously picking up the consequences of informational frictions

and price discovery in commodity markets.

In this paper, we use time-varying parameter structural BVAR models with stochastic

volatility in the spirit of Cogley and Sargent (2005) and Primiceri (2005) to investigate whether

price spillovers of crude oil and food commodity supply shocks have changed over time. Our

analysis incorporates several innovations relative to the previous literature to address the above

caveats. First, rather than imposing an arbitrary sample split, all model coefficients can evolve

continuously over the sample period. The modeling approach also accommodates discrete shifts

and several possible nonlinearities. Second, within the BVAR models, we isolate price changes

that are caused by exogenous oil and food commodity supply shocks, which allows us to esti-

mate causal links between both commodity prices that can be interpreted as spillover effects.

For the identification of the shocks, we build on existing strategies that have been used in the

literature for alternative research questions. Specifically, Baumeister and Peersman (2013b) use

sign restrictions on the covariance of innovations in oil prices and production to isolate oil price

shifts that are triggered by oil supply disruptions, while De Winne and Peersman (2016) use

unanticipated harvest shocks to identify food commodity price changes caused by exogenous

supply innovations. Notice that, since we identify oil and food supply shocks, we can examine

price spillovers in both directions, which contrasts with studies that only allow for a unidirec-

tional pass-through of oil to food prices. Finally, we also estimate the time-varying spillovers

of both shocks on metals and minerals commodity prices and on the prices of agricultural raw

materials. Since both commodity classes should not be affected by the biofuels revolution, we

can learn more about the source of the time variation. This cross-examination can be compared

with a difference-in-difference approach, where the spillovers between food and oil prices are

the treated variables, while the spillovers of both shocks on metals and minerals prices and on

the prices of agricultural raw materials are control variables.

The main findings are as follows. First, oil price increases caused by shortfalls in oil supply

did not affect food commodity prices before the early 2000s, but had positive spillover effects

in the more recent era, particularly in the years surrounding the Great Recession. Second, we

find that disruptions in food commodity supply did not have spillover effects on oil prices prior

to the start of the millennium, but do so since. Price spillovers thus exist in both directions.
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Third, we document that price spillovers have continuously built up over the sample period,

but have gradually decreased again since 2010, which is a pattern that cannot be captured by

sample splits. Fourth, we find little support for the conjecture that the expansion of biofuels

is the key source of the time variation. Specifically, we find similar time-varying spillovers of

both supply shocks on metals and minerals commodity prices and, to lesser extent, also on

prices of agricultural raw materials. This concurrent evolution is more likely the consequence

of heightened informational frictions in financialized commodity markets.

Two additional observations support this hypothesis. First, we find that a (one percent)

negative food commodity supply shock leads to a much stronger rise in food commodity prices

since the 2000s. Similarly, the impact of a (one percent) oil supply disruption on oil prices

was much higher in periods where we also find a stronger pass-through to food, and metals

and minerals commodity prices. This is exactly what the model of Sockin and Xiong (2015)

predicts: informational frictions also enhance the impact of a supply shock on the own price.

Moreover, we observe changes in the impact of both supply shocks on the OECDs Composite

Leading Indicator, Business Confidence Indicator, and emerging market’s equity prices that are

consistent with a misinterpretation of commodity supply shocks, again in line with the model

of Sockin and Xiong (2015). We establish these empirical regularities in a variety of pertur-

bations to the model specification and for individual crop price data. In addition, we observe

consistent time variation using a fixed-coefficient VAR model estimated over two subperiods,

which drastically reduces the dimension of the model.

Overall, our results provide a number of relevant considerations for practitioners, policymak-

ers and future research. First, even though informational frictions are a plausible explanation

for the time variation and spillover effects, and we are not aware of other possible interpreta-

tions, the mechanism requires further confirmation. Second, since crude oil and food commodity

markets are often subject to major supply disruptions, the increased spillovers are important

for hedging strategies of commodity producers and speculators’ investment strategies. More-

over, since informational frictions appear to be the source of the time variation, the extent of

spillovers will likely continuously change over time. Third, our results indicate that this also

applies to the own price elasticity of both commodities. More generally, as also argued by Cheng

and Xiong (2014), incorporating informational frictions into existing theoretical and empirical

models could significantly improve our understanding of commodity market dynamics. Fourth,

the presence of spillover effects between oil and food commodity prices should be taken into

6



account for many countries’ energy and food policies. Notably, our results suggest that the

expansion of biofuels was not the source of the documented spillovers. Finally, our findings are

important for monetary policy. We provide causal evidence that, in recent periods, the presence

of spillovers between both commodities implies that food supply shocks do not only propagate

via food retail prices to consumer prices, but also via energy prices, while oil supply shocks

affect inflation via retail prices of food, which was not the case in earlier periods.

Section 2 describes the methodology, data and identification strategy to isolate supply

shocks. Section 3 presents the main results, section 4 provides causal evidence on the pass-

through to consumer prices, while several robustness checks are discussed in section 5. Section

6 concludes.

2. Methodology

Since the global markets for crude oil and food commodities underwent plenty of institu-

tional, technological and financial upheavals over past decades, changes in the propagation of

oil and food commodity supply shocks and potential spillover effects are conceivable. In order

to adequately allow for instabilities in the relationship between oil and food commodity prices,

we rely on an empirical framework capable of accounting for gradual changes in the interplay

between both markets over time, rather than imposing arbitrary sample splits as previous stud-

ies have done. As argued in the introduction and illustrated in Figure 1 (panel D), the rise in

the use of biofuels for energy production occurred over several years. The gradual globalization

and financialization of commodity markets over time (see e.g. panel C of Figure 1), as well as

time-varying informational frictions, further reinforces the notion of a continuous evolution of

the structure of commodity markets.5

The model we propose to accommodate these features of the underlying data-generating

process is a Bayesian VAR that allows for time-varying parameters and a time-varying variance-

covariance matrix of the reduced-form innovations. The drift in the parameters accommodates

possible nonlinearities or changes in the lag structure of the VAR, while the multivariate stochas-

tic volatility captures heteroscedasticity of innovations and nonlinearities in the simultaneous

relations between the variables in the system. Although the existence of abrupt breaks in the

5The idea of slowly-evolving yet continuous adjustments is also consistent with adaptive expectations of
commodity market participants, which result from ongoing learning behavior. In particular, when agents do not
update expectations simultaneously, the aggregation among them results in a gradual evolution of expectations
(Primiceri 2005).
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dynamics cannot be excluded a priori, Monte Carlo simulations in Baumeister and Peersman

(2013b) show that a BVAR model with drifting coefficients is capable of capturing discrete

shifts should they occur (see also Benati and Mumtaz 2007). Accordingly, the data can reveal

when and how changes may have occurred over the sample period.6 Another advantage of our

VAR methodology is that it allows to identify exogenous oil and food commodity supply shocks,

which is crucial to properly examine spillover effects. Notably, by identifying disruptions in both

oil and food supply, we explicitly test for the existence of bi-directional price spillovers between

both markets.

2.1. TVP-BVAR Framework for Crude Oil and Food Commodity Markets

As the benchmark, we model the behavior of crude oil and food commodity markets in

the following VAR(p) framework, which incorporates time-varying coefficients and stochastic

volatility along the lines of Cogley and Sargent (2005) and Primiceri (2005):

yt = Ct +

p∑
l=1

Bl,tyt−l + ut ≡Xt
′θt + ut (1)

where yt is a 3×1 vector of observed endogenous variables, Ct captures time-varying regression

intercepts and the 3×3 matrices Bl,t comprise the lag coefficients of the VAR for lag l = 1, ..., p.

We stack the time-varying lag parameters and intercepts into θt, while Xt includes lagged

realizations of yt and a vector of constants. The vector ut in the observation equation contains

unconditionally heteroscedastic, unobservable innovations with variance-covariance matrix Ωt.

To study the dynamics and spillover effects of oil supply shocks, the vector of endogenous

variables yt contains i) global crude oil production qoilt , ii) the price of crude oil poilt and iii)

the price of another commodity pjt . The latter variable is, in turn, an index of food commodity

prices pfoodt , metals and minerals prices pmetal
t , and prices of agricultural raw materials parmt ,

respectively. Similarly, to estimate the pass-through of food commodity supply shocks, the

vector of endogenous variables includes i) an index of global food production qfoodt , ii) food

commodity prices pfoodt and iii) respectively poilt , pmetal
t and parmt . In the robustness section, we

will also estimate two larger TVP-BVARs where the bi-directional spillovers between oil and

6A popular alternative specification would be a Markov-switching VAR model, but that is not feasible for the
interplay between oil and food commodity markets. In particular, given the multiple sources of nonlinearities
and time variation, the number of states required for approximating this process is too large to be tractable with
a Markov-switching framework. Moreover, unlike VARs with time-varying parameters, Markov-switching VARs
require a degree of regularity that is not present in oil and food commodity markets (Baumeister and Peersman
2013a).
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food commodities are identified in the same model as the spillover to pmetal
t and parmt .

All variables are transformed to quarter-on-quarter growth rates by taking the first difference

∆ of the natural logarithm. By transforming the data to growth rates, we obtain stationary

time series, which is required for the estimation of TVP-BVARs. Notice that we also provide

evidence for linear VARs based on variables entering in levels in section 4, which allows for

implicit co-integration relations. For more details about the data series, we refer to section 2.2.

The overall sample spans the period 1974Q1-2016Q4. The start of the sample is motivated by

the fact that oil prices were strictly regulated before 1974, which undermines the validity of time

series models of the oil market before 1974 (see e.g. Kilian 2009). The end of the sample period

(and the frequency of the data) is determined by the availability of the global food production

index. The first 58 quarters are used as a training sample to initialize the priors for the actual

sample period, which starts in 1988Q3.7 To allow for transmission lags in the propagation

of structural innovations, we set p = 6 quarters. In sum, as the benchmark, we estimate six

parsimonious TVP-BVAR(6) models: yt = [∆qoilt ,∆poilt ,∆pfoodt ]′ , yt = [∆qoilt ,∆poilt ,∆pmetal
t ]′

and yt = [∆qoilt ,∆poilt ,∆parmt ]′ for oil supply shocks and, yt = [∆qfoodt ,∆pfoodt ,∆poilt ]′ , yt =

[∆qfoodt ,∆pfoodt ,∆pmetal
t ]′ and yt = [∆qfoodt ,∆pfoodt ,∆parmt ]′ for food commodity supply shocks.8

Furthermore, we consider a triangular reduction of Ωt:

AtΩtA
′
t = ΣtΣ

′
t (2)

7In order to properly reflect the information in the training sample, the degrees of freedom of the prior of
the variance-covariance matrix of the innovations discussed below (i.e. θ0), should match the training sample
size. A lower bound for the degrees of freedom—and hence for the size of the training sample—is imposed by
the restriction that the degrees of freedom of an Inverse-Wishart distribution must exceed the dimensionality of
the variance-covariance matrix. Otherwise, the prior would be improper. Following this reasoning, the size of
the training sample cannot be smaller than 58 quarters.

8Since TVP-BVARs are highly parameterized, we limit the number of endogenous variables for the benchmark
estimations to three. The reason is that the underlying data generating process also requires several lags. In
particular, lag length criteria in a constant parameter set-up suggest at least 5 (quarterly) lags for VARs that
include the food production index that we use (De Winne and Peersman 2016). Hamilton and Herrera (2004)
demonstrate the importance of allowing for at least one year of lags in an oil-market VAR model, while Kilian
(2009) even includes 24 (monthly) lags in his VAR model for the global oil market. However, our results turn out
to be robust when we reduce (e.g. p = 4) or increase the number of lags (up to p = 8). These results are available
upon request. Furthermore, when we assess the sensitivity of the results in section 5, we show that the results
are also robust to using a five-variable TVP-BVAR(4) in which both supply shocks are identified simultaneously
and the spillovers between oil and food commodity prices are estimated together with the spillover to metals
commodity prices and the prices of agricultural raw materials.
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where the diagonal matrix Σt contains stochastic volatility of additive innovations:

Σt =



σ1,t 0 · · · 0

0 σ2,t
. . .

...

...
. . .

. . . 0

0 · · · 0 σn,t


(3)

and At comprises coefficients capturing time-varying contemporaneous relations among the

VAR variables as follows:

At =



1 0 · · · 0

α2,1,t 1
. . .

...

...
. . .

. . . 0

αn,1,t · · · αn,n−1,t 1


. (4)

While Cogley and Sargent (2005) applied a comparable matrix reduction, yet modeled matrix

At to be time-invariant (i.e. At = A), we follow the approach of Primiceri (2005) and Del Negro

and Primiceri (2015). In particular, for our simultaneous equation model that incorporates

financial variables such as oil and food prices—for which the majority of the shock absorption

should take place on impact—modeling time variation in the simultaneous interactions is crucial.

We thus allow the contemporaneous impact of series i on j; that is, the off-diagonal and non-zero

elements in At, to gradually evolve over time.

Finally, rewriting Equation (1) by using the definitions from above yields:

yt = Xt
′θt +A−1

t Σtεt, with Xt
′ = In ⊗ [1,y′t−1, ...,y

′
t−k], (5)

where ⊗ is the Kronecker-product. Our estimation strategy consists of modeling the t = 1, ..., T

sequence of VAR parameters according to Equation (5). We stack the strictly lower-triangular

coefficients of At into vector αt = [α2,1,t, ..., αn,n−1,t]
′, and we define σt as a vector containing

the diagonal entries of Σt. The processes driving the VAR’s unobservable and time-varying

states are specified as follows:

θt = θt−1 + νt, αt = αt−1 + ζt, and log(σt) = log(σt−1) + ηt. (6)

The coefficients in θt and the free entries in At follow random walks without drift, and we ac-

10



count for stochastic volatility via modeling σt as a geometric random walk. Following Primiceri

(2005), we model all the disturbances in each state equation as jointly normally distributed.

The covariances of νt and ηt are left unrestricted; that is, we allow for multivariate stochastic

volatility, while the innovations to the states of the structural relations are allowed to be corre-

lated within each equation of the VAR.9 We perform a Bayesian shrinkage approach to estimate

the richly parameterized TVP-BVAR along the lines of Kim et al. (1998) and Kim and Nelson

(1999). In the appendix, we provide details on the sampler to simulate the posterior distribution

and the priors we use, both in line with Primiceri (2005) and Del Negro and Primiceri (2015).

2.2. Data

The variables we use in the estimations are shown in Figure 2. For the oil market, poilt is

the nominal U.S. refiners’ acquisition cost of imported crude oil, while qoilt is global crude oil

production (thousands of barrels). Both time series are a standard choice in the oil market

literature (e.g. Kilian 2009; Baumeister and Peersman 2013b) and are obtained from the U.S.

Energy Information Administration. pmetal
t and parmt are, respectively, a price index of metals

and minerals commodities (referred to as a metals price index, for the sake of brevity) and

agricultural raw materials, both provided by the World Bank. We use nominal price variables

in the benchmark estimations, which is standard in the finance literature and most appropriate

to study the pass-through to other prices. Note, however, that the results are quasi identical

for real prices (see section 5).

For food commodity markets, we follow the approach of Roberts and Schlenker (2013) and

De Winne and Peersman (2016). Specifically, qfoodt is a composite quarterly global food produc-

tion index. The index is a caloric weighted aggregate of the harvests of the four most important

staple food items: corn, wheat, rice and soybeans. These four commodities are storable and

traded in integrated global markets. Together, they account for roughly 75 percent of the

caloric content of food production worldwide. The index is based on FAO harvest data of 192

countries. Roberts and Schlenker (2013) use the harvest volumes to construct an annual global

food commodity production index, which they use to estimate global supply and demand elas-

ticities of agricultural commodities. De Winne and Peersman (2016) create a similar index at

the quarterly frequency to estimate the consequences of global food supply shocks on the U.S.

9Results are robust to modeling stochastic volatility in a univariate and thus more restrictive fashion as in,
for example, Benati and Mumtaz (2007).
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economy.10 We have updated the quarterly index with three additional years of data (i.e. until

2016Q4). pfoodt is the corresponding price index measured in U.S. dollars. The price index is

a weighted average (based on trend production volumes) of the four commodities, which are

made available by the IMF. These benchmark prices are representative for the global market

and determined by the largest exporter of each commodity. As shown in Figure 2, the prices of

the four commodities fluctuate closely together. By aggregating the four staples, the implicit as-

sumption is that the calories of the four commodities are perfect substitutes. This facilitates the

analysis. Given the high substitutability of the staples and strong correlation of harvest shocks

across crops, it would be very difficult to disentangle cross-price elasticities from own-price

elasticities in the estimations, which would complicate the analysis and interpretation of the

results.11 The strong comovement between the prices of the staples suggests that substitution

possibilities are indeed large such that the aggregate outcome characterizes the disaggregated

markets reasonably well (Roberts and Schlenker 2013). In fact, this is not surprising. Since

corn, wheat and soybeans are used as feed for livestock, profit-maximizing farmers will switch

to cheaper alternatives if prices per calorie deviate. Furthermore, these crops have to compete

for the same planting acreage, which also synchronizes their prices. Nevertheless, since the four

staples may not be perfect substitutes, we will also present results for a disaggregate analysis

in the robustness section.

2.3. Identification of Oil and Food Supply Shocks

To properly estimate spillover effects between commodity prices, it is crucial to disentangle

idiosyncratic supply shocks from common demand shocks. For example, popular interpretations

of the strong correlation since the early 2000s is that shifts in oil and food commodity prices

were driven by a common component that is associated with fluctuations in global activity and

incomes (e.g. Baumeister and Kilian 2014) and the large capital inflows from index investors in

commodity markets (e.g. Tang and Xiong 2012). A rise in the correlation between oil and food

10De Winne and Peersman (2016) combine the annual data from the FAO with crop calendars of the staples
for each of the 192 countries to allocate the harvest volumes to a specific quarter. This is feasible because most
countries have only one harvest season, which lasts only for a few months. For some countries, however, it is not
possible to assign the production to a specific quarter because there is more than one harvesting period. This
production is not included in the index. The resulting quarterly composite index covers roughly two-thirds of
world food production (harvests).

11Notice that also the production and prices of other staples are typically strongly correlated with these four
commodities (Roberts and Schlenker 2013). De Winne and Peersman (2016) also employ a broader food price
index from the International Monetary Fund (IMF) including prices for cereals, vegetable oils, meat, seafood,
sugar, bananas, and oranges. We prefer the more narrow index as it corresponds exactly to the food production
index. Results are, however, robust to using the broad index of the IMF.
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prices that results from common causation does obviously not imply that there are spillover

effects, which is comovement that is the consequence of a direct causal link between price shifts.

In fact, the bulk of the studies that examine a possible link between oil and food commodity

prices do not address this problem. Specifically, most time series studies typically use reduced-

form approaches that cannot address causality, such as reduced-form causality tests (e.g. Avalos

2014; Mallory et al. 2012) or reduced-form or semi-structural VARs (e.g. Baumeister and Kilian

2014).12 Another remarkable observation is that several studies analyzing linkages between

crude oil and food commodity prices test for spillovers only from oil to food markets, but not

the other way around (e.g. Hertel and Beckman, 2012). To study whether there exist spillovers

between crude oil and food commodity prices, we therefore isolate price fluctuations that are

exogenous and entirely supply driven. Moreover, we identify both oil and food commodity

supply shocks, which allows us to analyze the pass-through in both directions. To do so, we

rely on existing studies and approaches.

2.3.1. Oil Supply Shocks

In an influential contribution, Kilian (2009) disentangles oil supply from demand shocks in

a monthly fixed-coefficient VAR framework using contemporaneous exclusion restrictions. He

identifies oil supply shocks as the sole disturbance that has an immediate impact on global oil

production. In contrast, oil demand shocks do not have an instantaneous influence on global

oil production (i.e. within one month), which implies that the short-run oil supply curve is

vertical. Whereas this assumption may be justifiable in a monthly VAR, it is not realistic in

a quarterly model. We therefore follow the approach proposed by Baumeister and Peersman

(2013b) and subsequently used by many others in the oil literature, which is based on so-called

sign restrictions that are imposed on the contemporaneous impact matrix of the shocks.13

Specifically, oil supply shocks are identified as the innovations in global oil production that

12Baumeister and Kilian (2014), who estimate bivariate semi-structural VARs under the identifying assumption
that the price of oil is predetermined with respect to food commodity prices, acknowledge this problem. To
evaluate the role of global shifts in economic activity for the stronger pass-through of oil price shocks after 2006,
they turn to a different source of identifying information. On one hand, they also document a significant positive
response of the price of nitrogen fertilizer to oil price shocks after 2006, whereas the production of this fertilizer
relies on natural gas rather than crude oil. On the other hand, when they orthogonalize the price variables to a
series of aggregate (flow) demand shocks, they find heterogeneous evolution across crop prices that are difficult
to attribute to biofuels mandates. Based on these findings, they conclude that the link between oil and food
commodity prices should be largely driven by common macroeconomic determinants.

13E.g. Peersman and Van Robays (2009), Lippi and Nobili (2012), Kilian and Murphy (2014), Juvenal and
Petrella (2015) and Van Robays (2016). This approach, in turn, builds on applications that use sign restrictions
to identify macroeconomic shocks, e.g. Canova and de Nicolo (2002), Uhlig (2005) and Peersman (2005).
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move oil prices on impact (within the same quarter) in the opposite direction. Conversely, all

shifts in oil production that move oil prices instantaneously in the same direction are considered

as demand shocks. This sign restriction corresponds to a shift of an upward-sloping oil supply

curve along a downward-sloping oil demand curve and is sufficient to isolate oil supply shocks

in the TVP-BVAR. Notice that no constraints are imposed on the responses of food prices,

metals prices, or the prices of agricultural raw materials after the shock, which is determined

by the data., which is determined by the data. To implement the sign restrictions, we apply

the algorithm of Rubio-Ramı́rez et al. (2010).14

A couple of points are worth mentioning. First, Kilian and Murphy (2014) impose boundary

restrictions on the magnitudes of the implied price elasticities of oil supply and demand as

additional identification criteria to eliminate posterior draws with implausibly high elasticities.

Whereas Kilian and Murphy (2014) identify several types of oil market shocks simultaneously,

it appears that these boundaries are not important for the identification of oil supply shocks in

our quarterly model. In particular, nearly all draws from the posterior have an implied short-

run price elasticity of oil demand that is consistent with their upper bound of -0.8, while the

results are the same when we explicitly impose a restriction on the price elasticity of demand.

Second, Sockin and Xiong (2015) argue that, in the presence of informational frictions, agents

cannot disentangle supply and demand shocks in real time. Hence, through its informational

role, an increase of commodity prices caused by a supply shock can also be interpreted as a

signal of stronger economic growth, which raises the demand for the commodity. Notice that

this is not a critical problem for our identification approach. On one hand, if this rise in

demand is smaller than the standard negative cost effect of a price rise on demand, the supply

shock is still characterized by a negative comovement between production and prices, which is

consistent with the restriction that we impose to isolate oil supply shocks. On the other hand, if

this informational effect dominates the standard negative cost effect to acquire the commodity;

that is, the oil supply shock shifts oil production and prices in the same direction, such shocks

are (wrongly) identified as oil demand shocks in the estimations, but in this paper we are not

interested in the dynamics of oil demand shocks. In essence, this would imply that we only

14Baumeister and Hamilton (2015) have shown that this procedure implicitly imposes a uniform prior over
the non-zero supply elasticities in a VAR model like ours. The derivation and simulation of a time-varying
counterpart to the posterior distribution proposed in Baumeister and Hamilton (2015), which directly draws in
the model’s structural parameterization, is however beyond the scope of this paper.
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consider a subset of all oil supply shocks in the analysis.15 Finally, notice that the TVP-BVAR

approach allows elasticities to vary over time. Put differently, in contrast to fixed-coefficient

VARs, changes of informational frictions during the sample are captured by the model.

2.3.2. Food Commodity Supply Shocks

For the identification of food commodity supply shocks, following De Winne and Peersman

(2016), we explore the fact that there is a time lag of at least one quarter (i.e. 3 to 10 months)

between the planting and harvesting of cereal commodities, while harvest volumes are subject

to shocks that are unrelated to the economy, such as weather variation or crop diseases. More

specifically, the time lag of at least one quarter between the decision to produce (planting)

and the actual production (harvest) of cereal commodities implies that food producers are able

to immediately respond to changes in demand by adjusting their planting volumes. Yet, for

the actual production volume, this is not the case due to the time lag. Put differently, actual

food production can only respond to changes in demand after (at least) one quarter. The

reduced-form innovations to food production (global harvests volume) in the TVP-BVAR can

thus be considered as unanticipated food supply shocks that are orthogonal to developments

in economic and financial markets conditions.16 Hence, ordering the quarterly food production

index first in a recursive identification scheme—which is equivalent to applying a Cholesky-

factorization to Ωt—recovers structural food supply innovations. Notice that the responses

of all the variables in the model are left unrestricted to the food commodity supply shocks.

Thus, the data could determine whether the standard cost effect is dominated by the above

informational effect (sign of the own-price response), and whether there are spillover effects to

crude oil and metals commodity prices.

15Sockin and Xiong (2015) show that the price elasticity of commodity demand is only positive under certain
conditions. This would clearly be a problem to analyze the effects of oil demand shocks in a VAR model. The
presence of oil supply shocks that move prices and production in the same direction would, for example, also be
a problem if we want to assess the relative importance of supply shocks to explain oil price fluctuations; that is,
for variance decompositions.

16Remark that this approach assumes that farmers cannot influence harvest volumes anymore during the
harvesting quarter, for example, by raising fertilization activity. Several studies have shown that in-season
fertilization is indeed inefficient and even counterproductive for the food commodities that we consider (De
Winne and Peersman 2016). The best times to apply fertilizer for these crops is before or shortly after planting.
Note that farmers can in principle always reduce food production by destroying crops, but that is not likely to
happen at a large (global) scale. Overall, the influence of farmers on the volumes during the harvesting quarter
is plausibly meager relative to variation induced by, for example, weather conditions. De Winne and Peersman
(2016) conduct several ex post tests and sensitivity checks and conclude that shocks to the food production index
are exogenous with respect to the economy and are not picking up other shocks.
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3. Time-Varying Spillover Effects

3.1. Benchmark Results

Figure 3 shows the benchmark results for crude oil and food commodity supply shocks,

respectively. Panel A displays the impact over time of a one standard deviation adverse supply

shock on all the variables that are included in the TVP-BVARs; that is, we present the median

and the 16th and 84th percentiles of the posterior distributions as confidence intervals. This is

the conventional way in the literature to show the results of TVP-BVARs. As can be observed

in the figure, the size of both (one standard deviation) shocks has varied considerably over the

sample period. This supports the choice of a model that features stochastic volatility, but it

also complicates comparisons over time of the magnitudes of spillovers. Therefore, in panel B,

we show for each variable the changes over time of the impact of a normalized supply shock.

Specifically, for each period t we show the difference between the impact of a one percent decline

in oil (food) production and a one percent decline in oil (food) production in a benchmark

period. As the benchmark period, we systematically select the quarter in the sample with

the lowest normalized (median) impact or pass-through. Put differently, the figures show the

estimated time variation in the own and cross-price responses to both supply shocks, together

with confidence intervals. Notice that we only show the contemporaneous effects (within the

quarter). Conclusions at longer horizons (by constructing impulse response functions) are the

same and available on request. Although the responses of prices and quantities in either the

oil market or the food market are estimated separately in three different models (i.e. once to

estimate the spillover to food, respectively, oil prices; once to estimate the spillover to metals

prices; and once to estimate the spillover to the prices of agricultural raw materials), their

strong similarities across all models allow us to report them only once without discarding any

information.

Consider first the spillover effects of crude oil supply shocks on food commodity prices. As

can be observed in Figure 3, unfavorable oil supply shocks did not affect food commodity prices

before the start of the millennium. If anything, the comovement of oil and food commodity

prices in response to the shock was negative. This can be explained by a global slowdown

of economic activity due to the unfavorable shock, which, in turn, leads to a decline in the

demand for food commodities. However, since the 2000s, we observe positive spillover effects

of oil supply shocks on food commodity prices. Moreover, these spillovers gradually increased

over the years, reaching a peak around 2008. In particular, in 2008, a typical oil supply shock
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triggered a rise in crude oil prices of 14 percent and, at the same time, resulted in a rise of food

commodity prices by roughly 5 percent. This is also reflected in the time variation shown in

the second column; that is, the price response compared to the benchmark quarter in the mid

1990s is for many years significantly larger. At its peak, there is a positive spillover effect and

time variation for more than 90 percent of the posterior draws. Finally, the spillover effects

became again more subdued in the years after the Great Recession.

A similar pattern can be observed for the consequences of food commodity supply shocks

on oil prices. Specifically, bad harvests that resulted in food commodity price increases had a

negative impact on the price of crude oil in the 1990s, which is consistent with a reduction in

the demand for oil in periods of lower economic activity.17 However, since the second half of the

1990s, the spillover effects switched sign to become positive. Again, there was a gradual increase

of the spillovers during the 2000s, which reached a peak in 2008. Even though the uncertainty

is high, the magnitudes are strong. A supply shock that augmented food commodity prices by

3.5 percent in 2008, also resulted in a rise of crude oil prices by 2.4 percent. Overall, compared

to the early 1990s, the impact of a one percent decline in global food production on crude oil

prices was approximately 1.2 percentage points larger in 2008, while more than 90 percent of

the posterior draws suggest a larger effect over time.

The positive spillover effects between oil and food commodity prices in recent periods is

consistent with numerous studies that have documented increased synchronization between

oil and agricultural commodity prices (e.g. Tyner 2010; Mallory et al. 2012; Avalos 2014).

In contrast to these studies, which typically examine unconditional comovement in the data,

we show that the stronger correlation also exists conditional on idiosyncratic supply shocks.

We also find that the synchronization has been a gradual process over time, rather than a

structural break. Moreover, we document spillovers in both directions. The latter observation

is important because it suggests that the increased comovement is not the consequence of a

stronger unidirectional pass-through of oil to food prices, for example, due to the mechanization

of agriculture in developing countries over the past two decades and the rising relevance of energy

intensive inputs in the production of agricultural products (e.g. fertilizers).18

17De Winne and Peersman (2016; 2018) document a decline in global economic activity in response to adverse
harvest shocks.

18For example, for the period 1996-2000, the average share of energy inputs (fertilizer, fuel, lube and electricity)
in total corn producer costs was 19.6 percent. This share increased to 31.5 percent for the period 2007-2008 (Hertel
and Beckman 2012).
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3.2. Biofuels Markets and Other Commodity Prices

Recent developments in biofuels markets are a popular explanation among policymakers and

academics to rationalize the emergence of price spillovers between oil and food commodity prices.

At first sight, those developments are indeed consistent with the time variation we observe. The

production of corn-based ethanol and policies to promote the use of ethanol already exist since

the 1970s and became more popular over time (Avalos 2014). For example, the Clean Air

Act of 1990 required gasoline to contain a minimum percentage of oxygen, while ethanol was

a possible additive to increase its oxygen content. Notwithstanding these developments and

policies, the use of biofuels was limited because Methyl-tert-butylether (MTBE) was a more

popular and cheaper additive than ethanol. However, this changed dramatically with the New

Renewable Fuels Standard of the U.S. Energy Policy Act of 2005, which required motor fuels

to contain a minimum amount of fuel coming from renewable sources. This was the moment

when MTBE was banned and ethanol took over the entire market for oxygenator enhancers in

gasoline, which resulted in a boost of ethanol production. For example, in 2000 only about 5

percent of U.S. corn production was used for ethanol production, which increased to almost 40

percent in 2010. Roughly 70 percent of the increase in global corn production between 2004 and

2010 was absorbed by ethanol production (Headey and Fan 2010). Clearly, this also affected

the production and prices of other food commodities via substitution effects. Around the same

time, the expansion of European biodiesel production resulted in crowding out of the wheat

area by oilseeds. Hence, the gradual rise over time of spillover effects between the prices of

crude oil and food commodities, with an acceleration in the period 2005-2008, is consistent with

the biofuels narrative.

Also the decline of spillover effects after 2008 can potentially be explained by biofuels. On

one hand, the price of crude oil collapsed much more than food commodity prices between 2008

and 2010 (see Figure 1). Since food can be used to produce energy, but oil cannot be used

as food, substitution between both commodities is not possible when oil prices are below food

commodity prices (both measured per unit of energy). The unidirectional substitutability could

thus have contributed to a weakening of the relationship between the prices of both commodities

after 2008.19 This also applies to the so-called blend wall in the U.S. market. Since refineries

were unable to blend more than 10 percent ethanol into gasoline at that time, substitution

19Similarly, the substantial rise of crude oil prices between 2005 and 2008 could have contributed to the stronger
spillover effects in this period.
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between both commodities became much more difficult, resulting in a possible weakening of the

link between food and oil prices (Hertel and Beckman 2012). Overall, these developments in

biofuels markets are broadly in line with the time-varying spillover effects that we have found.

Nevertheless, the concurrent evolution of the time variation and developments in biofuels

markets does not imply that these developments are, in fact, the source of the time variation.

For example, given the very limited use of biofuels in earlier decades, it is surprising that the

rise of spillover effects already started in the 1990s. Moreover, there could have been other

transformations in commodity markets that give rise to a larger contagion between crude oil

and food commodity prices. To address this issue, we examine the pass-through of both supply

shocks to the prices of metals commodities and agricultural raw materials. More specifically,

if the increased potential to use food commodities in the energy producing industry is indeed

the source of the increased spillover effects, we should not observe such time variation in the

responses of commodities that are unrelated to those enhanced substitution possibilities. This

holds both for metals commodities (including aluminium, copper, iron ore, lead, nickel, tin and

zinc) and agricultural raw materials (such as timber, cotton, natural rubber and tobacco). These

commodity classes are not used to produce energy and neither do they provide calories that can

substitute for the calories covered in the food production index. Hence, such an analysis can

be compared with a difference-in-difference approach, where the spillovers between food and

oil prices are the treated variables, while the spillovers of both shocks to the prices of metals

commodities and agricultural raw materials are the control variables.

The impact of oil and food commodity supply shocks on metals commodity prices and

the price of agricultural raw materials are shown in the bottom rows of Figure 3. As can

be observed in the figure, the time-varying spillover effects to metals and agriculatural raw

materials are remarkably similar to those between oil and food commodity prices. Once more,

we find a gradual increase over time of the normalized spillover effects of oil and food commodity

supply shocks. The results indicate that metals commodity prices are slightly more subject to

the enhanced pass-through of oil and food supply shocks than the prices of agricultural raw

materials. In particular, while unfavorable food supply shocks had a negative effect on metals

prices in the early 1990s, the spillovers have been positive since the 2000s. Also the peak of the

spillovers to the prices of metals and agricultural raw materials largely corresponds to the peak

of the spillovers between oil and food commodity prices. Notice that also the magnitudes of

the changes in the normalized spillover effects are very similar, in particular for the responses
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of metals prices.

The analogous time-varying effects on metals commodity prices and the prices of agricultural

raw materials suggest that developments in biofuels markets are not the key reason for the

increased synchronization of oil and food commodity prices. Indeed, if the substitutability

between oil and food commodities was the source of spillover effects between their prices, as

the biofuels narrative suggests, then why would metals and agricultural raw materials, which

show no degree of substitutability with either food or oil, exhibit the same spillover? In sum,

the striking similarities in the time-variation in the time-variation in the responses documented

before, especially for the responses of metals commodity prices, raises questions about the

validity of the existing evidence that attributes the strengthened relationship between food and

energy commodity markets to the biofuels revolution.

3.3. Informational Frictions in Commodity Markets

Another mechanism that can lead to spillover effects is the presence of informational fric-

tions in commodity markets. Specifically, it is widely recognized that centralized trading in

asset markets serves as a platform to aggregate dispersed information possessed by individual

market participants (e.g. Grosmann and Stiglitz 1980). Building on this principle, Sockin and

Xiong (2015) develop a useful theoretical framework to analyze informational frictions in com-

modity markets and its influence on commodity demand. According to their model, changes in

commodity prices could serve as signals of the strength of the economy when market partici-

pants (goods producers) cannot observe fundamentals. In particular, by trading the commodity,

they aggregate dispersed information about unobserved global economic activity. For example,

a rise in commodity prices signals a stronger economy, which encourages goods producers to

raise their commodity demand. However, since the fundamentals cannot be observed directly,

commodity price shifts that are not the consequence of changes in economic activity can be mis-

interpreted as signals about the strength of the economy, causing some participants to change

their commodity demands. For example, an adverse oil supply shock that raises oil prices may

be interpreted as a signal of global economic strength, increasing the demand for commodities.

Accordingly, also the prices of non-oil commodities could increase as a result of the oil supply

shock. In contrast to a biofuels induced correlation, the existence of informational frictions

could thus be an explanation for also inducing spillover effects on metals commodity prices.
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3.3.1. The Timing of the Spillovers

A natural question is whether informational frictions in commodity markets can also explain

the time variation of the spillover effects. This is indeed possible. First, the financialization of

commodity markets since the start of the millennium documented in Figure 1 has facilitated and

encouraged information discovery in commodity markets. In particular, since trading physical

commodities in spot markets is subject to several distortions such as heterogeneity in qual-

ity, storage and transportation costs, the lower trading costs and highly standardized futures

contracts facilitate the aggregation of dispersed information among market participants and

encourages participation in commodity markets for information discovery (Sockin and Xiong

2015). For example, it is well known that the centralized futures prices of key commodities

have been widely used as barometers of the global economy in recent years (Cheng and Xiong

2014). Second, informational frictions have likely increased since the 1990s, and particularly

during the 2000s. Specifically, there is a broadly held perception that the increased globalization

of commodity markets and increasing importance of commodity demand from rapidly growing

emerging economies in this period has made it more difficult to assess the strength of the global

economy (e.g. Cheng and Xiong 2014). Reliable and timely statistics about economic activity

in emerging countries are, for example, rather scarce. As a result of the enhanced informational

frictions, it is more likely that market participants have misinterpreted shifts in commodity

prices caused by exogenous supply shocks as changes in macroeconomic conditions in recent

periods.

Furthermore, information discovery is particularly relevant in times of great economic un-

certainty such as the period surrounding the Great Recession. For example, as a result of lack of

reliable data for emerging countries, it was difficult to measure the strength of these economies

in real time in the period 2005-2008. Prices of commodities were regarded as important signals,

which should have strengthened the consequences of information discovery.20 Hence, to the

extent that commodity price shifts emerged from supply shocks in commodity markets rather

than from changes in macroeconomic demand, the inferred signal was a misinterpretation. The

result is that market participants adjusted their commodity demand and affected commodity

prices across the board. The same applies to the Great Recession. It is conceivable that, during

20Sockin and Xiong 2015 describe the decision of the ECB to increase interest rates on the eve of the Great
Recession (March 2008), as an example of information discovery in commodity markets by policy institutions.
Specifically, ECB policy reports refer to high prices of oil and other commodities as a key factor for their decision.
Ex post, this turned out to be a serious misinterpretation.
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periods of large fluctuations in economic activity, market participants believe that changes in

commodity prices are more likely triggered by real economy shocks, which enhances spillover

effects of commodity supply disruptions. Conversely, in the period after 2010, oil supply shocks

gained importance as a consequence of aggressive supply increases by Saudi Arabia, which could

have mitigated misinterpretation of price signals. Similarly, serious droughts around the world

in the summers of 2010 and 2012 increased the probability that food price changes were caused

by supply shocks. Hence, during this period, it was less likely that price fluctuations were

revealing information about economic activity, diminishing spillover effects.

3.3.2. Own Price-Elasticities

Additional evidence supports this interpretation of the observed time-varying spillover ef-

fects. First, also the time variation in the own-price elasticities of the demand for food and

oil, also shown in Figure 3, are consistent with the misinterpretation of commodity supply

shocks. More specifically, the commodity markets model of Sockin and Xiong (2015) predicts

that informational frictions should also increase the impact of supply shocks on the own price

of a commodity. Consider an adverse supply shock in the global oil market that raises oil

prices. Because this price increase is partly interpreted as a signal of a stronger global economy,

there is an increase in oil demand and thus also in the price of oil through a feedback effect.

Accordingly, if informational frictions are the source of the time-varying spillover effects, we

should see similar time variation in the impact of a decline in food and oil production on the

own price. This is exactly what we observe in Figure 3; that is, both shocks appear to have a

stronger impact on the own price in recent periods compared to earlier decades. Moreover, the

pass-through was particularly strong in the era surrounding the Great Recession.

3.3.3. Reaction of Stock Markets and Leading Indicators

Also the changed impact of oil and food supply shocks on variables that reflect expectations

about current and future economic conditions, displayed in Figure 4, suggests the presence of

informational frictions in commodity markets and supports their role in generating the observed

price spillovers. First, the OECD’s Composite Leading Indicator (OECD, 2020b, CLI hereafter)

is designed to provide early signals of turning points in the business cycle of OECD countries.

It is constructed by aggregating leading economic variables in all OECD countries that are

timely available and not subject to revision. They reflect, inter alia, activity in the early stages

of production (e.g. new orders, order books, and construction approvals) and private-sector
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expectations (e.g. via stock prices, prices of raw materials, business surveys, and confidence

indicators). As a result, if market participants (i.e. goods producers) misinterpret commodity

supply shocks as fluctuations in aggregate demand, then these misinterpretations should also

be reflected in the response of CLI. The first row of Figure 4 confirms this reasoning: both

the strenghtening of cross-commodity price spillovers over time and their peak around 2008 are

reflected in a similar pattern of time-variation in the impact of food and oil supply shocks on

the CLI. This correspondence indicates that stronger commodity price spillovers are associated

with a more atypical impact of commodity supply shocks on private-sector expectations and

early production decisions. The atypicality, moreover, is consistent with a misinterpretation of

adverse supply shocks as favorable changes in demand conditions.

To capture private-sector expectations, however, the CLI may, for some OECD countries,

rely on the market prices of raw materials. More precisely, if, for some countries, those prices

provide a strong signal about that countries’ business cycle, and if, in addition, those countries

receive a large weight in the overall CLI, then the observed effect of commodity supply shocks on

the overall CLI may merely reflect the importance of crude oil or food prices in the construction

of the CLI rather than the misinterpretation of supply shocks in the presence of informational

frictions. The second row in Figure 4 eliminates this concern. The results show the impact of

both commodity supply shocks on the OECD’s Business Confidence Index (OECD, 2020a, BCI

hereafter). This indicator exclusively includes opinion surveys related to production, orders

and stocks of finished goods in the industry sector and hence does not mechanically respond to

commodity supply shocks. Consequently, the familiar pattern of time variation in the impact of

oil and food commodity supply shocks on BCI further reinforces the hypothesis that commodity

price fluctuations have increasingly been interpreted as a signal of economic strength, causing

industrial goods producers to revise their confidence upwards in response to commodity price

increases even when they are actually caused by unfavorable production shortfalls.

Finally, also the responses of equity prices to oil and food commodity supply shocks, dis-

played in the bottom rows of Figure 4, appears to support the hypothesis of informational

frictions. Although the uncertainty around the estimates is large, both MSCI World (covering

developed economies) and MSCI Emerging Markets suggest an increasingly optimistic inter-

pretation of supply-driven commodity price increases. Note that the fairly short time series of

MSCI Emerging Markets necessitates the use of less lags (three instead of six; in order to reduce

the size of the training sample) and a shorter estimation sample (starting in 1996Q2 instead of
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1988Q3). Even though the results are broadly comparable for both indices, the period between

2005 and 2010 highlights a remarkable difference between the Emerging Markets index and

the World index. The latter remains broadly constant, while the former is characterized by a

renewed strengthening of the pass-through of commodity supply shocks. This may indicate, for

example, that over this period the signal from commodity prices was increasingly interpreted

to be informative about demand conditions in emerging economies.

In sum, we have found evidence questioning the biofuels channel of spillover effects between

oil and food commodity prices. Instead, informational frictions and information discovery in

more financialized commodity markets are a plausible explanation for spillover effects and the

time variation of such effects that we observe in the data.

3.4. Zero Lower Bound and Commodity Supply Shocks

The zero lower bound on nominal interest rates (ZLB) could be raised as another potential

explanation for increased spillovers across a variety of commodities. More precisely, Datta

et al. (2017) use the model of Bodenstein et al. (2013) to argue that the changed behavior of

U.S. real interest rates at the ZLB results in a positive correlation between the returns of oil

and U.S. equity. In those models, oil price increases at the ZLB result in lower real interest

rates because, at the ZLB, the policy rate does not increase in order to more than offset the

ensuing inflationary effects in accordance to the Taylor principle. Consequently, the expansion

of interest-sensitive sectors following such a fall in real interest rates may partly offset or even

overturn the conventional recessionary impact of oil price increases. In the latter case, cross-

commodity price spillovers may emerge as the economic expansion following adverse supply

shocks spurs demand for commodities and synchronizes their prices.

There are several reasons why the ZLB is unlikely to be the explanation for the cross-

commodity price spillovers that we have found. First, Bodenstein et al. (2013) show that

the expansionary effect of oil price increases may dominate the recessionary effect only for oil

price increases that follow from demand shocks in the oil market. Our empirical model, in

contrast, identifies disruptions in commodity supply. According to Bodenstein et al. (2013), the

propagation of supply shocks remains virtually unaffected by the ZLB. Also Wieland (2019)

finds that oil supply disruptions remain contractionary at the ZLB. Yet, in Datta et al. (2017),

the returns on U.S. equity and crude oil can still move in the same direction even after an

oil supply shock. This is, however, only the case when the oil supply shock is assumed to be
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very short-lived, which contradicts the persistent response of oil production after the oil supply

shocks that we have identified.

Most importantly, the pattern of the spillovers does not coincide with the ZLB explanation.

First, as observed in Figure 3, the spillover effects start building up gradually already in the early

2000s, which precedes the ZLB in advanced economies by many years. Second, the strength

of the spillovers peaks already around 2008 and weakens substantially in the following years.

This indicates that the period of the ZLB in the U.S., the euro area and some other advanced

countries is characterized by dissipating spillovers rather than increasing spillovers. The ZLB,

in addition, was reached only by a number of advanced economies, while our analysis is at the

global level. Moreover, the ZLB cannot explain why we find an enhanced responsiveness of

equity prices in emerging markets; that is, economies that were not confronted with the ZLB,

in contrast to the time variation of equity prices in advanced economies. Overall, except for

information frictions and price discovery in financialized commodity markets, we are not aware

of a possible explanation for the time-varying spillover effects that we have found.

4. The Pass-Through of Commodity Price Spillovers to Consumer Prices

After having established causal evidence on time variation in the interplay of prices in

global commodity markets, a natural follow-up question is to what extent these fluctuations

matter for consumer price dynamics; that is, whether they propagate along the supply chain

to energy and food retail prices.21 Since the price-setting behavior of final consumption goods

producers is subject to substantial frictions, it is vital to allow for delays in the pass-through of

commodity to consumer prices. In this vein, we construct impulse response functions following

from commodity supply disruptions to assess dynamics at longer horizons, and we explore the

level properties of the time series of interest. In order to accommodate variables in (log) levels

and to include additional CPI data, we rely on a linear VAR representation of the data and

allow for co-integration in the system (see Sims et al., 1990). Specifically, we (i) estimate linear

counterparts of the benchmark VARs from Figure 3 that additionally comprise data on the

energy and food components of consumer prices for the U.K. and the U.S. economy, and (ii) we

split the sample into two sub-periods—the era before 2004 and the episode since—to quantify

changes in the pass-through to consumer prices over time. The identifying assumptions to

21Other studies, such as Fernández et al. (2017), have shown the relevance of commodity prices for business
cycle fluctuations of economies.
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achieve causal inference are identical to the TVP-BVAR systems.22

For direct comparison with the TVB-BVARs, we replicate in a first step the evidence from

Figure 3 by means of linear VARs estimated over subsamples. The dynamic effect of a one

percent decline in oil (food) production that is caused by the respective supply disturbance

is shown in Figure 6. While oil supply shocks (panel A) did not affect the prices of other

commodities in the early sample, there are strong spillover effects in the late sample period.

For food commodity supply shocks (panel B), we document negative spillover effects in the

early sample period, while there is a positive pass-through in the late sample. Notice that

the spillovers appear to be quite persistent. This is somewhat surprising in the context of

informational frictions, since information about the state of the real economy should become

available over time. A possible explanation is that informational frictions are amplified by

speculative trading. In particular, Singleton (2013) emphasizes that informational frictions and

the associated speculative activity may induce prices to drift away from their fundamental values

and could result in price booms and busts. In other words, financial markets amplify errors of

investors and generate price changes that are unrelated to fundamentals. Overall, the sample

splits confirm the results of the TVP-BVARs. Notice that this also applies to the stronger

impact of both shocks on the own price.

In a second step, we add to the baseline model for the oil market the food CPI, and include

energy CPI data in the baseline model for food commodity markets to test for spillovers to

U.K. and U.S. consumer prices. Figure 7 traces the adjustment patterns of the newly-added CPI

components over time. Panel A of the figure illustrates how the procession of the shock via food

CPI reveals substantial time variation in both, the U.S. and the U.K. economy. Unfavorable

shifts in crude oil production tend to induce negative adjustments of retail prices for food

products in the early sample period. However, for more recent data, we observe significant

surges in food CPI; the latter reveals an inverted hump-shaped reaction in both countries. After

a one percent shortfall in global crude oil production, retail prices for food items increase in the

U.S. by roughly 0.3 percent and in the U.K. by around 0.5 percent. Similar findings emerge for

the repercussions that slowdowns in food commodity production exert on final energy prices

(panel B). In both countries, energy prices substantially fall in the early era, but feature striking

22Given the gradual character of the time variation we have documented so far, these sample-splits should be
viewed with the caveat of constituting a rather rough approximation of underlying non-linear time variation. At
the same time, the sample-splits serve as an additional test whether an enhanced link between commodity prices
in more recent data can also be detected in less parametrized models with non-drifting coefficients.
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run-ups of up to 0.6 percent during the episode starting in 2004.

Taken together, we provide novel evidence that the price spillovers we have unearthed across

commodity classes also pass-on to the prices for consumer products. In particular, crude oil

supply shocks propagate via retail food prices and food commodity supply disruptions drive

the prices of final energy goods in the recent past, which was not the case until the start of the

century. While having important implications for consumers, these findings in addition bring

to light previously unknown challenges that monetary policy has to confront. For instance, our

findings prompt the view that in the face of instability in global oil markets, monetary policy

should not only be concerned about the conventional mechanisms by which such disruptions

impact on the broader economy, but should take into account potential direct price-contagion

of non-energy related components of the CPI, such as retail food prices.

5. Robustness Analysis and Extensions

In this section, we provide some additional analysis and examine the sensitivity of the

baseline results. Note that the benchmark results are based on two shocks that have been

isolated with very different identification strategies, which is a robustness check in itself.

First, the results are robust to several perturbations to the model specification. In particular,

we have re-estimated the six three-variable benchmark models using a more restrictive univariate

stochastic process for the volatility states as in Benati and Mumtaz (2007), as well as using a

hierarchical prior (using a uniform distribution over the interval (0,1] ) for the scaling parameters

as in Amir-Ahmadi et al. (2020). These modifications do not materially affect the conclusions.

Other robustness checks that we have conducted include increasing/reducing the number of lags

(p = 4 and p = 8), using real commodity prices rather than their nominal values (using U.S. CPI

as deflator), using SDR-denominated prices, imposing the sign restrictions for the oil supply

shock over longer horizons and adding a quantitative restriction (minus 0.8) on the maximum

price elasticity of oil demand. The results (available on request) are always very similar.

Since TVP-BVARs are highly parameterized, we have limited the number of endogenous

variables for the benchmark estimations to three; that is, we have estimated six three-variable

TVP-BVAR(6) models. As another robustness check, we now estimate two five-variable TVP-

BVAR(4) models that each nests four out of six benchmark models into a single model. To

limit the number of parameters, we include only four lags of the endogenous variables. The

vector of endogenous variables becomes yt = [∆qfoodt ,∆qoilt ,∆poilt ,∆pfoodt ,∆pmetal
t ]′ and yt =
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[∆qfoodt ,∆qoilt ,∆poilt ,∆pfoodt ,∆parmt ]′, and we identify the food and oil supply shocks simulta-

neously in both models using the same assumptions as before. By construction, the shocks

are orthogonal in such a set-up. As both models include oil and food commodity prices, and

since both shocks are simultaneously identified, the spillovers across oil and food markets are

estimated twice; that is, once in each model. Given their strong similarity, we show them only

once, without losing information. In addition, to reduce the number of panels, we exclude the

impact of both shocks on ∆qfoodt and ∆qoilt from the results. The results are reported in Figure

5. As can be observed in the figure, they are very similar to the benchmark results.

Finally, we assess whether there is similar time variation for different types of food commodi-

ties. In this vein, we re-estimate the TVP-BVAR(6) models and include the prices of respectively

corn, rice, soybeans and wheat as the third variable in the vector of endogenous variables. No-

tice that these are also the four crops that have been used to construct the food production

index. The results for the four commodities are shown in Figure 8. As can be observed, the

qualitative dynamics are consistent with the evidence on aggregate food prices. However, it

appears that rice prices are less subject to time variation, even though the uncertainty of these

estimates is rather high.

6. Conclusions

In this paper, we have modeled crude oil and food commodity markets in a time-varying

Bayesian VAR framework with stochastic volatility to study potential changes in spillovers

between both markets over time. We identify structural supply shocks in crude oil and food

commodity markets and find that exogenous declines in oil supply that increased the price of

oil had no impact on food commodity prices prior to the start of the millennium, but had

positive spillover effects more recently. Similarly, unfavorable disruptions in the supply of food

commodities have positive spillover effects on crude oil prices since the early 2000s, in contrast

to the preceding era. Notably, the time variation of the spillover effects has been gradual,

reached a peak around 2008, and declined again somewhat afterwards.

A popular explanation for an increased synchronization between oil and food commodity

prices conditional on supply shocks in both markets is the biofuels revolution. Specifically, since

both commodities have become substitutes over time to produce energy goods, their prices

should have become more correlated. However, our results cast doubt about this conjecture. In

particular, we find very similar time variation in the spillover effects of both shocks on metals
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and minerals commodity prices and on the prices of agricultural raw materials, while these

commodity classes are not a substitute to produce energy or provide calories. We also find a

stronger impact of both supply shocks on their own price.

A plausible mechanism that can explain the time variation of the spillover effects and

stronger impact on the own price is a heightening of informational frictions and information

discovery in financialized commodity markets as postulated in Sockin and Xiong (2015). In

particular, the financialization of commodity markets since the early 2000s serves as a platform

to aggregate dispersed information about the strength of the global economy. Accordingly, a

rise in commodity prices signals a stronger economy, leading to a rise of commodity demand

by market participants and hence further price increases of commodities. However, since the

fundamentals cannot be observed directly, increases in commodity prices that are caused by an

adverse supply shock in one of the commodities can be misinterpreted as a signal of economic

strength. As a consequence, the demand for all commodities increases in response to the supply

shock, raising also other commodity prices. This optimistic misinterpretation of commodity

supply shocks is also detectable via their positive impact on private-sector expectations and

activity in the early stages of the production process captured by the OECD’s CLI and BCI.

Also the response of equity prices appear to favor this interpretation.

Overall, the presence of time-varying spillover effects between commodities are important for

hedging and investment strategies. The interplay between oil and food commodity prices should

also be taken into account for countries’ energy and food policies. Furthermore, it matters for

monetary policy. We establish additional causal evidence that the presence of spillovers implies

that oil (food) price fluctuations affect inflation via food (energy) prices. Our results also

suggest that the incorporation of informational frictions into theoretical and empirical models

of commodity markets could improve our understanding of its dynamics. Finally, even though

informational frictions are a plausible explanation of the (time-varying) spillover effects between

commodity markets, the mechanism requires further confirmation in future research.
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Appendix

The Bayesian estimation of the TVP-VAR discussed in Section 2 requires the choice of

prior distributions for the initial conditions of the states θ0, A0, and σ0, and prior scale

matrices and degrees of freedom for the IW-distributions of the hyperparameters, Q, S, and

W , which represent the variance-covariance matrices of innovations to the respective states.23

As in Primiceri (2005) and Del Negro and Primiceri (2015), we inform our prior by estimating

a time-invariant VAR with OLS on a training sample spanning the 58 quarters that precede the

period of interest. In particular, we assume the following specification for the prior:

θ0 ∼ N
(
B̂OLS , 4 · V (B̂OLS)

)
A0 ∼ N

(
ÂOLS , 4 · V (ÂOLS)

)
log σ0 ∼ N (log(σ̂OLS), In)

Q ∼ IW
(
k2
B · n

Q
min · V (B̂OLS), nQmin

)
Si ∼ IW

(
k2
A · n

Si
min · V (Âi,OLS), nSi

min

)
, i = 1, 2, 3

W ∼ IW
(
k2
H · nWmin · In, nWmin

)
,

where V (·) denotes a variance-covariance matrix, nmin denotes the minimum amount of degrees

of freedom that is required to have an inverse-Wishart distribution with a proper mean and

variance, and with kA = 0.5, kB = 0.01, and kH = 0.01. Three exceptions notwithstanding, this

parameterization of the prior is identical to the approach in Primiceri (2005) and Del Negro

and Primiceri (2015).

We slightly deviate from Primiceri (2005) and take a value of kA = 0.5, where the original

value was 0.1. kA is the parameter governing our prior belief about the amount of time variation

in the off-diagonal elements of the variance-covariance matrix of the residuals. Our motivation

for this choice is threefold. First, our main results do not crucially depend on the choice of kA,

and reducing this value to Primiceri’s benchmark value of 0.1 does not qualitatively change the

results. Second, one should also note that kA parameterizes neither the direction nor the timing

of the time variation. Third, the relative responses of food and oil prices after both supply

shocks as they emerge from the sample split in the robustness section are quantitatively very

23Q = E[νtν
′
t],S = E[ζtζ

′
t], and W = E[ηtη

′
t]. S is block-diagonal as in Primiceri (2005) and Del Negro and

Primiceri (2015).
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closely related to their relative responses derived by averaging the impact responses from the

TVP-VAR for the quarters ranging from 1988Q3 to 2003Q4 and from 2004Q1 to 2016Q4.

Second, we cannot follow Primiceri’s choice to put the prior degrees of freedom for Q equal

to the number of observations in the training sample. This follows from the fact that the size

of our training sample is smaller than the dimensionality of Q. As an alternative, and in line

with the priors for S and W , we opt for a prior that is as loose as possible by choosing the

prior degrees of freedom as small as possible given the dimensionality of Q.

Finally, in line with, among others, Cogley and Sargent (2005), Canova and Gambetti

(2006), Canova and Gambetti (2009), and Baumeister and Peersman (2013b), we impose a

stability constraint on the lagged coefficients in every state. We do this by attaching zero prior

probability to any draw of the lagged coefficients {θ1,θ2, . . . ,θT } for which at any time t the

stability constraint is violated.

We generate draws from the posterior by using the Gibbs sampler of Del Negro and Primiceri

(2015). This sampler slightly diverges from the original sampler in Primiceri (2005), which has

been shown not to produce draws from the correct posterior. We choose for 50,000 passes of

the sampler and discard the first 10,000 iterations as burn-in. The results are insensitive to

substantial changes in both the total number of iterations and the size of burn-in period. To

further assess the convergence of the chain, we calculate inefficiency factors for the states and

the hyperparameters; they are shown in Figure A1. Following Primiceri (2005), we consider

inefficiency factors lower than 20 to signal satisfactory mixing of the Markov chain, which we

observe for all parameters.

Upon having simulated the posterior distributions of the lagged coefficients, the volatilities,

and the covariances of the error terms, we turn to the structural analysis. As discussed in

Section 2, we build on the particular construction of the food production index to justify the

identification of the food supply shock by placing the food production index first in a Cholesky-

ordering. In order to identify the oil supply shock by means of sign restrictions, we build on

existing algorithms, used by, e.g., Canova and Gambetti (2006), Canova and Gambetti (2009),

and Baumeister and Peersman (2013b). We, however, depart from these algorithms for imposing

sign restrictions in TVP-VARs in two ways.

First, as shown in Koop and Potter (2011), the existing algorithms fail to correctly use the

draws from the unrestricted posterior to simulate the posterior distribution of the structural

model. To see this, first note that one draw Φ from the unrestricted posterior consists of
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T states of the economy: {φ1, φ2, . . . , φT }. Next, let Ξ denote a set of T rotation matrices,

{ξ1, ξ2, . . . , ξT } that are drawn from a uniform distribution over the set of orthogonal matrices

(as in, e.g., Rubio-Ramı́rez et al., 2010). Further note that a draw from the posterior of the

structural model Φ̄ consists of T structural states of the economy,
{
φ̄1, φ̄2, . . . , φ̄T

}
, where each

structural state φ̄t consists of a combination of a state φt from the reduced-form model and a

rotation matrix ξt for which the implied impulse responses f(φt, ξt) satisfy the identifying sign

restrictions for t = 1, . . . , T .

Canova and Gambetti (2006), Canova and Gambetti (2009), and Baumeister and Peersman

(2013b) claim to generate a draw Φ̄ from the posterior of the structural model by first selecting

a state φt from a draw Φ of the unrestricted posterior, then drawing a rotation matrix ξt,

and finally retaining the couple (φt, ξt) as one state φ̄t within one draw Φ̄ of the posterior of

the structural model if the implied impulse responses f(φt, ξt) satisfy the sign restrictions. A

complete draw Φ̄ from the posterior of the structural model is then generated by retaining, for

each date in the sample, one couple of (φt, ξt) that satisfies the sign restrictions.

Koop and Potter (2011) show that this procedure may not be accurate. To correctly generate

a draw Φ̄ from the posterior of the structural model, we adjust the existing algorithms by

selecting, first, a draw Φ from the unrestricted posterior (rather than only one state φt), and

second, a set Ξ of T rotation matrices (rather than just one ξt). This couple (Φ,Ξ) is retained

as a draw from the structural posterior if the whole sequence of implied impulse responses

{f(φ1, ξ1), . . . , f(φT , ξT )} satisfy the sign restrictions, otherwise the draw is discarded. Note that

Koop and Potter (2011) show that this procedure is only an approximation of the true posterior

of the structural model. The approximation error, however, is small since the probability that

one individual impulse response f(φt, ξt) satisfies the sign restrictions is sufficiently large.

Second, we diverge from the algorithms used by Canova and Gambetti (2006), Canova and

Gambetti (2009), and Baumeister and Peersman (2013b) by forcing the rotation matrix to be

the same for all t within one draw of the posterior distribution of the structural model. More

precisely, we draw only one rotation matrix ξ∗ rather than a set Ξ of T different rotation

matrices. We then retain the couple (Φ, ξ∗) as one draw Φ̄ from the posterior of the structural

model if the whole sequence of impulse responses {f(φ1, ξ
∗), . . . , f(φT , ξ

∗)} satisfies the sign

restrictions.

This second modification to the existing algorithms avoids the introduction of an arbitrary

amount of time variation within each draw of the Gibbs-sampler. Although the impact of such
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an additional arbitrary amount of time variation is negligible or even absent for the posterior

distribution of the impulse responses, it is an important drawback when we construct the

distribution for the amount of time variation present in the model by calculating the within-

draw changes over time in the impulse responses.
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Figures

Figure 1: Comovement between Oil and Food Commodity Prices

A. Oil and Food Commodity Prices B. Correlation Measures

C. Volume of Futures Contracts D. Biofuels in U.S. Petroleum Consumption

Notes: Panel A shows (the natural logarithm of) crude oil and food commodity prices, indexed to 2010=100. Food
commodity prices are a weighted average of the prices of corn, soybeans, wheat and rice. The solid line and the shaded
area in panel B denote kernel regression coefficients and the associated 68 percent confidence bands. The dotted line shows
correlation coefficients for a sample split in 2003Q4/2004Q1. The dashed line displays correlations derived from (lagged)
5-year rolling windows. These computations are based on the growth rates of the variables in panel A. The solid line in panel
C plots NYMEX trading volumes of crude oil WTI futures contracts (dashed line) and corresponding CBOT aggregates
for accumulated total corn, soybeans, wheat and rice futures, in millions of contracts (solid line). Panel D represents the
share of biofuels in total U.S. petroleum consumption, measured in percent, and is computed using data made available by
the U.S. Energy Information Administration.
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Figure 2: Data

A. Production B. Production: Growth

C. Commodity Prices D. Commodity Prices: Growth

E. Food Commodity Prices F. Food Commodity Prices: Growth

Notes: The left panels show (natural logarithms of) price and production indices normalized to 2010=100. The right panels
show the variables in non-annualized quarterly growth rates.
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Figure 3: Time-Varying Effects of Oil and Food Supply Shocks: Benchmark Results

A. One Standard Deviation Shock

Oil Shock Food Shock

B. Normalized Time Variation
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Notes: Panel A shows the contemporaneous impact of a one standard deviation shortfall in the production of oil (first
column) and food (second column) based on the TVP-BVAR. Panel B shows the time variation in these responses, calculated
as the change in the contemporaneous response (normalized to represent a 1 percent production shortfall) over time relative
to a benchmark quarter. The benchmark quarter is selected as the quarter with the lowest median (normalized) response.
The shaded areas are the 16th and 84th percentile confidence bands.
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Figure 4: Time-Varying Effects of Oil and Food Supply Shocks: Other Indicators

A. One Standard Deviation Shock

Oil Shock Food Shock

B. Normalized Time Variation
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Notes: Panel A shows the contemporaneous impact of a one standard deviation shortfall in the production of oil (first
column) and food (second column) based on the TVP-BVAR. Panel B shows the time variation in these responses, calculated
as the change in the contemporaneous response (normalized to represent a 1 percent production shortfall) over time relative
to a benchmark quarter. The benchmark quarter is selected as the quarter with the lowest median (normalized) response.
The shaded areas are the 16th and 84th percentile confidence bands.
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Figure 5: Time-Varying Effects of Oil and Food Supply Shocks: 5-Variable TVP-BVAR(4)

A. One Standard Deviation Shock

Oil Shock Food Shock

B. Normalized Time Variation
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Notes: Panel A shows the contemporaneous impact of a one standard deviation shortfall in the production of oil (first
column) and food (second column) based on a 5-variable TVP-BVAR. Panel B shows the time variation in these responses,
calculated as the change in the contemporaneous response (normalized to represent a 1 percent production shortfall) over
time with relative to a benchmark quarter. The benchmark quarter is selected as the quarter with the lowest median
(normalized) response. The shaded areas are the 16th and 84th percentile confidence bands.
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Figure 6: Dynamic Effects of Oil and Food Supply Shocks Using a Sample Split in 2004Q1

A. 1 Percent Oil Production Shortfall B. 1 Percent Food Production Shortfall
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Notes: The early sample corresponds to the period from 1988Q3 to 2003Q4, while the late sample ranges from 2004Q1 to
2016Q4. The impulse responses are normalized to represent a 1 percent production shortfall in the oil or food market. The
shaded areas and dotted lines are the 16th and 84th percentile confidence bands.
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Figure 7: Effect of Oil and Food Supply Shocks on Consumer Prices

A. 1 Percent Oil Production Shortfall B. 1 Percent Food Production Shortfall

CPI Food: U.S.

CPI Food: U.K.

CPI Energy: U.S.

CPI Energy: U.K.

Notes: The early sample corresponds to the period from 1988Q3 to 2003Q4, while the late sample ranges from 2004Q1 to
2016Q4. The impulse responses are normalized to represent a 1 percent production shortfall in the oil or food market. The
shaded areas and dotted lines are the 16th and 84th percentile confidence bands.
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Figure 8: Time-Varying Effects of Oil and Food Supply Shocks: Disaggregated Analysis

A. One Standard Deviation Shock
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B. Normalized Time Variation
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Notes: Panel A shows the contemporaneous impact of a one standard deviation shortfall in the production of oil (first
column) and food (second column) based on the TVP-BVAR. Panel B shows the time variation in these responses, calculated
as the change in the contemporaneous response (normalized to represent a 1 percent production shortfall) over time relative
to a benchmark quarter. The benchmark quarter is selected as the quarter with the lowest median (normalized) response.
The shaded areas are the 16th and 84th percentile confidence bands.
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Figure A1: Histogram of Inefficiency Factors for the Two Benchmark Models

Notes: The histogram collects all inefficiency factors for the two benchmark TVP-BVAR models. For ease of exposition,
inefficiency factors larger than 0.15 enter the last bin.
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