
Monetary Policy through Production Networks:
Evidence from the Stock Market∗

Ali Ozdagli†and Michael Weber‡

This version: May 2017

Abstract

Monetary policy shocks have a large impact on stock returns in narrow
windows around press releases by the Federal Reserve. We use spatial
autoregressions to decompose the overall effect of monetary policy shocks into
a direct effect and an indirect (network) effect. We attribute 50%–85% of the
overall effect to indirect effects. The decomposition is a robust feature of the
data and we confirm large indirect effects in realized cash-flow fundamentals.
A simple model with intermediate inputs guides our empirical strategy. Our
findings indicate that production networks might be an important propagation
mechanism of monetary policy to the real economy.
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I Introduction

Understanding how monetary policy affects the broader economy necessarily

entails understanding both how policy actions affect key financial markets, as well as

how changes in asset prices and returns in these markets in turn affect the behavior

of households, firms, and other decision makers. Ben S. Bernanke (2003)

A growing literature in macroeconomics argues microeconomic shocks might

propagate through the production network and contribute to aggregate fluctuations.

In this paper, we study theoretically and empirically whether the production

network and the input-output structure of the U.S. economy are also an important

propagation mechanism of aggregate shocks in the context of monetary policy.1 For

example, expansionary monetary policy shocks may directly increase the demand

for goods of firms. These firms increase their purchases of intermediate goods in

order to meet the higher demand. Since the input into their production is the

output of firms in other sectors, the producers of intermediate inputs themselves

have to increase production, which results in an increase in demand for goods of

sectors further upstream in the production network. Therefore, a natural question is

whether and to which extent higher-order demand effects through intermediate-input

linkages contribute to the real effects of monetary policy. We attribute 50%–85% of

the overall reaction of stock returns to monetary policy shocks to indirect network

effects.

We use stock returns as a laboratory to test for the importance of network effects,

because central banks directly and immediately affect financial markets through

interest rates, which then influences households’ consumption decisions and firms’

investment decisions.2 We merge stock price data for individual firms from NYSE

1As mentioned by Acemoglu, Akcigit, and Kerr (2015), “the role of the input-output and the
geographic networks in the propagation of industry-level (micro) shocks suggests that these networks
may also be playing a role in the amplification of macro shocks –such as aggregate demand, monetary
and financial shocks– which appears a generally understudied area.”

2Bernanke and Kuttner (2005) show an unanticipated 25-basis-point decrease in the federal
funds rate leads to an increase in the CRSP value-weighted index of more than 1% within minutes
of the FOMC announcement. Bjørnland and Leitemo (2009) use structural VARs to identify the
effect of monetary policy shocks on stock returns, and find values as high as 2.25%.
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Trade and Quote (taq) with the data from the benchmark input-output tables of the

Bureau of Economic Analysis (BEA) and identify monetary policy shocks as changes

in futures on the federal funds rates, the main policy instrument of the Fed. A simple

model of production with intermediate inputs in the spirit of Acemoglu, Carvalho,

Ozdaglar, and Tahbaz-Salehi (2012) guides our empirical analysis.

We use spatial autoregressions to decompose the overall effect of monetary

policy shocks on stock returns in narrow time windows around press releases of

the Federal Open Market Committee (FOMC) into direct effects and higher-order

network effects. We find large indirect effects that are robust to different sample

periods, event windows, and types of announcements. Our results are similar for

industry-demeaned returns and when we account for the possibility of other common

shocks in the same event window.

Within the context of our model, we interpret monetary policy shocks as demand

shocks. Consistent with this interpretation, we provide evidence that measured direct

effects of monetary policy are larger for industries selling most of the industry output

directly to end-consumers compared to other industries. The bigger importance of

direct-demand effects for these industries is consistent with our model’s intuition

that indirect-demand effects should be less important for industries “close to end-

consumers.”

Our baseline findings indicate higher-order demand effects might account for a

substantial fraction of the overall effect of monetary policy shocks on stock returns.

We further support this argument by analyzing similar network effects in ex-post

realized fundamentals, such as sales or operating income. Indirect effects make up

60% of the impact effect of monetary policy shocks on fundamentals, a result robust

to different measures of fundamentals and weighting schemes. The indirect response

increases up to seven quarters after the monetary policy shocks but loses statistical

significance after eight quarters.

Our model implies industries with higher average profitability should have lower

sensitivities to monetary policy shocks due to a leverage effect. When we add

measures of average industry profitability and their interaction with the monetary

policy shock, we find supportive evidence for this prediction. Firms in industries with
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average profitability have a sensitivity to monetary policy shocks that is reduced by

55% relative to our baseline analysis. Crucially, after we account for differences in the

sensitivity to monetary policy shocks due to profitability, we still find indirect effects

constitute about 80% of the overall responsiveness of industry returns to monetary

shocks.

A major concern regarding our analysis is that we mechanically assign a large

fraction of the overall effect of monetary policy shocks to indirect effects as we regress

industry returns on a weighted average of industry returns. Because the empirical

input-output matrix is sparse and few big sectors are important suppliers to the

rest of the economy (see Acemoglu et al. (2012) and Gabaix (2011)), we construct

a pseudo input-output matrix with these two characteristics. Using this pseudo

input-output matrix, we find indirect effects account now for only 18% compared

to more than 80% in our baseline estimation, suggesting a mechanical correlation

between industries does not drive our main results.

Finally, we show our empirical results on the relative importance of direct versus

indirect effects are consistent with data we simulate from a dynamic model with

nominal frictions. Specifically, we simulate data from the model under different

assumptions regarding structural parameters, run our baseline specifications on

simulated data using the actual input-output matrix as the spatial-weighting matrix,

and perform the decomposition into indirect and direct effects. Across different

specifications, we find indirect effects constitute 70% to 80% of the overall effect.

Our findings indicate production networks might not only be important for the

propagation of idiosyncratic shocks, but might also be a propagation mechanism of

monetary policy to the real economy. The network effects we document in firm and

industry fundamentals indicate monetary policy shocks affect the real economy at

least partially through demand effects and not only through changes in risk premia,

consistent with findings in Bernanke and Kuttner (2005) and Weber (2015).

A. Related Literature

A growing literature in macroeconomics argues microeconomic shocks might

propagate through the production network and contribute to aggregate fluctuations.

4



The standard view is that idiosyncratic shocks are irrelevant, because the law of

large numbers applies (Lucas (1977)). However, recent work by Gabaix (2011) and

Acemoglu et al. (2012) building on Long and Plosser (1983) and Horvath (1998)

shows that the law of large numbers does not readily apply when the firm-size

distribution or the importance of sectors as suppliers of intermediate inputs to the

rest of the economy is fat-tailed (see Figure A.1 in the Online Appendix). Pasten,

Schoenle, and Weber (2017a) extend their analysis to allow for heterogeneity in

price stickiness across sectors and identify a frictional origin of aggregate fluctuations.

Acemoglu, Akcigit, and Kerr (2015) and Barrot and Sauvagnat (2016) show networks

are empirically important for aggregate fluctuations as well as for the propagation

of federal spending, trade, technology, and knowledge shocks. Kelly, Lustig, and

Van Nieuwerburgh (2013) study the joint dynamics of the firm-size distribution and

stock return volatilities, and Herskovic, Kelly, Lustig, and Van Nieuwerburgh (2016)

and Herskovic (2015) study the asset-pricing implications.3

We also relate to the large literature investigating the effect of monetary shocks

on asset prices. In a seminal study, Cook and Hahn (1989) use an event-study

framework to examine the effects of changes in the federal funds rate on bond

rates using a daily event window. They show changes in the federal funds target

rate are associated with changes in interest rates in the same direction, with larger

effects at the short end of the yield curve. Bernanke and Kuttner (2005)—also

using a daily event window—focus on unexpected changes in the federal funds target

rate. They find that an unexpected interest-rate cut of 25 basis points leads to

an increase in the CRSP value-weighted market index of about 1 percentage point.

Gürkaynak, Sack, and Swanson (2005) focus on intraday event windows and find

effects of similar magnitudes for the S&P500. Pasquariello and Vega (2007) study

the importance of order flow on price formation in bond markets on FOMC and

other macro announcement days. Neuhierl and Weber (2017) show that changes in

long-term federal funds futures relative to changes in short-term federal funds futures

are powerful in moving markets.

3Other recent contributions to this fast-growing literature are Acemoglu, Ozdaglar, and Tahbaz-
Salehi (2017); Atalay (2015); Baqaee (2016); Bigio and La’O (2016); Carvalho and Gabaix (2013);
Carvalho and Grassi (2015); and Baqaee and Farhi (2017).
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Besides the effect on the level of the stock market, researchers have recently

also studied cross-sectional differences in the response to monetary policy. Ehrmann

and Fratzscher (2004) and Ippolito, Ozdagli, and Perez (2017), among others, show

that firms with large bank debt and low cash flows, as well as small firms and firms

with low credit ratings, high price-earnings multiples, and Tobin’s q, show a higher

sensitivity to monetary policy shocks, which is in line with bank-lending, balance-

sheet, and interest-rate channels of monetary policy. Gorodnichenko and Weber

(2016) show that firms with stickier output prices have more volatile cash flows and

higher conditional volatility in narrow event windows around FOMC announcements.

We make the following three contributions to the literature. First, we provide

evidence that production networks are also an important propagation channel for

aggregate demand shocks. The existing literature so far has focused exclusively

on the propagation of micro (supply) shocks. In production-based models, supply

shocks travel downstream from suppliers to customers, whereas demand shocks

travel upstream in the production network. Second, we show that higher-order

demand effects are responsible for a large part of the overall effect of monetary

policy shocks on the stock market. Our findings open up novel avenues to develop

asset-pricing theories based on the network feature of the economy. Third, we make

a methodological contribution and use methods from spatial econometrics—spatial

autoregressions—to study questions in macroeconomics and finance.

II Framework

Firms increase their purchases of intermediate goods when they face increased

demand for their production good in models with intermediate production. The input

into production is the output of firms in other sectors. The producers of intermediate

inputs themselves have to increase production to satisfy the increased demand for

their goods, which results in higher demand for the output of other sectors.

Expansionary monetary policy shocks, therefore, directly increase the demand

for goods of firms selling to consumers, but also lead indirectly to higher-order

demand effects through increased demand for intermediate inputs, which can

rationalize the large and cross-sectionally heterogenous effects of monetary policy
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shocks on stock market returns. This section first discusses how we measure monetary

policy shocks and then demonstrates how we identify direct and indirect effects using

spatial autoregressions (SARs).4 Section III shows how the SAR specification arises

naturally from a model of production networks.

A. Monetary Policy Shocks

Identification of unanticipated, presumably exogenous shocks to monetary policy

is central to our analysis. In standard macroeconomic contexts (e.g., structural

vector autoregressions), one may achieve identification by appealing to minimum

delay restrictions whereby monetary policy is assumed to be unable to influence

the economy (e.g., real GDP or unemployment rate) within a month or a quarter.

However, asset prices are likely to respond to changes in monetary policy within

minutes.

To address this identification challenge, we employ an event-study approach in

the tradition of Cook and Hahn (1989) and more recently Bernanke and Kuttner

(2005). Specifically, we examine the behavior of returns and changes in the Fed’s

policy instrument in narrow time windows around FOMC press releases when the

only relevant shock (if any) is likely due to changes in monetary policy. To isolate the

unanticipated part of the announced changes in the policy rate, we use federal funds

futures, which provide a high-frequency market-based measure of the anticipated

path of the federal funds rate.

We calculate the surprise component of the announced change in the federal

funds rate as

vt =
D

D − t
(ff 0

t+∆t+ − ff 0
t−∆t−), (1)

where t is the time when the FOMC issues an announcement, ff 0
t+∆t+ is the federal

funds futures implied rate shortly after t, ff 0
t−∆t− is the federal funds futures implied

rate just before t, and D is the number of days in the month. The D/(D − t) term

adjusts for the fact that the federal funds futures settle on the average effective

overnight federal funds rate.

4Denbee, Julliard, Li, and Yuan (2014) use SARs to study systemic liquidity risk in the Sterling
interbank market.
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B. Spatial Autoregressions

We use methods from spatial econometrics to decompose the overall stock

market reaction into a direct demand effect and higher-order effects. The spatial

autoregressive model is given by

yt = βvt + ρW ′yt + εt, (2)

which implies the data-generating process

yt = (In − ρW ′)−1βvt + (In − ρW ′)−1εt

εt
N∼ (0, σ2In).

y is a vector of n industry returns around FOMC press releases, v is a vector of

monetary policy shocks, and W ′ is a row-normalized spatial-weighting matrix. W

corresponds to the BEA input-output matrix, which we describe in section IV.

We can interpret parameter estimates in linear regression models as partial

derivatives of the dependent variable with respect to the independent variable. The

interpretation of parameters in a spatial model is less straightforward, because they

incorporate information from related industries (or neighboring regions in a spatial

application). We can see the complication more clearly when we re-write equation

(2) as

y = S(W ′)v + V (W ′)ε,

where we omit time subscripts for brevity and

S(W ′) = V (W ′)β (3)

V (W ′) = (In − ρW ′)−1 = In + ρW ′ + ρ2(W ′)2 + . . . (4)

To illustrate, we focus on a simple example with three industries. We can

expand the data-generating process to


y1

y3

y3

 =


S(W ′)11 S(W ′)12 S(W ′)13

S(W ′)21 S(W ′)22 S(W ′)23

S(W ′)31 S(W ′)32 S(W ′)33

×


v

v

v

+ V (W ′)ε,
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where S(W ′)ij denotes the ijth element of the matrix S(W ′).

We focus on industry 1,

y1 = S(W ′)1,1v + S(W ′)1,2v + S(W ′)1,3v + V (W ′)1ε, (5)

where V (W ′)i denotes the ith row of matrix V (W ′).

We see from equation (5) that the response of returns to a monetary policy

shock v in industry 1 (y1) depends on the reaction of other industries to the same

shock. In particular, S(W ′)1,1 gives the reaction of industry 1 to the monetary policy

shock, v, as if it were the only industry directly affected by the monetary policy

shock. S(W ′)1,2, instead, gives the reaction of industry 1 to the monetary policy

shock as if industry 2 were the only industry directly affected by the shock. This

entry of the matrix measures the spillover or indirect effect of monetary policy on

industry 1 through intermediate input linkages, that is, the demand of industry 2 for

goods industry 1 produces. Similarly, S(W ′)1,3 measures the higher-order demand

effect originating from industry 3. Therefore, S(W ′)1,1 gives the direct effect of the

monetary policy shock, v, whereas S(W ′)1,2 and S(W ′)1,3 give the indirect effects due

to industry 1’s exposure to industry 2 and industry 3 through input-output networks.

The overall response of industries to monetary policy shocks depends on the

input-output matrix W , which governs the response of industry returns to monetary

policy shocks via its effect on intermediate-input production; the parameter ρ, which

determines the strength of spillover effects; and the parameter β. The diagonal

elements of S(W ′) contain the direct effect of monetary policy shocks on industry

returns, and the off-diagonal elements present indirect effects. We follow Pace and

LeSage (2006) and define three scalars to measure the overall, direct, and indirect

effects:

Average direct effect: the average of the diagonal elements of S(W ′):

1
n
tr(S(W ′)), where tr is the trace of a matrix.

Average total effect: the sum across the ith row of S(W ′) represents the total

impact on industry i from the monetary policy shock. n of these sums exist, which

we represent by the column vector cr = S(W ′)ιn, where ιn is a vector of ones. We

define the average total impact then as 1
n
ι′ncr.
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Average indirect effect: the difference between the average total effect and the

average indirect effect.

The definition of average direct and indirect effects corresponds to average

partial derivatives. The average direct effect also includes spillover effects of other

industry returns on own industry returns and therefore results in conservative

estimates of network effects.

We estimate the following empirical specification to assess whether monetary

policy might result in higher-order demand effects:

rt = β0 + β1 × vt + ρ×W ′ × rt + errort, (6)

where rt is a vector of industry returns, rt = (rit)
N
1 in the interval [t − ∆t−,t +

∆t+] around event t, vt is the monetary policy shock defined above, and W is the

industry-by-industry input-output table from the BEA. We estimate the model using

maximum likelihood. We bootstrap standard errors, sampling events at random, and

re-estimate the model 500 times for samples with the same number of events as our

empirical sample.

III The Benchmark Network Model

This section develops a static model with intermediate inputs in which money

has heterogeneous effects on stock prices of firms. The simplicity of the model allows

us to focus on the propagation of (demand) shocks to the real economy via input-

output linkages and motivates our empirical specification. We discuss in section VI

a dynamic version of the model and estimate our baseline empirical specification on

model-simulated data.

A. Firms and Consumers

Our setup follows closely Acemoglu et al. (2015) and Carvalho (2014) but

allows for labor in production and adds money to the economy. We also introduce

wage stickiness to get real effects of monetary policy. We have a one-period

model with variable inputs that each firm can purchase from other firms, including

itself. Therefore, net income determines the stock price. Moreover, the firm has
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a predetermined fixed nominal obligation. We are agnostic about the origin of the

fixed costs, but they might include rent payments, or payments of nominal debt.

Firm i’s objective is to maximize profits πi, by choosing homogeneous labor,

l, and intermediate inputs, xij from firms i = 1 . . . N , given prices, {pi}Ni=1 for the

goods produced by these firms, and the overall pre-determined wage rate, w,

πi = max piyi −
N∑
j=1

pjxij − wli − fi with (7)

yi = lλi

(
N∏
j=1

x
ωij

ij

)α

, (8)

where yi is the output of firm i, λ and α are the factor shares, and ωij is the share

of input from firm j in the production of firm i such that
∑N

j=1 ωij = 1.

We see in the first-order conditions of the firm a larger factor share in the

production function leads to larger spending on that factor,

αωijRi = pjxij, (9)

λRi = wli, (10)

where Ri ≡ piyi is the revenue of the firm, and ωij corresponds to the entries of

the input-output matrix, W . A substitution of the first-order conditions into the

objective function gives

πi = (1− α− λ)Ri − fi. (11)

The representative consumer maximizes utility

max
N∑
i=1

log(ci) (12)

subject to the budget constraint

N∑
i=1

pici = w

N∑
i=1

li +
N∑
i=1

πi +
N∑
i=1

fi. (13)

We assume fixed costs are a transfer from firms to consumers, and consumers

passively supply labor to firms and collect income from wages, profits, and fixed

costs.
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The first-order condition is

ci =
w
∑N

i=1 li +
∑N

i=1 (πi + fi)

Npi
=

(1− α)
∑N

i=1 Ri

Npi
, (14)

where the second equality follows from equations (10) and (11).

The goods-market-clearing condition is

yi = ci +
N∑
j=1

xji ⇒ yi =
(1− α)

∑N
i=1Ri

Npi
+
α
∑N

j=1 ωjipjyj

pi
, (15)

which simplifies to

Ri = (1− α)

∑N
i=1 Ri

N
+ α

N∑
j=1

ωjiRj. (16)

Equation (16) shows that shocks to consumer demand, captured by the first term,

can affect the revenues of firm i and then propagate through the production network,

captured by the second term. The role of the production networks depends on both

the size of the customer industries, Rj, and the importance of firm i as a supplier to

these customer industries, α ∗ wji.
DefineW = [ωij] as the matrix of intermediate input shares andR = (R1,..., RN)′

as the vector of revenues, which leads to

(I − αW ′)R = (1− α)


(∑N

i=1 Ri

)
/N

...(∑N
i=1 Ri

)
/N


N×1

. (17)

B. Money Supply and Equilibrium Network Effects

We assume intermediate inputs are financed through trade credit, whereas

consumption goods are purchased with cash.5 Therefore, money supply determines

prices through the following cash-in-advance constraint:

N∑
i=1

pici = (1− α)
N∑
i=1

Ri = M, (18)

5See Cooley and Hansen (1989).
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where M is money supply. Combining equation (18) with the goods-market-clearing

condition (17), we get

(I − αW ′)R =


M/N

...

M/N


N×1

≡ m. (19)

Define π ≡ (π1,..., πN)′ and f ≡ (f1,..., fN)′. We get

π = (1− α)R− f = (I − αW ′)
−1

(1− α)m− f, (20)

which we can log-linearize to get

π̄π̂ = (I − αW ′)
−1

(1− α)m̄M̂.6 (21)

Define β ≡ (β1,..., βN)′ with

βi =
(1− α)m̄

π̄i
. (22)

Then,

π̂ = (I − αW ′)
−1
βM̂. (23)

Note we can rewrite the reaction of the deviation of net income as

π̂ = β × M̂ + α×W ′ × π̂, (24)

which has the form of a spatial autoregression (see equation (2)).

The changes in net income, that is, the stock returns of firms, react to money

shocks M̂ and the reaction of its customers, W ′ × π̂.

IV Data

A. Bureau of Economic Analysis Input and Output Tables

This section discusses the benchmark input-output (IO) tables that the BEA

at the United States Department of Commerce publishes, as well as how we employ

these tables to create an industry-to-industry matrix of dollar trade flows.7

6Throughout, let x̄ be the deterministic steady-state value, and x̂ be the log deviation from
steady state so that x = x̄ exp (x̂) ≈ x̄ (1 + x̂).

7Pasten, Schoenle, and Weber (2017b) use similar data.
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The BEA produces benchmark input-output tables, which detail the dollar flows

between all producers and purchasers in the United States. Purchasers include

industrial sectors, households, and government entities. The BEA constructs the IO

tables using Census data that are collected every five years. The BEA has published

IO tables every five years beginning in 1982 and ending with the most recent tables

in 2012.

The IO tables consist of two basic national accounting tables: a “make” table

and a “use” table. The make table shows the production of commodities by

industries. Rows present industries, and columns present commodities each industry

produces. Looking across columns for a given row, we see all commodities a given

industry produces. The sum of the entries adds up to the industry’s output. Looking

across rows for a given column, we see all industries producing a given commodity.

The sum of the entries adds up to the output of that commodity.

The use table contains the uses of commodities by intermediate and final users.

The rows in the use table contain the commodities, and the columns show the

industries and final users that utilize them. The sum of the entries in a row is the

output of that commodity. The columns document the products each industry uses

as inputs and the three components of “value added”: compensation of employees,

taxes on production and imports less subsidies, and gross operating surplus. The

sum of the entries in a column adds up to industry output.

We utilize the IO tables for 1992, 1997, and 2002 to create an industry network

of trade flows. The BEA defines industries at two levels of aggregation, detailed and

summary accounts. We use the summary accounts in our baselines analysis to create

industry-by-industry trade flows at the four-digit IO industry aggregation. Results

are similar if we use the detailed data.

A.1 Industry Aggregations

The 1992 IO tables are based on the 1987 SIC codes, the 1997 IO tables are

based on the 1997 NAICS codes, and the 2002 IO tables are based on the 2002 NAICS

codes. The BEA provides concordance tables between SIC and NAICS codes and

IO industry codes. We follow the BEA’s IO classifications with minor modifications

to create our industry classifications for the subsequent estimation. We account for
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duplicates when SIC and NAICS codes are not as detailed as the IO codes. In some

cases, different IO industry codes are defined by an identical set of SIC or NAICS

codes. For example, for the 2002 IO tables, a given NAICS code maps to both

Dairy farm products (010100) and Cotton (020100). We aggregate industries with

overlapping SIC and NAICS codes to remove duplicates.

A.2 Identifying Supplier-to-Customer Relationships

We combine the make and use tables to construct an industry-by-industry matrix

that details how much of an industry’s inputs are produced by other industries.

We use the make table (MAKE) to determine the share of each commodity

c that each industry i produces. We call this matrix share (SHARE), which

is an industry-by-commodity matrix. We define the market share of industry i’s

production of commodity c as

SHARE = MAKE � (I×MAKE)−1
i,j , (25)

where I is a matrix of ones with suitable dimensions.

We multiply the share and use table (USE) to calculate the dollar amount that

industry i sells to industry j. We label this matrix revenue share (REV SHARE),

which is a supplier industry-by-consumer industry matrix:

REV SHARE = (SHARE × USE). (26)

We use the revenue-share matrix to calculate the percentage of industry j’s

inputs purchased from industry i, and label the resulting matrix SUPPSHARE:

SUPPSHARE = REV SHARE � ((MAKE × I)−1
i,j )>. (27)

SUPPSHARE corresponds to the theoretical W matrix of section III and its

empirical counterpart in section II.
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B. Federal Funds Futures

Federal funds futures started trading on the Chicago Board of Trade in October

1988. These contracts have a face value of $5,000,000. Prices are quoted as 100 minus

the daily average federal funds rate as reported by the Federal Reserve Bank of New

York. Federal funds futures face limited counterparty risk due to daily marking to

market and collateral requirements by the exchange.

The FOMC has eight scheduled meetings per year and, starting with the first

meeting in 1995, most press releases are issued around 2:15 p.m. ET. Table A.1 in the

online appendix reports event dates, time stamps of the press releases, actual target

rates changes, and expected and unexpected changes for a tight (30 minutes) and

wide (60 minutes) event windows. We obtained these statistics from Gorodnichenko

and Weber (2016).

C. Event Returns

We sample returns for all common stock trading on NYSE, Amex, or Nasdaq for

all event dates. We link the CRSP identifier to the ticker of the NYSE taq database

via historical CUSIPs (an alphanumeric code identifying North American securities).

NYSE taq contains all trades and quotes for all securities traded on NYSE, Amex,

and the Nasdaq National Market System. We use the last trade observation before

the start of the event window and the first trade observations after the end of the

event window to calculate event returns. For the five event dates for which the press

release was issued before the start of the trading session (all intermeeting releases in

the easing cycle starting in 2007; see Table A.1 in the online appendix), we calculate

event returns using closing prices of the previous trading day and prices at 10:00

a.m. of the event day.8 We exclude 0 event returns to make sure stale returns do not

drive our results. We aggregate individual stock returns to industry returns following

the BEA industry definition. We have on average 61–71 industries, depending on

whether we use SIC or NAICS codes for the aggregation. We calculate both equally

8Intermeeting policy decisions are special in several respects, as we discuss later. Markets might
therefore need additional time to incorporate fully the information contained in the FOMC press
release into prices. In a robustness check, we calculate event returns using opening prices on the
event date. Result do not change materially.
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weighted and value-weighted industry returns. We use the market cap at the end of

the previous trading day or calendar month.

Our sample period ranges from February 2, 1994, the first FOMC press release

in 1994, to December 16, 2008, the last announcement in 2008, for a total of 129

FOMC meetings. We exclude the rate cut of September 17, 2001—the first trading

day after the terrorist attacks of September 11, 2001. Our sample starts in 1994

because our tick-by-tick stock price data are not available before 1993, and the

FOMC changed the way it communicates its policy decisions. Prior to 1994, the

market became aware of changes in the federal funds target rate through the size and

the type of open-market operations of the New York Fed’s trading desk. Moreover,

most of the changes in the federal funds target rate took place on non-meeting days.

With the first meeting in 1994, the FOMC started to communicate its decision by

issuing press releases after every meeting and policy decision. Therefore, the start of

our sample eliminates almost all timing ambiguity (besides the nine intermeeting

policy decisions). The increased transparency and predictability makes the use

of our intraday identification scheme more appealing, because our identification

assumptions are more likely to hold.

Figure A.2 in the Online Appendix is a scatterplot of CRSP index event

returns versus monetary policy shocks for a 30 minutes event window.9 This figure

shows a clear negative relation between monetary policy shocks and stock returns

on regular FOMC meetings and on policy reversal dates in line with Bernanke

and Kuttner (2005) and Gürkaynak et al. (2005). The scatterplot, however,

also documents anything that goes on intermeeting announcement days: negative

(positive) monetary policy shocks induce positive and negative stock market reactions

with about equal probabilities. Faust et al. (2004) find monetary policy surprises

do have predictive power for industrial production on intermeeting announcement

days. They argue the FOMC must have strong incentives to pursue a policy

action on unscheduled meetings, because the maximum time span to the next

regular meeting is only six weeks. They conclude the FOMC might have superior

information on intermeeting event days. The stock market reaction to monetary

9All results are identical for a event window of 60 minutes.
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policy announcements is therefore less of a reaction to monetary policy shocks than

it is to news about the state of the economy. We control for intermeeting policy

actions in section V because our predictions are only for exogenous monetary policy

shocks.

V Empirical Results

A. Aggregate Stock Market

We first document the effects of monetary policy shocks on the return of the

CRSP value-weighted index. Table 1 reports results from regressing returns of the

CRSP value-weighted index in the 30-minute event window around the FOMC press

releases on monetary policy surprises for different sample periods. Column (1) shows

a federal funds target rate that is 1 percentage point higher than expected leads

to a drop in stock prices of roughly 3 percentage points. The reaction of stock

returns to monetary policy shocks is somewhat muted compared to the results in

the literature, and the explanatory power is rather weak. Restricting our sample

period to 1994-2004, we can replicate the results of Bernanke and Kuttner (2005),

Gürkaynak et al. (2005), and others: a 25 bps unexpected cut in interest rates leads

to an increase of the CRSP value-weighted index of more than 1.4%. Monetary

policy shocks explain close to 50% of the variation in stock returns in a 30-minute

event window for this sample period. In column (3), we find a lower responsiveness

of stock returns on monetary policy shocks for a sample ending in 2000, but this

sample also only includes 50 observations. We will focus for most of our analysis

on the 1994–2004 sample to compare our results with results in the literature and

sidestep any concerns related to the Great Recession and the zero-lower bounds on

nominal interest rates. We discuss the robustness of our findings to different sample

periods below.

B. Baseline

Panel A of Table 2 presents results for the baseline specification (equation (6))

in which we regress event returns at the industry level on monetary policy surprises

(column (1)) and a weighted average of industry returns (columns (2)–(4)). We
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report bootstrapped standard errors in parentheses. Federal funds rates that are 25

bps higher than expected lead to an average drop in industry returns of 1 percentage

point, consistent with the result for the overall market (column (1)). We see in

column (2) that the estimates for β as well as for ρ are highly statistically significant

for equally weighted industry returns. Economically, a negative estimate of β means

tighter-than-expected monetary policy leads to a drop in stock returns. The positive

estimate of ρ means this effect is propagated through the production network: higher-

than-expected federal funds rates result in a drop in industry returns, which leads

to an additional drop in industry returns through spillover effects. Magnitudes of

point estimates are similar for value-weighted returns, independent of whether we use

the previous month or previous trading day market capitalization to determine the

weights. In the following, we use value-weighted returns with market capitalizations

from the end of the previous months as weights.

The positive and statistically significant point estimates of ρ indicate part of

the responsiveness of stock returns to monetary policy shocks might be due to

higher-order network effects. Panel B of Table 2 decomposes the overall effect of

monetary policy shocks on stock returns into direct and indirect effects according to

the decomposition of section II. Network effects are an important driver of the overall

effect of -3.5% to -4.4%. Indirect effects account for roughly 80% of the overall effect

of monetary policy shocks on stock returns.

C. Additional Results

We only used the 1992 BEA input-output tables in Table 2 to construct the

spatial-weighting matrix. In Table 3, we also use the 1997 and 2002 BEA tables.

Column (1) only uses the 1997 input-output tables, and column (2) only uses the 2002

input-output tables, whereas column (3) employs a time-varying spatial-weighting

matrix. We use the 1992 tables until 1997, the 1997 tables until 2002, and the

2002 tables afterwards. Point estimates for the networks parameter ρ are highly

statistically significant and vary between 0.60 and 0.67. Economically, the estimates

of Table 3 imply that between 53% and 61% of the overall effect of monetary policy

shocks comes from higher-order demand effects. In the following tables, we will focus
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on a constant spatial-weighting matrix using the 1992 input-output tables, which is

fully predetermined with respect to our empirical sample.

D. Subsample Analysis

The sensitivity of stock returns to monetary policy shocks varies across types

of events and shocks and might influence the importance of higher-order demand

effects. Table 4 contains results for different event types. Column (1) focuses on

reversals in monetary policy, such as the first increase in federal funds rates after a

series of decreasing or constant rates. We see that reversals lead to a larger impact

of monetary policy shocks on stock returns. The point estimate for β almost triples

compared to the overall sample (see column (3) of Table 2) with a similar point

estimate for ρ of 0.77. A federal funds rate that is 1 percentage point higher than

expected leads to an average drop in industry returns of 6.9%. Higher-order demand

effects account for more than 70% of this overall sensitivity.

We see in column (2) that monetary policy has no effect on stock returns on

unscheduled intermeeting dates, consistent with Figure A.2 in the Online Appendix

and results in the literature. Changes in target rates on unscheduled meetings might

signal news about the state of the economy. The stock market might react to the

news component rather than the monetary policy surprise.

Empirically, monetary policy has become more predictable over time because

of increased transparency and communication by the Fed and a higher degree of

monetary policy smoothing (see Figure A.3 in the Online Appendix). Many policy

shocks are small in size. To ensure these observations do not drive the large effects

of higher-order demand effects, we restrict our sample to events with shocks larger

than 5 basis points in absolute value in column (3). Economic significance remains

stable when we exclude small policy surprises. Statistical significance is sparse for

the estimate of β, which might be due to reduced power as we lose more than 70% of

our sample. Nevertheless, the indirect effect still constitutes about 80% of the total

effect.

We see in columns (4) and (5) the response of stock returns to monetary policy

shocks is asymmetric. Tighter-than-expected monetary policy has a weaker effect
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on stock returns compared to looser-than-expected monetary policy. A federal funds

rate that is 1 percentage point lower than expected leads to an average increase in

industry returns of more than 5%, which is highly statistically significant, with 80%

due to network effects. The effect of tighter monetary policy in column (4) is not

statistically significant, which is unlikely due to lower power, because both sample

sizes are similar in size.

E. Robustness

We focus on industry returns, and the empirical input-output matrix has non-

zero entries on the diagonal, which means, for example, that a car manufacturer uses

tires in the production process. One concern is that those within-industry demand

effects are largely responsible for the importance of network effects. In column (1)

of Table 5, we constrain the diagonal entries of the input-output matrix to zero but

ensure intermediate input shares still add up to 1. By construction, we now associate

a larger part of the overall effect of monetary policy shocks on stocks returns of 4%

with direct demand effects (see series expansion in equation (4)). However, indirect

effects still make up more than 50% of this overall effect. The result is reassuring.

Even if we bias our specification against finding network effects, we still attribute

economically large parts of the overall stock market reaction to higher-order effects.

We constrain the sensitivity of different industries to monetary policy shocks

to be equal across industries. Industries might differ in their sensitivities because

of differences in their cyclicality of demand or durability of output (see D’Acunto,

Hoang, and Weber (2017)). In column (2) of Table 5, we look at industry-adjusted

returns to control for those systematic differences. We first regress industry returns

on an industry dummy and then use the industry-demeaned returns as the left-hand-

side variable in equation (6). The adjustment has little impact on point estimates,

overall response to monetary policy shocks, and relative importance of direct and

indirect effects.

In column (3), we study market-adjusted returns. By construction, we now no

longer find a statistically significant reaction of average industry returns to monetary

policy shocks (β is no longer statistically significant), because all industries together
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constitute the market. However, we do find that industries whose customers are more

responsive to monetary policy shocks relative to the overall response of the market

are also more responsive to monetary policy shocks. In fact, the estimate for ρ is

close to the estimate in our baseline analysis.

We estimate our baseline model for a sample of scheduled events from 1994 to

2008 in column (4). The point estimate for ρ is identical to the estimate for a sample

ending in 2004, and the overall responsiveness of the stock market to monetary policy

shocks is similar as well. Indirect effects contribute more than 73% to the overall

effect of 4.27%.

We also estimated specifications allowing for heteroskedastic error terms.

Estimates of ρ are around 0.70, and we assign 70% of the overall effect of monetary

policy shocks to indirect effects. For the sake of brevity, we do not report these

results.

F. Placebo Test

Empirically, we find networks are important for the propagation of monetary

policy shocks to the stock market. The effect survives a series of robustness checks,

such as looking at industry-adjusted returns and focusing on different event types

and sample periods. One major concern, however, is that we mechanically find a

large estimate of ρ, and hence, network effects, as we regress industry returns on a

weighted average of industry returns. We construct a pseudo input-output matrix

to see whether we mechanically attribute large parts of the stock market sensitivity

to monetary policy shocks to network effects.

The empirical input-output matrix is sparse and few sectors are important

suppliers to the rest of the economy (see Figure A.1 in the Online Appendix and

Acemoglu et al. (2012) and Gabaix (2011)). We create a pseudo input-output matrix

with those two features. Specifically, we condition on the number of non-zero entries

in the empirical input-output matrix and draw random numbers from a generalized

Pareto distribution with a tail index parameter of 2.94068 and a scale parameter

of 0.000100821. We estimate these parameter values by minimizing the squared

distance between the empirical and estimated distribution function using the 1992
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input-output matrix .

We see in column (1) of Table 6 that part of the effect of monetary policy shocks

on stock returns that we attribute to indirect effects might be due to a bias in our

estimation. However, we also see this bias is most likely small. We estimate a ρ of

0.21, which is more than four times smaller than our baseline estimate of 0.87. The

decomposition of the overall effect into direct and indirect effects assigns only 17%

of the total effect of monetary policy shocks on the stock market to indirect effects,

compared to more than 80% for our baseline estimate (see column (3) Table 2).

Constructing a pseudo-spatial-weighting matrix by drawing random numbers

from a fitted distribution might alter the sector-size distribution or destroy linkages

across sectors. Columns (2) and (3) of Table 6 therefore take the actual input-output

matrix and only permute the columns and rows, respectively. Even in cases in which

we keep economic linkages across sectors intact, we still find point estimates of ρ

that are only 40% of our baseline estimate and indirect effects constituting less than

40% of the overall response of industry returns to monetary policy shocks. These

results suggest the particular structure of the input-output linkages is the main factor

resulting in high indirect effects of monetary policy.

G. Model-Implied Sensitivities and Heterogeneity

So far, we have estimated a constant exposure of industry returns to monetary

policy shocks. Industries might have heterogeneous sensitivities to changes in interest

rates. In fact, the model we develop in section III predicts a lower sensitivity of

industry returns for industries that are on average more profitable: βi = (1−α)m̄
π̄i

.

In addition to the robustness checks we report above addressing the issue of

heterogeneity in industry sensitivities, we now want to test the prediction of the

model directly and check whether imposing a constant beta across industries biases

our baseline findings.

We first calculate firm-level measures of profitability as net sales minus costs of

goods sold scaled by total assets, using annual balance sheet-data from Compustat.

We then value-weight each firm-level observation by the market capitalization of the

firm at the end of the calendar year to get an annual measure of industry profitability.
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Lastly, we take the average across the years in our sample to arrive at the empirical

counterpart of the average profitability the model implies.

To see whether we indeed find a lower sensitivity of returns to monetary policy

shocks for industries with higher profitability, we add the level of profitability and

the interaction of it with our monetary policy shock to our baseline estimation,

rit = β0 + β1 × vt + β2 × profi + β3 × profi × vt + ρ×W ′ × rt + εit.

We see in column (1) of Table 7 that contractionary monetary policy shocks

result in a drop in industry returns (β1 < 0), which gets propagated through the

production network (ρ > 0), but we also see the response of returns to monetary

policy shocks is less pronounced for industries with higher average profitability

(β3 > 0). The average industry profitability is not associated with returns in a

30-minutes window around FOMC press releases (β2 = 0). The indirect effect is still

the main driver of the overall sensitivity to monetary policy shocks (Panel B). We

only report the decomposition for the sensitivity to monetary policy shocks, which

means the results in Panel B hold for an industry with an average profitability of

0. In unreported results, we find that an industry with the mean average industry

profitability in our sample of 16.67% has an exposure to monetary policy shocks that

is reduced by 55.30% compared to the results in Panel B.

Imposing a constant beta across industries might bias upwards our estimate of

ρ. Simulations are a simple way to see whether our assumption biases the point

estimates. Specifically, we assume industries have a heterogeneous sensitivity to

monetary policy shocks, which is constant over time. We take our baseline estimate

for β of around -0.60 (see Table 2), assume industry betas are equally distributed

on an interval from -0.80 to -0.40, that is, β1,i ∼ U [−0.80,−0.40] ∀i, and impose

the baseline estimate for ρ. We then simulate industry returns to monetary policy

shocks as

rit = β0 + β1,i × vt + ρ×W ′ × rt + εit,

taking the actual input-output matrix as given. We assume the residuals are normally

distributed with a mean of 0 and standard deviation equal to the standard deviation
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of the residual of a regression of market returns on monetary policy shocks on the

event days.

Column (2) of Table 7 reports the results of estimating our baseline SAR model

on simulated data. Imposing a constant beta across industries seems to bias the

estimated monetary policy shock exposure (β) downwards, but crucially for us, has

no impact on the estimate of ρ. The results from this simulation suggest imposing a

constant beta to monetary policy shocks across industries can hardly explain large

indirect effects of monetary policy shocks on industry returns.

H. Identification through Heteroskedasticity

Section V.G. allows for potential heterogeneity in the sensitivity of monetary

policy shocks across industries, but it still ignores shocks other than monetary

policy shocks that can generate cross-sectional correlation of returns. Our 30-minute

event window is sufficiently narrow, alleviating concerns of another shock occurring

contemporaneously.

Nevertheless, we perform an additional robustness check using a

heteroskedasticity-based estimator in the spirit of Rigobon and Sack (2003)

and returns in the same 30-minutes window on the day before an FOMC meeting.

Because these pre-event dates are in the FOMC blackout period, monetary policy

is unlikely to drive any movements in stock prices during the 30-minute window on

the pre-event dates.

If we denote rt as the vector of returns on the event date t and rt− as the vector

of returns on the pre-event date, we can rewrite the SAR model as

rt = βvt + ρW ′rt + εt

rt− = ρW ′rt− + εt−.

Under the assumption that the covariance of the shocks attributable to news

other than monetary policy remains the same in event and pre-event dates (see

Rigobon and Sack (2003)), the following moment restrictions identify ρ and β:

E
[
εtε
′

t

]
= E

[
εt−ε

′

t−

]
,

E [εtvt] = 0.
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The first equation yields N (N + 1) /2 moment restrictions and the second equation

yields N moment restrictions for a total of N (N + 3) /2 moment restrictions for N

industries.

If we were to use all these moment conditions, we could not estimate the two-

step GMM approach, because the second step would require inverting a singular

covariance matrix.10 Therefore, we follow a more parsimonious approach and take the

cross-sectional average for each of the two equations, giving us an exactly identified

model.

We see in column (3) of Table 7 that our baseline finding remains the same.

Industry returns decrease in response to contractionary monetary policy shocks, and

this decrease is propagated through the production network. We see in Panel B that

higher-order network effects are responsible for 85% of the total effect.

I. Closeness to End-Consumers

We interpret monetary policy shocks as demand shocks. Our theory has

predictions for the relative importance of direct and indirect effects as a function of

closeness to end-consumers. The response of industries that sell most of their output

directly to consumers should have most of their overall responsiveness to monetary

policy shocks coming from direct effects. On the contrary, the sensitivity of input

producers, such as the oil sector, should mainly originate due to indirect effects.

We follow Saito, Nirei, Carvalho, and Tahbaz-Salehi (2015) to create an empirical

proxy for the closeness to end-consumers, using data from the BEA. Specifically, we

sort industries into layers by the fraction of output sold directly and indirectly to

end-consumers.11 We assign an industry to layer 1 if it sells more than 90% of its

output to consumers. Layer 2 consists of industries not in layer 1 and selling more

than 90% of their output to consumers directly or indirectly through industries using

the output of industries in layer 2 as input in the production of their output. The

higher-order layers are defined accordingly. We label industries in layers 1–4 “close

to end-consumers.” Industries in layers 5–8 are “far from end-consumers.”

10The weighting matrix in the second stage is the inverse of the square matrix with dimension
N (N + 3) /2 and rank equal to min(N (N + 3) /2, T ) = T , where T is the number of time periods.

11Section II in the online appendix details the procedure.
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Table 8 reports our decomposition in direct and indirect effects for both sets

of industries. In column (1), we re-estimate our SAR model of equation (6) for

industries close to end-consumers and report the decomposition. Column (2) repeats

the analysis for industries far from end-consumers. In our baseline analysis, we assign

only 30% of the effect of monetary policy shocks on stock returns to direct effects.

The share of the direct effect increases to about 55% for industries that sell most

of the output directly (or indirectly via inputs in production) to end-consumers.

The direct share drops to only 25% for industries whose outputs are mainly used

as intermediate inputs. The higher relevance of direct effects for industries closer

to end-consumers provides supportive evidence for monetary policy affecting stock

returns through changes in demand and intermediate production.

J. Fundamentals

Our baseline findings in Table 2 indicate that higher-order network effects might

be responsible for up to 80% of the reaction of stock returns to monetary policy

shocks. We argue that demand effects account for the propagation of monetary

policy shocks through the production network. Demand effects suggest we should

see similar network effects in ex-post realized fundamentals such as sales or operating

income. For a sample similar to ours, Bernanke and Kuttner (2005) find cash-flow

news is as important as news about future excess returns in explaining the reaction

of the overall stock market to monetary policy shocks.

Data on cash-flow fundamentals are only available at the quarterly frequency,

and detecting network effects in fundamentals might be difficult. We add shocks vt

in a given quarter and treat this sum as the unanticipated shock to match the lower

frequency following Gorodnichenko and Weber (2016). We denote the quarterly

shock with ṽt. We also construct the following measure of change in profitability

between the previous four quarters and quarters running from t+H to t+H + 3:

∆saleit,H =
1
4

∑t+H+3
s=t+H saleis −

1
4

∑t−1
s=t−4 saleis

TAit−1

× 100, (28)

where sale is net sales at the quarterly frequency, TA is total assets, and H can be

interpreted as the horizon of the response. We create similar measures for operating
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income OI. We use four quarters before and after the shock to address seasonality

in sales and operating income and scale by total assets to normalize the change.

We construct measures at the sector level, equally and value-weighting cash-flow

fundamentals and total assets. Using these measures of profitability, we estimate the

following modification of our baseline specification:

∆salet,H = β0 + β1 × ṽt + ρ×W ′ ×∆salet,H + errort. (29)

Higher-order network effects correspond to about 60% of the impact effect of

monetary policy shocks on stock returns across different measures of fundamentals

and weightings (Horizon H = 0, Table 9).12 The indirect response increases up

to seven quarters (H = 3) after the monetary policy shock and loses statistical

significance after eight quarters.

The network effects we document in firm and industry fundamentals indicate

that monetary policy shocks affect the real economy at least partially through

demand effects, consistent with findings in Bernanke and Kuttner (2005) and Weber

(2015).

VI Dynamic Model: Simulation

Our static benchmark model predicts a SAR structure in stock returns around

monetary policy announcements and we empirically attribute a large fraction of the

overall stock market response to indirect effects. Our analysis shows that indirect

effects are a robust feature of the data. Even if our robustness checks might have

missed a confounding factor driving our findings, we can abstract from such factors in

a theoretical model and assess whether the size of the indirect effect is quantitatively

rationalizable in a calibrated model in which the network structure is the only source

of comovement across sectors. We sketch the central differences between the static

model of section III and the dynamic model that we bring to the data and provide

details in section I of the online appendix.

12The impact response includes the quarter of the monetary policy shocks and the following three
quarters relative to the four quarters before the FOMC meeting.
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A. Economic Environment

Firms produce goods using labor and intermediate inputs with a CES production

function that flexibly accommodates perfect substitution across factors, a Cobb-

Douglas, or a Leontief production function. The profit function of firms is identical

to the benchmark model.

Combining the goods-market clearing-condition with the cash-in-advance

constraint for consumption goods gives the following equation for revenues:

Ri = (M/N) +
N∑
j=1

[αθjωjiRj] ,

where θi is the share of intermediate inputs in production of industry i, determined

endogenously in equilibrium.

This model changes the relationship between
∑N

i=1Ri and M , and the network

structure affects the reaction of the aggregate stock market to monetary policy

through θi.

Wages are set dynamically,

wt = ψwt−1 + (1− ψ)w∗t , (30)

where w∗t is the equilibrium wage under flexible wages and we can interpret ψ as a

degree of wage stickiness.

Money-supply growth is mean-reverting as in Cooley and Hansen (1989),

∆m̂t = ρ∆m̂t−1 + ut. (31)

The deviations of net income are

R̂i =
m̄

R̄i

m̂+
N∑
j=1

p̄ix̄ji
p̄iȳi

(
θ̂j + R̂j

)
, (32)

where p̄ix̄ji/p̄iȳi is the share of industry i’s revenues from industry j. A larger value

of this term implies industry j is a more important customer of industry i. Monetary

policy affects industry i through industry j via two channels: first, via the effect of

higher revenues of industry j, R̂j; second, via an additional effect from θ̂j, which

captures the change in relative importance of intermediate inputs for industry j.

The more industry j shifts from labor towards intermediate inputs, the more it will
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affect the revenues of its suppliers. The online appendix shows how we can rewrite

this equation as a function of the state variables of this system, m̂t and ŵt, after

solving for θ̂ as a function of R̂t.

Preferences are

U ({ci,t+s}) = Et

(
∞∑
s=0

δs
N∑
i=1

log (ci,t+s)

)
, (33)

which results in the “nominal stochastic discount factor” (see Campbell (2000)),

SDFt+s = δ
ci,t
ci,t+s

pi,t
pi,t+s

= δ
mt

mt+1

, (34)

where the second equality comes from the cash-in-advance constraint. Therefore, the

market value of industry i, with profit stream {πi,t}, is

Vi,t = Et

(
∞∑
s=0

δs
mt

mt+s

πi,t+s

)
. (35)

We show in the online appendix that stock prices have a spatial structure that

is closely tied to the one for revenues. We solve for the log-linearized version of the

market values using the method of undetermined coefficients.

B. Calibration

We calibrate the model to the data and perform a battery of robustness checks.

δ = 0.99, which corresponds to a 1 percent interest rate per quarter. We calibrate

the parameter for the curvature of the production function, α, to a value of 0.85,

using the operating profit margin, 1 − α, of 0.15 in Compustat data (EBITDA /

Sales ratio). We set the autocorrelation and standard deviation of money growth

to ρ = 0.5 and σ = 0.01 following Cooley and Hansen (1989). We calibrate the

parameter for wage stickiness, ψ, to a value of 0.2 to capture the autocorrelation of

nominal wage growth during the time period 1964–2016 (see discussion in the online

appendix). We set r = −0.5 and η = 0.1, so that we have an average labor share

of 0.4 and the elasticity of substitution between intermediate inputs and labor is

smaller than the elasticity of substitution between different intermediate inputs. We

normalize all zi to 1, and we set m/w in steady state to 1.
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C. Simulation Results

Table 10 presents point estimates for β and ρ as well as the fraction of the

indirect effect from running our baseline SAR regression on simulated data from the

dynamic model. We estimate the model both for industry sales and stock prices.

In our benchmark calibration, a contractionary monetary policy shock results

in a drop in sales and stock prices (β < 0). This drop is propagated through

the production network (ρ > 0). Interestingly, the point estimates for ρ and

the fractions of indirect effects are very similar to our empirical estimates across

specifications. The findings are robust across calibrations. In particular, neither

the properties of the processes for money-supply growth and wages, nor variations

in fundamental parameters result in large changes in the fraction of the indirect

effect. The robustness of the measured indirect effect to various parameterizations

suggests our SAR framework is robust to relaxing the assumptions in the benchmark

static model, and indirect effects originating from intermediate input linkages are an

important driver of the sensitivity of industry returns to monetary policy shocks.

VII Concluding Remarks

Monetary policy has a large and immediate effect on financial markets. A federal

funds rate that is 25 basis points lower than expected leads to an increase in the

aggregate stock market of more than 1%. We document that intermediate input

linkages across sectors introduce higher-order demand effects that are responsible for

a large fraction of the overall effect of monetary policy on financial markets. We

motivate our empirical analysis in a simple model of production in which firms use

intermediate inputs as a production factor.

A recent literature in macroeconomics shows idiosyncratic shocks are important

for aggregate fluctuations. So far, however, no evidence exists on whether networks

are also important for the propagation of macro shocks, such as monetary policy

shocks and demand shocks more generally.

We use the stock market response of industries to monetary policy shocks as

a laboratory to test whether production networks matter for the propagation of
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monetary shocks. Around 70% of the responsiveness of the stock market to monetary

shocks comes from higher-order demand effects. The effects are robust to different

sample periods, event types, and alternative robustness tests. Direct effects are larger

for industries selling most of the industry output directly to end-consumers compared

to other industries, consistent with the intuition that indirect demand effects should

be less important for industries “close to end-consumers.” We document similar

network effects in ex-post realized fundamentals such as sales or operating income.

Our findings indicate production networks might not only be important for the

propagation of idiosyncratic shocks, but might also be a propagation mechanism of

monetary policy to the real economy. The importance of networks for the propagation

of monetary policy shocks raises interesting questions for future research: Which are

the central sectors for the propagation of monetary policy shocks? How does optimal

monetary policy look in this framework? Can monetary policy fully stabilize the

economy? Should monetary policy target specific sectors?
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Table 1: Response of the CRSP VW Index to Monetary Policy Shocks

This table reports the results of regressing returns of the CRSP value-weighted index in a 30-minute

event window bracketing the FOMC press releases on the federal funds futures based measure of

monetary policy shocks, vt. The return of the CRSP value-weighted index is calculated as a weighted

average of the constituents’ return in the respective event window, where the market capitilization

of the previous trading day is used to calculate the weights. The full sample ranges from February

1994 through December 2008, excluding the release of September 17, 2001, for a total of 129

observations. Standard errors are reported in parentheses.

full sample till 2004 till 2000

(1) (2) (3)

Constant -0.08 -0.12** -0.05

(0.07) (0.06) (0.07)

vt -3.28*** -5.64*** -3.54***

(0.72) (0.64) (0.94)

R2 13.83% 45.10% 22.31%

Observations 129 92 50

Standard errors in parentheses

∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01
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Table 2: Response of Industry Returns to Monetary Policy Shocks

This table reports the results of regressing industry returns in a 30-minute event window bracketing

the FOMC press releases on the federal-funds-futures-based measure of monetary policy shock, vt
(column (1)), and an input-output network-weighted average of industry returns (columns (2)–(4))

(see equation (6)). The full sample ranges from February 1994 through December 2004, excluding

the release of September 17, 2001, for a total of 92 observations. Standard errors are reported in

parentheses.

OLS SAR: 1992 tables

equally previous previous

weighted month Mcap day Mcap

(1) (2) (3) (4)

Panel A. Point Estimates

β −3.96∗∗∗ −0.63∗∗∗ −0.58∗∗∗ −0.60∗∗∗
(0.11) (0.23) (0.18) (0.20)

ρ 0.82∗∗∗ 0.87∗∗∗ 0.86∗∗∗
(0.04) (0.03) (0.03)

Constant −0.07∗∗∗ −0.01 −0.01 −0.01

(0.01) (0.01) (0.01) (0.01)

adj R2 14.39% 7.20% 14.43% 14.23%

Observations 7,873 7,873 7,873 7,873

Log-L -7,361 -4,732 -4,714

Panel B. Decomposition

Direct Effect −0.92∗∗∗ −0.90∗∗∗ −0.91∗∗∗
(0.30) (0.27) (0.27)

Indirect Effect −2.60∗∗∗ −3.46∗∗∗ −3.41∗∗∗
(0.70) (0.78) (0.78)

Total Effect −3.52∗∗∗ −4.35∗∗∗ −4.32∗∗∗
(0.95) (0.99) (0.98)

Standard errors in parentheses

∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01
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Table 3: Response of Industry Returns to Monetary Policy Shocks

This table reports the results of regressing industry returns in a 30-minute event window bracketing

the FOMC press releases on the federal-funds-futures-based measure of monetary policy shock, vt,

and an input-output network-weighted average of industry returns (see equation (6)). The full

sample ranges from February 1994 through December 2004, excluding the release of September 17,

2001, for a total of 92 observations. Standard errors are reported in parentheses.

SAR: 1997 tables SAR: 2002 tables SAR: time-varying

(1) (2) (3)

Panel A. Point Estimates

β −1.67∗∗∗ −1.18∗∗∗ −1.42∗∗∗
(0.39) (0.31) (0.37)

ρ 0.60∗∗∗ 0.67∗∗∗ 0.67∗∗∗
(0.06) (0.05) (0.07)

Constant −0.04 ∗ ∗ −0.03 ∗ ∗ −0.03 ∗ ∗
(0.02) (0.01) (0.01)

adj R2 10.77% 7.14% 12.43%

Observations 9,153 9,130 8,771

Log-L -9,416 -10,211 -8,091

Panel B. Decomposition

Direct Effect −1.94∗∗∗ −1.39∗∗∗ −1.74∗∗∗
(0.45) (0.36) (0.43)

Indirect Effect −2.23∗∗∗ −2.18∗∗∗ −2.53∗∗∗
(0.72) (0.56) (0.80)

Total Effect −4.17∗∗∗ −3.56∗∗∗ −4.27∗∗∗
(1.09) (0.86) (1.10)

Standard errors in parentheses

∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01
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Table 4: Response of Industry Returns to Monetary Policy Shocks
(conditional on event type)

This table reports the results of regressing industry returns in a 30-minute event window bracketing

the FOMC press releases on the federal-funds-futures-based measure of monetary policy shock, vt,

and an input-output network-weighted average of industry returns (see equation (6)) for different

event types. The full sample ranges from February 1994 through December 2004, excluding the

release of September 17, 2001, for a total of 92 observations. Standard errors are reported in

parentheses.

Large Positive Negative

Reversals Intermeetings Shocks Shocks Shocks

(1) (2) (3) (4) (5)

Panel A. Point Estimates

β −1.57∗∗∗ 0.10 −0.61∗ −0.24 −0.80∗∗∗
(0.42) (0.56) (0.21) (0.21) (0.28)

ρ 0.77∗∗∗ 0.91∗∗∗ 0.86∗∗∗ 0.91∗∗∗ 0.85∗∗∗
(0.03) (0.03) (0.03) (0.05) (0.02)

Constant 0.03 0.08 0.00 −0.01 −0.03∗
(0.04) (0.11) (0.02) (0.02) (0.02)

adj R2 54.71% -1.91% 28.22% 1.19% 20.54%

Observations 676 681 2,230 2,995 3,600

Log-L -581 -755 -1,645 -1,580 -2,374

Panel B. Decomposition

Direct Effect −2.18∗∗∗ 0.13 −0.93 ∗ ∗ −0.40 −1.19∗∗∗
(0.54) (0.88) (0.29) (0.31) (0.39)

Indirect Effect −4.76∗∗∗ 0.96 −3.43∗∗∗ −2.28 −4.11∗∗∗
(0.73) (3.94) (0.70) (1.91) (1.09)

Total Effect −6.94∗∗∗ 1.13 −4.36∗∗∗ −2.69 −5.30∗∗∗
(1.16) (4.79) (0.94) (2.13) (1.45)

Standard errors in parentheses

∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01
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Table 5: Response of Industry Returns to Monetary Policy Shocks
(robustness)

This table reports the results of regressing industry returns in a 30-minute event window bracketing

the FOMC press releases on the federal-funds-futures-based measure of monetary policy shock, vt,

and an input-output network-weighted average of industry returns (see equation (6)). The full

sample ranges from February 1994 through December 2004, excluding the release of September 17,

2001, for a total of 92 observations. Standard errors are reported in parentheses.

zero industry- market- 1994–

diagonal W demeaned demeaned 2008

(1) (2) (3) (4)

Panel A. Point Estimates

β −1.92∗∗∗ −0.62∗∗∗ 0.23 −0.79∗∗∗
(0.53) (0.18) (0.14) (0.22)

ρ 0.52∗∗∗ 0.85∗∗∗ 0.84∗∗∗ 0.82∗∗∗
(0.06) (0.03) (0.04) (0.01)

Constant −0.03 −0.02

(0.02) (0.01)

adj R2 14.59% 14.30% 3.47% 14.81%

Observations 7,873 7,873 7,873 10,166

Log-L -6,882 -4,719 -4,702 -3,907

Panel B. Decomposition

Direct Effect −1.95∗∗∗ −0.94∗∗∗ −1.14∗∗∗
(0.53) (0.25) (0.31)

Indirect Effect −2.02∗∗∗ −3.27∗∗∗ −3.13∗∗∗
(0.57) (0.72) (0.79)

Total Effect −3.97∗∗∗ −4.21∗∗∗ −4.27∗∗∗
(1.00) (0.93) (1.09)

Standard errors in parentheses

∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01
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Table 6: Response of Industry Returns to Monetary Policy Shocks
(pseudo)

This table reports the results of regressing industry returns in a 30-minute event window bracketing

the FOMC press releases on the federal-funds-futures-based measure of monetary policy shock, vt,

and an input-output network-weighted average of industry returns (see equation (6)). The full

sample ranges from February 1994 through December 2004, excluding the release of September 17,

2001, for a total of 92 observations. Standard errors are reported in parentheses.

permute permute

pseudo W rows rows

(1) (2) (3)

Panel A. Point Estimates

β −3.16∗∗∗ −2.52∗∗∗ −2.34∗∗∗
(0.84) (0.72) (0.68)

ρ 0.21∗∗∗ 0.37∗∗∗ 0.41∗∗∗
(0.04) (0.07) (0.07)

Constant −0.06∗ −0.05∗ −0.04∗
(0.03) (0.03) (0.02)

adj R2 14.59% 14.59% 14.59%

Observations 7,873 7,873 7,873

Log-L -7,180 -7,027 -7,009

Panel B. Decomposition

Direct Effect −3.17∗∗∗ −2.54∗∗∗ −2.36∗∗∗
(0.85) (0.72) (0.68)

Indirect Effect −0.84∗∗∗ −1.48∗∗∗ −1.63∗∗∗
(0.24) (0.42) (0.47)

Total Effect −4.00∗∗∗ −4.02∗∗∗ −4.00∗∗∗
(1.01) (1.01) (1.01)

Standard errors in parentheses

∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01
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Table 7: Response of Industry Returns to Monetary Policy Shocks
(heterogeneity)

This table reports the results of regressing industry returns in a 30-minute event window bracketing

the FOMC press releases on the federal-funds-futures-based measure of monetary policy shock, vt,

and an input-output network-weighted average of industry returns (see equation (6)). The full

sample ranges from February 1994 through December 2004, excluding the release of September 17,

2001, for a total of 92 observations. Standard errors are reported in parentheses. The GMM

estimation requires a balanced panel of industries.

Model-implied GMM

Heterogeneity Simulation Estimate

(1) (2) (3)

Panel A. Point Estimates

β1 −1.37∗∗∗ −1.31∗∗∗ −0.37∗∗∗
(0.45) (0.27) (0.12)

ρ 0.86∗∗∗ 0.78∗∗∗ 0.91∗∗∗
(0.03) (0.01) (0.03)

β2 −0.01

(0.12)

β3 4.56∗∗∗
(1.71)

Constant −0.01 −0.06 ∗ ∗ −0.02∗
(0.02) (0.02) (0.01)

adj R2 14.73% 3.07%

Observations 7,863 7,873 6,900

Log-L -4,673 -10,545

Panel B. Decomposition

Direct Effect −2.08∗∗∗ −1.82∗∗∗ −0.64∗∗∗
(0.65) (0.37) (0.17)

Indirect Effect −7.59∗∗∗ −4.09∗∗∗ −3.65∗∗∗
(2.58) (0.79) (0.90)

Total Effect −9.68∗∗∗ −5.91∗∗∗ −4.30∗∗∗
(3.11) (1.16) (0.97)

Standard errors in parentheses

∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01
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Table 8: Response of Industry Returns to Monetary Policy Shocks by
Closeness to Consumers
This table reports the results of regressing industry returns in a 30-minute event window bracketing

the FOMC press releases on the federal-funds-futures-based measure of monetary policy shock, vt,

and an input-output network-weighted average of industry returns (see equation (6)) for industries

sorted on closeness to consumers. The full sample ranges from February 1994 through December

2004, excluding the release of September 17, 2001, for a total of 92 observations. Bootstrapped

standard errors are reported in parentheses.

Close to Far from

End-consumer End-consumer

(1) (2)

Direct Effect −2.37∗∗∗ −1.08∗∗∗
(0.66) (0.29)

Indirect Effect −2.74∗∗∗ −3.07∗∗∗
(0.80) (0.70)

Total Effect −5.10∗∗∗ −4.12∗∗∗
(1.39) (0.97)

Direct Effect [%] 46.32% 26.11%

Indirect Effect [%] 53.68% 73.89%

Standard errors in parentheses

∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01
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Table 9: Response of Industry Cash flow Fundamentals to Monetary Policy
Shocks
This table reports the results of regressing future cash flow fundamentals at the quarterly frequency

on a quarterly federal-funds-futures-based measure of monetary policy shocks, vt and an input-

output network-weighted average of the industry cash flow fundamentals (see equation (29)). The

sample ranges from Q1 1994 through Q4 2004 for a total of 60 observations. Standard errors are

reported in parentheses.

Horizon 0 1 2 3 4 5 6 7 8

Panel A. Value-weighted Sales

Direct Effect 1.28∗∗ 1.45∗ 1.76∗∗ 1.82∗ 1.68 1.43 1.36 1.31 1.46

(0.61) (0.75) (0.87) (0.99) (1.13) (1.26) (1.36) (1.49) (1.66)

Indirect Effect 1.87∗∗ 2.13∗ 2.38∗∗ 2.61∗ 2.35 2.18 1.94 1.86 2.25

(0.89) (1.10) (1.18) (1.42) (1.57) (1.91) (1.95) (2.11) (2.56)

Panel B. Equally-weighted Sales

Direct Effect 0.96∗∗ 1.08∗∗ 1.23∗∗ 1.25∗ 1.10 0.95 0.88 0.83 0.74

(0.42) (0.48) (0.57) (0.68) (0.74) (0.83) (0.91) (0.98) (1.07)

Indirect Effect 1.65∗∗ 1.86∗∗ 2.02∗∗ 2.02∗ 1.80 1.55 1.42 1.28 1.15

(0.72) (0.83) (0.95) (1.10) (1.21) (1.35) (1.46) (1.53) (1.65)

Panel C. Value-weighted Operating Income

Direct Effect 0.36∗∗ 0.43∗∗∗ 0.46∗∗ 0.43∗∗ 0.39∗ 0.32 0.25 0.30 0.35

(0.14) (0.16) (0.19) (0.21) (0.23) (0.26) (0.28) (0.29) (0.33)

Indirect Effect 0.57∗∗ 0.68∗∗∗ 0.70∗∗ 0.65∗∗ 0.57∗ 0.48 0.39 0.45 0.54

(0.23) (0.26) (0.30) (0.32) (0.33) (0.39) (0.44) (0.44) (0.51)

Panel D. Equally-weighted Operating Income

Direct Effect 0.31∗∗∗ 0.35∗∗∗ 0.36∗∗∗ 0.34∗∗ 0.32∗∗ 0.25 0.24 0.19 0.18

(0.10) (0.12) (0.14) (0.15) (0.16) (0.17) (0.19) (0.20) (0.22)

Indirect Effect 0.59∗∗∗ 0.65∗∗∗ 0.67∗∗∗ 0.60∗∗ 0.58∗∗ 0.51 0.45 0.37 0.33

(0.20) (0.22) (0.26) (0.26) (0.29) (0.35) (0.35) (0.38) (0.38)

Standard errors in parentheses

∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01
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Table 10: Direct and Indirect Effects from Simulated Data
This table reports estimates from estimating our baseline specification on simulated data from the

model (see equation (6)). The first row reports the results from our benchmark calibration and

each subsequent row reports the results from changing one parameter. Monetary-policy shocks are

multiplied by −1 so that a positive value corresponds to a contractionary shocks. We simulate each

model calibration 50 times for 1000 quarters and report the means and standard deviations.

Results for Stock Prices Results for Sales

Benchmark Variation β ρ % Indirect β ρ % Indirect

-0.16 0.84 75.45% -0.14 0.86 78.14%

(0.01) (0.01) (0.01) (0.01)

η = 0.1 η = 0.2 -0.11 0.89 81.17% -0.11 0.89 81.89%

(0.00) (0.00) (0.00) (0.00)

α = 0.85 α = 0.7 -0.16 0.84 75.00% -0.15 0.85 77.12%

(0.01) (0.01) (0.01) (0.01)

r = −0.5 r = −0.25 -0.23 0.77 66.94% -0.12 0.88 80.02%

(0.01) (0.01) (0.01) (0.01)

m/w = 1 m/w = 2 -0.16 0.84 75.82% -0.14 0.86 78.32%

(0.01) (0.01) (0.01) (0.01)

ρ = 0.5 ρ = 0.75 -0.16 0.84 75.57% -0.13 0.87 78.72%

(0.01) (0.01) (0.00) (0.00)

σ = 0.01 σ = 0.02 -0.16 0.84 75.39% -0.14 0.86 78.11%

(0.01) (0.01) (0.01) (0.01)

ψ = 0.2 ψ = 0.4 -0.16 0.84 75.39% -0.14 0.86 77.56%

(0.01) (0.01) (0.01) (0.01)

δ = 0.99 δ = 0.98 -0.16 0.84 75.54% -0.14 0.86 78.05%

(0.01) (0.01) (0.01) (0.01)
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Online Appendix:

Monetary Policy through Production Networks:
Evidence from the Stock Market

Ali Ozdagli and Michael Weber

Not for Publication

I Dynamic Model

Our empirical model is motivated by our static benchmark model with stylized

assumptions. A natural question is whether our SAR approach provides reliable

estimates of direct and indirect effects in a dynamic model with more flexible

assumptions. Therefore, we replace the production function with a CES function

of the form

yi = zi[ηX
r
i + (1− η)lri ]

α/r, (A.1)

Xi =
N∏
j=1

x
ωij

ij , (A.2)

with α < 1 and r ≤ 1, with r = 1 leading to perfect substitution, r = 0 to Cobb-

Douglas, and r = −∞ to Leontief production function. Since variable inputs are

likely more substitutable with each other than with labor, r < 0.

Note that the marginal product of input, xij, is

∂yi
∂xij

= ziαη [ηXr
i + (1− η)lri ]

α/r−1Xr
i ωijx

−1
ij

= ωijziαη [ηXr
i + (1− η)lri ]

α/r Xr
i

ηXr
i + (1− η)lri

x−1
ij

= ωijyiα
ηXr

i

ηXr
i + (1− η)lri

x−1
ij ,

and the FOC w.r.t. this input is

pi
∂yi
∂xij

= pj ⇒ ωijα
ηXr

i

ηXr
i + (1− η)lri

piyi = pjxij (A.3)

⇒ ωijαθipiyi = pjxij, (A.4)
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where

θi ≡
ηXr

i

ηXr
i + (1− η)lri

(A.5)

is the share of intermediate inputs in production. Note that this is a constant number

with Cobb-Douglas production function (r = 0).

Also note that the marginal product of labor is

∂yi
∂li

= ziα (1− η) [ηXr
i + (1− η)lri ]

α/r−1 lr−1
i

= yiα
(1− η) lri

ηXr
i + (1− η)lri

l−1
i = α (1− θi) yil−1

i ,

which leads to the FOC w.r.t. labor,

pi
∂yi
∂li

= w,

α (1− θi) piyi = wli.

Using these FOCs, the profit function then becomes

πi = piyi −
N∑
j=1

pjxij − wli − fi = (1− α) piyi − fi, (A.6)

which is the same as in the benchmark model. Accordingly, the consumption-good

demand, from the FOC of the household, becomes

ci =

∑N
i=1(πi + wli + fi)

Npi
=

∑N
i=1 (1− αθi)Ri

Npi
. (A.7)

In this scenario, the goods market clearing condition becomes

yi = ci +
N∑
j=1

xji

=

∑N
i=1 (1− αθi)Ri

Npi
+

∑N
j=1 ωjiαθjRj

pi
,

which, together with the cash-in-advance constraint for consumption goods, gives

the following equation:

Ri = (M/N) +
N∑
j=1

[αθjωjiRj] .

To summarize, the solution of this model is given by the following equations
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in yi, xij, li, Xi, θi, pi, or equivalently yi, xij, li, Xi, θi, Ri (w is pre-determined due to

wage stickiness):

Ri = (M/N) +
N∑
j=1

[αθjωjiRj] (One redundant due to Walras Law),

θi ≡
ηXr

i

ηXr
i + (1− η)lri

,

Xi =
N∏
j=1

x
ωij

ij ,

xij =
ωijαθiRi

pj
=
ωijαθiRi

Rj

yj (FOC),

li =
α (1− θi)Ri

w
(FOC),

yi = zi[ηX
r
i + (1− η)lri ]

α/r = ziθ
−α/r
i ηα/rXα

i .

We can rewrite the first equation in matrix form as before:

(I − αW ′D(θ))R =


M/N

...

M/N


N×1

= m, (A.8)

where D(θ) is a diagonal matrix with diagonal entries consisting of θ1, ..., θN .

A. Dynamic Wages, Monetary Policy, and Simulation

Equations

Throughout the equations below, let x̄ be the deterministic steady state and x̂

be the log-devation so that xt = x̄ exp (x̂t) ≈ x̄ (1 + x̂t).

We expand the equilibrium conditions above with a dynamic wage equation that

captures wage stickiness,

wt = ψwt−1 + (1− ψ)w∗t , (A.9)

where w∗t is the equilibrium wage under flexible wages and hence is proportional to

3



money supply. If we log-linearize this equation, we get

w̄ŵt = ψw̄ŵt−1 + (1− ψ) w̄∗ŵ∗t , or

ŵt = ψŵt−1 + (1− ψ) m̂t,

where the second line uses the steady state condition w̄ = w̄∗ and the fact that w∗t

is proportional to money supply. Furthermore, we impose mean-reverting money

supply growth as in Cooley and Hansen (1989),

∆m̂t = ρ∆m̂t−1 + ut. (A.10)

After log-linearizing the equilibrium conditions and imposing mean-reverting

money supply, we get the following:

D

(
R̄

m̄

)
R̂t − αW ′D

(
θ̄R̄

m̄

)
R̂t = m̂t + αW ′D

(
θ̄R̄

m̄

)
θ̂t

θ̂t +D
(
1− θ̄

)
r
(
l̂t − X̂t

)
= 0

X̂t − θ̂t −Wŷt − (I −W ) R̂t = 0

ŷt +
α

r
θ̂t − αX̂t = 0(

ŵt + l̂t

)
− R̂t +D

(
θ̄(

1− θ̄
)) θ̂t = 0

ŵt − (1− ψ) m̂t = ψŵt−1

∆m̂t = ρ∆m̂t−1 + ut.

D (x̄) denotes a diagonal matrix of which diagonal elements are the elements of

vector x̄ = (x̄i)
N
i=1. This set of linear equations is easy to simulate because it has a

recursive form. In particular, we can first simulate the last two equations and then

solve for the endogenous variables using the remaining system of linear equations.

Another way to write the first equation is by noting that the log-linearized

4



equation is

R̄iR̂i = m̄m̂+
N∑
j=1

αwjiθ̄jR̄j

(
θ̂j + R̂j

)
R̂i =

m̄

R̄i

m̂+
N∑
j=1

αwjiθ̄jR̄j

R̄i

(
θ̂j + R̂j

)
R̂i =

m̄

R̄i

m̂+
N∑
j=1

p̄ix̄ji
p̄iȳi

(
θ̂j + R̂j

)
,

which is quite intuitive. Note that p̄ix̄ji/p̄iȳi is the share of industry j’s revenues from

industry i. The greater this value is, the more important industry j is for industry

i. In terms of how the effect of monetary policy on industry j impacts on industry

i, there are two channels. The first one is the effect of higher revenues of industry

j, R̂j. The second one is the additional effect from θ̂j, which captures the change in

relative importance of intermediate inputs for industry j: the more industry j shifts

towards intermediate inputs, the more it will affect the revenues of its suppliers. In

other words, the network effects from industry j to industry i will be modified by

how the monetary policy affects the relative importance of intermediate inputs in

industry j’s production.

The last equation can be written in matrix form as

R̂ = W̃ R̂ + βm̂+ W̃ θ̂, (A.11)

where βi = m̄/R̄i and W̃ij = p̄ix̄ji/p̄iȳi. We can rewrite this equation as a function

of the state variables of this system, m̂t and ŵt, after solving θ̂ as a function of R̂t.

Therefore, we get

θ̂t = − (1− α)
r

(1− r)
D
(
1− θ̄

) (
I − αWD

(
θ̄
))−1

WR̂t

+ (1− α)
r

(1− r)
D
(
1− θ̄

) (
I − αWD

(
θ̄
))−1

ŵt,
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which leads to

R̂ = W̃

[
I − (1− α) r

(1− r)
D
(
1− θ̄

) (
I − αWD

(
θ̄
))−1

W

]
R̂

+βm̂+
(1− α) r

(1− r)
W̃D

(
1− θ̄

) (
I − αWD

(
θ̄
))−1

ŵt.

Note that the second term in square brackets multiplying R̂ suggests that the

additional effect from the change in the use of intermediate inputs will amplify

network effect because r < 0, that is, the elasticity of substitution between

intermediate inputs and labor is smaller than the elasticity of substitution between

different intermediate inputs. Of course, our SAR framework is much simpler than

this, although for sufficiently large values of α or for values of r sufficiently close

to zero, it should provide a reasonable approximation. In order to see how far

our estimates of indirect effects diverge from the true indirect effects due to these

additional complications, we use the SAR regressions on this simulated model.

B. Reaction of Stock Prices to Policy Surprises

Now, the preferences are given by

U ({ci,t+s}) = Et

(
∞∑
s=0

δs
N∑
i=1

log (ci,t+s)

)
, (A.12)

which leads to the “nominal stochastic discount factor” (see Campbell (2000)), i.e.,

the discount factor used to discount nominal cash-flows, at time t+ s:

SDFt+s = δ
ci,t
ci,t+s

pi,t
pi,t+s

= δ
mt

mt+1

, (A.13)

where the second equality comes from the cash-in-advance constraint. Therefore, the

market value of the industry i, with profit stream {πi,t}, will be given by

Vi,t = Et

(
∞∑
s=0

δs
mt

mt+s

πi,t+s

)

= Et

[
∞∑
s=0

δs
mt

mt+s

((1− α)Ri,t+s − f)

]
.

Using Rt = [I − αW ′D (θt)]
−1mt = S (W ; θt)mt, we can write this in matrix

6



form, where V
′
t = (Vi,t)

N
i=1:

Vt = Et

[
∞∑
s=0

δs
mt

mt+s

((1− α)S (W ; θt+s)mt+s − f)

]

= Et

[
∞∑
s=0

δs
(

(1− α)S (W ; θt+s)mt − f
mt

mt+s

)]

= (1− α)Et

[
∞∑
s=0

δsS (W ; θt+s)

]
mt − Et

[
∞∑
s=0

δs
mt

mt+s

f

]
,

where the first component gives the expected present value of profits and the second

term gives the expected present value of nominal obligations. Stock prices have

a spatial-weighting matrix structure that is closely tied to the one for revenues.

In particular, for the benchmark model where S (W ; θt) = S (W ), this expression

simplifies to

Vt =
1− α
1− δ

S (W )mt − Et

[
∞∑
s=0

δs
mt

mt+s

f

]
. (A.14)

The method of undetermined coefficients offers the simplest way to solve for the

log-linearized version of market values. The pre-dividend stock value is

Vi,t = Et

(
∞∑
s=0

δs
mt

mt+s

πi,t+s

)

= πi,t + Et

(
δ
mt

mt+1

Et+1

(
∞∑
s=0

δs
mt+1

mt+s+1

πi,t+s+1

))

= πi,t + Et

(
δ
mt

mt+1

Vi,t+1

)
.

Log-linearize and use πi,t = (1− α)Ri,t − f , which gives π̄π̂i,t = (1− α) R̄iR̂i,t,

V̄iV̂i,t = (1− α) R̄iR̂i,t + Et

(
δV̄i

(
V̂i,t+1 −∆m̂t+1

))
. (A.15)

By the method of undetermined coefficients, we have

V̂i,t = smim̂t + s∆mi∆m̂t + swiŵ,t (A.16)

and we can plug in this expression into last equation, along with the solution for R̂i,t
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which has the form

R̂i,t = rmim̂t + rwiŵt

ŵt = (1− ψ) m̂t + ψŵt−1

∆m̂t = ρ∆m̂t−1 + ut,

where rmi and rwi can be calculated using equilibrium conditions. The resulting

expression can be solved for smi, s∆mi, and swi to obtain V̂i,t. The immediate reaction

of stock prices to monetary policy surprises is then given by

V̂i,t − Et−1

(
V̂i,t

)
= (smi + s∆mi + (1− ψ) swi)ut. (A.17)

C. Calibrating Wage Stickiness, ψ

We want to find corr(yt, yt−1) for the following process:

yt = ψyt−1 + (1− ψ)xt

xt = ρxt−1 + ut.

This process satisfies the following equations:

cov (yt, yt−1) = ψvar (yt−1) + (1− ψ) cov (yt−1, xt)

cov (yt, xt) = ψcov (yt−1, xt) + (1− ψ) var (xt)

var (yt) = ψcov (yt, yt−1) + (1− ψ) cov (yt, xt) ,

which we can simplify using the fact that yt follows a covariance-stationary process,

cov (yt, yt−1) = ψvar (yt) + (1− ψ) cov (yt−1, xt)

cov (yt, xt) = ψcov (yt−1, xt) + (1− ψ) var (xt)

var (yt) = ψcov (yt, yt−1) + (1− ψ) cov (yt, xt) ,

which we can solve for cov (yt, yt−1), given var (xt) and var (yt).

After some algebra, the equations become

cov (yt, yt−1) = ψvar (yt) +
1

ψ
var (yt)− cov (yt, yt−1)− (1− ψ)2

ψ
var (xt) . (A.18)
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We can simplify further to

corr (yt, yt−1) =
cov (yt, yt−1)

var (yt)
=

1

2

(
ψ +

1

ψ
− (1− ψ)2

ψ

var (xt)

var (yt)

)
. (A.19)

Using corr (∆ŵt,∆ŵt−1) = 0.47 from the autocorrelation of the quarterly growth

rate of nominal earnings in the data, var (∆m̂t) = 0.01/ (1− 0.52) = 0.013 and

var (∆ŵt) = 0.01 in the data, we get

0.47 =
1

2

(
ψ +

1

ψ
− (1− ψ)2

ψ

4

3

)
, (A.20)

which gives ψ = 0.2.

9



II Closeness to End-Consumer

The section details the construction of our empirical proxy for closeness to end

consumers. We first define a matrix, Cij, which is the dollar amount that sector i

pays j to purchase goods from j, ∀ (i, j) ∈ (households, industry 1 to industry n).

The matrix D is a (n+ 1)× (n+ 1) matrix and takes the form

D =

0 µ

0 γ

 , (A.21)

where µ is dollar amount of household consumption spending and γ is defined as

dollar amount of intermediate input purchases from industry i to industry j. In

order to construct µ, we use the BEA USE table to extract the amount of personal

consumption expenditure. Personal consumption expenditure P is a C × 1 vector

where C are commodities. We multiply the MAKE table by P and then standardize it

by the total commodity output to transform P into the dollar amount that households

buys from industry i,

µ = (MAKE ∗ P ) ∗ 1∑C
i=1 Ci

. (A.22)

We define Γ as an n× n matrix of intermediate input purchases that industry j

makes from industry i. Γ corresponds to the REVSHARE matrix in Section IV (see

equation 26).

Next, we column normalize C in order to obtain sales shares.

Cc.n = C ∗ diag(C ∗ 1)−1 =

0 µ̂>

0 Γ̂

 (A.23)

We then define steps to end consumer, S, as follows:

10



S = (1− Γ̂>)−1

= ....+ (Γ̂>)2µ̂+ Γ̂>µ̂+ µ̂

= 1.

(A.24)

The first step, µ̂, is the percentage of sales from i to the household as a percentage

of total industry i’s sales. The second step, Γ̂>µ̂+ µ̂, is the percentage of sales from

industry i to j then to the household. In the limit, the expansion approaches 1.
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Figure A.1: Production Network corresponding to US Input-Output Data

This figure plots the empirical input-output relationship in the U.S. using data

from the benchmark input-output tables of the Bureau of Economic Analysis for

the year 1997. Source: Figure 3 of Acemoglu et al. (2012).
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Figure A.2: Return of the CRSP value-weighted index versus Monetary
Policy Shocks (tight window)
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This figure is a scatterplot of the percentage returns on the CRSP value-weighted

index versus the federal funds futures based measure of monetary policy shocks

calculated according to equation (1) for a 30 minutes event window. The full

sample ranges from February 1994 through December 2008, excluding the release

of September 17, 2001, for a total of 129 observations. We distinguish between

regular FOMC meetings, turning points in monetary policy, and intermeeting press

releases.
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Figure A.3: Time Series of Federal Funds Target Rate
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This figure plots the time series of the federal funds target rate from 1994 to 2009.
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Table A.1: Monetary Policy Surprises

This table reports the days of the FOMC press releases with exact time stamps as well as the actual

changes in the Federal Funds Rate further decomposed into an expected and an unexpected part. The

latter component is calculated as the scaled change of the current month federal funds future in an half

hour (tight) window and one hour (wide) window bracketing the release time according to equation 5

in the main body of the paper.

Unexpected Change (bps) Expected Change (bps)

Release Release Tight Wide Tight Wide Actual

Date Time Window Window Window Window Change (bps)

04-Feb-94 11:05:00 16.30 15.20 8.70 9.80 25.00

22-Mar-94 14:20:00 0.00 0.00 25.00 25.00 25.00

18-Apr-94 10:06:00 15.00 15.00 10.00 10.00 25.00

17-May-94 14:26:00 11.10 11.10 38.90 38.90 50.00

06-Jul-94 14:18:00 −5.00 −3.70 5.00 3.70 0.00

16-Aug-94 13:18:00 12.40 14.50 37.60 35.50 50.00

27-Sep-94 14:18:00 −9.00 −9.00 9.00 9.00 0.00

15-Nov-94 14:20:00 12.00 12.00 63.00 63.00 75.00

20-Dec-94 14:17:00 −22.60 −22.60 22.60 22.60 0.00

01-Feb-95 14:15:00 6.20 6.20 43.80 43.80 50.00

28-Mar-95 14:15:00 −1.00 0.00 1.00 0.00 0.00

23-May-95 14:15:00 0.00 0.00 0.00 0.00 0.00

06-Jul-95 14:15:00 −11.20 −7.40 −13.80 −17.60 −25.00

22-Aug-95 14:15:00 3.40 3.40 −3.40 −3.40 0.00

26-Sep-95 14:15:00 3.00 4.00 −3.00 −4.00 0.00

15-Nov-95 14:15:00 4.00 5.00 −4.00 −5.00 0.00

19-Dec-95 14:15:00 −9.00 −10.30 −16.00 −14.70 −25.00

31-Jan-96 14:15:00 −3.00 −3.00 −22.00 −22.00 −25.00

26-Mar-96 11:39:00 1.00 1.00 −1.00 −1.00 0.00

21-May-96 14:15:00 0.00 0.00 0.00 0.00 0.00

03-Jul-96 14:15:00 −7.20 −6.60 7.20 6.60 0.00

20-Aug-96 14:15:00 −2.80 −2.80 2.80 2.80 0.00

24-Sep-96 14:15:00 −12.00 −12.00 12.00 12.00 0.00

13-Nov-96 14:15:00 −1.80 −1.80 1.80 1.80 0.00

17-Dec-96 14:15:00 1.10 0.00 −1.10 0.00 0.00

05-Feb-97 14:15:00 −3.70 −3.00 3.70 3.00 0.00

25-Mar-97 14:15:00 4.00 4.00 21.00 21.00 25.00

20-May-97 14:15:00 −9.90 −9.90 9.90 9.90 0.00

02-Jul-97 14:15:00 −2.10 −1.10 2.10 1.10 0.00

19-Aug-97 14:15:00 0.00 0.00 0.00 0.00 0.00

30-Sep-97 14:15:00 0.00 0.00 0.00 0.00 0.00

12-Nov-97 14:15:00 −4.20 −4.20 4.20 4.20 0.00

continued on next page
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Table A.1: Continued from Previous Page

Unexpected Change (bps) Expected Change (bps)

Release Release Tight Wide Tight Wide Actual

Date Time Window Window Window Window Change (bps)

16-Dec-97 14:15:00 0.00 0.00 0.00 0.00 0.00

04-Feb-98 14:12:00 0.00 0.00 0.00 0.00 0.00

31-Mar-98 14:15:00 −1.00 −1.00 1.00 1.00 0.00

19-May-98 14:15:00 −2.60 −2.60 2.60 2.60 0.00

01-Jul-98 14:15:00 −0.50 −0.50 0.50 0.50 0.00

18-Aug-98 14:15:00 1.20 1.20 −1.20 −1.20 0.00

29-Sep-98 14:15:00 5.00 6.00 −30.00 −31.00 −25.00

15-Oct-98 15:15:00 −24.20 −24.20 −0.80 −0.80 −25.00

17-Nov-98 14:15:00 −6.90 −5.80 −18.10 −19.20 −25.00

22-Dec-98 14:15:00 0.00 −1.70 0.00 1.70 0.00

03-Feb-99 14:12:00 0.60 0.60 −0.60 −0.60 0.00

30-Mar-99 14:12:00 −1.00 0.00 1.00 0.00 0.00

18-May-99 14:11:00 −1.20 −1.20 1.20 1.20 0.00

30-Jun-99 14:15:00 −3.00 −4.00 28.00 29.00 25.00

24-Aug-99 14:15:00 3.50 3.00 21.50 22.00 25.00

05-Oct-99 14:12:00 −4.20 −4.20 4.20 4.20 0.00

16-Nov-99 14:15:00 7.50 9.60 17.50 15.40 25.00

21-Dec-99 14:15:00 1.60 1.60 −1.60 −1.60 0.00

02-Feb-00 14:15:00 −5.90 −5.90 30.90 30.90 25.00

21-Mar-00 14:15:00 −4.70 −4.70 29.70 29.70 25.00

16-May-00 14:15:00 4.10 3.10 45.90 46.90 50.00

28-Jun-00 14:15:00 −2.50 −2.00 2.50 2.00 0.00

22-Aug-00 14:15:00 −1.70 0.00 1.70 0.00 0.00

03-Oct-00 14:12:00 0.00 −0.60 0.00 0.60 0.00

15-Nov-00 14:12:00 −1.00 −1.00 1.00 1.00 0.00

19-Dec-00 14:15:00 6.50 6.50 −6.50 −6.50 0.00

03-Jan-01 13:13:00 −39.30 −36.50 −10.70 −13.50 −50.00

31-Jan-01 14:15:00 3.50 4.00 −53.50 −54.00 −50.00

20-Mar-01 14:15:00 7.10 5.60 −57.10 −55.60 −50.00

18-Apr-01 10:54:00 −43.80 −46.30 −6.20 −3.70 −50.00

15-May-01 14:15:00 −9.70 −7.80 −40.30 −42.20 −50.00

27-Jun-01 14:12:00 10.50 11.00 −35.50 −36.00 −25.00

21-Aug-01 14:15:00 1.60 1.60 −26.60 −26.60 −25.00

02-Oct-01 14:15:00 −3.70 −3.70 −46.30 −46.30 −50.00

06-Nov-01 14:20:00 −15.00 −15.00 −35.00 −35.00 −50.00

11-Dec-01 14:15:00 −0.80 0.00 −24.20 −25.00 −25.00

continued on next page
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Table A.1: Continued from Previous Page

Unexpected Change (bps) Expected Change (bps)

Release Release Tight Wide Tight Wide Actual

Date Time Window Window Window Window Change (bps)

30-Jan-02 14:15:00 2.50 1.50 −2.50 −1.50 0.00

19-Mar-02 14:15:00 −2.60 −2.60 2.60 2.60 0.00

07-May-02 14:15:00 0.70 0.70 −0.70 −0.70 0.00

26-Jun-02 14:15:00 0.00 0.00 0.00 0.00 0.00

13-Aug-02 14:15:00 4.30 4.30 −4.30 −4.30 0.00

24-Sep-02 14:15:00 2.00 2.50 −2.00 −2.50 0.00

06-Nov-02 14:15:00 −20.00 −18.80 −30.00 −31.20 −50.00

10-Dec-02 14:15:00 0.00 0.00 0.00 0.00 0.00

29-Jan-03 14:15:00 1.00 0.50 −1.00 −0.50 0.00

18-Mar-03 14:15:00 2.40 3.60 −2.40 −3.60 0.00

06-May-03 14:15:00 3.70 3.70 −3.70 −3.70 0.00

25-Jun-03 14:15:00 13.50 12.50 −38.50 −37.50 −25.00

12-Aug-03 14:15:00 0.00 0.00 0.00 0.00 0.00

16-Sep-03 14:15:00 1.10 1.10 −1.10 −1.10 0.00

28-Oct-03 14:15:00 −0.50 −0.50 0.50 0.50 0.00

09-Dec-03 14:15:00 0.00 0.00 0.00 0.00 0.00

28-Jan-04 14:15:00 0.50 0.00 −0.50 0.00 0.00

16-Mar-04 14:15:00 0.00 0.00 0.00 0.00 0.00

04-May-04 14:15:00 −1.20 −1.20 1.20 1.20 0.00

30-Jun-04 14:15:00 −0.50 −1.50 25.50 26.50 25.00

10-Aug-04 14:15:00 0.70 1.50 24.30 23.50 25.00

21-Sep-04 14:15:00 0.00 0.00 25.00 25.00 25.00

10-Nov-04 14:15:00 −0.80 0.00 25.80 25.00 25.00

14-Dec-04 14:15:00 −0.90 0.00 25.90 25.00 25.00

02-Feb-05 14:17:00 −0.54 0.00 25.54 25.00 25.00

22-Mar-05 14:17:00 0.00 −0.50 25.00 25.50 25.00

03-May-05 14:16:00 0.00 −0.56 25.00 25.56 25.00

30-Jun-05 14:15:00 −0.50 0.00 25.50 25.00 25.00

09-Aug-05 14:17:00 −0.71 −0.71 25.71 25.71 25.00

20-Sep-05 14:17:00 3.00 4.50 22.00 20.50 25.00

01-Nov-05 14:18:00 −0.52 −0.52 25.52 25.52 25.00

13-Dec-05 14:13:00 0.00 0.00 25.00 25.00 25.00

31-Jan-06 14:14:00 0.50 0.50 24.50 24.50 25.00

28-Mar-06 14:17:00 0.50 0.50 24.50 24.50 25.00

10-May-06 14:17:00 0.00 −0.75 25.00 25.75 25.00

29-Jun-06 14:16:00 −1.00 −1.50 26.00 26.50 25.00

continued on next page
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Table A.1: Continued from Previous Page

Unexpected Change (bps) Expected Change (bps)

Release Release Tight Wide Tight Wide Actual

Date Time Window Window Window Window Change (bps)

08-Aug-06 14:14:00 −4.77 −4.77 4.77 4.77 0.00

20-Sep-06 14:14:00 −1.50 −1.50 1.50 1.50 0.00

25-Oct-06 14:13:00 −0.50 −0.50 0.50 0.50 0.00

12-Dec-06 14:14:00 0.00 0.00 0.00 0.00 0.00

31-Jan-07 14:14:00 0.00 −0.50 0.00 0.50 0.00

21-Mar-07 14:15:00 1.67 0.00 −1.67 0.00 0.00

09-May-07 14:15:00 0.00 −0.71 0.00 0.71 0.00

28-Jun-07 14:14:00 0.00 0.00 0.00 0.00 0.00

07-Aug-07 14:14:00 0.65 1.30 −0.65 −1.30 0.00

10-Aug-07 09:15:00 1.50 3.00 −1.50 −3.00 0.00

17-Aug-07 08:15:00 4.62 15.00 −4.62 −15.00 0.00

18-Sep-07 14:15:00 −20.00 −21.25 −30.00 −28.75 −50.00

31-Oct-07 14:15:00 −2.00 −2.00 −23.00 −23.00 −25.00

11-Dec-07 14:16:00 3.16 3.16 −28.16 −28.16 −25.00

22-Jan-08 08:21:00 −46.67 −45.00 −28.33 −30.00 −75.00

30-Jan-08 14:14:00 −11.00 −11.00 −39.00 −39.00 −50.00

11-Mar-08 08:30:00 8.68 7.11 −8.68 −7.11 0.00

18-Mar-08 14:14:00 10.00 10.00 −85.00 −85.00 −75.00

30-Apr-08 14:15:00 −6.00 −6.50 −19.00 −18.50 −25.00

25-Jun-08 14:09:00 −1.50 −1.00 1.50 1.00 0.00

05-Aug-08 14:13:00 −0.60 −0.50 0.60 0.50 0.00

16-Sep-08 14:14:00 9.64 11.25 −9.64 −11.25 0.00

08-Oct-08 07:00:00 −12.95 −13.30 −37.05 −36.70 −50.00

29-Oct-08 14:17:00 −3.50 −3.50 −46.50 −46.50 −50.00

16-Dec-08 14:21:00 −16.07 −24.15 −83.93 −75.85 −100.00
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