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Outline
The course presents a self-contained exposition of numerical Bayesian methods applied to
reduced form models, to structural VARs, to a class of state space models (including TVC
models, factor models, stochastic volatility models, Markov switching models) and to DSGE
models.
It is assumed that participants are familiar with the following topics: (a) Basic VAR

techniques: in particular, the identi�cation of shocks and calculation of standard errors of
impulse responses; (b) Kalman Filtering techniques; (c) Current models used in dynamic
macroeconomics. In addition, a working knowledge of Matlab (and Dynare) programming
language is required.
The lectures are based on chapters 9 to 11 of my book: Methods for Applied Macroeco-

nomic Research, Princeton University Press, 2007, and on additional new material.

Program
Day 1 Bayesian estimation and inference. Posterior simulators. Robustness.
Day 2: Bayesian methods for VARs models
Day 3: Bayesian methods for dynamic panel VARs, for state space and factor models.
Day 4: Bayesian methods for DSGE Models. Evaluation techniques for DSGE models

Good textbooks

� Berger, J. and Wolpert, R. (1998), The Likelihood Principle, Institute of Mathematical Sta-
tistics, Hayward, Ca., 2nd edition

� Bauwens, L., M. Lubrano and J.F. Richard (1999) Bayesian Inference in Dynamics Econo-
metric Models, Oxford University Press.

� Robert, C. and Casella, G. (2003) Monte Carlo Statistical Methods, Springer Verlag.

� Gelman, A., J. B. Carlin, H.S. Stern and D.B. Rubin (1995), Bayesian Data Analysis, Chap-
man and Hall, London.

� Poirier, D. (1995) Intermediate Statistics and Econometrics, MIT Press.

� Kim, C. and Nelson, C. (1999), State Space Models with Regime Switching, MIT Press,
London, UK.
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� Koop, G. (2004) Bayesian Econometrics, Wiley and Sons

� Zellner, A. (1971) Introduction to Bayesian Inference in Econometrics, Wiley and Sons

1) Introduction and posterior simulators

� Preliminaries : Bayes Theorem, Prior Selection, Nuisance Parameters.

� Inference, Uncertainty, Credible Intervals, (Asymptotic) Normal Approximations, Mul-
tiple models, Testing models, Forecasting.

� Hierarchical and Empirical Bayes Models, Meta-analysis.

� Normal Approximations

� Acceptance and Importance Sampling

� MCMC methods (Gibbs sampler and Metropolis-Hastings)

� Prior Robustness

References

� Carlin B.P. and Gelfand, A.E, Smith, A.F.M (1992) Hierarchical Bayesian Analysis of change
point problem, Journal of the Royal Statistical Society, C, 389-405.

� Canova, F. and Pappa, E. (2007) Price Di¤erential in Monetary Union: the role of �scal
shocks, Economic Journal, 117, 713-737.

� Canova, F (2005) The transmission of US shocks to Latin America, Journal of Applied Econo-
metrics, 20, 229-251.

� Kass, R. and Raftery, A (1995), Empirical Bayes Factors, Journal of the American Statistical
Association, 90, 773-795.

� Sims, C. (1988) � Bayesian Skepticism on unit root econometrics�, Journal of Economic
Dynamics and Control, 12, 463-474.

� Casella, G. and George, E. (1992) Explaining the Gibbs Sampler American Statistician, 46,
167-174.
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� Chib, S. and Greenberg, E. (1995) Understanding the Hasting-Metropolis Algorithm, The
American Statistician, 49, 327-335.

� Chib, S. and Greenberg, E. (1996) Markov chain Monte Carlo Simulation methods in Econo-
metrics, Econometric Theory, 12, 409-431.

� Geweke, J. (1995) Monte Carlo Simulation and Numerical Integration in Amman, H., Kendrick,
D. and Rust, J. (eds.) Handbook of Computational Economics Amsterdaam, North Holland,
731-800.

� Smith, A.F.M. and Roberts, G.O, (1993), �Bayesian Computation via the Gibbs sampler and
related Markov Chain Monte Carlo methods�Journal of the Royal Statistical Society, B, 55,
3-24.

� Tierney, L (1994) Markov Chains for Exploring Posterior Distributions (with discussion),
Annals of Statistics, 22, 1701-1762.

2) VAR and dynamic regression models

� Likelihood function for an M variable VAR(q)

� Priors for VARs (Minnesota (Litterman), General, DSGE)

� Structural BVARs

� Bayesian dynamic panels

� Bayesian clustering

References

� Lindlay, D. V. and Smith, A.F.M. (1972) �Bayes Estimates of the Linear Model�, Journal of
the Royal Statistical Association, Ser B, 34, 1-18.

� Zellner, A., Hong, (1989) Forecasting International Growth rates using Bayesian Shrinkage
and other procedures, Journal of Econometrics, 40, 183-202.

� Ballabriga, C. (1997) �Bayesian Vector Autoregressions�, manuscript.

� Canova, F. (1992) �An Alternative Approach to Modelling and Forecasting Seasonal Time
Series �Journal of Business and Economic Statistics, 10, 97-108.
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� Canova, F. (1993a) � Forecasting time series with common seasonal patterns�, Journal of
Econometrics, 55, 173-200.

� Del Negro, M. and F. Schorfheide (2004), � Priors from General Equilibrium Models for
VARs�, International economic Review, 45, 643-673.

� Ingram, B. andWhitemann, C. (1994), �Supplanting the Minnesota prior. Forecasting macro-
economic time series using real business cycle priors, Journal of Monetary Economics, 34,
497-510.

� Kadiyala, R. and Karlsson, S. (1997) Numerical methods for estimation and Inference in
Bayesian VAR models, Journal of Applied Econometrics, 12, 99-132.

� Koop, G.(1996) �Bayesian Impulse responses�, Journal of Econometrics, 74, 119-147.

� Sims, C. and Zha T. (1998) �Bayesian Methods for Dynamic Multivariate Models�, Interna-
tional Economic Review, 39, 949-968.

� Waggoner and T. Zha (2003) A Gibbs Simulator for Restricted VAR models, Journal of
Economic Dynamics and Control, 26, 349-366.

� Zha, T. (1999) �Block Recursion and Structural Vector Autoregressions�, Journal of Econo-
metrics, 90, 291-316.

� Marcet, A. and M Jarocinski (2010) Autoregressions in small samples, prior about observables
and initial conditions. UAB manuscript.

� Canova, F. (2004) Testing for Convergence Club: A Predictive Density Approach, Interna-
tional Economic Review, 45,49-77.

3) Bayesian Time series models

� State Space Models and Kalman �lter. Classical Inference in state space models

� Gibbs sampler for state space models

� Applications: TVC- VARs, Factor models, Stochastic volatility, Markov switching models
References

� Albert, J. and Chib, S. (1993) Bayes Inference via Gibbs Sampling of Autoregressive Time
Series Subject to Markov Mean and Variance Shifts, Journal of Business and Economic
Statistics, 11, 1-16.
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� Chib, S. (1996) Calculating Posterior Distributions and Model Estimates in Markov Mixture
Models, Journal of Econometrics, 75, 79-98.

� Fruhwirth-Schnatter, S (2001) MCMC estimation of classical and Dynamic switching and
Mixture Models Journal of the American Statistical Association, 96, 194-209.

� Geweke, J. and Zhou, G. (1996) Measuring the Pricing Error of the Arbitrage Pricing Theory,
Review of Financial Studies, 9, 557-587.

� Otrok, C. and Whitemann, C. (1998), �Bayesian Leading Indicators: measuring and Predict-
ing Economic Conditions in Iowa�, International Economic Review, 39, 997-1114.

� Jacquier, E., Polson N. and Rossi, P. (1994), � Bayesian Analysis of Stochastic Volatility
Models�, Journal of Business and Economic Statistics, 12, 371-417.

� McCulloch, R. and R. Tsay (1994) Statistical Analysis of Economic Time Series via Markov
Switching Models�, Journal of Time Series Analysis, 15, 521-539.

� Sims, C. and Zha, T. (2006) Were there regime switches in US monetary policy, American
Economic Review, 96(1), 54-81.

� Sims, C. D. Waggoner, T. Zha (2008), Methods for Inference in Large Multiple-Equation
Markov-Switching Models, Journal of Econometrics, 146(2) 255-274.

� Cogley, T. and Sargent, T. (2005) Drifts and Breaks in US In�ation, Review of Economic
Dynamics, 8, 262-302.

� Cogley, T., Morozov, and Sargent, T. (2005) Bayesian fan charts for UK in�ation: Forecasting
and sources of uncertainty in evolving monetary systems, Journal of Economic Dynamics and
Control, 29, 1893-1925.

� Canova, F. and Gambetti, L. (2009) Structural Changes in the US economy: is there a role
for monetary policy? Journal of Economic Dynamics and Control, 33, 477-490.

� Canova, F. and Ciccarelli, M., (2004), �Forecasting and Turning Point Prediction in a
Bayesian Panel VAR model�, Journal of Econometrics, 120, 327-359.

� Canova, F. and Ciccarelli, M., (2009), �Estimating multicountry VAR models�, International
Economic Review, 50, 929-961.

� Benati, L. (2008) The great moderation in the UK: Good luck or good policy?, Journal of
Money Credit and Banking, 40, 121-147.
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� Carlin, B., Polson, N. and Sto¤er, D. (1992)�A Monte Carlo Approach to nonnormal and
nonlinear state-space modelling�, Journal of the American Statistical Association, 87, 493-
500

� Mumtaz, H. and Surico, P. (2009) Evolving International In�ation Dynamics: Evidence from
a time varying Dynamic Factor Model, forthcoming, Journal of the European Economic
Association

� Gambetti, L., Pappa, E. and Canova, F. (2008) The structural dynamics of Output and
In�ation: what explains the changes?, Journal of Money, Credit and Banking, 40, 369-388.

� Canova, F., Ciccarelli, M. and Ortega, E. (2007), �Similarities and Convergence in G-7
Cycles�, Journal of Monetary Economics, 54, 850-878.

� Canova, F. Ciccarelli, M. and Ortega, E. (2012), Do Institutional Changes a¤ect Business
Cycles? Evidence from Europe, Journal of Economic Dynamics and Control, 36, 1520-1533.

� Del Negro, M. and Schorfeide, F., (2010) Bayesian Macroeconometrics, in J. Geweke, G.
Koop, and H. van Dijk (eds.) Handbook of Bayesian Econometrics.

4) Bayesian DSGE models
� Algorithms and examples.

� Prior elicitation and data-rich DSGE.

� Misspeci�ed DSGE.

� Identi�cation problems in DSGE.

� Evaluating DSGE models.

References

� An, S and Schorfheide, F. ,2007, Bayesian analysis of DSGE models, Econometric Reviews,
26, 113-172 (with discussion).

� Schorfheide, F, 2011 Estimation and Evaluation of DSGE models: Progress and challenges,
NBER working paper 16781.

� Dri¢ ll, J, Pesaran, H. Smith, R. G. Ascari, M. Miller, R. Werner (2011) The future of
macroeconomics, Manchester Journal, supplement, 1-38. (4 articles and an introduction).
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� Fernandez Villaverde, J., 2009, The econometrics of DSGE models, NBER working paper
14677.

� Primiceri, G. and Justianiano, A., 2008, The time varying volatility of Macroeconomic Fluc-
tuations, American Economic Review, 98, 604-641.

� Smets, F. and R. Wouters, 2003, An Estimated Stochastic DSGE model of the Euro Area,
Journal of the European Economic Association, 5, 1123-1175.

� Smets, F. and R. Wouters, 2007, Shocks and Frictions in US Business cycles, American
Economic Review, 97, 586-606.

� Schorfheide, F., 2000 Loss function based evaluation of DSGE models, Journal of Applied
Econometrics, 15, 645-670.

� Adolfson, M, Laseen, S., Linde, J. and Villani, M., 2008, Evaluating an Estimated new
Keynesian small open economy model, Journal of Economic Dynamics and Control, 32,
2690-2721.

� Canova, F. and Sala, L., 2009, Back to square one: Identi�cation issues in DSGE models,
Journal of Monetary Economics, 56(4), 431-449.

� Del Negro, M, Schorfheide, F., Smets, F. and Wouters, R., 2006, On the �t of New-keynesian
models, Journal of Business and Economic Statistics, 25, 143-162.

� Iskrev, N., 2010, Local identi�cation in DSGE models, Journal of Monetary Economics, 57,
189-202.

� Canova, F. and Paustian, M., 2011, Business cycle measurement with some theory, Journal
of Monetary Economics, 48, 365-381.

� Chari, V., Kehoe, P. and McGrattan, E., 2009, �New Keynesian models: not yet useful for
policy analysis, American Economic Journal: Macroeconomics, 1, 242-266.

� Canova, F., 2010, �Bridging DSGEmodels and the data�, available at http://www.crei.cat/people/canova.

� Canova, F., and Ferroni, F., 2011, �Multiple �ltering devices for the estimation of DSGE
models�, Quantitative Economics, 2, 73-98.

� Canova, F. , Ferroni, F. and Matthes, C. (2012) Choosing the variables to estimate singular
DSGE models, EUI manuscript.
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DSGE models:

Et[A(θ)xt+1 +B(θ)xt + C(θ)xt−1 +D(θ)zt+1 + F (θ)zt] = 0 (1)

zt+1 −G(θ)zt − et = 0 (2)

Stationary (log-linearized) RE solution:

xt = J(θ)xt−1 +K(θ)et (3)

• Solution is a restricted, singular VAR(1) or state space model (if some

xt are non-observable).



How are DSGE estimated/evaluated?

1. Limited information methods

i. GMM/ Indirect Inference (matching impulse responses) (CEE (2005).

ii. SVAR (magnitude and sign restrictions (Canova and Paustian (2011)).

2. Full Information methods:

i. Maximum Likelihood

ii. Bayesian methods

3. Business cycle accounting/calibration Chari et. al. (2007), (2009).



Matching impulse responses (conditional on some shock j):

Model responses: XM
t (θ) = C(θ)(`)e

j
t

Data responses: Xt = Ŵ (`)e
j
t (after shock identification).

θ̂ = argmin
θ

g(θ) = ||Xt −XM
t (θ)||W (T ), W (T ) weighting matrix.

ML: θ̂ = argmax
θ

lnL(X, θ) where L(X, θ) is computed using (3) and the

normality of et.

Bayesian: θ̂ =
∫
θg(θ|X)dθ or

θ̃ = argmax
θ

L(X, θ)g(θ) (constrained maximum likelihood) where g(θ) is

the prior and g(θ|y) is the posterior.



Prior to estimation: can we recover structural parameters from the data?

- Identifiability: Mapping from objective function to the parameters needs

to be well behaved.

To do this need:

- Objective function to have a unique minimum at θ = θ0

- Hessian is positive definite and has full rank

- Curvature of the objective function is ”sufficient”



Difficult to verify if these conditions hold in practice because:

• Mapping from structural parameters to solution coefficients is unknown

(numerical solution).

• Objective function is typically nonlinear function of solution parameters.

• Different objective functions may have different ”identification power” .

Standard rank and order conditions for linear models can’t be used here.



Definitions

• i) Solution identification: can we recover structural θ from the aggregate

decision rule matrices J(θ),K(θ), G(θ)?

• ii) Objective function identification: can we recover aggregate decision

rule matrices J(θ),K(θ), G(θ) from the objective function?

• iii) Population identification (convoluting i) and ii)): can we recover the

structural parameters from the objective function in population?

• iv) Sample identification: can we recover structural parameters from the

objective function, given a sample of data?



Note:

- i) and ii) can occur separately or in conjunction.

- i) is due to the model specification, ii) may result from an improper choice

of objective functions.

- iv) may occur even if i) and ii) are fine.

- iv) object of much econometric literature. Here focus on i) and ii).

Problems with DSGE models are in i)-ii).



What kind of population problems may DSGE models encounter?

• Observational equivalence. Two models may have the same (minimized)

value of the objective function at two different vector of parameters (e.g.

a sticky price and a sticky wage model).

• Observational equivalence within a model. Two vectors of parameters

may give the same (minimized) value of the objective function, given a

model (e.g. given a sticky price model, get the same likelihood if Calvo

parameter is 0.25 or 0.75).

• Partial/under identification within a model. A subset of the structural

parameter enters in a particular functional form in the solution/ may dis-

appear from the solution.



• Weak/asymmetric identification within a model. The population map-

ping is very flat or asymmetric in some dimension.

• Limited Information identification. A subset of the parameters of the

model can’t be identified because the objective function uses only a portion

of the restrictions of the solution.

- Problems may be local or global.

- First four issues refer to solution identification problems. The last to

objective function identification.



1: Observational equivalence

1.1) Linear (log-linearized) RE forward looking models:

B(θ)xt = A(θ)Etxt+1 + et (4)

where et ∼ (0,Ω). Assume that B is non-singular.

• Solution is xt =
∑∞
j=0Q

jB−1Etet+j where Q = B−1A. Since Etet+j =

0, Etxt+1 = 0, the unique RE equilibrium is xt = B−1et.

i) Model is observationally equivalent to a model with no dynamics, i.e. to a model of

the type yt = Met, where M = B−1.

ii) Model is observationally equivalent to a model where the structural shocks are linear

combination of the original structural shocks, i.e. yt = ut where ut = B−1et.



iii) Model is observationally equivalent to a model with higher order degree of forward

lookingness, i.e. B(θ)yt = A(θ)Etyt+n + et, n > 1 or to a model with more complicated

forward looking dynamics, e.g. B(θ)yt =
∑p

n=1An(θ)Etyt+n + et.



1.2) Linear RE forward and backward looking models

B(θ)xt = A(θ)Etxt+1 + Cxt−1 + et (5)

where et ∼ (0,Ω). Still maintain that B is non-singular.

• The solution is xt = Dxt−1+B−1et where D solves AD2−BD+C = 0.

• The solution is unique and stationary if all the eigenvalues of D and of

(B −AD)−1A are all less than one in absolute value.

iv) The solution of the model is observationally equivalent to the one of

the model with just backward looking dynamics.

Note: the parameter space may not be variational free, e.g. there may

be restrictions on the parameter space (A(θ) +C(θ) = 1) and restrictions

due to eigenvalues constraints.



Example 1 Consider the three processes ( λ2 ≥ 1 ≥ λ1 ≥ 0):

1) xt = 1
λ2+λ1

Etxt+1 + λ1λ2

λ1+λ2
xt−1 + vt.

2) yt = λ1yt−1 + wt

3) yt = 1
λ1
Etyt+1 where yt+1 = Etyt+1 + wt and wt iid (0, σ2

w).

Stable RE solution of 1) xt = λ1xt−1 + λ2+λ1

λ2
vt.

Stable RE solution of 3) is yt = λ1yt−1 + wt.

If σw = λ2+λ1

λ2
σv, three processes have same impulse responses.

- Bayer and Farmer (2004): Axt+DEtxt+1 = B1xt−1 +B2Et−1xt+Cvt.

- Kim (2001, JEDC); Ma (2002, EL); Lubik and Schoefheide (2004,AER)

An and Schorfheide (2007,ER).



2: Underidentification

Example 2

Rt = ψπt + e1t (6)

yt = Etyt+1 − σ(Rt − Etπt+1) + e2t (7)

πt = βEtπt+1 + γyt + e3t (8)

Here B =

 1 0 −ψ
σ 1 0
0 −γ 1

 , A =

 0 0 0
0 1 σ
0 0 β

 and Q = 1
γσψ

 0 γψ ψ(β + γσ)
0 1 σ(1− βψ)
0 γ γσ

.

The two nonzero eigenvalues of Q are κi =
(1+β+γσ)±Φ

2(γσψ+1)
, i = 1, 2, where

Φ = (β2 − 2β + γ2σ2 + 2γσ + 2γσβ − 4γσβψ + 1)0.5. If κi < 1, ∀i, the
solution is

Rt = ψπt + e1t (9)

yt = −σRt + e2t (10)

πt = γyt + e3t (11)



• β is not identifiable (it only appears in A1, and this does not enter the

likelihood function).

• Since the solution is valid for κi < 1, the formula for eigenvalues implies

restrictions on all four parameters of the model. Thus, there are implicit

restrictions in the parameter space: to keep κi < 1 as γ, ψ, σ vary, β needs

to be correspondingly adjusted.

- Even if β is calibrated, not all parameters are separately identifiable.

- Because of the stability restrictions, the posterior for β may be updated

even if the likelihood is independent of β (see later).



Example 3 Consider a version of the previous model

Rt = ψEtπt+1 + e1t (12)

yt = δEtyt+1 − σ(Rt − Etπt+1) + e2t (13)

πt = βEtπt+1 + γyt + e3t (14)

The solution can we written (in MA format) as xt =

 1 0 0
σ 1 0
σγ σ 1

 et.
• δ, ψ, β disapper from the solution; they are underidentified (we need a
model with backward and forawrd looking dynamics to identify them).

• Different impulse responses have different ”identification” information.
Limited and full information objective functions have different information
content. How do we maximize the identification information?

• Identification may be ”local”, i.e. it depends on the values γ and σ.



Example 4 Consider the partial equilibrium NK Phillips relations

πt = ωδ−1πt−1 + βαδ−1Et−1πt+1 + γxt + e1t (15)

xt = ρxt−1 + e2t (16)

where δ = α + ω(1 − α(1 − β)), 1 − ω fraction of agents chosing prices

optimally among those allowed to change prices, ω fractions of firms using

rules of thumb to set prices, 1 − α fraction of firms resetting prices in

every period, β the discount factor, γ = (1− ω)(1− α)(1− λα)δ−1 > 0.

(WHAT is λ ????).

- Theory restricts the sum of the coefficient (backward plus forward part)

to be equal to 1. The solution is

πt = κbπt−1 +
γ

1− κbωδ−1

∑
j

(κf)−1Et−1xt+j + γ(xt − Et−1xt) + e1t

(17)



where κb, κf solve βαδ−1κ2 − κ + ωδ−1 = 0. The solution for the whole

system is a VAR(1) of the form

πt = ζ1(θ)πt−1 + ζ2(θ)xt−1 + ut (18)

xt = ρxt−1 + e2t (19)

Here θ = (β, α, ω, ρ), ut = e1t+γe2t, ζ1 =
1−(1−4bfbb)

0.5

2bf
, ζ2 = γρ

1−βf(κ+ρ)
,

where bf = βαδ−1, bb = ωδ−1.

1) Can not separately identify β, α, ω. At best we can identify bb, bf .

2) Three reduced form parameters (ζ1, ζ2, ρ) and four structural parame-

ters β, α, ω, ρ: can not seperately identify the structrual parameters



3) We can identify the four parameters independently if the process for

xt is at least an AR(2) (see Mavroedis (2005)).However, if ρ2 is small,

identification can be weak (see later).

4) Theory imposes restrictions on bb + bf . Thus even if they can not

separately identifed, their posterior distribution can be updated relative to

the prior, even if they priors are independent.



3: Weak and partial identification

maxβt
∑
t

c
1−φ
t

1− φ

ct + kt+1 = k
η
t zt + (1− δ)kt

R.E. solution for wt+1 = [kt+1, ct, yt, zt] = Awt +Bet.

Select β = 0.985, φ = 2.0, ρ = 0.95, η = 0.36, δ = 0.025, zss = 1.

Strategy: simulate data, compute population objective function. Study its

shape and features.
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Figure 1: Distance surface for selected parameters



What causes the problems? Law of motion of the capital stock in almost

invariant to :

(a) variations of η and ρ (weak identification).

(b) variations of β and δ are additive (partial under-identification).

Can we reduce problems by:

(i) Changing W (T )? (long horizon may have little information).

(ii) Matching VAR coefficients?

(iii) Altering the objective function?

In this specific case: NO.
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Figure 2: Distance surface for selected parameters



Can we eliminate weak identification problems?

- Change options in your optimization routine. Set tolerance level to 10−15

instead that standard 10−8.

- Start optimization routine from many initial values.

Can we eliminate partial identification problems?

Standard solution: calibrate one of the two parameters.
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Summing up

- Identification problems intrinsic to the models and their parameterization.

- Detecting them is complicated because structural parameters enter non-

linearly and solution not analytically available.

- These are population problems. In small samples additional problems

can emerge.



Identification and objective function

What objective function should one use? Likelihood!!

- It has all the information of the model.

- Using a distance function throws away potentially useful identification

information. If you use a subset of impulse responses, problems could be

compounded.

- Better to add steady states back to the solution. Many parameters may

enter only the steady states.

- What does a prior do? Can help if small sample identification problems

but not if they are there in population!!
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Figure 4: Likelihood and Posterior

Posterior not usually updated if likelihood has no information.

With stability constraints, updating is possible.



Identification and solution methods

• An-Schorfheide (2007) Likelihood function better behaved (in terms of

identifying the parameters) if second order approximation is used. How

about distance function?

maxE0

∑
t

βt[log(ct − bc̄t−1)− atNt]

ct = yt = ztNt

c̄t external habit; at stationary labor supply shock; ln( zt
zt−1

) ≡ uzt technol-

ogy shock.



Linear solution (only labor supply shocks):

N̂t = (b+ ρ)N̂t−1 − bρN̂t−2 − (1− b)ûat (20)

- Sargent (1978), Kennan (1988): b and ρ are not separately identified.

Second order solution (only labor supply shocks):

N̂t = bN̂t−1 +
b(b−1)

2 N̂2
t−1 − (1− b)ât − 1

2(−(1− b)2 + 1− b)â2
t

ât = ρât−1 + uat
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Identification and estimation

What happens if we disregard identification issues and estimate models with a finite
sample?

yt =
h

1 + h
yt−1 +

1

1 + h
Etyt+1 +

1

φ
(it − Etπt+1) + v1t

πt =
ω

1 + ωβ
πt−1 +

β

1 + ωβ
πt+1 +

(φ+ 1.0)(1− ζβ)(1− ζ)

(1 + ωβ)ζ
yt + v2t

it = λrit−1 + (1− λr)(λππt−1 + λyyt−1) + v3t

h: degree of habit persistence (.85); φ: relative risk aversion (2)

β: discount factor (.985); ω: degree of price indexation (.25)

ζ: degree of price stickiness (.68)

λr, λπ, λy: policy parameters (.2, 1.55, 1.1)

v1t: AR(ρ1) (.65); v2t: AR(ρ2) (.65); v3t: i.i.d.
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Table 1: NK model. Matching monetary policy shocks, bias
True PopulationT = 120T = 200T=1000T=1000 wrong

β 0.985 0.2 0.6 0.7 0.7 0.6
φ 2.00 0.7 95.2 70.6 48.6 400
ζ 0.68 0.1 19.3 17.5 23.5 23.7
λr 0.2 2.9 172.0 152.6 132.7 90.5
λπ 1.55 32.5 98.7 78.4 74.5 217.5
λy 1.1 34.9 201.6 176.5 126.5 78.3
ρ1 0.65 13.1 30.4 34.3 31.0 31.3
ρ2 0.65 12.8 32.9 34.8 34.7 34.7
ω 0.25 0.01 238.9 232.3 198.1 284.0
h 0.85 0.04 30.9 32.4 21.3 100



Conclusions

- Population biases are present.

- Distribution of estimates far from normal.

- Impulse responses ”close” to the true one not a criteria to judge how

good is a model.

- Surface plots/ numerical analysis can help to detect potential problems.



Wrong inference

0 = −kt+1 + (1− δ)kt + δxt
0 = −ut + ψrt

0 =
ηδ

r̄
xt + (1− ηδ

r̄
)ct − ηkt − (1− η)Nt − ηut − ezt

0 = −Rt + φrRt−1 + (1− φr)(φππt + φyyt) + ert
0 = −yt + ηkt + (1− η)Nt + ηut + ezt
0 = −Nt + kt − wt + (1 + ψ)rt

0 = Et[
h

1 + h
ct+1 − ct +

h

1 + h
ct−1 −

1− h
(1 + h)ϕ

(Rt − πt+1)]

0 = Et[
β

1 + β
xt+1 − xt +

1

1 + β
xt−1 +

χ−1

1 + β
qt +

β

1 + β
ext+1 −

1

1 + β
ext]

0 = Et[πt+1 −Rt − qt + β(1− δ)qt+1 + βr̄rt+1]

0 = Et[
β

1 + βγp
πt+1 − πt +

γp

1 + βγp
πt−1 + Tp(ηrt + (1− η)wt − ezt + ept)]

0 = Et[
β

1 + βγp
wt+1 − wt +

1

1 + β
wt−1 +

β

1 + β
πt+1 −

1 + βγw
1 + β

πt +
γw

1 + βγw
t−1(wt − σNt −

ϕ

1− h
(ct − hct−1)− ewt)]



δ depreciation rate (.0182) λw wage markup (1.2)
ψ parameter (.564) π̄ steady state π (1.016)
η share of capital (.209) h habit persistence (.448)
ϕ risk aversion (3.014) σl inverse elasticity of labor supply (2.145)
β discount factor (.991) χ−1 investment’s elasticity to Tobin’s q (.15)
ζp price stickiness (.887) ζw wage stickiness (.62)
γp price indexation (.862) γw wage indexation (.221)
φy response to y (.234) φπ response to π (1.454)
φr int. rate smoothing (.779)

Tp ≡ (1−βζp)(1−ζp)
(1+βγp)ζp

Tw ≡ (1−βζw)(1−ζw)

(1+β)(1+(1+λw)σlλ
−1
w )ζw
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Figure 10: Objective function: monetary and technology shocks
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Figure 11: Distance surface and Contours Plots



Experiment:

- use population responses from a model with some features (e.g. with

price stickiness and no price indexation).

- ask: is it possible for a model with has different features (e.g. no price

stickiness and price indexation) to have impulse responses which are very

close to the benchmark one?

- Do they imply different welfare properties?



ζp γp ζw γw Obj.Fun.
Baseline 0.887 0.862 0.62 0.221

x0 = lb + 1std 0.8944 0.8251 0.615 0 1.8235E-07
x0 = lb + 2std 0.8924 0.7768 0.6095 0.1005 3.75E-07
x0 = ub - 1std 0.882 0.7957 0.6062 0.1316 2.43E-07
x0 = ub - 2std 0.9044 0.7701 0.6301 0 8.72E-07

Case 1 0 0.862 0.62 0.221
x0 = lb + 1std 0.1304 0.0038 0.6401 0.245 2.7278E-08
x0 = lb + 2std 0.1015 0.0853 0.6065 0.1791 4.84E-08
x0 = ub - 1std 0.0701 0.1304 0.6128 0.1979 4.72E-08
x0 = ub - 2std 0.0922 0.0749 0.618 0.215 3.05E-08

Case 2 0 0.862 0.62 0
x0 = lb + 1std 0.0248 0 0.6273 0.029 7.437E-09
x0 = lb + 2std 0.4649 0 0.7443 0.4668 2.10E-06
x0 = ub - 1std 0.0652 0.0004 0.6147 0.0447 7.13E-08
x0 = ub - 2std 0.6463 0.2673 0.8222 0.3811 5.56E-06



ζp γp ζw γw Obj.Fun.
Case 3 0.887 0 0.62 0.8

x0 = lb + 1std 0.9264 0.3701 0.637 0.4919 3.5156E-07
x0 = lb + 2std 0.9076 0.2268 0.6415 0.154 3.51E-07
x0 = ub - 1std 0.9014 0.3945 0.6477 0 6.12E-07
x0 = ub - 2std 0.9263 0.3133 0.6294 0.4252 4.13E-07

Case 4 0.887 0 0 0.221
x0 = lb + 1std 0.9186 0.3536 0.0023 0 4.7877E-07
x0 = lb + 2std 0.8994 0.234 0 0 3.06E-07
x0 = ub - 1std 0.905 0.3494 0.0021 0 4.14E-07
x0 = ub - 2std 0.9343 0.5409 0.0042 0 9.64E-07

Case 5 0.887 0 0 0.221
x0 = lb + 1std 0.877 0.0123 0.0229 0 2.4547E-06
x0 = lb + 2std 0.8919 0.0411 0.0003 0 4.26E-07
x0 = ub - 1std 0.907 0.2056 0.001 0.0001 6.58E-07
x0 = ub - 2std 0.8839 0.0499 0.0189 0 2.46E-06
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Figure 12: Impulse responses, Case 4.



Welfare costs different!

L(π2, y2) = −0.0005 with true parameters.

L(π2, y2) = −0.0022 with estimated parameters.



Detecting identification problems:

Ex-ante diagnostics:

- Graphical analysis. (Canova- Sala (2009))

- Numerical derivatives/elasticities of the solution/objective function at likely parameter

values.

- Simulation analysis: check distribution of population estimates.

Ex-post diagnostics:

- Erratic parameter estimates as T increases.

- Large or non-computable standard errors.

- Crazy t-test (Choi and Phillips (1992), Stock and Wright (2003)).



5) Canova- Sala (2009) (graphical diagnostic)

- Perform prior predictive analysis ( can do this prior to the estimation).

- Simulate the objective function (likelihood, posterior, distance function)

drawing parameters from some (prior) distribution. Plot objective function

against relevant parameters. Check if it is flat, if it displays, ridges, or

other peculiarities.

- If the objective function does not change much when we vary a parameter,

that parameters can not be identified.

- If the objective function does not change much when we vary a subset

of the parameters, the parameters can not be separately identified.



2) Iskrev (2010): testing the rank of a matrix.

- Likelihood function of normal stationary data depends only on its auto-

covariance function.

- The Jacobian of the transformation from the structural parameters of a

model to the ACF of the data must be full rank at θ0 for the model to be

locally identifiable.

- Randomly draw θ0 from the prior of the parameters.

Calculate the (analytical) Jacobian at θ0. If less than full rank → identifi-

cation deficiencies.



Solution

y2t = A22(θ)y2t−1 +A23(θ)y3t (21)

y1t = A12(θ)y2t−1 +A13(θ)y3t (22)

where y2t are the (endogenous and exogenous) states, y3t are the shocks,

y1t are the controls and θ the k × 1 vector of structural parameters.

- Let xt = H[y1t, y2t]
′ where H is a selection matrix.

- Let mx(θ) be a vector of theoretical moments of x (in the case of Iskrev,

mx = vec(E(x), ACFx(j)) where j = 0, . . . , J). Let m̂x be the vector of

estimated moment in the actual data. We want m̂x = mx(θ).

- Let Mx =
∂mx(θ)
∂θ .



- All the parameters are locally identifiable at θ0 if rank(Mx) ≥ k.

- How do you check the rank of the matrix? Can compute condition number

of the eigenvalues and see if there is at least one less than a critical value.

Or use Cragg-Donald approach (see below).

Note Mx = Ma∗Mθ where Mθ is the matrix of derivatives of reduced form

coefficients (decision rules) with respect to structural parameter, Ma deriv-

ative of the moments with respect to reduced form coefficients. Usually

the problem is in Mθ.

- Problem 1: identification in DSGE models is not a either/or proposition

e.g., the rank of Mx may be k and still some of its eigenvalues may be

very small.



- Problem 2: A lots of parameters may not enter the ACF. Can’t just use

the ACF.

- Problem 3: If there are parameters entering only in A13 or A23 may not

separately identifiable from the variance of the shocks (see Komunijer and

Ng (2011).



3) Komunijer and Ng (2011): testing the rank of a matrix.

- Start from (21)-(22), where y3t may also contain measurement errors

and let xt = y1t be the vector of observables.

- The MA representation for xt is xt = H(L, θ)y3t. The matrix H(z, θ) =∑∞
j=0 hy3(θ, j)z−j is obtained as

H(z, θ) = D(θ) + C(θ)[z ∗ INy2
−A(θ)]−1B(θ) (23)

where Ny2 is the size of y2t, z ∈ C.

- Define the spectral density of xt by sx(ω, θ) = H(z, θ)Σy3(θ)H(z, θ)′.



- Properties of the spectral density (or ACF) of xt are determined by

the the properties of H. H, in turn, is linked to the (Rosenbrook) sys-

tem matrix P (z, θ) =

[
z ∗ INy2

−A(θ) B(θ)

−C(θ) D(θ)

]
. In particular, rank

(P (z, θ)) = Ny2+ rank (H(z, θ))

- For identification want
∂Sx(ω,θ)

∂θ to have full column rank. To make sure

that this is the case, Kommunjer and Ng derive conditions on the inputs

of the matrix P (z, θ).

- Nice since P contains the mapping from DSGE parameters to the decision

rules.

- Result 1 (case of Ny3 < Ny1): Two vectors θ1 and θ0 are observationally

equivalent if there exists T, U matrices of dimension Ny2×Ny2 and Ny3×



Ny3 respectively, and the following hold

A(θ1) = TA(θ0)T ′ (24)

B(θ1) = TB(θ0)U (25)

C(θ1) = C(θ0)T−1 (26)

D(θ1) = D(θ0)U (27)

Σy3(θ1) = U−1Σy3(θ0)U−1 (28)

- Result 2: Let δ(T, U, θ) =


vec(TA(θ0)T ′)
vec(TB(θ0)U)
vec(C(θ0)T−1)
vec(D(θ0)U)

vech(U−1Σy3(θ0)U−1)

.

The parameters of the model are locally identifiable at θ0 if δ(T, U, θ1) =

δ(I, I, θ0)has a unique solution at (T, U, θ1) = (I, I, θ0).



- Practical implication: Compute
∂δ(T,U,θ)

∂θ . Check if it has full column

rank at (I, I, θ0).

i) Need to pick a θ0

ii) Need to compute numerical derivatives (see matlab program in on-line

appendices in Econometrica).

- For other cases ( Ny3 ≥ Ny1) see paper for the changes needed.



How do you test the rank of matrix?

- Cragg and Donald (1997): Testing rank of Hessian. Under regularity

conditions: (vec(Ĥ)−vec(H))′Ω(vec(Ĥ)−vec(H)) ∼ χ2((N −L0)(N −
L0)) N = dim(H), L0 =rank of H.

- Anderson (1984): Size of characteristic roots of Hessian. Under regularity

conditions:
∑N−m
i=1 λ̂i∑N
i=1 λ̂i

D→ Normal distribution.

Concentration Statistics: Cθ0
(i) =

∫
j 6=i

g(θ)−g(θ0)dθ∫
(θ−θ0)dθ

, i = 1, 2 . . . (Stock,

Wright and Yogo (2002)) = measures the global curvature of the objective

function around θ0.



Applied to SW model:

- rank of H = 6;

- sum of 12-13 characteristics roots is smaller than 0.01 of the average

root; i.e. 12-13 dimensions with weak or partial identification problems.

Which are the parameters is causing problems? β, h, σl, δ, η, ψ, γp, γw,

λw, φπ, φy, ρz. (consistent with graphical analysis).

Why? Variations of these parameters hardly affect law of motion of states!

Almost a rule: for identification need states to react changes in structural

parameters.



4) Rubio, Waggoner, Zha (2010) testing the rank of matrix (global identifi-

cation). DSGE model solution must have a restricted VAR representation.

5) Mueller (2010)

- How much do the results depend on the prior?

- How much prior information is there in the posterior?

- Is the posterior reflecting mostly the likelihood or the prior?



Current answers based on plotting marginal/prior marginal posterior insuf-

ficient:

- Univariate representation.

- Prior of one parameter affect posterior of other parameters as well.

- Stability conditions imply that (marginal) priors and posteriors differ even

though the likelihood has not information.





- Traditional approach: Compute the rank of the information matrix I(θ) =

−E[
∂f(y,θ)

∂θ2 ].

- Problem: measure local; does not satisfy the likelihood principle (infer-

ence ins based on averages of hypothetical histories that never material-

ized).

Iskev (2010), Komunjer and Ng (2011): compute the rank of a matrix of

derivatives.

- Not based on the (classical) likelihood. Still problems: local measure,

classical inference.



General idea: Assume that θ is a scalar ( for simplicity)

1) Start from g(θ) with mean µ and variance σ2
g(θ).

2) Embed this prior in a family gα(θ) with mean µ+α and scores sα(θ) =
∂ ln gα(θ)

∂α

3) The posterior for this class has mean µg(α|y)(θ) =

∫
θL(θ|y)gα(θ)dθ∫
L(θ|y)gα(θ)θdθ

and

∂µg(α|y)

∂α
|(α=0) = Eg(α|y)[(θ − µg(α|y))s(α=0)(θ)] (29)



4) If gα(θ) = gα=0(θ) exp[αθ−µ
σ2 − C(α)] where C(α) is independent of θ

then

∂µg(α|y)

∂α
|α=0 = J = σ2

g(α)(θ)−1σ2
g(α|y)(θ) (30)

- Prior sensitivity: PS = J ∗ σg =
σ2
g(α|y)

(θ)

σg(α)(θ)
.

- Prior informativeness: PI = min(1, J).



Interpretation:

1) PS measures the linear approximation to the change of the posterior

mean that can be induced by increasing the prior mean by one prior stan-

dard deviation

2) If the likelihood pins down exactly θ than changing the prior mean leaves

the posterior mean unchanged and J = 0. At the opposite extreme if the

likelihood is flat J = 1. Thus, values of PI between zero and one may

be thought of as a numerical measure for the relative importance of prior

information for the posterior results.



Advantages:

1) Global rather than a local measure:compare σ2
g(α|y(θ) with−E[

∂f(y,θ)

∂θ2 |θ̂.

2) Joint as opposed to marginal: compare multivariate J (see Mueller)

with [σ2
g(α)(θ)(j, j)]−1[σ2

g(α|y)(θ)(j, j)]

3) Consistent with the likelihood principle, dependent on the prior

4) Deliver a measure rather than a yes/no answer (as it happens with

testing)

5) Very easy to compute: just take a the posterior covariance matrix and

compare it with prior covariance matrix.



Example: Smets and Wouters (2007)

J(i,i) close to one for many parameters.



5.1) Koop, Pesaran and Smith (2011) (simulation approach)

- In large samples, the variance of the likelihood distribution must converge

to zero at the rate T if a parameter is identified. Since, in large samples,

the importance of the prior disappears, the variance of the posterior must

have the same properties.

- In large samples, the variance of the posterior distribution of parameters

with identification problems must converge to zero at the rate slower than

T or may not converge at all.

- Simulate data from the model with different length. Check how the vari-

ance of the posterior of the parameters change.



What to do when identification problems exist?

1) Which type of problems?

- If population problems need respecify/reparameterize the model. For

example, estimation of the following NK system has less identification

problems.

yt =
h

1 + h
yt−1 +

1

1 + h
Etyt+1 +

1

φ
(it − Etπt+1) + v1t

πt = aπt−1 + bπt+1 + κyt + v2t

it = λrit−1 + (1− λr)(λππt−1 + λyyt−1) + v3t

- If are due to a particular objective function or to the use of limited

information: use likelihood.



- If are due to small sample, add information (prior or other data).

- Don’t proceed as if they do not exist. Estimates make no sense!!

- Careful with mixed calibration-estimation. It is preferable to use full

calibration or Bayesian calibration (Canova and Paustian (2011)).

- Do you really need to estimate the model or can you do with reasonable

calibration?
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1 Preliminaries

Classical and Bayesian analysis differ on a number of issues

Classical analysis:

• Probabilities = limit of the relative frequency of the event.

• Parameters are fixed, unknown quantities.

• Unbiased estimators useful because average value of sample estimator
converge to true value via some LLN. Efficient estimators preferable be-
cause they yield values closer to true parameter.

• Estimators and tests are evaluated in repeated samples (to give correct
result with high probability).



Bayesian analysis:

• Probabilities = degree of (typically subjective) beliefs of a researcher in

an event.

• Parameters are random with a probability distributions.

• Properties of estimators and tests in repeated samples uninteresting:

beliefs not necessarily related to relative frequency of an event in large

number of hypothetical experiments.

• Estimators are chosen to minimize expected loss functions (expectations

taken with respect to the posterior distribution), conditional on the data.

Use of probability to quantify uncertainty.



In large samples (under appropriate regularity conditions):

• Posterior mode α∗ P→ α0 (Consistency)

• Posterior distribution converges to a normal with mean α0 and variance

(T × I(α0))−1, where I(α) is Fisher’s information matrix (Asymptotic

normality).

Classical and Bayesian analyses differ in small samples and for dealing

with unit root processes.



Bayesian analysis requires:

• Initial information → Prior distribution.

• Data → Likelihood.

• Prior and Likelihood → Bayes theorem → Posterior distribution.

• Can proceed recursively (mimic economic learning).



2 Bayes Theorem

Parameters of interest α ∈ A, A compact. Prior information g(α). Sample

information f(y|α) ≡ L(α|y).

• Bayes Theorem.

g(α|y) =
f(y|α)g(α)

f(y)
∝ f(y|α)g(α) = L(α|y)g(α) ≡ g̀(α|y)

f(y) =
∫
f(y|α)g(α)dα is the unconditional sample density (Marginal like-

lihood), and it is constant from the point of view of g(α|y); g(α|y) is the

posterior density, g̀(α|y) is the posterior kernel, g(α|y) =
g̀(α|y)∫
g̀(α|y)dα

.



• f(y) it is a measure of fit. It tells us how good the model is in reproducing

the data, not at a single point, but on average over the parameter space.

• α are regression coefficients, structural parameters, etc.; g(α|y) is the

conditional probability of α, given what we observe, y.

• Theorem uses rule: P (A,B) = P (A|B)P (B) = P (B|A)P (A). It says

that if we start from some beliefs on α, we may modify them if we observe

y. It does not says what the initial beliefs are, but how they should change

is data is observed.



To use Bayes theorem we need:

a) Formulate prior beliefs, i.e. choose g(α).

b) Formulate a model for the data (the conditional probability of f(y|α)).

After observing the data, we treat the model as the likelihood of α condi-

tional on y, and update beliefs about α.



• Bayes theorem with nuisance parameters (e.g. α1 long run coefficients,

α2 short run coefficients; α1 regression coefficient; α2 serial correlation

coefficient in the errors).

Let α = [α1, α2] and suppose interest is in α1. Then g(α1, α2|y) ∝
f(y|α1, α2)g(α1, α2)

g(α1|y) =
∫
g(α1, α2|y)dα2

=
∫
g(α1|α2, y)g(α2|y)dα2 (1)

Posterior of α1 averages the conditional of α1 with weights given by the

posterior of α2.



• Bayes Theorem with two (N) samples.

Suppose yt = [y1t, y2t] and that y1t is independent of y2t. Then

ğ ≡ f(y1, y2|α)g(α) = f2(y2|α)f1(y1|α)g(α) ∝ f2(y2|α)g(α|y1) (2)

Posterior for α is obtained finding first the posterior of using y1t and then,

treating it as a prior, finding the posterior using y2t.

- Sequential learning.

- Can use data from different regimes.

- Can use data from different countries.



2.1 Likelihood Selection

• It should reflect an economic model.

• It must represent well the data. Misspecification problematic since it

spills across equations and makes estimates uninterpretable.

• For our purposes the likelihood is simply the theoretical (DSGE) model

you write down.



2.2 Prior Selection

• Three methods to choose priors in theory. Two not useful for DSGE

models since are designed for models which are linear in the parameters.

1) Non-Informative subjective. Choose reference priors because they are

invariant to the parametrization.

- Location invariant prior: g(α) =constant (=1 for convenience). Scale

invariant prior g(σ) = σ−1.

- Location-scale invariant prior : g(α, σ) = σ−1.

• Non-informative priors useful because many classical estimators (OLS,

ML) are Bayesian estimators with non-informative priors



2) Conjugate Priors

A prior is conjugate if the posterior has the same form as the prior. Hence,

the form posterior will be analytically available, only need to figure out its

posterior moments.

• Important result in linear models with conjugate priors: Posterior mo-

ments = weighted average of sample and prior information. Weights =

relative precision of sample and prior informations.
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3) Objective priors and ML-II approach. Based on:

f(y) =
∫
L(α|y)g(α)dα ≡ L(y|g) (3)

Since L(α|y) is fixed, L(y|g) reflects the plausibility of g in the data.

If g1 and g2 are two priors and L(y|g1) > L(y|g2), there is better support

for g1. Hence, can estimate the ”best” g using L(y|g).

In practice, set g(α) = g(α|θ), where θ= hyperparameters (e.g. the mean

and the variance of the prior). Then L(y|g) ≡ L(y|θ).

The θ that maximizes L(y|θ) is called ML-II estimator and g(α|θML) is

ML-II based prior.



Important:

- y1, . . . yT should not be the same sample used for inference.

- y1, . . . yT could represent past time series information, cross sectional/

cross country information.

- Typically y1, . . . yT is called ”Training sample”.



4) Priors for DSGE - similar to MLII priors.

- Assume that g(α) = g1(α1)g2(α2)....gq(αq).

- Use a conventional format for the distributions: a Normal, Beta and

Gamma for individual parameters. Choose moments in a data based fash-

ion: mean = calibrated parameters, variance: subjective.

Problems:

• Independent priors typically inconsistent with any subjective prior beliefs

over joint outcomes. In particular, multivariate priors are often too tight!!

• Calibrated value may be different for different purposes. For example,

risk aversion mean is 6-10 to fit the equity premium; close to 1-2 if we



want to fit the reaction of consumption to changes in monetary policy;

negative values to fit aggregate lottery revenues. Which one do we use?

Same for habit parameters (see Faust and Gupta, 2012)

• Circularity: priors based on the same data used to estimate!! Use cali-

brated values in a ” training sample”.

See later del Negro and Schorfheide (2008) for formally choosing data

based priors in training samples which are not independent.



Summary

Inputs of the analysis: g(α), f(y|α).

Outputs of the analysis:

g(α|y) ∝ f(y|α)g(α) (posterior),

f(y) =
∫
f(y|α)g(α) (marginal likelihood), and

f(yT+τ |yT ) (predictive density of future observations).

Likelihood should reflect data/ economic theory.

Prior could be non-informative, conjugate, data based (objective).



- In simple examples, f(y) and g(α|y) can be computed analytically.

- In general, can only be computed numerically by Monte Carlo methods.

- If the likelihood is a (log-linearized) DSGE model: always need numerical

computations.



3 Posterior simulators

Objects of interest for Bayesian analysis: E(h(α)) =
∫
h(α)g(α|y)dα. Oc-

casionally, can evaluate the integral analytically. In general, it is impossible.

If g(α|y) were available: we could compute E(h(α)) with MC methods:

- Draw αl from g(α|y). Compute h(αl)

- Repeat draw L times. Average h(αl) over draws.

Example 3.1 Suppose we are interested in computing Pr(α > 0). Draw

αl from g(α|y). If αl > 0, set h(αl) = 1, else set h(αl) = 0. Draw L times

and average h(αl) over draws. The result is an estimate of Pr(α > 0).



• Approach works because with iid draws the law of large numbers (LLN)

insures that sample averages converge to population averages (ergodicity).

• By a central limit theorem (CLT) the difference between sample and

population averages has a normal distribution with zero mean and some

variance as L grows (numerical standard errors can be used a a measure

of accuracy).

- Since g(α|y) is not analytically available, need to use a gAP (α|y), which

is similar to (g(α|y), and easy to draw from.

• Normal Approximation

• Basic Posterior simulators (Acceptance and Importance sampling).

• Markov Chain Monte Carlo (MCMC) methods



3.1 Normal posterior analysis

If T is large g(α|y) ≈ f(α|y). If f(α|y) is unimodal, roughly symmetric,

and α∗ (the mode) is in the interior of A:

log g(α|y) ≈ log g(α∗|y) + 0.5(α−α∗)′[∂
2 log g(α|y)

∂α∂α′
|α=α∗](α−α∗) (4)

Since g(α∗|y) is constant, letting Σα∗ = −[
∂2 log g(α|y)

∂α∂α′
−1|α=α∗]

g(α|y) ≈ N(α∗,Σα∗) (5)

- An approximate 100(1-ρ)% highest credible set is α∗±Φ(ρ/2)I(α∗)−0.5

where Φ(.) the CDF of a standard normal.



• Approximation is valid under regularity conditions when T →∞ or when

the posterior kernel is roughly normal. It is highly inappropriate when:

- Likelihood function flat in some dimension (I(α∗) badly estimated).

- Likelihood function is unbounded (no posterior mode exists).

- Likelihood function has multiple peaks.

- α∗ is on the boundary of A (quadratic approximation wrong).

- g(α) = 0 in a neighborhood of α∗ (quadratic approximation wrong).



How do we construct a normal approximation?

A) Find the mode of the posterior.

max log g(α|y) = max(logL(α|y) + log g(α))

- Problem is identical to the one of finding the maximum of a likelihood.

The objective function differs.

Two mode finding algorithms:



i) Newton algorithm

- Let L = log g(α|y) (or L = log ğ(α|y)). Choose α0.

- Calculate L′ = ∂L
∂α(α0) L

′′
= ∂2L

∂α∂α′(α0). Approximate L quadratically.

- Set αl = αl−1 − γ(L
′′
(αl−1|y))−1(L′(αl−1|y)) γ ∈ (0, 1).

- Iterate until convergence i.e. until ||αl − αl−1|| < ι, ι small.

Fast and good if α0 is good and L close to quadratic. Bad if L
′′

not

positive definite.



ii) Conditional maximization algorithm.

Let α = (α1, α2). Start from some (α10, α20). Then

- Maximize L(α1, α2) with respect to α1 keeping α20 fixed. Let α∗1 the

maximizer.

- Maximize L(α1, α2) with respect to α2 keeping α1 = α∗1 fixed. Let α∗2
the maximizer.

- Iterate on two previous steps until convergence.

- Start from different (α10, α20), check if maximum is global.



B) Compute the variance covariance matrix at the mode

- Use the Hessian Σα∗ = −[
∂2 log g(α|y)

∂α∂α′
−1|α=α∗]

C) Approximate the posterior density around the mode: gAP (α|y) =
N(α∗,Σα∗).

- If multiple modes are present, find an approximation to each mode, and
set gAP (α|y) =

∑
i %iN(α∗i ,Σα∗i ) where 0 ≤ %i ≤ 1. If modes are clearly

separated select %i = g(α∗i |y)|Σα∗i |
−0.5.

- If the sample is small, use a t-approximation i.e. gAP (α|y) =∑
i %ig(α̃|y)[ν + (α− α∗i )′Σαi(α− α∗i )]−0.5(k+v) with small ν.

(If ν = 1 t-distribution=Cauchy distribution, large overdispersion. Typi-
cally ν = 4, 5 appropriate).



D) To conduct inference, draw αl from gAP (α|y).

If draws are iid, E(h(α)) = 1
L

∑
l h(αl). Use LLN to approximate any pos-

terior probability contours of h(α), e.g. a 16-84 range is [h(α16), h(α84)].

E) Check accuracy of approximation.

Compute Importance Ratio IRl =
ğ(αl|y)
gAP (αl|y)

. Accuracy is good if IRl is

constant across l. If not, need to use other techniques.

Note: Importance ratios are not automatically computed in Dynare. Need

to do it yourself.



Example 3.2 True: g(α|y) is t(0,1,2). Approximation: N(0,c), where c = 3, 5, 10, 100.
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Horizontal axis=importance ratio weights, vertical axis= frequency of the weights.

- Posterior has fat tails relative to a normal (poor approximation).



3.2 Basic Posterior Simulators

• Draw from a general gAP (α|y) (not necessarily normal).

• Non-iterative methods - gAP (α|y) is fixed across draws.

• Work well when IRl is roughly constant across draws.

A) Acceptance sampling

B) Importance sampling



3.3 Markov Chain Monte Carlo Methods

• Problem with basic simulators: approximating density is selected once

and for all. If mistakes are made, they stay. With MCMC location of

approximating density changes as iterations progress.

• Idea: Suppose n states (x1, . . . xn). Let P (i, j) = Pr(xt+1 = xj|xt =

xi) and let µ(t) = (µ1t, . . . µnt) be the unconditional probability at t of

each state n. Then µ(t + 1) = Pµ(t) = P tµ(0) and µ is an equilibrium

(ergodic, steady state, invariant) distribution if µ = µP .

Set µ = g(α|y), choose some initial density µ(0) and some transition

P across states. If conditions are right, iterate from µ(0) and limiting

distribution is g(α|y), the unknown posterior.



                                      g(α|y)

                                                             gMC(1)

 gMC(0)

α

• Under general conditions, the ergodicity of P insures consistency and

asymptotic normality of estimates of any h(α).



Need a transition P (α,A), where A is some set, such that ||P (α,A) −
µ(α)|| → 0 in the limit. For this need that the chain associated with P :

• is irreducible, i.e. it has no absorbing state.

• is aperiodic, i.e. it does not cycle across a finite number of states.

• it is Harris recurrent, i.e. each cell is visited an infinite number of times

with probability one.



Bad draws Good draws

    A        B      A
B
B

Result 1: A reversible Markov chain, has an ergodic distribution (exis-

tence). (if µiPi,j = µjPj,i then (µP )j =
∑
j µiPi,j =

∑
i µjPj,i =

µj
∑
i Pj,i = µj.)

Result 2: (Tierney (1994)) (uniqueness) If a Markov chain is Harris recur-

rent and has a proper invariant distribution. µ(α), µ(α) is unique.



Result 3: (Tierney(1994)) (convergence) If a Markov chain with invariant

µ(α) is Harris recurrent and aperiodic, for all α0 ∈ A and all A, as L→∞.

- ||PL(α0, A)− µ(α)|| → 0, ||.|| is the total variation distance.

- For all h(α) absolutely integrable with respect to µ(α).

- limL→∞
1
L

∑L
l=1 h(αl)

a.s.→
∫
h(α)µ(α)dα.

If chain has a finite number of states, it is sufficient for the chain to

be irreducible, Harris recurrent and aperiodic that P (αl ∈ A1|αl−1 =

α0, y) > 0, all α0, A1 ∈ A.

• Can dispense with the finite number of state assumption.

• Can dispense with the first order Markov assumption.



General simulation strategy:

• Choose starting values α0, choose a P with the right properties.

• Run MCMC simulations.

• Check convergence.

• Summarize results i.e compute h(α).



1) MCMC methods generate draws which are correlated (with normal/basic

simulators, posterior draws are iid).

2) MCMC methods generate draws from posterior only after a burn-in

period (with normal/basic simulators, first draw is from the posterior).

3) MCMC can be used to explore intractable likelihoods using ”data aug-

mentation” technique (non-bayesian method).

4) MCMC methods only need the kernel ğ(α|y) (no knowledge of the

normalizing constants is needed).



3.3.1 Metropolis-Hastings algorithm

MH is a general purpose MCMC algorithm that can be used when faster

methods (such as the Gibbs sampler) are either not usable or difficult to

implement.

Starts from an arbitrary transition function q(α†, αl−1), where αl−1, α† ∈
A and an arbitrary α0 ∈ A. For each l = 1, 2, . . . L.

- Draw α† from q(α†, αl−1) and draw $ ∼ U(0, 1).

- If $ < E(αl−1, α†) = [
ğ(α†|Y )q(α†,αl−1)
ğ(αl−1|Y )q(αl−1,α†)

], set α` = α†.

- Else set α` = α`−1.



These iterations define a mixture of continuous and discrete transitions:

P (αl−1, αl) = q(αl−1, αl)E(αl−1, αl) if αl 6= αl−1

= 1−
∫
A
q(αl−1, α)E(αl−1, α)dα if αl = αl−1 (6)

P (αl−1, αl) satisfies the conditions needed for existence, uniqueness and

convergence.

• Idea: Want to sample from highest probability region but want to visit

as much as possible the parameter space. How to do it? Choose an initial

vector and a candidate, compute kernel of posterior at the two vectors. If

you go uphill, keep the draw, otherwise keep the draw with some probability.



If q(αl−1, α†) = q(α†, αl−1), (Metropolis version of the algorithm) E(αl−1, α†) =
ğ(αl−1|Y )
ğ(α†|Y )

. If E(αl−1, α†) > 1, the chain moves to α†. Hence, keep the

draw if you move uphill. If the draw moves you downhill stay at αl−1 with

probability 1 − E(αl−1, α†), and explore new areas with probability equal

to E(αl−1, α†).

Important: q(αl−1, α†) is not necessarily equal (proportional) to poste-

rior - histograms of draws not equal to the posterior. This is why we use

a scheme which accepts more in the regions of high probability.



How do you choose q(αl−1, α†) (the transition probability)?

- Typical choice: random walk chain. q(α†, αl−1) = q(α† − αl−1), and

α† = αl−1 + v where v ∼ N(0, σ2
v). To get ”reasonable” acceptance rates

adjust σ2
v. Often σ2

v = c ∗ Ωα,Ωα = [−g′′(α∗|y)]−1. Choose c.

Alternatives:

- Reflecting random walk: α† = µ+ (αl−1 − µ) + v

- Independent chain q(α†, αl−1) = q̄(α†),E(αl−1, α†) = min[
w(α†)
w(αl−1)

, 1],

where w(α) =
g(α|Y )
q̄(α)

. Monitor both the location and the shape of q̄ to

insure reasonable acceptance rates. Standard choices for q̄ are normal and

t.



• General rule for selecting q. A good q must:

a) be easy to sample from

b) be such that it is easy to compute E.

c) each move goes a reasonable distance in parameter space but does not

reject too frequently (ideal rejection rate 30-50%).



Implementation issues

A) How to draw samples?

- Produce one sample (of dimension n ∗ L + L̄). Throw away initial L̄

observations. Keep only elements (L, 2L, . . . , n ∗ L) (to eliminate the

serial correlation of the draws).

- Produces n samples of L̄+ L elements. Use last L observations in each

sample for inference.

- Dynare setup to produce n samples, keep the last 25 percent of the

draws. Careful: Need to make sure that with 75 percent of the draws

the chain has converged.



B) How long should be L̄? How do you check convergence?

- Start from different α0. Check if sample you keep, for a given L̄, has

same properties (Dynare approach).

- Choose two points, L̄1 < L̄2; compute distributions/moments of α after

these points. If visually similar, algorithm has converged at L̄1. Could

this recursively → CUMSUM statistic for mean, variance, etc.(checks if it

settles down, no testing required).

For simple problems L̄ ≈ 50 and L ≈ 200.

For DSGEs L̄ ≈ 100, 000− 200, 000 and L ≈ 500, 000. If Multiple modes

are present L could be even larger.



C) Inference : easy.

- Weak Law of Large Numbers E(h(α)) ≈ 1
j

∑n
j=1 h(αjL), where αjL is

the j ∗ L-th observation drawn after L̄ iterations are performed.

- E(h(α)h(α)′) =
∑J(L)
−J(L)w(τ)ACFh(τ); ACFh(τ) = autocovariance of

h(α) for draws separated by τ periods; J(L) function of L, w(τ) a set of

weights.

- Marginal density (α1
k, . . . α

L
k ): g(αk|y) = 1

L

∑L
j=1 g(αk|y, α

j
k′, k

′ 6= k).

- Predictive inference f(yt+τ |yt) =
∫
f(yt+τ |yt, α)g(α|yt)dα.

- Model comparisons: compute marginal likelihood numerically.



4 Robustness

• Typically prior chosen to make calculation convenient. How sensitive are
results to prior choice?

• Typical (brute force) approach: repeat estimation for different priors
(inefficient).

• Alternative.

i) Select an alternative prior g1(α) with support included in g(α).

ii) Let w(α) =
g(α)
g1(α)

. Then any h1(α) =
∫

(h(α)w(α)dg1(α) can be

approximated using h1(α) ≈
1
L

∑
lw(αl)h(αl)∑
lw(αl)

.

•Just need the original output obtained and a set of weigths!



Example 4.1 yt = xtα+ut ut ∼ (0, σ2). Suppose g(α) is N(0, 10). Then

g(α|Y ) is normal with mean α̃ = Σ̃−1(0.1 + σ−2x′xαols) and variance

Σ̃ = 0.1 + σ−2x′x, . If one wishes to examine how forecasts of the model

change when the prior variances changes (for example to 5) two alternatives

are possible:

(a) draw from normal g(α|Y ) which has mean α̃1 = Σ̃−1
1 (0.2+σ−2x′xαols)

and variance Σ̃ = 0.2 + σ−2x′x, and compare forecasts.

(b) Weight draws from the initial posterior distribution with
g(α)
g1(α)

where

g1(α) is N(0, 5).



5 Bayesian estimation of DSGE models

Why using Bayesian methods to estimate DSGE models?

1) Hard to include non-sample information in classical ML (a part from

range of possible values).

2) Classical ML is justified only if the model is the GDP of the actual data.

Can use Bayesian methods for misspecified models (economic inference

may be problematic, no problem for statistical inference).

3) Can incorporate prior uncertainty about parameters and models.



General Principles:

• Use the fact that (log-)linearized DSGE models are state space models

whose reduced form parameters α are nonlinear functions of structural θ.

Compute the likelihood via the Kalman filter.

• Posterior of θ can be obtained using MH algorithm.

• Use posterior output to compute the marginal likelihood, Bayes factors

and any posterior function of the parameters (impulse responses, ACF,

turning point predictions, forecasts, etc.).

• Check robustness to the choice of prior.



General algorithm: Given θ0

[1.] Construct a log-linear solution of the DSGE economy.

[2.] Specify prior distributions g(θ).

[3.] Transform the data to make sure that is conformable with the model.

[4.] Compute likelihood via Kalman filter.

[5.] Draw sequences for θ using MH algorithm. Check convergence.

[6.] Compute marginal likelihood and compare it to the one of alternative

models. Compute Bayes factors.



[7.] Construct statistics of interest. Use loss-based evaluation of discrep-

ancy model/data.

[8.] Perform robustness exercises.



Step 1.: can have nonlinear state space models (see later and e.g. Amisano

and Tristani (2006), Rubio and Villaverde (2009)) or value function prob-

lems (see Bi and Traum (2012)) but computations much more complex.

System are typically singular! Need to:

i) add measurement errors if want to use all observables (where to put mea-

surement error? In all variables or just enough to complete the probability

space?)

ii) find a way to reduce the dimensionality of the system (substituting

equations before the solution is computed).

iii) choose the observables optimally (see Canova et al. (2012)).



iv) invent new structural shocks.

In Step 3. transformations are needed because the model is typically solved

in deviation from the steady states. Need to eliminate from the data any

long run component. How do you do it? Many ways of doing this (see

Canova, 2010) all unsatisfactory.

Step 4 is typically the most computationally intensive step. Considerable

gains if this is efficiently done.

In step 5. Given θl

i) Draw a θ† from the P(θ†θl). Solve the model.

ii) Use the KF to compute the likelihood.



iii) Evaluate the posterior kernel at the draw ğ(θ†|y) = f(y|θ†)g(θ†).

iv) Evaluate the posterior kernel at θl i.e ğ(θ0|y) = f(y|θl)g(θl).

v) Compute IR =
ğ(θ†)
ğ(θl)

P(θl,θ†)
P(θ†,θl)

. If IR > 1 set θl+1 = θ†.

vi) Else draw $ ∼ U(0, 1). If $ < IR set θl+1 = θ† otherwise set

θl+1 = θl.

vii) Repeat i)-vi) L̄ + nL times. Throw away L̄ draws. Keep one every n

for inference.

In Step 6. use a modified harmonic mean estimator i.e. approximate

L(yt|Mi) using [ 1
L

∑
l

f(αil)

L(yt|αil,Mi)g(αil|Mi)
]−1 where αli is the draw l of the



parameters α of model i and f is a density with tails thicker than a normal.

If f(αil) = 1 we have a simple harmonic mean estimator.

Competitors could be a more densely parametrized structural model (nest-

ing the interested one) or more densely parametrized reduced form model

(e.g. VAR or a BVAR).

Bayes factors can be computed numerically or via Laplace approximations

(to decrease computational burden in large scale systems).

In step 7 Estimate marginal/ joint posteriors using kernel methods. Com-

pute point estimate and credible sets. Compute continuous functions h(θ)

of interest. Set up a loss function. Compare models using the risk function.

In step 8. Reweight the draws appropriately.



Example 5.1 (One sector growth model)

- Analytic solution if U(c, l) = ln c and δ = 1. Equations are:

Kt+1 = (1− η)βAK
1−η
t ζt + u1t (7)

GDPt = AK
1−η
t ζt + u2t (8)

ct = ηβGDPt + u3t (9)

rt = (1− η)
GDPt

Kt
+ u4t (10)

- ζt technology shock, ujt measurement errors added to avoid singularity.

Parameters: β: is the discount factor, 1 − η: the share of capital in pro-

duction, σ2: variance of technology shock, A: constant in the production

function.



Simulate 1000 points from using k0 = 100.0 using A = 2.86; 1 − η =

0.36;β = 0.99, σ2 = (0.07)2.

Assume u1t ∼ N(0, 0.12); um2t ∼ N(0, 0.062);um3t ∼ N(0, 0.022);

um4t ∼ N(0, 0.082); (Note: lots of measurement error!)

- Keep last 160 as data (to mimic about 40 years of quarterly data).

Interested in (1− η), β i.e (treat σ2, A as fixed).

Use (9)-(10) to identify the parameters from the data.



Priors: (1 − η) ∼ Beta(3,5); β ∼ Beta(98,2) (NOTATION DIFFERENT

FROM DYNARE)

Mean of a Beta(a,b) is (a/a+b) and the variance of a Beta(a,b)is ab/[(a+

b)2 ∗ (a+ b+ 1)]. Thus prior mean of 1− η = 0.37, prior variance 0.025;

prior mean of β = 0.98, prior variance 0.0001.

Let θ = (1 − η, β) Use random walk to draw θ†, i.e. θ† = +θl−1 + e†,
µ is the mean and ei is U(−0.08, 0.08) for β and U(−0.06, 0.06) for η

(roughly about 28% acceptance rate).

Draw 10000 replications from the posterior kernel. Convergence is fast.

Keep last 5000; use one every 5 for inference.
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Figure 4: Priors and Posteriors, RBC model

- Prior for β sufficiently loose, posterior similar, data is not very formative.

-Posteriors centered around the true parameters,large dispersion.



Variances/covariances
true posterior 68% range

var(c) 0.24 [ 0.11, 0.27]
var(y) 0.05 [ 0.03, 0.11]
cov(c,y) 0.0002 [ 0.0003, 0.0006]

Wrong model

- Simulate data from model with habit γ = 0.8

- Estimate model conditioning on γ = 0.
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Figure 5: Priors and Posteriors, wrong model



Example 5.2 (New Keynesian model)

gapt = Etgapt+1 −
1

ϕ
(rt − Etπt+1) + gt (11)

πt = βEtπt+1 + κgapt + vt (12)

rt = φrrt−1 + (1− φr)(φππt−1 + φgapgapt−1) + et (13)

κ =
(1−ζp)(1−βζp)(ϕ+ϑN)

ζp
; ζp = degree of (Calvo) stickiness, β = discount

factor, ϕ = risk aversion, ϑN = elasticity of labor supply. gt and vt are

AR(1) with persistence ρg, ρv and variances σ2
g, σ

2
v; et ∼ iid(0, σ2

r).

θ = (β, ϕ, ϑl, ζp, φπ, φgap, φr, ρg, ρv, σ
2
v, σ

2
g, σ

2
r).



Assume g(θ) =
∏
g(θi)

Assume β ∼ Beta(98, 3), ϕ ∼ N(1, 0.3752), ϑN ∼ N(2, 0.752), ζp ∼
Beta(9, 3), φr ∼ Beta(6, 2), φπ ∼ Normal(1.5, 0.12),

φgap ∼ N(0.5, 0.052), ρg ∼ Beta(17, 3), ρv ∼ Beta(17, 3) σ2
i ∼ IG(2, 0.01), i =

g, v, r.

Use US linearly detrended data from 1948:1 to 2002:1 to estimate the

model.

Use random walk MH algorithm to draw candidates.



0 50 100 150 200 2508

8.5

9

9.5
y

0 50 100 150 200 250­0.02

0

0.02

0.04
π

0 50 100 150 200 2500
0.01

0.02

0.03
0.04

r

Figure 6: Raw Time series



0 0.5 1 1.5 2
x 10 4

­1

0

1

2
beta

0 0.5 1 1.5 2
x 10 4

­0.5

0

0.5
varphi

0 0.5 1 1.5 2
x 10 4

­0.5

0

0.5
vartheta(N)

zeta(p)

0 0.5 1 1.5 2
x 10 4

­0.5

0

0.5

0 0.5 1 1.5 2
x 10 4

­0.5

0

0.5
phi(r)

0 0.5 1 1.5 2
x 10 4

­1.5

­1

­0.5

0
phi(pi)

0 0.5 1 1.5 2
x 10 4

0

1

2

3
phi(gap)

0 0.5 1 1.5 2
x 10 4

­0.5

0

0.5
rho(4)

0 0.5 1 1.5 2
x 10 4

­0.5

0

0.5
rho(2)

0 0.5 1 1.5 2
x 10 4

­0.5

0

0.5
sig(4)

0 0.5 1 1.5 2
x 10 4

­0.5

0

0.5
sig(2)

0 0.5 1 1.5 2
x 10 4

­0.5

0

0.5
sig(3)

Figure 7: CUMSUM statistics



Prior and Posterior statistics
Prior Posterior
mean std median mean std max min

β 0.98 0.01 0.992 0.991 0.003 0.999 0.998
ϕ 1.00 0.37 0.826 0.843 0.123 1.262 0.425
ϑN 2.00 0.75 1.825 1.884 0.768 3.992 0.145
ζp 0.75 0.12 0.743 0.696 0.195 0.997 0.141
φr 0.75 0.14 0.596 0.587 0.154 0.959 0.102
φπ 1.50 0.10 1.367 1.511 0.323 2.33 1.042
φgap 0.5 0.05 0.514 0.505 0.032 0.588 0.411
ρg 0.85 0.07 0.856 0.854 0.036 0.946 0.748
ρu 0.85 0.07 0.851 0.851 0.038 0.943 0.754
σg 0.025 0.07 0.025 0.025 0.001 0.028 0.021
σv 0.025 0.07 0.07 0.07 0.006 0.083 0.051
σr 0.025 0.07 0.021 0.021 0.005 0.035 0.025



- Little information in the data for some parameters (prior and posterior

overlap).

- For parameters of the policy rule: posteriors move and not more concen-

trated.

-Posterior distributions roughly symmetric except for φπ and ζp (mean and

median coincide).

-Posterior distribution of economic parameters reasonable (except ϕ).

- Posterior for the AR parameters has a high mean, but no pile up at one.
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Figure 8: Priors and Posteriors, NK model



Model comparisons

Compare ML against flat prior VAR(3) or a BVAR(3) with Minnesota prior

and standard parameters (tightness=0.1, linear lag decay and weight on

other variables equal 0.5), both with a constant.

Bayes factor are very small ≈ 0.02 in both cases.

• The restrictions the model imposes are false. Need to add features to

the model that make dynamics of the model more similar to those of a

VAR(3).



Posterior analysis

How do responses to monetary shocks look like? No persistence!
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How much of the output gap and inflation variance explained by monetary

shocks? Almost all!!



5.1 Interpreting results

- Most of the shocks of DSGE models are non-structural (alike to measure-

ment errors). Careful with interpretation and policy analyses with these

models (see Chari et al. (2009)).

- A model where ”measurement errors” explain a large portion of main

macro variables is very suspicious (e.g. in Smets and Wouters (2003)

markup shocks dominate).

- If the standard error of one the shocks is large relative to the others:

evidence of misspecification.

- Compare estimates with standard calibrated values. Are they sensible?

Often yes, but because of tight priors are centered at calibrated values.



5.2 Bayesian methods and identification

Likelihood of a DSGE typically flat. Could be due to marginalization (use

only a subset of economic relationships), or to lack of information. Difficult

to say a-priori which parameters is underidentified and which is not (since

we do not have an analytic solution).

Could go a long way by numerically constructing the likelihood as a function

of the parameters (see Canova and Sala (2009)).

Standard remedy when some parameters are hard to identify: calibrate.

Problem if parameter not fixed at a consistent estimator → biases could

be extensive! (see Canova and Sala (2009)).



Alternative: add a prior. This increases the curvature of the likelihood →
underidentification may be hidden!. Posterior look nice because the prior

does the job!!.

In general if L(θ1, θ2|Y T ) = L̄(θ1|Y T ) then g(θ1, θ2|Y T ) = g1(θ1|Y T )

g(θ2|θ1), i.e no updating of conditional prior of θ2.

However, updating possible even if no sample information is present if

θ1, θ2 are linked by economic or stability conditions!!
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If prior ≈ posterior: weak identification or too much data based prior?



6 Topics

6.1 Eliciting Priors from existing information

- Prior distributions for DSGE parameters often arbitrary.

- Prior distribution for individual parameters assumed to be independent: the joint dis-

tribution may assign non-zero probability to ” unreasonable” regions of the parameter

space.

- Prior sometimes set having some statistics in mind (the prior mean is similar to the one

obtained in calibration exercises).

- Same prior is used for the parameters of different models. Problem: same prior may

generate very different dynamics in different models. Hard to compare the outputs.



Example 6.1 Let yt = θ1yt−1 + θ2 + ut, ut ∼ N(0, 1).. Suppose θ1 and θ2 are

independent and p(θ1) ∼ U(0, 1− ε), ε > 0; p(θ2|θ1) ∼ N(µ̄, λ).

Since the mean of yt is µ = θ2

1−θ1
, the prior for θ1 and θ2 imply that µ|θ1 ∼ N(µ̄, λ

(1−θ1)2 ).

Hence, the prior mean of yt has a variance which is increasing in the persistence parameter

θ1! Why? Reasonable ?

Alternative: state a prior for µ, derive the prior for θ1 and θ2 (change of variables). For

example, if µ ∼ N(µ̄, λ2) then p(θ1) = U(0, 1− ε), p(θ2|θ1) = N(µ̄(1−θ1), λ2(1−θ1)2).

Note here that the priors for θ1 and θ2 are correlated.

Suppose you want to compare the model with yt = θ + ut, ut ∼ N(0, 1). If p(θ) =

N(µ̄, λ2) the two models are immediately comparable. If, instead, we had assumed

independent priors for p(θ1) and p(θ2), the two models would not be comparable (standard

prior has weird predictions for the prior of the mean of yt).



- Del Negro and Schorfheide (2008): elicit priors consistent with some

distribution of statistics of actual data (see also Kadane et al. (1980)).

Basic idea:

i) Let θ be a set of DSGE parameters. Let ST be a set of statistics obtained

in the data with T observations and σS be the standard deviation of these

statistics (which can be computed using asymptotic distributions or small

sample devices, such as bootstrap or MC methods).

ii) Let SN(θ) be the same set of statistics which are measurable from the

model once θ is selected using N observations. Then

ST = SN(θ) + η η ∼ (0,ΣTN) (14)

where η is a set of measurement errors.



Note

i) in calibration exercises ΣTN = 0 and ST are averages of the data.

ii) in SMM: ΣTN = 0 and ST are generic moments of the data.

Then L(SN(θ)|ST ) = p(ST |SN(θ)), where the latter is the conditional

density in (14).

Given any other prior information π(θ) (which is not based on ST ) the

prior for θ is

p(θ|ST ) ∝ L(SN(θ)|ST )π(θ) (15)



- dim(ST ) ≥ dim(θ): overidentification is possible.

- Even if ΣTN is diagonal, SN(θ) will induce correlation across θi.

-Information used to construct ST should be different than information

used to estimate the model. Could be data in a training sample or could

be data from a different country or a different regime (see e.g. Canova

and Pappa (2007)).

- Assume that η are normal why? Make life easy, Could also use other

distributions, e.g. uniform, t.

- What are the ST? Could be steady states, autocorrelation functions, etc.

What ST is depends on where the parameters enters.



Example 6.2

max
(ct,Kt+1,Nt)

E0

∑
t

βt
(cϑt (1−Nt)1−ϑ)1−ϕ

1− ϕ
(16)

Gt + ct +Kt+1 = GDPt + (1− δ)Kt (17)

ln ζt = ζ̄ + ρz ln ζt−1 + ε1t ε1t ∼ (0, σ2
z) (18)

lnGt = Ḡ+ ρg lnGt−1 + ε4t ε4t ∼ (0, σ2
g) (19)

GDPt = ζtK
1−η
t N

η
t (20)

K0 are given, ct is consumption, Nt is hours, Kt is the capital stock. Let

Gt be financed with lump sum taxes and λt the Lagrangian on (17).



The FOC are ((24) and (25) equate factor prices and marginal products)

λt = ϑc
ϑ(1−ϕ)−1
t (1−Nt)(1−ϑ)(1−ϕ) (21)

λtηζtk
1−η
t N

η−1
t = −(1− ϑ)c

ϑ(1−ϕ)
t (1−Nt)(1−ϑ)(1−ϕ)−1 (22)

λt = Etβλt+1[(1− η)ζt+1K
−η
t+1N

η
t+1 + (1− δ)] (23)

wt = η
GDPt

Nt
(24)

rt = (1− η)
GDPt

Kt
(25)

Using (21)-(22) we have:

−1− ϑ
ϑ

ct

1−Nt
= η

GDPt

Nt
(26)



Log linearizing the equilibrium conditions

λ̂t − (ϑ(1− ϕ)− 1)ĉt + (1− ϑ)(1− ϕ)
Nss

1−Nss
N̂t = 0 (27)

λ̂t+1 +
(1− η)(GDP/K)ss

(1− η)(GDP/K)ss + (1− δ))
(ĜDP t+1 − K̂t+1) = λ̂t (28)

1

1−Nss
N̂t + ĉt − ĝdpt = 0 (29)

ŵt − ĜDP t + n̂t = 0 (30)

r̂t − ĜDP t + k̂t = 0 (31)

ĜDP t − ζ̂t − (1− η)K̂t − ηN̂t = 0 (32)

(
g

GDP
)ssĝt + (

c

GDP
)ssĉt + (

K

GDP
)ss(K̂t+1 − (1− δ)K̂t)− ĜDP t = 0 (33)

(32) and (33) are the production function and resource constraint.



Four types of parameters appear in the log-linearized conditions:

i.) Technological parameters (η, δ).

ii) Preference parameters (β, ϕ, ϑ).

iii) Steady state parameters (Nss, ( c
GDP )ss, ( K

GDP )ss, ( g
GDP )ss).

iv) Parameters of the driving process (ρg, ρz, σ
2
z, σ

2
g).

Question: How do we set a prior for these 13 parameters?



The steady state of the model (using (23)-(26)-(17)) is:

1− ϑ
ϑ

(
c

GDP
)ss = η

1−Nss

Nss
(34)

β[(1− η)(
GDP

K
)ss + (1− δ)] = 1 (35)

(
g

GDP
)ss + (

c

GDP
)ss + δ(

K

GDP
)ss = 1 (36)

GDP

wc
= η (37)

K

i
= δ (38)

Five equations in 8 parameters!! Need to choose.

For example: (34)-(38) determine (Nss, ( c
GDP )ss, ( K

GDP )ss, η, δ) given

(( g
GDP )ss, β, ϑ).



Set θ2 = [( g
GDP )ss, β, ϑ] and θ1 = [Nss, ( c

GDP )ss, ( K
GDP )ss, η, δ]

Then if S1T are steady state relationships, we an use (34)-(38) to construct

a prior distribution for θ1|θ2.

How do we measure uncertainty in S1T?

- Take a rolling window to estimate S1T and use uncertainty of the estimate

to calibrate var(η).

- Bootstrap S1T , etc.



How do we set a prior for θ2? Use additional information (statistics)!

- ( g
GDP )ss could be centered at the average G/Y in the data with standard

error covering the existing range of variations

- β = (1 + r)−1 and typically rss = [0.0075, 0.0150] per quarter. Choose

a prior centered at around those values and e.g. uniformly distributed.

- ϑ is related to Frish elasticity of labor supply: use estimates of labor

supply elasticity to obtain histograms and to select a prior shape.

Note: uncertainty in this case could be data based or across studies (meta

uncertainty).



Parameters of the driving process (ρg, ρz, σ
2
z, σ

2
g) do not enter the steady

state. Call them θ3. How do we choose a prior for them?

- ρz, σ
2
z can be backed out from moments of Solow residual i.e. estimate

the variance and the AR(1) of ẑ = lnGDPt− (1− η)Kt− ηNt, once η is

chosen. Prior for η induce a distribution for ẑ

- ρg, σ
2
g backed out from moments government expenditure data.

Prior standard errors should reflect variations in the data of these parame-

ters.



- For ϕ (coefficient of relative risk aversion (RRA) is 1 − ϑ(1 − ϕ)) one

has two options:

(a) appeal to existing estimates of RRA. Construct a prior which is con-

sistent with the cross section of estimates (e.g. a χ2(2) would be ok).

(b) select an interesting moment, say var(ct) and use

var(ct) = var(ct(ϕ)|θ1, θ2, θ3) + η (39)

to back out a prior for ϕ.



For some parameters (call them θ5) we have no moments to match but

some micro evidence. Then p(θ5) = π(θ5) could be estimated from the

histogram of the estimates which are available.

In sum, the prior for the parameters is

p(θ) = p(θ1|S1T )p(θ2|S2T )p(θ3|S3T )p(θ4|S4T )

π(θ1)π(θ2)π(θ3)π(θ4)Π(θ5) (40)



- If we had used a different utility function, the prior e.g. for θ1, θ4 would

be different. Prior for different models/parameterizations should be dif-

ferent.

- To use these priors, need a normalizing constant ( (15 is not necessarily a

density). Need a RW metropolis to draw from the priors we have produced.

- Careful about multidimensional ridges: e.g. steady states are 5 equations,

and there are 8 parameters - solution not unique, impossible to invert the

relationship.

- Careful about choosing θ3 and θ4 when there are weak and partial iden-

tification problems.



6.2 Choice of data and estimation

- Does it matter which variables are used to estimate the parameters? Yes.

i) Omitting relevant variables may lead to distortions.

ii) Adding variables may improve the fit, but also increase standard errors

if added variables are irrelevant.

iii) Different variables may identify different parameters (e.g. with aggre-

gate consumption data and no data on who own financial assets may be

very difficult to get estimate the share of rule-of-thumb consumers).



Example 6.3

yt = a1Etyt+1 + a2(it − Etπt+1) + v1t (41)

πt = a3Etπt+1 + a4yt + v2t (42)

it = a5Etπt+1 + v3t (43)

Solution:  yt
πt
it

 =

 1 0 a2
a4 1 a2a4
0 0 1


 v1t
v2t
v3t


• a1, a3, a5 disappear from the solution.

• Different variables identify different parameters (it identify nothing!!)



iv) Likelihood function (Posterior) may change shape depending on the

variables use. Bimodality or multimodality may be present if important

variables are omitted (e.g. if yt is excluded in above example).

- Using the same model and the same econometric approach Levin et al

(2005, NBER macro annual) find habit in consumption is 0.30; Fernandez

and Rubio (2008, NBER macro annual ) find habit in consumption is 0.88.

Why? They use different data sets to estimate the same model!

Can we say something systematic about the choice of variables?



Guerron-Quintana (2010); use Smets and Wouters model and different

combinations of observable variables. Finds:

- Internal persistence of the model change if nominal rate, inflation and

real wage are absent.

- Duration of price spells affected by the omission of consumption and real

wage data.

- Responses of inflation, investment, hours and real wage sensitive to the

choice of variables.

- ” Best combination” of variables (use in-sample prediction and out-of-

sample MSE): use Yt, Ct, It, Rt, Ht, πt,W .



Parameter Wage stickiness Price Stickiness Slope Phillips

Data Median (s.d.) Median (s.d.) Median (s.d.)
Basic 0.62 (0.54,0.69)0.82 (0.80, 0.85)0.94 (0.64,1.44)

Without C 0.80 (0.73,0.85)0.97 (0.96, 0.98)2.70 (1.93,3.78)
Without Y 0.34 (0.28,0.53)0.85 (0.84, 0.87)6.22 (5.05,7.44)

Without C,W0.57 (0.46,0.68)0.71 (0.63, 0.78)2.91 (1.73,4.49)
Without R 0.73 (0.67,0.78)0.81 (0.77, 0.84)0.74 (0.53,1.03)

(in parenthesis 90% probability intervals)





Output recession after an investments specific shock and no C and W.



Canova, Ferroni and Matthes (2012)

• Use statistical criteria to choose the variables in estimation

1) Choose the variables that maximize the identificability of relevant pa-

rameters.

Compute the rank of the derivative of the spectral density of the solution

of the model with respect to the parameters

Komunjer and Ng (2011): have necessary and sufficient conditions for full

identification of the parameters

Choose the combination of observables which gives you a rank as close as

possible to the ideal.



2) Compare the curvature of the convoluted likelihood in the singular and

the non-singular systems in the dimensions of interest.

3) Choose the variables that minimize the information loss going from the

larger scale to the smaller scale system.

Loss of information is measured by

p
j
t(θ, e

t−1, ut) =
L(Wjt|θ, et−1, ut)

L(Zt|θ, et−1, ut)
(44)

where L(.|θ, y1t) is the likelihood of Zt,Wjt

Zt = yt + ut (45)

Wjt = Syjt + ut (46)

ut is the convolution error, yt the original set of variables and yjt the j-th

subset of that variables which produce a non-singular system.



• Apply the procedures to choose the best combination of variables in a

SW model driven by only 4 shocks and 7 potential observables.



Unrest SW Restr SW Restr and
Vector Rank(∆) Rank(∆) Sixth Restr

y, c, i, w 186 188 ψ
y, c, i, π 185 188 ψ
y, c, r, h 185 188 ψ
y, i, w, r 185 188 ψ
c, i, w, h 185 188 ψ, σc, ρi
c, i, π, h 185 188 ψ
c, i, r, h 185 188 ζω, ζp, iω
y, c, i, r 185 187

...
c, w, π, r 183 187
c, w, π, h 183 187
i, w, π, r 183 187
w, π, r, h 183 187
c, i, π, r 183 186
Required 189 189

Rank conditions for all combinations of variables in the unrestricted SW model (columns 2) and in the

restricted SW model (column 3), where five parameters are fixed δ = 0.025, εp = εw = 10, λw = 1.5 and

c/g = 0.18. The fourth columns reports the extra parameter restriction needed to achieve identification; a

blank space means that there are no parameters able to guarantee identification.
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Basic T=1500 Σu = 0.01 ∗ I
Order Vector Relative Info Vector Relative info Vector Relative Info

1 (y, c, i, h) 1 (y, c, i, h) 1 (y, c, i, h) 1
2 (y, c, i, w) 0.89 (y, c, i, w) 0.87 (y, c, i, w) 0.86
3 (y, c, i, r) 0.52 (y, c, i, r) 0.51 (y, c, i, r) 0.51
4 (y, c, i, π) 0.5 (y, c, i, π) 0.5 (y, c, i, π) 0.5

Ranking based on the p(θ) statistic. The first two column present the results for the

basic setup, the next six columns the results obtained altering some nuisance parameters.

Relative information is the ratio of the p(θ) statistic relative to the best combination.



How different are good and bad combinations?

- Simulate 200 data points from the model with [at, it, gt, ε
m
t ] and estimate

structural parameters using

(1) Model A: 4 shocks and (y, c, i, w) as observables (best rank analysis).

(2) Model B: 4 shocks and (y, c, i, w) as observables (best information analysis).

(3) Model Z: 4 shocks and (c, i, π, r) as observables(worst rank analysis).

(4) Model C: 4 structural shocks, three measurement errors and (yt, ct, it, wt, π, rt, ht) as

observables.

(5) Model D: 7 structural shocks and (yt, ct, it, wt, π, rt, ht) as observables.



True Model A Model B Model Z Model C Model D
ρa 0.95 ( 0.920 , 0.975 ) ( 0.905 , 0.966 ) ( 0.946 , 0.958) ( 0.951 , 0.952 ) ( 0.939 , 0.943 )
ρg 0.97 ( 0.930 , 0.969 ) ( 0.930 , 0.972 ) ( 0.601 , 0.856) ( 0.970 , 0.971 ) ( 0.970 , 0.972 )
ρi 0.71 ( 0.621 , 0.743 ) ( 0.616 , 0.788 ) ( 0.733 , 0.844) ( 0.681 , 0.684 ) ( 0.655 , 0.669 )
ρga 0.51 ( 0.303 , 0.668 ) ( 0.323 , 0.684 ) ( 0.010 ,0.237 ) ( 0.453 , 0.780 ) ( 0.114 , 0.885 )
σn 1.92 ( 1.750 , 2.209 ) ( 1.040 , 2.738 ) ( 0.942 , 2.133) ( 1.913 , 1.934 ) ( 1.793 , 1.864 )
σc 1.39 ( 1.152 , 1.546 ) ( 1.071 , 1.581 ) ( 1.367 , 1.563) ( 1.468 , 1.496 ) ( 1.417 , 1.444 )
h 0.71 ( 0.593 , 0.720 ) ( 0.591 , 0.780 ) ( 0.716 , 0.743 ) (0.699 , 0.701 ) ( 0.732 , 0.746 )
ζω 0.73 ( 0.402 , 0.756 ) (0.242, 0.721 ) ( 0.211 ,0.656 ) ( 0.806 , 0.839 )
ζp 0.65 ( 0.313 , 0.617 ) ( 0.251 , 0.713 ) ( 0.512 , 0.616 ) ( 0.317 , 0.322 ) ( 0.509 , 0.514 )
iω 0.59 ( 0.694 , 0.745 ) ( 0.663 , 0.892 ) ( 0.532 ,0.732 ) ( 0.728 , 0.729 ) ( 0.683 , 0.690 )
ip 0.47 ( 0.571 , 0.680 ) ( 0.564 , 0.847 ) ( 0.613 , 0.768 ) ( 0.625 , 0.628 ) ( 0.606 , 0.611 )
φp 1.61 ( 1.523 , 1.810 ) ( 1.495 , 1.850 ) ( 1.371 , 1.894 ) ( 1.624 , 1.631 ) ( 1.654 , 1.661 )
ϕ 0.26 ( 0.145 , 0.301 ) ( 0.153 , 0.343 ) ( 0.255 , 0.373 ) ( 0.279 , 0.295 ) ( 0.281 , 0.306 )
ψ 5.48 ( 3.289 , 7.955 ) ( 3.253 , 7.623 ) ( 2.932 , 7.530 ) ( 11.376 , 13.897 ) ( 4.332 , 5.371 )
α 0.2 ( 0.189 , 0.331 ) ( 0.167 , 0.314 ) ( 0.136 , 0.266 ) ( 0.177 , 0.198 ) ( 0.174 , 0.199 )
ρπ 2.03 ( 1.309 , 2.547 ) ( 1.277 , 2.642 ) ( 1.718 , 2.573 ) ( 1.868 , 1.980 ) ( 2.119 , 2.188 )
ρy 0.08 (0.001 , 0.143 ) ( 0.001 , 0.169 ) ( 0.012 , 0.173) ( 0.124 , 0.162 )
ρR 0.87 ( 0.776 , 0.928 ) ( 0.813 , 0.963 ) ( 0.868 , 0.916 ) ( 0.881 , 0.886 )
ρ∆y 0.22 ( 0.001 , 0.167 ) (0.010, 0.192 ) ( 0.130 ,0.215 ) (0.235 , 0.244 )
σa 0.46 ( 0.261 , 0.575 ) ( 0.382 , 0.460 ) ( 0.420 ,0.677 ) ( 0.357 , 0.422 ) ( 0.386 , 0.455 )
σg 0.61 ( 0.551 , 0.655 ) ( 0.551 , 0.657 ) ( 0.071 ,0.113 ) ( 0.536 , 0.629 ) ( 0.585 , 0.688 )
σi 0.6 ( 0.569 , 0.771 ) ( 0.532 , 0.756 ) ( 0.503 ,0.663 ) ( 0.561 , 0.660 ) ( 0.693 , 0.819 )
σr 0.25 ( 0.100 , 0.259 ) ( 0.078 , 0.286 ) ( 0.225 ,0.267 ) ( 0.226 , 0.265 ) ( 0.222 , 0.261 )
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6.3 Combining DSGE and VARs

Del Negro and Schorfheide(2004):

- f(y|α,Σu) = likelihood of the data conditional on the VAR parameters.

- g(α,Σu|θ) prior for the VAR parameters, conditional on the DSGE model

parameters (the hyperparameters)

- g(θ) the prior distribution for DSGE parameters→ g(α,Σu|θ) is the prior

on the reduced form parameters induced by the prior on the structural

parameters and the structure of the DGSE model.

Joint posterior of VAR and structural parameters is



g(α,Σu, θ|y) = g(α,Σu, |θ, y)g(θ|y)

g(α,Σu, |θ, y) is of normal-inverted Wishart form: easy to compute.

Posterior kernel ğ(θ|y) = f(y|θ)g(θ) where f(y|θ) is given by

f(y|θ) =
∫
f(y|α,Σu)g(α,Σu, θ)dαdθ

=
f(y|α,Σu)g(α,Σu|θ)

g(α,Σu|y)

Given that g(α,Σu, |θ, y) = g(α,Σu, |y). Then



f(y|θ) =
|T1xs

′
(θ)xs(θ) +X ′X|−0.5M |(T1 + T )Σ̃u(θ)|−0.5(T1+T−k)

|τxs′(θ)xs(θ)|−0.5M |T1Σ̃s
u(θ)|−0.5(T1−k)

×
(2π)−0.5MT2−0.5M(T1+T−k)

∏M
i=1 Γ(0.5 ∗ (T1 + T − k + 1− i))

2−0.5M(T1−k)
∏M
i=1 Γ(0.5 ∗ (T1 − k + 1− i))

(47)

T1 = number of simulated observations, Γ is the Gamma function, X

includes all lags of y and the superscript s indicates simulated data.

- Draw θ using an MH algorithm.

- Conditional on θ construct posterior of α (draw α from a Normal-

Wishart).



Estimation algorithm:

1) Draw a candidate θ. Use MCMC to decide if accept or reject.

2) With the draw compute the model induced prior for the VAR parameters.

3) Compute the posterior for the VAR parameters ( analytically if you

have a conjugate structure or via the Gibbs sampler if you do not have

one. Draw from this posterior

4) Repeat steps 1)-3) NL+ L̄ times. Check convergence

5) Repeat 1)-4) for different T1. Choose the T1 that maximizes the mar-

ginal likelihood.



6.4 Practical issues

Log-linear DSGE solution:

y1t = A11(θ)y1t−1 +A13(θ)y3t (48)

y2t = A12(θ)y1t−1 +A23(θ)y3t (49)

where y2t are the control, y1t the states (predetermined and exogenous), y3t the shocks,

θ are the structural parameters and Aij the coefficients of the decision rules.

How to you put DSGE models on the data when:

a) the model implies that the covariance of yt = [y1t, y2t] is singular.

b) the variables are mismeasured relative to the model quantities.

c) have additional information one would like to use.



For a):

• Choose a selection matrix F1 such that dim(x1t) = dim (F1 yt) = dim

(y3t), i.e. throw away model information. Good strategy to follow if some

component of yt are non-observable.

• Explicitly solve out fraction of variables from the model. Format of the

solution is no longer a restricted VAR(1).

• Adds measurement errors to the y2t so that dim(x2t) = dim (F2 yt) =

dim (y3t)+dim (et), where et are measurement errors.

- If the model has two shocks and implications for four variables, we could

add at least two and up to four measurement errors to the model.



Here (1)-(2) are the state equations and the measurement equation is

x2t = F2yt + et (50)

- Need to restrict time series properties of et. Otherwise difficult to distin-

guish dynamics induced by structural shocks and the measurement errors.

i) the measurement error is iid (since θ is identified from the dynamics

induced by the reduced form shocks, if measurement error is iid, θ identified

by the dynamics due to structural shocks).

Ireland (2004): VAR(1) process for the measurement error; identification

problems! Can be used to verify the quality of the model’s approximation

to the data - measurement error captures what is missing from the model to

fit the data (see also Watson (1993)). Useful device when θ is calibrated.

Less useful when θ is estimated.



For b): Recognize that existing measures of theoretical concepts are con-

taminated.

- How do you measure hours? Use establishment survey series? Household

survey series? Employment?



- Do we use CPI inflation, GDP deflator or PCE inflation?

- Different measures contain (noisy) information about the true series. Not

perfectly correlated among each other.



- Use ideas underlying factor models. Let x3t be a k×1 vector of observable

variables and x1t be of dimension N × 1 where dim (N) ¡ dim(k). Then:

x3t = Λ3x1t + ut (51)

where the first row of Λ3 is normalized to 1. Thus:

x3t = Λ3[F1y1t, F1A12(θ)y1t−1 + F1A13(θ)y3t]
′ + u3t (52)

= Λ3[F1y1t, F1B(θ)y1t]
′ + u3t (53)

so that x3t can be used to recover the vector of states y1t and to estimate

θ



- What is the advantage of this procedure? If only one component of x3t

is used to measure y1t, estimate of θ will probably be noisy.

- By using a vector of information and assuming that the elements of ut
are idiosyncratic:

i) reduce the noise in the estimate of y1t (the estimated variance of y1t

will be asymptotically of the order 1/k time the variance obtained when

only one indicator is used (see Stock and Watson (2002)).

ii) estimates of θ more precise.



- How different is from factor models?. The DSGE model structure is

imposed in the specification of the law of motion of the states (states have

economic content). In factor models the states are assumed to follow is an

assumed unrestricted time series specification, say an AR(1) or a random

walk and are uninterpretable.

- How do we separately identify the dynamics induced by the structural

shocks and the measurement errors? Since the measurement error is iden-

tified from the cross sectional properties of the variables in x3t, possible

to have structural disturbances and measurement errors to both be serially

correlated of an unknown form.



For c): Sometimes we may have proxy measures for the unobservable

states. (commodity prices are often used as proxies for future inflation

shocks, stock market shocks are used as proxies for future technology

shocks (Beaudry and Portier (2006)).

- Can use these measures to get information about the states. Let x4t a

q × 1 vector of variables. Assume

x4t = Λ4y1t + u4t (54)

where Λ4 is unrestricted. Combining all sources of information we have

Xt = Λy1t + ut (55)

where Xt = [x3t, x4t]
′, ut = [u3t, u4t] and Λ = [Λ3F,Λ3FB(θ),Λ4]′.



- The fact that we are using the DSGE structure (B depends on θ) im-

poses restrictions on the way the data behaves. (interpret data information

through the lenses of the DSGE model).

- Can still jointly estimate the structural parameters and the unobservable

states of the economy.



6.5 An example

Use a simple three equation New-keynesian model:

xt = Et(xt+1)− 1

φ
(it − Etπt+1) + e1t (56)

πt = βEtπt+1 + κxt + e2t (57)

it = ψrit−1 + (1− ψr)(ψππt + ψxxt) + e3t (58)

where β is the discount factor, φ the relative risk aversion coefficient, κ
the slope of Phillips curve, (ψr, ψπ, ψx) policy parameters. Here xt is the
output gap, πt the inflation rate and it the nominal interest rate. Assume

e1t = ρ1e1t−1 + v1t (59)

e2t = ρ2e2t−1 + v2t (60)

e3t = v3t (61)

where ρ1, ρ2 < 1, vjt ∼ (0, σ2
j), j = 1, 2, 3.



6.5.1 Contaminated data

- Ambiguities in linking the output gap, the inflation rate and the nominal

interest rate to empirical counterparts. e.g. for the nominal interest rate:

should we use a short term measure or a long term one? for the output

gap, should we use a statistical based measure or a theory based measure?

In the last case, what is the flexible price equilibrium?

The solution of the model can be written as

wt = RR(θ)wt−1 + SS(θ)vt (62)

where wt is a 8 × 1 vector including xt, πt, it, the three shocks and the

expectations of xt and πt and θ = (φ, κ, ψr, ψy, ψπ, ρ1, ρ2, σ1, σ2, σ3).



Let x
j
t , j = 1, . . . Nx be observable indicators for xt, let π

j
t , j = 1, . . . Nπ

observable indicators for πt, and i
j
t , j = 1, . . . Ni observable indicators for

it. Let Wt = [x1
t , . . . , x

Nx
t , π1

t , . . . , π
Nπ
t , i1t , . . . i

Ni
t ]′ be a Nx+Nπ+Ni×1

vector.

Assume that (62) is the state equation of the system and that the mea-

surement equation is

Wt = Λwt + et (63)

where λ is Nx + Nπ + Ni × 3 matrix with at most one element different

from zero in each row.

- Once we normalize the nonzero element of the first row of Λ to be one,

we can estimate (62)-(63) with standard methods. The routines give us

estimates of λ,RR, SS and of wt which are consistent with the data.



6.5.2 Conjunctoral information

- Suppose we have available measures of future inflation (from surveys,

from forecasting models) or data which may have some information about

future inflation, for example, oil prices, housing prices, etc.

- Want to predict inflation h periods ahead, h = 1, 2, . . ..

Let π
j
t , j = 1, . . . Nπ be the observable indicators for πt and let Wt =

[xt, it, π
1
t , . . . , π

Nπ
t ]′ be a 2 +Nπ × 1 vector.

The measurement equation is:

Wt = Λwt + et (64)



where Λ is 2 +Nπ × 3 matrix, Λ =



1 0 0
0 1 0
0 0 1
0 0 λ1
. . . . . . . . .
0 0 λNπ


.

- Estimates of the unobservable wt can be obtained with the Kalman

filter. Using estimates of RR(θ) and SS(θ) from the state equation we

can unconditionally predict wt h-steps ahead or predict its path conditional

on a path for vl,t+h.

- Forecast will incorporate information from the model, information from

conjunctural data and from standard data and information about the path

of the shocks. This information will be optimally mixed depending on their

relative precision.



6.6 Dealing with trends

- Most of models available for policy are stationary and cyclical.

- Data is close to non-stationary, has trends and displays breaks.

- How to we match models to the data?

a) Detrend actual data. Model is a representation for detrended data stan-

dard approach. Problem: which detrended data is the model representing?
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b) Build-in a trend into the model. Detrend the data with model-based-

trend. Problem: data does not seem to satisfy balanced growth.
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c) Use transformation of the data which allow you to estimate jointly cycle

and the parameters trend (see e.g. growth rates in Smets and Wouter

2007). Problem: hard to fit models to quarterly growth rates

- General problem: statistical definition of cycles different than economic

definition. All statistical approaches are biased even in large samples.
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- In developing countries most of cyclical fluctuations driven by trends

(Aguiar and Gopinath (2007)).



Two potential approaches:

1) Data-rich environment (Canova and Ferroni (2011)). Let yit be the
actual data filtered with method i = 1, 2, ..., I and ydt = [y1

t , y
2
t , . . .].

Assume:

ydt = λ0 + λ1yt(θ) + ut (65)

where λj, j = 0, 1 are matrices of parameters, measuring bias and correla-
tion between data and model based quantities, ut are measurement errors
and θ the structural parameters.

- Factor model setup a-la Boivin and Giannoni (2005).

- Can jointly estimate θ and λ’s. Can obtain a more precise estimate of
the unobserved yt(θ) if measurement error is uncorrelated across methods.

- Same interpretation as GMM with many instruments.



2) Bridge cyclical model and the data with a flexible specification for the
trend (Canova, 2010)).

ydt = c+ yTt + ymt (θ) + ut (66)

where ydt ≡ ỹdt − E(ỹdt ) the log demeaned vector of observables, c =
ȳ − E(ỹdt ), yTt is the non-cyclical component, ymt (θ) ≡ S[yt, xt]

′, S is a
selection matrix, is the model based- cyclical component, ut is a iid (0,Σu)
(measurement) noise, yTt , y

m
t (θ) and ut are mutually orthogonal.

- Model (linearized) solution: cyclical component

yt = RR(θ)xt−1 + SS(θ)zt (67)

xt = PP (θ)xt−1 +QQ(θ)zt (68)

zt+1 = NN(θ)zt + εt+1 (69)

PP (θ), QQ(θ), RR(θ), SS(θ) functions of the structural parameters θ =
(θ1, . . . , θk), xt = x̃t − x̄; yt = ỹt − ȳ; and zt are the disturbances, ȳ, x̄
are the steady states of ỹt and x̃t.



- Non cyclical component

yTt = yTt−1 + ȳt−1 + et et ∼ iid (0,Σ2
e) (70)

ȳt = ȳt−1 + vt vt ∼ iid (0,Σ2
v) (71)

Σ2
v > 0 and Σ2

e = 0, yTt is a vector of I(2) processes.

Σ2
v = 0, and Σ2

e > 0, yTt is a vector of I(1) processes.

Σ2
v = Σ2

e = 0, yTt is deterministic.

Σ2
v > 0 and Σ2

e > 0 and σ2
vσ

2
e is large, ytt is ”smooth” and nonlinear ( as

in HP).

- Jointly estimate structural θ and non-structural parameters.



Example 6.4 The log linearized equilibrium conditions of basic NK model are:

λt = χt −
σc

1− h
(yt − hyt−1) (72)

yt = zt + (1− α)nt (73)

wt = −λt + σnnt (74)

rt = ρrrt−1 + (1− ρr)(ρππt + ρyyt) + vt (75)

λt = Et(λt+1 + rt − πt+1) (76)

πt = kp(wt + nt − yt + µt) + βEtπt+1 (77)

zt = ρzzt−1 + ιzt (78)

where kp =
(1−βζp)(1−ζp)

ζp

1−α
1−α+εα

, λ is the Lagrangian on the consumer budget constraint,

zt is a technology shock, χt a preference shock, vt is an iid monetary policy shock and εt

an iid markup shock.



Filter LT HP FOD BP Flexible
Parameter True Median (s.d.)Median (s.d.)Median (s.d.)Median(s.d.)Median(s.d.)

σc 3.00 2.08 (0.11) 2.08 (0.14) 1.89 (0.14) 2.13 (0.12) 3.68( 0.40)
σn 0.70 1.72 (0.09) 1.36 (0.07) 1.24 (0.06) 1.58 (0.08) 0.54( 0.14)
h 0.70 0.67 (0.02) 0.58 (0.03) 0.36 (0.03) 0.66 (0.02) 0.55( 0.04)
α 0.60 0.28 (0.03) 0.15 (0.02) 0.14 (0.02) 0.17 (0.02) 0.19( 0.03)
ε 7.00 3.19 (0.11) 5.13 (0.19) 3.76 (0.18) 3.80 (0.13) 6.19( 0.07)
ρr 0.20 0.54 (0.03) 0.77 (0.03) 0.72 (0.04) 0.53 (0.03) 0.16( 0.04)
ρπ 1.20 1.69 (0.08) 1.65 (0.06) 1.65 (0.07) 1.63 (0.10) 0.30( 0.04)
ρy 0.05 -0.14 (0.04) 0.45 (0.04) 0.63 (0.06) 0.40 (0.04) 0.07( 0.03)
ζp 0.80 0.85 (0.03) 0.91 (0.03) 0.93 (0.03) 0.90 (0.03) 0.78( 0.04)
ρχ 0.50 1.00 (0.03) 0.96 (0.03) 0.96 (0.03) 0.95 (0.03) 0.53( 0.02)
ρz 0.80 0.84 (0.03) 0.96 (0.03) 0.97 (0.03) 0.96 (0.03) 0.71( 0.03)
σχ 1.12 0.11 (0.02) 0.17 (0.02) 0.21 (0.03) 0.14 (0.02) 1.29( 0.01)
σz 0.51 0.07 (0.01) 0.09 (0.01) 0.09 (0.01) 0.07 (0.01) 0.72( 0.02)
σmp 0.10 0.05 (0.01) 0.05 (0.01) 0.05 (0.01) 0.05 (0.01) 0.22( 0.004)
σµ 20.60 6.30 (0.50) 16.75 (0.62) 22.75 (0.83) 14.40 (0.58) 15.88( 0.06)
σncχ 3.21

σncχ is the standard deviation of the non-cyclical component. Parameters Estimates using

different filters, small variance of non-cyclical shock



Filter LT HP FOD BP Flexible
Parameter True Median (s.d.)Median (s.d.)Median (s.d.)Median(s.d.)Median(s.d.)

σc 3.00 1.89 (0.07) 1.89 (0.07) 1.87 (0.07) 2.03 (0.09) 3.26 (0.29)
σn 0.70 2.13 (0.08) 2.11 (0.08) 2.15 (0.08) 1.90 (0.08) 0.80 (0.13)
h 0.70 0.58 (0.02) 0.60 (0.02) 0.56 (0.02) 0.69 (0.02) 0.77 (0.04)
α 0.60 0.47 (0.02) 0.46 (0.02) 0.49 (0.02) 0.24 (0.03) 0.41 (0.04)
ε 7.00 3.85 (0.13) 3.92 (0.13) 3.46 (0.11) 4.16 (0.13) 6.95 (0.09)
ρr 0.20 0.68 (0.03) 0.59 (0.03) 0.43 (0.04) 0.50 (0.03) 0.31 (0.04)
ρπ 1.20 1.14 (0.04) 1.25 (0.04) 1.25 (0.04) 1.23 (0.04) 1.25 (0.03)
ρy 0.05 -0.07 (0.00) -0.01 (0.01) -0.05 (0.02) 0.23 (0.01) 0.08 (0.10)
ζp 0.80 0.81 (0.03) 0.78 (0.03) 0.76 (0.03) 0.89 (0.03) 0.72 (0.02)
ρχ 0.50 1.00 (0.03) 1.00 (0.03) 1.00 (0.03) 0.97 (0.03) 0.69 (0.05)
ρz 0.80 0.90 (0.03) 0.92 (0.03) 0.91 (0.03) 0.98 (0.03) 0.90 (0.03)
σχ 1.12 0.09 (0.01) 0.31 (0.05) 0.61 (0.15) 1.87 (0.14) 1.28 (0.03)
σz 0.51 0.61 (0.07) 0.30 (0.04) 0.40 (0.05) 0.10 (0.01) 0.69 (0.01)
σmp 0.10 0.06 (0.01) 0.06 (0.01) 0.06 (0.01) 0.06 (0.01) 0.24 (0.004)
σµ 20.60 18.00 (0.74) 18.04 (0.61) 15.89 (0.83) 17.55 (0.57) 12.73 (0.04)
σncχ 23.21

Parameters Estimates using different filters; σncχ is the standard deviation of the non-

cyclical component.



Why are estimates distorted?

- Posterior proportional to likelihood times prior.

- Log-likelihood of the parameters (see Hansen and Sargent (1993))

L(θ|yt) = A1(θ) +A2(θ) +A3(θ)

A1(θ) =
1

π

∑
ωj

log detGθ(ωj)

A2(θ) =
1

π

∑
ωj

trace [Gθ(ωj)]−1F (ωj)

A3(θ) = (E(y)− µ(θ))Gθ(ω0)−1(E(y)− µ(θ))



where ωj = πj
T , j = 0, 1, . . . , T − 1,, Gθ(ωj) is the model based spectral

density matrix of yt, µ(θ) the model based mean of yt, F (ωj) is the data

based spectral density of yt and E(y) the unconditional mean of the data.

- first term: sum of the one-step ahead forecast error matrix across fre-

quencies;

- the second a penalty function, emphasizing deviations of the model-based

from the data-based spectral density at various frequencies.

- the third another penalty function, weighting deviations of model-based

from data-based means, with the spectral density matrix of the model at

frequency zero.



- Suppose that the actual data is filtered so that frequency zero is elimi-

nated and low frequencies deemphasized. Then

L(θ|yt) = A1(θ) +A2(θ)∗

A2(θ)∗ =
1

π

∑
ωj

trace [Gθ(ωj)]−1F (ωj)
∗

where F (ωj)
∗ = F (ωj)Iω and Iω is an indicator function.

Suppose that Iω = I[ω1,ω2], an indicator function for the business cycle

frequencies, as in an ideal BP filter.

The penalty A2(θ)∗ matters only at these frequencies.



Since A2(θ)∗ and A1(θ) enter additively in the log-likelihood function,

there are two types of biases in θ̂.

- estimates Fθ(ωj)
∗ only approximately capture the features of F (ωj)

∗

at the required frequencies - the sample version of A2(θ)∗ has a smaller

values at business cycle frequencies and a nonzero value at non-business

cycle ones.

- To reduce the contribution of the penalty function to the log-likelihood,

parameters are adjusted to make [Gθ(ωj)] close to F (ωj)
∗ at those fre-

quencies where F (ωj)
∗ is not zero. This is done by allowing fitting errors in

A1(θ) large at frequencies F (ωj)
∗ is zero - in particular the low frequencies.



Conclusions:

1) The volatility of the structural shocks will be overestimated - this makes

[Gθ(ωj)] close to F (ωj)
∗ at the relevant frequencies.

2) Their persistence underestimated - this makes Gθ(ωj) small and the

fitting error large at low frequencies.

Estimated economy very different from the true one: agents’ decision rules

are altered.



- Higher perceived volatility implies distortions in the aversion to risk and

a reduction in the internal amplification features of the model.

- Lower persistence implies that perceived substitution and income effects

are distorted with the latter typically underestimated relative to the former.

- Distortions disappear if:

i) the non-cyclical component has low power at the business cycle frequen-

cies. Need for this that the volatility of the non-cyclical component is

considerably smaller than the volatility of the cyclical one.

ii) The prior eliminates the distortions induced by the penalty functions.



Question: What if we fit the filtered version of the model to the filtered

data? (CKM (2008))

- Log-likelihood=A1(θ)∗ = 1
π

∑
ωj log detGθ(ωj)Iω+A2(θ). Suppose that

Iω = I[ω1,ω2].

- A1(θ)∗ matters only at business cycle frequencies while the penalty func-

tion is present at all frequencies.

- If the penalty is more important in the low frequencies (typical case)

parameters adjusted to make [Gθ(ωj)] close to F (ωj) at these frequencies.

-Procedure implies that the model is fitted to the low frequencies com-

ponents of the data!!!



i) Volatility of the shocks will be generally underestimated.

ii) Persistence overestimated.

iii) Since less noise is perceived, decision rules will imply a higher degree

of predictability of simulated time series.

iv) Perceived substitution and income effects are distorted with the latter

overestimated.



How can we avoid distortions?

- Build models with non-cyclical components (difficult).

- Use filters which flexibly adapt, see Gorodnichenko and Ng (2007) and

Eklund, et al. (2008).

- ?



Advantages of suggested approach:

• No need to take a stand on the properties of the non-cyclical component

and on the choice of filter to tone down its importance - specification errors

and biases limited.

• Estimated cyclical component not localized at particular frequencies of

the spectrum.

- Cyclical, non-cyclical and measurement error fluctuations driven by dif-

ferent and orthogonal shocks. But model is observationally equivalent to

one where cyclical and non-cyclical are correlated.



An experiment, again

- Simulate data from the model, assuming that the preference shock has

two components: a nonstationary one and a stationary one (the properties

of the other three shocks are unchanged).

- Variance of the non-cyclical shock is large or small relative to the variance

of the other shocks.

- Use same Bayesian approach, same prior for structural parameters and

gamma priors with large variance for non-structural ones.

- Compute the model-based cyclical component; calculate the autocorrela-

tion function and the log spectrum of output after passing it through LT,

HP, FOD, BP.



Small variance Large variance
True Median (s.e) True Median (s.e)

σc 3.00 3.68 (0.40) 3.00 3.26 ( 0.29)
σn 0.70 0.54 (0.14) 0.70 0.80 ( 0.13)
h 0.70 0.55 (0.04) 0.70 0.77 ( 0.04)
α 0.60 0.19 (0.03) 0.60 0.41 ( 0.04)
ε 7.00 6.19 (0.07) 7.00 6.95 ( 0.09)
ρr 0.20 0.16 (0.04) 0.24 0.31 ( 0.04)
ρπ 1.30 1.30 (0.04) 1.30 1.25 ( 0.03)
ρy 0.05 0.07 (0.03) 0.05 0.08 ( 0.10)
ζp 0.80 0.78 (0.04) 0.80 0.72 ( 0.02)
ρχ 0.50 0.53 (0.04) 0.50 0.69 ( 0.05)
ρz 0.80 0.71 (0.03) 0.80 0.90 ( 0.03)
σχ 0.011 0.012 (0.0003)0.011 0.012 ( 0.0003)
σz 0.005 0.006 (0.0001)0.005 0.007 ( 0.0001)
σmp0.001 0.002 (0.0004)0.001 0.002 (0.0004)
σµ 0.206 0.158 (0.0006)0.206 0.1273 (0.0004)
σncχ 0.02 0.23

Parameters estimates using flexible specification. σncχ is the standard error of the shock

to the non-cyclical component.



- Estimates of the structural parameters are roughly unchanged in two

specifications.

- Estimates are precise but the median is not the true value (problem bigger

for α or σn which are only weakly identified).

- The relative magnitude of the various shocks and their persistence is well

estimated. Hence, true and estimated decision rules are similar.
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- The true and estimated log spectrum and the autocorrelation function of

the model-based cyclical component close, regardless of the filter.

- Both true and estimate cyclical components have power at all frequencies

of the spectrum.



Actual data: do we get a different story?
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Figure 5: Posterior distributions of the policy activism parameter, samples

1964:1-1979:4 and 1984:1-2007:4. LT refers to linearly detrended data, HP to Hodrick

and Prescott filtered data and Flexible to the approach the paper suggests



LT FOD Flexible
Output Inflation Output Inflation Output Inflation

TFP shocks 0.01 0.04 0.00 0.01 0.01 0.19
Gov. expenditure shocks 0.00 0.00 0.00 0.00 0.00 0.02

Investment shocks 0.08 0.00 0.00 0.00 0.00 0.05
Monetary policy shocks 0.01 0.00 0.00 0.00 0.00 0.01

Price markup shocks 0.75(*) 0.88(*) 0.91(*) 0.90(*) 0.00 0.21
Wage markup shocks 0.00 0.01 0.08 0.08 0.03 0.49(*)

Preference shocks 0.11 0.04 0.00 0.00 0.94(*) 0.00

Variance decomposition at the 5 years horizon. Estimates are obtained using the median

of the posterior of the parameters. A (*) indicates that the 68 percent highest credible

set is entirely above 0.10. The model and the data set are the same as in Smets Wouters

(2007). LT refers to linearly detrended data, FOD to growth rates and Flexible to the

approach this paper suggests.



Non linear DSGE models

y2t+1 = h1(y2t, ε1t, θ) (79)

y1t = h2(y2t, ε2t, θ) (80)

ε2t = measurement errors, ε1t = structural shocks, θ = vector of structural

parameters, y2t = vector of states, y1t = vector of controls. Let yt =

(y1t, y2t), εt = (ε1t, ε2t), yt−1 = (y0, . . . , yt−1) and εt = (ε1, . . . , εt).

• Likelihood is L(yT , θy20) =
∏T
t=1 f(yt|yt−1, θ)f(y20, θ). Integrating the

initial conditions y20 and the shocks out, we have:

L(yT , θ) =
∫

[
T∏
t=1

∫
f(yt|εt, yt−1, y20, θ)f(εt|yt−1, y20, θ)dεt]f(y20, θ)dy20

(81)



(81) is intractable.

• If we have L draws for y20 from f(y20, θ) and L draws for εt|t−1,l,

l = 1, . . . , L, t = 1, . . . , T , from f(εt|yt−1, y20, θ) approximate (81) with

L(yT , θ) =
1

L
[
T∏
t=1

1

L

∑
l

f(yt|εt|t−1,l, yt−1, yl20, θ)] (82)

Drawing from f(y20, θ) is simple; drawing from f(εt|yt−1, y20, θ) compli-

cated. Fernandez-Villaverde and Rubio-Ramirez (2004):

use f(εt−1|yt−1, y20, θ) as importance sampling for f(εt|yt−1, y20, θ):



- Draw yl20 from f(y20, θ). Draw εt|t−1,l L times from f(εt|yt−1, yl20, θ) =
f(εt−1|yt−1, yl20, θ)f(εt|θ).

- Construct IRlt =
f(yt|εt|t−1,l,yt−1,yl20,θ)∑L
l=1 f(yt|εt|t−1,l,yt−1,yl20,θ)

and assign it to each draw

εt|t−1,l.

- Resample from {εt|t−1,l}Ll=1with probabilities equal to IRlt.

- Repeat above steps for every t = 1, 2, . . . , T .

Step 3) is crucial, if omitted, only one particle will asymptotically remain
and the integral in (81) diverges as T →∞.

• Algorithm is computationally demanding. You need a MC within a MC.
Fernandez-Villaverde and Rubio-Ramirez (2004): some improvements over
linear specifications.
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1 State Space Models

yt = x′tαt + v1t (1)

αt = D1αt−1 + D2v2t (2)

x′t is m×k, v1t ∼ iid N(0,Σ1); D1,D2 are k×k and v2t ∼ iid N(0,Σ2).

E(v1tv
′
2τ) = 0 and E(v1tα

′
0) = 0 ∀t, τ .

- The (1) is called measurement (observation) equation, (2) transition

(state) equation.

- This class of models is general and flexible: many specifications fit (1)-

(2).



Example 1 An ARMA(2,1): yt = A1yt−1 +A2yt−2 + et +D1et−1 can be

written as:

yt = [1 0]

[
yt

A2yt−1 +D1et

]
[

yt
A2yt−1 +D1et

]
=

[
A1 1
A2 0

] [
yt−1

A2yt−2 +D1et−1

]
+

[
1
D1

]
et

which fits (1)-(2) for αt =

[
yt

A2yt−1 +D1et

]
, D1 =

[
A1 1
A2 0

]
, D2 =[

1
D1

]
, x′t = [1, 0], Σ1 = 0, Σ2 = σ2

e.

In general, any ARMA model φ(`)yt = θ(`)εt can be transformed into a

state space model by setting φ(`)xt = εt (transition equation) and yt =

θ(`)xt (measurement equation).



Example 2 A VAR(q): yt = A(L)yt−1+et is also a state space model. Use

companion form representation Yt = AYt−1 +Et where Et = [et, 0, . . . 0]′

and

A =


A1 A2 . . . . . . Aq
I 0 . . . . . . 0
. . . . . . . . . . . . . . .
0 0 . . . I 0


Trivially fits (1)-(2) for x′t = [I, 0, . . . 0], αt = [y′t, y

′
t−1, . . . , y

′
t−q], D1 =

A, D2 = I, Σ1 = 0, v2t = Et,



• A time varying coefficient model is a state space model:

yt = x′tαt + v1t (3)

αt = Dαt−1 + v2t (4)

• A dynamic factor model is a state space model:

yt = α0 + α1xt + v1t (5)

xt = ρxt−1 + v2t (6)

where yt is a M × 1 vector and xt is a scalar.

• A stochastic volatility model is also a state space model

yt = σtv1t (7)

log σt = log σt−1 + v2t (8)

Very much used in finance, similar to GARCH but more flexible. (Careful:

both σt and v1t are random here so the model is non-linear).



• A Markov switching model has also the form of (5) and(6) but v1t and

v2t are not normal.

Example 3 (Ex-ante vs. ex-post real rate of interest) Here αt ≡ it−πet =

φαt−1 + v2t (transition equation) The observed real rate yt ≡ it − πt =

αt + v1t, where v1t is a measurement error (observable equation).

Example 4 (Common trends) αt = αt−1+v2t is a one dimensional process.

Then x′t = x′ are the loadings on the trend.



• The log-linearized solution of a DSGE model is a state space model

y2t = A22(θ)y2t−1 +A21(θ)y3t (9)

y1t = A1(θ)y2t = A11(θ)y2t−1 +A12(θ)y3t (10)

y2t = endogenous and exogenous states, y1t = endogenous controls, y3t

the innovations in the driving forces. Aij(θ), i, j = 1, 2 are time invariant

(reduced form) matrices which depend on θ, the structural parameters of

preferences, technologies, policies, etc.

• Since here we are typically interested in θ (and not in A’s), the DSGE

problem is slightly different from those typically considered here since the

mapping from θ to A is non-linear.



2 Kalman filter

Let yt−1 = (y1, . . . , yt−1). The Kalman filter (KF) computes optimal
forecasts of yt and recursive estimates of the mean and variance of αt,
given yt−1, α0 , for models like (1)-(2).

- The Kalman smoother (KS) computes estimates of the mean and variance
of αt for models like (1)-(2). given yT = (y1, . . . , yt−1, yt, yt+1 . . . , yT , α0).

Let αt|t be the optimal (MSE) estimator of αt using information up to t;
and let Ωt|t the MSE of αt. Let D1 and D2 be known; assume yt, xt, t =
1, . . . T is available.

- Since the errors in (1) and (2) are normal (yt, αt|yt−1, α0) are jointly
normal and (αt|yt, α0) is also normal. This means that we need to keep
track only of the mean and the variance to fully account for the distribution.



The KF requires the following steps:

• Initial Conditions: If all eigenvalues of D1 are less then one in absolute

value then α1|0 = E(α1) and Ω1|0 = D1Ω1|0D′1 +D2Σv2D′2 or vec(Ω1|0) =

(I − (D1 ⊗ D′1)−1)vec(D2Σv2D′2), i.e. choose as initial conditions the

unconditional mean and variance of the process.

If initial conditions can not be drawn from the unconditional distribution:

guess e.g. α1|0 = 0, Ω1|0 = κ ∗ I, κ large.



• Forecast of yt and prediction of the state αt, given yt−1.

E(yt|t−1) = x′αt|t−1 (11)

E(αt|t−1) = D1αt−1|t−1 (12)

E(yt − yt|t−1)(yt − yt|t−1)′ = E(x′(αt − αt|t−1)(αt − αt|t−1)′x) + Σ1

= x′Ωt|t−1x+ Σ1 ≡ Σt|t−1 (13)

E(αt − αt|t−1)(αt − αt|t−1)′) ≡ Ωt|t−1 = D1Ωt−1|t−1D
′
1 + D2Σ2D′2 (14)

E(yt − yt|t−1)(αt − yt|t−1)′ = Ωt|t−1x
′ (15)

• Update estimates after observing yt:

αt|t = αt|t−1 + Ωt|t−1x
′Σ−1
t|t−1(yt − xαt|t−1) (16)

Ωt|t = Ωt|t−1 − Ωt|t−1xΣ−1
t|t−1x

′Ωt|t−1 (17)

where εt = yt − x′αt|t−1 is the one-step ahead forecast error, and Kt =

Ωt|t−1xΣ−1
t|t−1 is the Kalman gain.



• Forecast the state next period:

αt+1|t = D1αt|t = D1αt|t−1 + Ktεt (18)

Ωt+1|t = D1Ωt|tD
′
1 + D2Σv2D

′
2 (19)

• Repeat previous steps until t = T .

Note: since Ωt|t−1x
′ = E(αt − αt|t−1)(yt − yt|t−1), αt is updated using

linear OLS projection of αt − αt|t−1 on yt − yt|t−1 multiplied by the pre-

diction error. Similarly, since Ωt|t = E(αt − αt|t−1)(αt − αt|t−1)′, it is

updated using covariance between forecast errors in the two equations and

the MSE error of the forecasts of yt.



• The Kalman filter can be used to evaluate the likelihood function of a

state space model since L(yT |α) = L(y0|α)
∏T
t=1L(yt|yt−1, α)) and each

L(yt|yt−1, α) is Normal with mean yt|t−1 and variance Σt|t−1, both of

which are produced recursively by the Kalman filter (see (11)-(13)).

• The initialization of the KF is typically difficult. Better to use a large

covariance matrix if you expect the model to be nearly non-stationary.

The assumption that errors are normal may not be great. If they are, the

Kalman filter is Best predictor of αt; otherwise it is only BLUP!



2.1 Kalman smoother

- Computes mean and variance of (αt|yT ) with the output of the Kalman

filter.

• Starting from yT , and setting t = T − 1, . . . , 1, we have

αt|T = αt|t + (Ωt|tD
′
1Ω−1

t+1|t)(αt+1|T − αt+1|t) (20)

Ωt|T = Ωt|t − (Ωt|tD
′
1Ω−1

t+1|t)(Ωt+1|T − Ωt+1|t)(Ωt|tD
′
1Ω−1

t+1|t)
′(21)

where αt|t, (Ωt|t) are produced by the KF. Equations (20)-(21) define the

Kalman smoother. They can be used for signal extraction problems, e.g.

to find the state at t using the information available up to T .



Example 5 yt = A1yt−1 + A2yt−2 + et. Then α = [yt, yt−1]′, v2t =

[et, 0], D1 =

[
A1 A2
1 0

]
, Σv2 =

[
σ2
e 0

0 0

]
,D2 = I, v1t = 0, x′1 = [1, 0].

Forecast of yt Et−1yt = A1yt−1 +A2yt−2; E(yt −Et−1yt)
2 = σ2

e. Then

αt|t = αt|t−1 + Ωt|t−1σ
−2
e v2t.

Example 6 (Trend): αt = αt−1; GDP is yt = αt + v1t, v1t iid N(0, σ2
v1

).

Then Ωt|t = Ωt|t−1−Ωt|t−1(Ωt|t−1+σ2
v1

)−1Ωt|t−1 =
Ωt|t−1

1+
Ωt|t−1

σ2
v1

=
Ωt−1|t−1

1+
Ωt−1|t−1

σ2
v1

and αt+1|t+1 = αt|t+

Ω̄0
σ2
v1

1+t
Ω̄0
σ2
v1

(yt−αt|t). As t→∞, αt+1|t+1 = αt|t = ᾱ.



3 Classical ML estimation of state space models

• EM algorithm:

1) Choose initial φ0 = (D1,D2,Σ1,Σ2) and some (α1|0,Ω1|0).

2) Run the KF and, for each t, save εt = yt−yt|t−1 and Σt|t−1. Construct
the conditional likelihood L(yt|yt−1, φ) and

∏
iL(yi|yi−1) ∗ L(y0).

3) Update initial estimates of φ using any methods (gradient, etc.).

4) Repeat steps 2) through 3) until |φl−φl−1| ≤ ι; |L(φl)−L(φl−1)| < ι;
or (

∂L(φ)
∂φ )|

φ=φl
< ι, or all of them, ι small.



• Once you have converged, compute standard errors for the estimates

using square root of diagonal of Hessian H(φML) = ∂2L
∂φ∂φ′

|φML
.

- For some state space models, direct maximization of the likelihood is too

complicated. Use MCMC methods.

- For Bayesian analysis: g(φ|yT ) ∝ L(φ|yT )g(φ) so also in this case we

even need to evaluate the likelihood function with Kalman filter to compute

the kernel of the posterior.

- Bayesian estimation of certain state space models is relatively easy. In

others estimation is more complicated.



4 Gibbs sampler for (linear) state space models

Consider the model:

yt = x′tαt + v1t (22)

αt = Dαt−1 + v2t (23)

v1 ∼ N(0,Σ1), v2 ∼ N(0,Σ2). How do you apply the Gibbs sampler?

- There are four groups of parameters D,Σ1,Σ2, α
t = (α1, . . . , αt). Need

to find conditional posterior of each group.

- Easy for the first three. If g(vec(D)) is normal and g(vec(Σ1)) and

g(vecΣ2)) are inverted Wishart, g(vec(D)|yT ,Σ1,Σ2, α
t)is normal,

g(Σ1|vec(D), yT ,Σ2, α
t)and g(Σ2|vec(D), yT ,Σ1, α

t)are inverted Wishart.



- Slightly more complicated to find g(αt|Σ2, vec(D), yT ,Σ1). Note that

g(αt|Σ2, vec(D), yT ,Σ1) =

g(αt|Σ2, vec(D), yT ,Σ1)
t−1∏
i=1

g(αi|αi+1,Σ2, vec(D), yT ,Σ1) =

g(αt|Σ2, vec(D), yt,Σ1)
t−1∏
i=1

g(αi|αi+1,Σ2, vec(D), yi,Σ1) (24)

since the model has a Markovian structure. Hence, to draw from

g(αt|Σ2, vec(D), yT ,Σ1) we can draw recursively from the marginal and

conditionals in (24).



- It is easy to draw from g(αt|Σ2, vec(D), yt,Σ1) since this Normal with

mean αt|t and variance Ωt|t and both these quantities are produced by the

Kalman filter.

- How to draw from these conditionals? These are also normal since for any

i, αi, αi+1 are jointly normal (so conditionals are also normal). To char-

acterize normal distributions we need just their first and second moments.

What are they?

- They are αi|i+1 and Ωi|i+1 and are obtained from the Kalman smoother.

αi|i+1 = αi|i + (Ωi|iD
′Ω−1
i+1|i)(αi+1 − αi+1|i) (25)

Ωi|i+1 = Ωi|i − (Ωi|iD
′Ω−1
i+1|i)D

′Ω−1
i|i )′ (26)

Conclusions:



• The Gibbs sampler can cycle using g(vec(D)|yT ,Σ1,Σ2, α
t) (a nor-

mal), g(Σ1|vec(D)|yT ,Σ2, α
t) and g(Σ2|vec(D)|yT ,Σ1, α

t) (two inverted

Wishart) and g(αt|Σ2, vec(D), yT ,Σ1) (again a bunch of normals).

• To draw from the latter run the Kalman filter and Kalman smoother

through the sample and save αt|t,Ωt|t, and αi|i+1,Ωi|i+1, i = t − 1, t −
2, . . . , 1. Then a draw for αt can be made by drawing separately each

element from normals with the above means and variances.

Step 2 has do be done within each draw of the Gibbs sampler and this

is time consuming. For complex problems may want to reduce costs by

using steady state Kalman gain i.e. Kt = K; this cuts computation time

dramatically.

• We estimate the vector of time varying parameters (αt) and time-

invariant ones (D,Σ1,Σ2) jointly.



4.1 A TVC-AR model

yt = y′t−1αt + v1t (27)

αt = αt−1 + v2t (28)

v1 ∼ N(0,Σ1), v2 ∼ N(0,Σ2).

- This model is a special case of the previous general state space model.

The object of interest (Σe,Σa, αt) and to draw a sample say for αt we

simply need to go through the same steps as before.

- Note that each αt could be a scalar or a vector. If (27) is a VAR, then

αt in (28) could be of large dimension.

• Needs to be careful with TVC models because of identification and pile

up problems.



Example 7 Suppose the true model is πt = πt−1 + et and suppose one
estimates πt = α0t + α1t + et where αt = αt−1 + vt and αt = (α0t, α1t).

Identification problems!! Model with α1t = 0, ∀t is observationally equiv-
alent to a model with α0t = 0, ∀t and to the true model. Problems if
one is interested in measuring e.g. time varying inflation persistence. The
prior will determine which model will be chosen.

Example 8 Suppose yt = αt + et, αt = αt−1 + γvt, where γ is unknown,
and the variance of et and vt is unity. This model has an ARIMA represen-
tation ∆yt = ∆et + γvt or ∆yt = εt − θεt−1. where σ2

ε(1 + θ2) = 2 + γ2

and −θσ2
ε = −1 so that 1+θ2

θ = 2 + γ2. Thus, if γ2 tends to zero, θ tends
to 1, so it can not be identified (it cancels out).

This is called pile up problem (γ has a point mass at zero). To avoid it,
typical to choose priors that keep γ away from zero.



• What kind of priors do you want to use for TVC-VAR?

Need good guesses if α is of large dimensions. Also, the choice of para-

meters regulating the prior for Σ2 crucial since

i) too little time variation, easy to get stuck at no time variation.

ii) too much time variation, the unobserved states wander around too much

to fit the data as best as possible.

Using a training sample to tune up the priors helps a lot here!



- Possible to have a non-linear TVC model of the form

yt = h1t(αt) + et et ∼ (0,Σe)

αt = h2t(αt−1) + vt vt ∼ (0,Σa) (29)

where h1t and h2t are given but perhaps depend on unknown parameters.

The same logic applies.

- Possible to consider a TVC model with non-normal disturbances. Assume

(αt|αt−1, $1t,Σa) ∼ N(αt−1, $1tΣa) where e.g. $1t ∼ exp(2). Since

g(αt|αt−1, $1t,Σa) ∼ N(αt−1, $1tΣa); g($1t|yt, αt, V ) ∝ ( 1
$1t

)0.5 exp

{−0.5$1t + (αt − αt−1)′$−1
1t V

−1(αt − αt−1)}. This is reciprocal of the

inverse Gaussian distribution.

If $1t is χ2(ν̄), then g(α|y) is a t-distribution, with T + ν̄ degrees of

freedom



Example 9 (Canova et al. (2007)) Use a TVC-VAR model with (Y, π,M,R)

for the US, Euro area and the UK. Draw 20000 vectors for αt and keep

one out of 5 of the last 10000. Plot the dynamics of output and inflation

volatility and persistence and the time varying contribution of each shock.



4.2 Multi-country heterogeneous (panel) VARs.

Panel VARs (featuring dynamic interdependencies and heterogeneous dy-

namics) with some flexible restrictions on the coefficients generate observ-

able factor models (Canova and Ciccarelli (2009)) or can be thought as

hierarchical (state space) models. One such model is:

yit = Dit(L)Yt−1 + Fit (L)Wt−1 + eit

i = 1, ..., N countries, yit is G× 1, Wt are the exogenous variables, Yt =(
y′1t, . . . y

′
Nt

)′
.

- Parameter specific to each variable-country.

- Parameters time-varying.

- Allow for lagged and contemporaneous interdependencies E(eit, ejt) 6= 0.



- Impossible to estimate this model with classical unrestricted methods:

each equation has k = NGp+Mq time varying coefficients, and r = NG

equations. Even with fixed coefficients, T smaller than k × r.

Short cuts:

- αt does not depend on i (apart from fixed effect).

- no dynamic interdependencies (see Holtz Eakin et al. (1988) or Binder

et al (2001)).

- use an indicator for interdependencies (see Pesaran et al. (2004))



-Parsimonious representation:

Yt = Xtαt + Et Et ∼ N (0,Ω) (30)

αt = Ξθt + ut ut ∼ N (0,Ω⊗ V ) (31)

where e.g. θt = [λ′t, δ
′
t, ρ
′
t, ψ
′
t]
′.

- Factorize δt into components: θt is s × 1 vector, s << k ∗ r, Ξj are

matrices with elements equal to zero or one.



Typical structure:

- λt captures movements in the coefficients vector δt common to all coun-

tries and variables (a 1× 1 vector).

- δt is the country specific component (a N × 1 vector).

- ρt is the variable specific component (G× 1 vector).

- ψt is the exogenous variable component (1× 1 vector).

- ut captures unmodelled features of the coefficients vector.



- All factors in (31) time varying (for time invariant structures see below).

- Factorization is exact. Add error if omit some factors.

- With (31) over-parametrization dramatically reduced.

- Can treat (31) as part of the prior or part of the model. If the latter, we

can test for the number of factors to be included.



Observable Index model

Using (31) into (30) we have

Yt = Z1tλt + Z2tδt + Z3tρt + Z4tψt + vt = Ztθt + vt

Z1t = XtΞ1,Z2t = XtΞ2,Z3t = XtΞ3,Z4t = XtΞ4, vt = Et +Xtut

- Regressors of the model are averages of lags of the VAR variables. Dy-

namically span lagged interdependencies between variables and countries.

- λt, δt, ρt, ψt are the factor loadings. Time varying.

- Business cycle (common, country, variable) indicators easy to construct

(observable and correlated).



- e.g.Z1t|tλt|t is a coincident indicator of the common cycle in Yt.

- Can make them leading, e.g. Z1t|t−1λt|t−1.

- Indicators emphasize low frequency movements, since they are average

of lags of VAR variables. Good for medium term forecasting.

- Analysis feasible with small T and small N and when degrees of freedom

in Panel VAR small. Estimate loadings θt not VAR coefficients αt.



Example 10 G = 2 variables, N = 2 countries, 1 lag, no exogenous: αt is

a vector 16× 1

αt = Ξ1λt + Ξ2αt + Ξ3ρt + ut

λt is scalar, αt is 2× 1, ρt is 2× 1, and the VAR can be rewritten as
y1
t
x1
t
y2
t
x2
t

 =


Z1t
Z1t
Z1t
Z1t

λt +


Z2,1,t 0
Z2,1,t 0

0 Z2,2,t
0 Z2,2,t

 δt +


Z3,1,t 0

0 Z3,2,t
Z3,1,t 0

0 Z3,2,t

 ρt + vt

e.g. Z1t = y1
t−1 +x1

t−1 +y2
t−1 +x2

t−1 is the common information, Z2,1,t =

y1
t−1+x1

t−1 is country 1 information (across variables), Z3,1,t = y1
t−1+y2

t−1
is variable y (across countries).

- if λt large relative to δt, y
1
t and x1

t comove with y2
t and x2

t .



- if λt = 0: y1
t and x1

t may drift apart from y2
t and x2

t .

- A leading indicator for Yt based on the common information is CLIt =

Z1tλt; a leading indicators based on common and unit specific information

is CULIt = Z1tλt + Z2tδt, etc.

• Del Negro and Schorfheide (2012): Second stage reduction is a cross

sectional shrinkage prior.



Estimation (Hierarchical model)

Yt = Xtαt + Et Et ∼ N (0,Σ) (32)

αt = Ξθt + ut ut ∼ N(0,Σ⊗W ) (33)

θt = θt−1 + ηt ηt ∼ N (0, Bt) (34)

- Et, ut, ηt uncorrelated, W = σ2Ik, Bt could be time-varying, e.g. Bt =

γ1Bt−1 + γ2B0, with B0 = diag (B01, B02, B03, B04).

- Use Bayesian methods: get posterior distribution of (Ω, {θt}Tt=1, σ
2)

and of transformations of interest: λt, α
j
t , Yt+τ |t, coincident and leading

indicators, etc.

- Need prior densities for (Σ, B0, θ0, σ
2) (choose them proper but loose).



Estimation (state space model)

Yt = Ztθt + vt vt ∼ (0, Vt ≡ σtΣ) (35)

θt = θt−1 + ηt ηt ∼ N (0, Bt) (36)

- Get posterior distribution of (Vt, {θt}Tt=1), of the loading λt, α
j
t , and of

Yt+τ |t, coincident and leading indicators, etc.

- Never estimate α directly, smaller computational burden.

- If Bt = B, this is a more complex state space model. Having time varying
Bt rather than time varying Σt reduces computational burden.

- However, vt = Et + Xtut so unless factorization is exact difficult to do
structural analyses.



Priors for state space model: Still assume Bt = γ1Bt−1 + γ2B0, with
B0 = diag (B01, B02, B03, B04). Also make B0i = φi ∗ I, i = i, . . . , f .

g(V −1
t , θ0, φi) = g(σt)g(Σ−1)g(θ0)

∏
i g(φi) and

- g(Σ−1) = W (ν̄1, Σ̄1);

- g(φi) ∝ (φi)
−1;

- g(θ0) ∝ 1;

-g(σ−1
t ) = G

(
ν̄2
2 ,

ν̄2s̄t
2

)
; s̄−1
t = E(σ−1

t ).

- Treat ν̄1, Σ̄1, s̄t, ν̄2 as known (or estimable form a training sample).

- Note If (vt|σt) ∼ N (0, σtΣE) given that σt ∼ Inv-χ2 (ν̄2, s̄t), uncondi-
tionally vt is t-distributed. As ν̄2 → 0, this prior becomes non-informative.



Conditional on θ,Bt, the likelihood is:

∝

(
T∏
t=1

σi

)−NG/2

|ΣE|−T/2 exp

[
−1

2

∑
t

(Yt −XtΞθt)
′ (σtΣE)−1 (Yt −XtΞθt)

]

Given Y T , the conditional posterior are:

θt | Y T , ψ−θt, It−1 ∼ N
(
θ̄t|t, R̄t|t

)
t ≤ T,

Σ−1 | Y T , ψ−Σ ∼W

(
ν1 + T,

[
,

∑
t (Yt −XtΞθt) (Yt −XtΞθt)

′

σt
+ Σ̄−1

1

]−1
)
,

φi | Y T , ψ−bi ∼ IG

(
T,

∑
t

(
θit − θit−1

)′ (
θit − θit−1

)
2ξt

)
,

σ−1
t | Y T , ψ−σt ∼ G

(
ζ +NG

2
,
ζst + (Yt −XtΞθt)

′Ω−1 (Yt −XtΞθt)

2

)
,

where θ̄t|t and R̄t|t are obtained with the Kalman smoother, ψ∗−i= ψ∗

minus parameter i. Here ξt is a function of γ1 and γ2.



• How do you decide the dimension of θ? Use Bayes factors.

- Model with i indices preferred to a model with i + 1 indices, i =

1, 2, . . . , f1−1 if
f(Y t|Mi)
f(Y t|Mi+1)

> 1; where f(Y t|M) is the marginal likelihood

of model M .

- Possibility of computing out-of-sample Bayes factors, i.e. instead of

f(Y t|M) use f(Y t+τ |Mi) =
∫
f(Y t+τ |θt,i,Mi)g(θt,i|Mi)dθt,i which is

the predictive density of i indices for Y t+τ = [yt+1, . . . , yt+τ ], and g(θt,i|Mi)

the posterior density for θi.

Note that f(Y t+τ |Mi) can be computed using Gibbs sampler output: i.e.

draw θlt from the g(θ|y) , construct Y lt+τ and prediction errors for each τ ,

use f̂(Yt+τ |Mi) = [ 1
J

∑
j f(Yt+τ |θji)−1]−1; where θji is j-th draws from

model i (harmonic mean estimator).



Example 11 Use a heterogenous panel VAR model with dynamic inter-

dependencies for G-7 countries with GDP growth, inflation, employment

growth and the real exchange rate for each country. Specify: a 2×1 vector

of common factors - (one EU and one non-EU), a 7× 1 vector of country

specific factors and a 4× 1 vector of variables specific factors.

Assume time variations in all factors, no exchangeable prior and non-

informative priors on the hyperparameters. Calculate posterior distribu-

tions one year in advance constructed recursively at each t. Figure plots

leading indicator 68% bands for EU GDP growth and inflation (with actual

values).

Leading indicator = sum of the three estimated components. Model pre-

dicts the ups and downs of both series well using one year ahead info.

Theil-U for 1996:1-2000:4 and 1991:1-1995:4 are 0.87 and 0.66, much

lower than single country BVAR (0.96, 0.94) or univariate AR(0.98,0.96).
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4.3 Factor Models

yit = α0i + α1iy0t + uit (37)

φi(L)uit = vit (38)

φ0(L)y0t = v0t (39)

Assume E(vit, vjt−s) = 0, ∀i 6= j, i = 1, . . . ,M , E(vit, vit−s) = σ2 if

s = 0 and zero otherwise, E(v0t, v0t−s) = σ2
0 if s = 0 and zero otherwise.

- y0t (M1 << M × 1) is unobservable and can have arbitrary serial corre-

lation.

- uit could be serially correlated; it could also be a VAR, i.e. φ(L)ut = vt.



A factor model can be transformed into a state space model, where y0t is

the unobservable state using (38) into(37) (this becomes the measurement

equation) and (39) is the state equation

φi(L)yit = φi(L)(α0i + α1iy0t) + vit (40)

φ0(L)y0t = v0t (41)

Example 12 a) y0t coincident business cycle indicator, uit idiosyncratic

fluctuations.

b) y0t common stochastic trend, uit is stationary part of yit (Watson

(1987)).

c) y1t is a vector of stock returns, y0t is a unobservable market portfolio

(CAPM model).



Example 13 (a very special case)

yit = α0i + α1iy0t + uit (42)

uit and y0t are normal iid random variables, with variances σ2
i , σ

2
0 and i =

1, . . . ,M . To apply the Gibbs sampler we need the conditional posteriors

of (y0t, αi = (α0i, α1i) and σ2
i ).

The posteriors for αi = (α0i, α1i) and σ2
i , conditional on yit, y0t are

standard Normal-inverted Gamma for any reasonable specification of the

prior. The likelihood of y0t for each t is Normal with mean zero and

variance σ2
0 (treat this as a prior). Hence, the conditional posterior for

y0 = (y01, . . . , y0t) is Normal with mean ȳ0 = σ−2
y0

(
∑M
i=1

αi1(yi−α0i)

σ2
i

) and

variance σ2
y0

= (
∑M
i=0

α2
1i
σ2
i

)−1.



We complicate this (unrealistic) setup by allowing:

i) serial correlation in the factor.

ii) serial correlation in the error term (we know how to deal with this, see

(41).

iii) do not condition on initial observations (i.e. we use full likelihood rather

than conditional likelihood.

iv) impose stationarity: roots of φj(L), j = 0, i all less than one in absolute

value.

Identifying Restrictions: α11 > 0, σ2
0 a fixed constant.



Let ψ = (α0i, α1i, σ
2
i , φij), i = 1, . . . ,M ; j = 1, . . . pi;h = 1, . . . q;

Let yi = (yi1, . . . , yit), y = (y′1, . . . , y
′
M).

Note: g(ψ|y, y0) ∝ f(y|ψ, y0)g(ψ) (posterior of the parameters)

g(y0|ψ, y) ∝ f(y|ψ, y0)f(y0|ψ) (posterior of the latent factor).

So, given some g(ψ), we need f(y|ψ, y0) and f(y0|ψ) =
∫
f(y, y0|ψ)dy to

apply the Gibbs sampler.



Road map:

1) Derivation of the distribution of the first p observations.

2) Derivation of the likelihood for p+T observations, transforming the

model to take into account serial correlation of the shocks.

3) Set up priors for the parameters and find conditional posteriors.

4) Find the conditional posterior of y0.

5) Run the Gibbs sampler.



1) Computation of g(ψ|y, y0).

Initial observations: y1
i = (yi,1, . . . yi,pi)

′; y1
0 = (y0,1, . . . y0,q)

′, y1
0 given.

Let αi = (α0i, α1i), φi = (φi,1, . . . , φi,pi), φi(L) = (φi,1L, . . . φi,piL
pi), x1

i =

[1, y1
0]; 1 = [1, 1, . . . , 1]′ (a pi × 1 vector); Φi =

[
φ1 . . . φpi

I(pi−1) 0

]
, (a

(pi × pi) matrix) .

If errors are normal, (y1
i |αi, σ2

i ,Φi, y
1
0) ∼ N(α0i + α1iy

1
0, σ

2
iΣi), where

Σi = (I ⊗ Φ′iΦi)(1, 0, . . . 0)′(1, 0, . . . 0).

2) Specification of the full model.

Let Σi = P ′iPi and set y∗i1 = P−1
i y1

i ;x∗i1 = P−1
i x1

i . Let ui = [ui,pi+1, . . . ui,T ]

(this is (T − pi)× 1 vector); U = [u1, . . . , up], uit = yit − α0i − α1iy0t.



Let y2∗
i be a T − pi × 1 vector with the t-row equal to φi(L)yit and

let x2∗
i be a (T − pi× 2) matrix with t-row equal to (φi(1), φi(L)y0t). Let

x∗i = [x1∗
i , x

2∗
i ]′, y∗i = [y1∗

i , y
2∗
i ].

The likelihood of (y∗i |x∗i , ψ) normal.

3) Priors and conditional posteriors

Priors g(ψ) =
∏
j g(ψj); αi ∼ N(ᾱi, Σ̄αi); σ−2

i ∼ G(āi, b̄i), i = 1, . . . and

φi ∼ N(φ̄i, Σ̄φi)Iφ, i = 0, 1, . . . ,, where Iφ is an indicator stationarity.

Conditional on y0t, the conditional posteriors for the elements of ψ are the

same as in the linear regression model with AR errors:



(αi|yi, ψ−α) ∼ N(Σ̃−1
αi

(Σ̄−1
αi
ᾱi + σ−2

i x∗i y
∗
i ), Σ̃αi)

(φi|yi, y0, ψ−φi) ∼ N(φ̃i, Σ̃φi)Iφ ∗Υ(φi)

(σ−2
i |yi, y0, ψ−σi) ∼ G(āi + T, b̄i + (y∗i − x∗iαi)2) (43)

where Σ̃αi = (Σ̄−1
αi

+ σ−2
i x∗i

′x∗i )−1; φ̃i = Σ̃−1
φi

(Σ̄−1
αi
φ̄i + σ−2U ′iui),

Υ(φi) = |Σi(φi)|−0.5 exp{− 1
2σ2(yi1−xi1αi)′Σi(φi)−1(yi1−xi1αi)}, Σ̃φi =

(Σ̄−1
i + σ−2U ′iUi)

−1.

Sampling αi, σ
2
i from (43) straightforward (discard the draws α11 ≤ 0).

Sampling φi is more complicated: indicator for stationarity plus initial pi
observations (otherwise straightforward). Use a MH step within Gibbs:



Algorithm 4.1 (1.) Draw φ+
i from N(φ̃i, Σ̃φi). If

∑
φi ≥ 1 discard it

[2.] If draw is not discarded, set draw ζ ∼ U(0, 1).

[3.] If ζ < Υ(φli)/Υ(φl−1
i ), set φli = φ+

i . Else set φli = φl−1
i .

4) Computation of g(y0|ψ, y). Let G−1
i =

[
P̂−1
i 0

R̂i

]
) be a T ×T matrix;

and R̂i =


−φi,pi . . . −φi,1 1 0 . . . 0

0 −φi,pi . . . −φi,1 1 . . . 0

. . . . . . . . . . . . . . . . . . . . .
0 0 . . . −φi,pi . . . . . . 1

), where P̂i is a

pi × pi matrix.

Transform the model by letting x
†
i = G−1

i xi; y
†
i = G−1

i yi; y
+
i = y

†
i −

G−1
i 1ai; 1=[1, . . . , 1]′.



The likelihood function is
∏M
i=1 f(y+

i |αi, σ2
i , φi, y0) where f(y+

i |αi, σ2
i , φi, y0) =

(2πσ2
i )−0.5T exp{−(2σ2

i )−1(y+
i − αiG

−1
i y0)′(y+

i − αiG
−1
i y0)}.

The likelihood of y0 is f(y0|φ0) = (2πσ2
0)−0.5T exp{−(2σ2

0)−1(G−1
0 y0)′

(G−1
0 y0)}.

The joint likelihood is f(y+, y0|ψ) =
∏M
i=1 f(y+

i |αi, σ2
i , φi, y0)f(y0|φ0).

Hence, completing the squares, the conditional posterior is:

g(y0|y+, ψ) ∼ N(ỹ0, Σ̃y0) (44)

ỹ0 = Σ̃−1
y0

[
∑M
i=1

α1i
σ2
i
G−1′
i G

−1
i (yi − α0i1)]; Σ̃y0 = (

∑M
i=0

α2
1i
σ2
i

(G−1
i )′G−1

i )−1;

α10 = 1.



5) Run the Gibbs sampler

- Use g(ψ|y, y0), g(y0|ψ, y) into a Gibbs sampler after setting σ2
0 and the

parameters of the prior distributions.

- To compute the predictive density of y0t: draw φ0 from posterior. Con-

struct y0t+τ taking y0t as given and drawing u0t from N(0, σ2
0).



4.3.1 A special factor model: a APT Model

rt = α0 + α1ft + ut (45)

rt is N × 1 vector; ft a K × 1 vector of ”pervasive” factors, E(f) =

0, E(ff ′) = I, E(u|f) = 0, E(uu′|f) = Σ; α0 = conditional mean, α1

vector of loadings; α1 and ft unknown.

- How do you estimate such a model? Traditionally two step estimation;

first step: get the factor(s) with a cross sectional regression. Second,

taking the estimated factor(s) as if they were true do a regression in time

series to estimate (see e.g. Roll and Ross (1980)). Problem: error-in-

variables unless cross section is very large.

- Ross (1976): as N → ∞, absence of arbitrage opportunities implies

α0i ≈ λ0 +
∑
k α1ikλk, (λ0 is the intercept of the pricing relationship (the



so-called zero-beta rate) and λk is the risk premium on factor k, both

unknown). In two step approach restrictions become linear. Easy to test

(see Campbell, Lo and McKinley (1997)).

- Alternative test for the absence of arbitrage opportunities: check the size

of the pricing errors relative to the average returns (large relative errors=

inappropriate specifications) i.e use Q2 = 1
Nα
′
0[I − α∗1(α∗′1 α

∗
1)−1α∗′1 ]α0

where α∗1 = (1, α1), 1 = (1, 1, . . . 1). For fixed N , Q2 6= 0; as N → ∞,

Q2 → 0. The sampling distribution of Q2 is hard to compute.

- We can get the exact small sample posterior for this statistic.

- For identification we need: K < N
2 and αk1 is lower triangular with

α1ii > 0. αk1 = matrix of α1 containing the first k independent rows.



- We need g(ψ|ft, rt); g(ft|ψ, rt), where ψ = (α0, α1,Σ = diag{σ2
i }).

Assume independence across i and

i) α1i ∼ N(ᾱ1i, ζ1I), α1ii > 0, i = 1, . . . ,K;

ii) α1i ∼ N(ᾱ1i, ζ2I), i = K + 1, . . . , N ;

iii) ν̄i
R̄2
i

σ2
i
∼ χ2(ν̄i);

iv) α0i ∼ N(ᾱ0i, σ̄
2
0i) where ᾱ0i = λ0 +

∑
k λkα1ik, λi are constant and

ᾱ1i, ζ1, ζ2, ν̄i, s̄
2
i , σ̄

2
0i are given.



The conditional posteriors are:

•g(α0i|rt, ft, α1i, σi) ∼ N(α̃0i, σ̃
2
0i); α̃0i =

(σ̄2
0iα̂0i+ᾱ0i(σ

2
i /T ))

(σ2
i /T )+σ̄2

0i
; σ̃2

0i =

(σ2
i σ̄

2
0i)/T

σ2
i /T+σ̄2

0i
, α̂0i =

∑
t(rit − αift).

•g(α1i|rt, ft, α01, σi) ∼ N(α̃1i, Σ̃α1i), Σ̃α1i = (ζ−1
1 I+σ−2

i f∗′i f
∗
i )−1; α̃1i =

Σ−1
α1i

(ᾱ1iζ
−1
1 +f∗

′
i f
∗
i α̂
∗
1iσ
−2
i ) for i = 1, . . . , k and Σ̃α1i = (ζ−1

2 I+σ−2
i f∗′i f

∗
i )−1; α̃1i =

Σ−1
α1i

(ᾱ1iζ
−1
2 + f∗

′
i f
∗
i α̂
∗
1iσ
−2
i ) for i = k + 1, . . . , N where f∗i = f matrix

minus first column, α̂∗1i is OLS estimator of a regression of ri−α0i on the

factors.

•g(ν̃ s̃
2

σ2
i
|rt, ft, αi) ∼ χ2(ν̃) where ν̃ = ν̄ + T ; s̃2

i =
ν̄R̄2

i+TR2
i

ν̃ and R2
i =

1
T

∑
t(rit − α0i − ftα1i)

′(rit − α0i − ftα1i).



- Joint distribution of the data and the factor is

[
ft
rt

]
∼ N

[(
0
α0

)
,

(
I α′1
α1 α1α

′
1 + Σ

)]

- Using the properties of conditional normals:

g(ft|rt, ψ) ∼ N(α′1(α′1α1 + Σ)−1(rt − α0); I − α′1(α′1α1 + Σ)−1α1).

• Put these four conditionals into the Gibbs sampler. Compute Q2 at every

draw. Average over draws.



Example 14 We construct a coincident indicator for the EU business cycle

using quarterly data on real goverment consumption, real private invest-

ment, real employment and real GDP from 1970:1 to 2002:4.

We allow an AR(2) structure on the unknown indicator y0t and and AR(1)

structure on the errors of the model.

Posterior estimates obtained with 10000 draws from the conditionals: 5000

are discarded, one every 5 is used to construct the indicator.

The posterior mean of the two AR oefficients of the factors are 0.711 and

0.025 respectively, the posterior standard errors are 0.177 and 0.134.

The coicident indicator seem to be doing its job: over the sample it shows

(classical) recessions at roughly speaking the same dates the CEPR se-

lected. Furthermore, it indicates that after 2001 a recession took place.
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4.4 Stochastic Volatility Models

- Stochastic volatility models are alternatives to GARCH models to capture

time variations in second moments.

- Produce time varying volatility and leptokurthosis in the endogenous yt.

- They imply that observables driven by two independent shocks.

- Produce a non-linear state space model.



Simplest SV model:

yt = h0.5
t ut ut ∼ N(0, 1) (46)

log ht = ρ0 + ρ1 log ht−1 + σvt vt ∼ iidN(0, 1) (47)

where vt and ut independent.

Variance of yt is changing over time. No level dynamics in yt.

Let ht = (h1, . . . ht); α = (ρ0, ρ1)

The data density is f(yt|α, σ) =
∫
f(yt|ht)f(ht|α, σ)dht.

As in TVC models we treat ht as a parameter whose conditional posterior

needs to found. Once it is found, we use it into the Gibbs sampler, together

with the conditional of α.



How do you compute the conditional posterior of ht?

i) The joint of ht is the product of conditionals of the form g(ht|ht−1, ht+1, α, σ, yt)

and of a marginal.

ii) The conditional densities in i) are mixture of a normal and a log-normal.

g(ht|ht−1, ht+1, α, σ, yt) ∝ f(yt|ht)f(ht|ht−1, α, σ)f(ht+1|ht, α, σ)

∝ 1

h0.5
t

exp{− y
2
t

2ht
} 1

ht
× exp{−(lnht − µt)2

2σ2
h

}

(48)

where µt =
(ρ0(1−ρ1)+ρ1(lnht+1+lnht−1)

1+ρ2
1

, σ2
h = σ2

1+ρ2.



How to draw form such a conditional?

• Approximate the log normal portion with inverted gamma Since the first

portion can also be approximated with an inverted gamma, approximate

the whole kernel with one IG(a, b); where a =
(1−2 exp(σ2))

1−exp(σ2)
+ 0.5 and

b = [(a− 1)(exp(µ+ 0.5σ2)) + 0.5y2
t ]−1.

Example 15 We set ρ0 = 0.0, ρ1 = 0.8 and σ = 1.0.

Table 1: Percentiles of the approximating distributions
5th 25th median 75th 95

Gamma 0.11 0.70 1.55 3.27 5.05
Normal 0.12 0.73 1.60 3.33 5.13



Alternatives:

• (47) is a particular nonlinear Gaussian model. To make life easier (i.e.

to use the KF to evaluate the likelihood), we can transform it into a linear

non-Gaussian state space model.

Set zt = log y2
t + 1.27, xt = log ht; et = log u2

t + 1.27, then (47) is

zt = xt + et

xt+1 = ρ0 + ρ1xt + σvt (49)

where et is non-normal.

- To approximate a non-normal distribution for et we can use a mixture of

normals, i.e. f(et) =
∑
j πjf(et|j) where each f(et|j) ∼ N(µj, σ

2
j), j =

1, . . . J (see e.g. Chib (1996)). Conditional on log ht the model is now

linear and Gaussian.



• The kernel of log ht is −0.5y2
t (exp{− log ht})− (lnht−µt)2

2σ2
h

. Then draw ht

from N(µ∗t , σ
2) where µ∗t = µt−0.5σ and accept the draw with probability

exp{−0.5
y2
t
ht
} (Metropolis step) (here no approximation is taken).

- Can add regression terms to (46). Nothing changes. We can derive the

posterior on these new parameters conditional on (ht, α) and put all of

them in the Gibbs sampler.

- We will show how to do this in the context of a TVC-BVAR.



4.4.1 TVC VAR with stochastic volatility

yt = (I ⊗Xt)αt + ut ut ∼ N(0,Σt)

Σt = B−1HtB
−1′

αt = Gαt−1 + vt vt ∼ N(0,Ω) (50)

where B is a lower triangular matrix with one on the main diagonal, Ht =

diag{hit} and lnhit = lnhit−1 + σiεit; G such that αt is a stationary.

New parameters relative to a standard TVC-VAR: B and ht.

How do you conduct Bayesian estimation of this model? Construct the

conditional posteriors for (Ω, σ2
i , α

t, B, ht) jointly.



Priors:

-g(Ω) ∼ iW (Ω̄−1, ν̄); where Ω̄ = γ ∗ Σ̄a; , ν̄ = dim(α0) + 1.

-g(σ2
i ) ∼ IG(ā, b̄).

-α0 ∼ N(ᾱ, Σ̄a).

-β ∼ N(β̄, Σ̄β), where β are the non zero elements of B.

-g(lnhi0) ∼ N(ln h̄i, Σ̄h) .

Conditional posteriors:



- Ω is IW (Ω̄−1 + (
∑
t vtv

′
t)
−1, ν̄ + T ).

- σ2
i is IG(ā+ T, b̄+

∑
t(lnhit − lnhit−1)2).

- αt is normal, each t. Use the Kalman Filter as in the standard TVC

model to compute the moments.

- For the conditional posterior of β notice that ut = Bet. If et ∼ (0, Ht)

and if ut is known, B can be estimated from equations like

h−0.5
mt umt = βm1(−h−0.5

mt u1t)+. . .+βm,m−1(−h−0.5
mt um−1t)+(h−0.5

mt emt)

(51)

Let Zmt = (−h−0.5
mt u1t, . . . ,−h−0.5

mt umt) and zmt = −h−0.5
mt emt. Then:

βi ∼ N(β̃i, B̃i) with β̃ = B̃−1
i (Z′izi + B̄−1β̄), B̃i = (B̄i + (ZiZ

′
i)
−1).



- Let h−it be the sequence of ht except its i-th element; and let ut =

(u1, . . . ut).

g(hit|h(−i)t, σi, u
t) = g(hit|hit−1, hit+1, u

t, σi) and

g(hit|hit−1, hit+1, u
t, σi) ∝ h−1.5

it exp{− u2
it

2hit

(− lnhit−µit)2

2σc
}; where σc =

0.5σi, µit = 0.5(lnhit+1 + lnht−1).

To draw from this conditional posterior we need to use MH step within the

Gibbs sampler . That is, choose as candidate density h−1
it exp{(− lnhit−µit)2

2σc
}

and accept the draw with probability
(h+
it)
−0.5 exp{−

u2
it

2h+
it

}

(h`−1
it )−0.5 exp{−

u2
it

2h`−1
it

}.
.



- The predictive distribution of future yt’ can be computed using:

g(yt+τ |αt, Ht,Ω, β, σ, yt) = g(αt+τ |αt, Ht,Ω, β, σ, yt)

× g(Ht+τ |αt+τ , Ht,Ω, β, σ, yt)

× f(yt+τ |αt+τ , Ht+τ ,Ω, β, σ, yt)

- A point estimate of the conditional volatility (needed for example in op-

tion pricing formulas) can be obtained using the smoothed density g(ht|yt).

This is obtained using joint draws from g(ht, αt|yt) [since g(ht|yt) =∫
g(ht, |αt, yt)g(αt|yt)dαt] and a non-parametric kernel.



Example 16 (Canova and Gambetti (2009)). Use a TVC-VAR with sto-

chastic volatility to compute the dynamics of the volatility of the monetary

policy shock over the sample 1965-2005. The volatility of this shocks has

been far from constant and was very high at the beginning of the 1980s.



Example 17 (Bayesian-EGARCH model)

yt = x′tα+ h0.5
t ut, ut ∼ N(0, 1) (52)

ht = exp{δ0 + δ2u
2
t−1 + δ1ht−1}. (53)

The likelihood function of this model is:
∏
t h
−0.5
t exp{−0.5(yt−x′tα)2/ht}.

Priors: α ∼ N(ᾱ, σ̄2
α); δ0 ∼ N(δ̄0, σ̄

2
δ0

) . g(δ1, δ2) is diffuse (uniform)
over [0,1] and restricted so that δ1 + δ2 ≤ 1.

Let I(.) be the kernel of a t-distribution with location ψ̃, (the mode of the
posterior), scale H̃−1

ψ (the hessian at the mode) and degrees of freedom
ν̄.

Use an independent Metropolis algorithm to draw from the posteriors:
i.e. draw ψ+ from I(.) and accept the draw with probability equal to

min[
g̃(ψ+|yt)/I(ψ+)

g̃(ψl−1|yt)/I(ψl−1)
, 1].



5 Markov switching models

• Markov switching models have an unobservable state. This can be
treated as ”missing” data and ”generated” with the Gibbs sampler.

yt = x1tα1 + x2tα2(St − 1) + ut ut ∼ N(0, σ2) (54)

St is a two states Markov switching indicator (St = 0 or St = 1). St = 1
is normal state (so that for St = 0 yt = x1tα1 − x2tα2 + ut).

We want the conditional posteriors of (α1, α2, σ
2, St).

Let η11 = p(St = 1|St−1 = 1); η00 = p(St = 0|St−1 = 0), η10 =
1− η00, η01 = 1− η11 where ηij is unknown.

Let θ = (α1, α2, σ
2); yt−1 = (y1, . . . , yt−1, xi1, . . . xit−1, i = 1, 2), St =

(S1, . . . , St) and ψ = (θ, St, ηij).



Priors:

- g(ψ) = g(θ)g(St|ηij)g(ηij) where

- g(θ) ∝ N(ᾱ1, Σ̄1) N(ᾱ2, Σ̄2) IG(ā, b̄).

- g(St|ηij) = η
d00
00 η

d01
01 η

d10
10 η

d11
11 , where dij is the a-priori proportions of i, j

elements.

- g(ηi1, ηi0) ∝ (η
fi1
i1 )(η

fi0
i0 ), i.e ηi. ∼ Beta(fi1, fi0), fij ≥ 1.



Conditional posteriors:

g̃(ψ|y) =
∑T
t=1 f(yt|ψ, yt−1)g(ψ) where f(yt|ψ, yt−1) ∼ N(αxt, σ

2).

Thus, given ψ0 and S0, we can sample the parameters of interest using

Algorithm 5.1 [1.] Sample αi from a normal with variance Σ̃a =
∑
t
x′txt
σ2 +

Σ̄−1)−1, xt = (x1t, x2t), Σ̄ = diag(Σ̄1, Σ̄2) and mean α̃ = Σ̃−1
a (

∑
t
xtyt
σ2 +

Σ̄−1ᾱ); ᾱ = (ᾱ1, ᾱ2)).

[2.] Sample σ2 from an IG with parameters aT = ā + (T − 1)/2 and

bT = b̄+ 0.5
∑
t(yt − α12x1t + α2x2t(St − 1))2.

[3.] Sample ηij from g̃(ηij|ST , y, θ) ∝ (η
f̃i1
i1 η

f̃i0
i0 ); f̃ij = fij + dij, i, j =

1, 2.



[4.] To sample St from g̃(St|y, θ, ηij) we need the following filter algo-

rithm:

- given g(S0) run forward using g(St|θ, yt, ηij) ∝ f(yt|yt−1, θ,St)g(St|θ, yt−1ηij),

f(yt|yt−1, θ,St) ∼ N(αxt, σ
2) where

g(St|θ, yt−1, ηij) =
∑1
St−1=0 g(St−1|θ, yt−1ηij)η(ti,(t−1)j)

; η(ti,(t−1)j)
=

P (St = i|St−1 = j).

- given g(St|yt) run backward i.e. compute g(Sτ |Sτ+1, y
τ , θ, ηij) ∝

g(Sτ |θ, yτηij)η(τ i,(τ+1)j)
.

The approach is similar to the one used in state space model. In fact a

two state Markov chain model is equivalent to an AR(1) model with AR

coefficient η00 +η11−1. Careful: the innovations of this model are binary

and not normal.



Example 18 Use (54) to the study IP fluctuations in EU (Germany, France
and Italy aggregated with GDP weights). yt = yearly change in IP, data
1974.1-2001:4. The conditional mean estimates are α1 = 0.46, α2 = 0.96,
the standard deviations 0.09 and 0.09 respectively. Thus, the growth rate
in expansions two percent higher. Recession probabilities are below.

Year

Pr
ob

ab
ilit

y

1976 1982 1988 1994 2000
0.00

0.25

0.50

0.75

1.00

Recession probabilities



5.1 A More complicated structure

A(`)(yt − µ(St, xt)) = σ(St)0.5ut

all the roots of the A(`) polynomial are outside the unit circle, and St
is a two-state Markov chain with transition matrix ηij. Here, σ(St) =
σ2 − ζ2St; µ(St, xt) = xtβ0 − β1St with ζ2 > 0, β1 > 0.

Let yt = (y1, . . . yt),St = (S1, . . . ,St), α = (A1, . . . Ap); set ω = ζ2

σ2 and
let ψ = (β0, β1, α, σ

2, ω, ηij).

The likelihood function is f(yt|St, ψ) = f(Y p|Sp, ψ)
∏t
τ=p+1 f(yτ |yτ−1, St−1, ψ).

The density of the first p observations is N(xpβ0 + Spβ1, σ
2ΩP ) where

Ωp = WpΣpWp, Σp = A†ΣpA†′ + ete
′
t, Wp = diag{(1 + ωSj)

0,5, j =
1, . . . , p} A† is the companion matrix of A(`), et = (1, 0, . . . , 0)′, a p× 1
vector.



Using the prediction error decomposition of the likelihood we can write:

f(yτ |yτ−1,Sτ−1, ψ) ∝ exp{−0.5σ(Sτ)−1(yτ−yτ |τ−1)2}; where yτ |τ−1 =

(1−A(`))yt+A(`)(xτβ0+β1Sτ). This implies that yt ∼ N(yt|t−1, σ(St)).

The joint density is f(yt, St|ψ) = f(yt|St, ψ)
∏t
τ=2 f(Sτ |Sτ−1)f(S1)

The likelihood of the data is
∫
f(ytSt|ψ)dSt.

Hamilton (1994): get ψ̂ML, compute St conditional on ψ̂ML (i.e. no

uncertainty in ψ̂ considered). That is, given P (Sτ−1, . . . , Sτ−r|yτ , ψ),
compute

P (Sτ , . . . , Sτ−r+1|yτ , ψ) =

1∑
Sτ−r=0

P (Sτ , . . . , Sτ−r|yτ−1, ψ)

∝ P (Sτ |Sτ−1)P (Sτ−1, . . . Sτ−r|yτ−1, ψ)f(yτ |yτ−1, Sτ , ψ)

(55)



where the proportionality factor is f(yτ |yτ−1, ψ) =
∑
Sτ , . . .

∑
Sτ−r

f(yτ , Sτ , . . . Sτ−r|yτ−1, ψ). Since log f(yp+1, . . . yt|yp, ψ) =
∑
τ log

f(yτ |yτ−1, θ), we can find the transition probabilities using P (St|Y t, ψ̂ML).

How do you take into consideration uncertainty in ψ? Priors:

- g(β, σ2) ∝ N(β̄0, Σ̄
−1
β0

) N(β̄1, Σ̄
−1
β1

)I(β1>0) IG(āσ, b̄σ) where I(β1>0) is

an indicator function . We assume (β̄i, Σ̄βi, āσ, b̄σ) to be known.

- g(1 + ω) ∼ IG(āω, 0.5b̄ω)I(ω>−1).

- g(α) ∼ N(ᾱ, Σ̄α)I(stat); where I(stat) is an indicator for stationarity.

- g(ηii) is Beta with parameters fij.

(āσ, āω, b̄σ, b̄ω, φ̄, Σ̄β, fij) are assumed to be known.



Let ψ−x the vector of parameters ψ except for x and let β = (β0, β1).
Then conditional posterior are

g(β|yt,St, ψ−α) ∼ N(β̃, Σ̃β)Iβ1>0

g(σ2|yt,St, ψ−σ2) ∼ IG((āσ + T ), (b̄σ + (y∗ − x∗β0 + S∗β1)2)

g(1 + ω|yt,St, ψ−ω) ∼ IG((āω + T1), (b̄ω +

T1∑
t=1

(
(y∗∗t − x∗∗t β0 − S∗∗t β1

σ
)2)I(ω>−1)

g(α|yt,St, ψ−α) ∼ ψ(α)N(α̃, Σ̃α)I(stat)

g(ηii|yt,St, ψ−η) ∼ Beta(fii + dii, fij + dij) j, i = 1, 2

g(St|yt,S−t) ∝ P (St|St−1)P (St+1|St)
∏
k

f(yk|yk−1,Sk) (56)

where a ∗-variable is computed using Σp = QQ′; e.g. y∗ = Q−1y;

a ∗∗-variable is computed premultiplying the original variables by (1 +

ωSt)
0.5, T1 = is the number of elements in T for which St = 1, ψ(α) =

|Ωp|−0.5 exp{−0.5σ−2(yp−Xpβ)′Ω−1
p (yp−Xpβ)}, and dij is the number

of transitions from state i to state j.



5.2 Markov switching VARs

The simplest specification one can consider is:

A1(`)rt = c(St) + b(St)A2(`)πt + σ(St)ut ut ∼ N(0, 1) (57)

where rt is the nominal rate, πt is price inflation; St has three states with

transition ηij =

 η1 1− η1 0
0.5 ∗ (1− η2) η2 0.5 ∗ (1− η2)
0 1− η3 η3

.

We have restrictions in this model: i) rt dynamics do not depend on the

state; ii) lag distribution on πt is the same across states except for a scale

factor; iii) no possibility to jump from state 1 to state 3 (and viceversa)

without passing through state 2; iv) ηij depends only on three parameters.



Let ψ = vec(A1(`)), vec(A2(`)), c(St), b(St), σ(St), ηi, i = 1, 2, 3). Let It
the information set available at time t.

To estimates of the unobserved state use the following algorithm:

Algorithm 5.2 1. f(rt,St|It−1) = f(rt|St, It−1)f(St|It−1) where f(St|It−1) =

ηij and f(rt|St, It−1) ∼ N(A1(`)−1(c(St) + b(St)A2(`)πt), σ(St)2).

2. f(rt|It−1) =
∑3
i=1 f(rt,St|It−1).

3. f(St|It) =
f(rt,St|It−1)
f(rt|It−1)

.



4. f(St+1|It) =

 f(St = 1|It)
f(St = 2|It)
f(St = 3|It)


′

∗ ηij

5. Repeat 1.-4. until t+1=T.

Given a flat prior on ψ, the posterior is proportional to f(ψ|rt, πt). Then,

the posterior of the parameters and of the states immediate to compute.



If you have a VAR:

ytA0(St) = x′tA+(St) + u′t; xt = lags of yt; ut ∼ N(0, I).

Assume A+(St) = D+(St) + JA0(St) where J = [I, 0]′.

We need restrictions to estimate this model:

(i)A0(St) = Ā0Λ(St) and D+(St) = DtΛ(St).

(ii) A0(St) free and D+(St) = D̄+

(proportional changes in the contemporaneous and lagged coefficients or

state affects only the contemporaneous but not the lagged relationship).

(see Sims and Zha (2006) for details).



5.3 A general Markov Switching specification

General two-state Markov switching model

yt = xtα01 + Ytα02 + u0t if St = 0

= xtα11 + Ytα12 + u1t if St = 1 (58)

xt : q × 1 vector of exogenous, Yt = (yt−1, . . . yt−p)′; ujt, j = 0, 1 iid
∼ (N(0, σ2

j). Let the transition probability for St have elements ηij.

This model has no restriction on the dynamics. For identification set
α02 < α12 and let

- θc = parameters common across states.

- θi = parameters unique to the state.

- θig = parameters restricted to achieve identification.



Then the model can be rewritten as:

yt = wctθc + w0tθ0 + wgtθ0g + u0t if St = 0

= wctθc + w1tθ1 + wgtθ1g + u1t if St = 1 (59)

(wct, wit, wig) = (xt, yt); (θc, θi, θig) = (α0, α1). Priors:

- θc ∼ N(θ̄c, Σ̄c) , θi ∼ N(θ̄i, Σ̄i), θgi ∼ N(θ̄g, Σ̄g)I(rest)

- σ2
i ∼

viϕi
χ2(vi)

- ηii ∼ Beta(f1i, f2i) i = 1, 2,

We assume that θ̄c, Σ̄c, θ̄i, Σ̄i, θ̄g, Σ̄g, vi, ϕi, fji are known and I(rest) in-
dicates identification restrictions.

Take the first max[p, q] observations as given. The conditional posteriors
are:



- θc ∼ N(θ̃c, Σ̃c) θ̃c =
∑T
t=min[p,q] Σ̃−1

c ((
∑T
t=min[p,q]

wcty
′
c,t

σ2
t

+ Σ̄cθ̄c; yc,t =

yt − witθi − wgtθig; Σ̃c = (
∑T
t=min[p,q](

wctw
′
ct

σ2
t

+ Σ̄c))−1.

- θi ∼ N(θ̃i, Σ̃i); θ̃i = (
∑T
t=min[p,q] Σ̃−1

i (
∑Ti
t=1

wity
′
i,t

σ2
t

+ Σ̄iθ̄i); yi,t =

yt − wctθc − wgtθig and Σ̃i = (
∑Ti
t=1

witw
′
it

σ2
t

+ Σ̄i)
−1; Ti = number of

observations in state i.

- θg ∼ N(θ̃g, Σ̃g).

- σ2 (viϕi+R
2
i )

σ2
i

∼ χ2(vi + Ti −max[p, q]).

- ηii ∼ Beta(f1i+di, f2i+Ti−di) where d1(d2) is the number of transitions

from state 1 (2) to state 2 (1).



- Consider St,τ = (St, . . . St+τ−1) and let St,(−τ) be St with St,τ subse-

quence removed. Then g(St,τ |yt, St,(−τ)) ∝ f(yt|St, θ, σ2)g(St,τ |
St,(−τ), ηij), (a discrete distribution with 2k outcomes).

- g(St,τ |St,(−τ), ηij) = g(St,τ |St−1, St+τ , ηij) and f(yt|St, θ) ∝ ∏t+τ−1
j=t

1
σj

exp{−0.5
u2
j

σ2
j
}.

How do we choose initial conditions?

- Assign all the observations to one state. Arbitrarily set the parameters

of the other state equal to the estimates plus (or minus) 0.1.

- Split the points arbitrarily but equally across the two states.
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• Likelihood function for an M variable VAR(q).
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1 Why BVAR?

- VARs have lots of parameters to be estimated. If they are used for

forecasting, their performance is poor.

- Even if they are used for structural analysis, parameter uncertainty is a

concern.

- Impossible to incorporate prior views of the client into classical analysis.

- BVAR are a flexible way to incorporate extraneous (client) information.

They can also help to reduce the dimensionality of the parameter space.



2 Likelihood function of an M variable VAR(q)

Consider an M × 1 VAR model with q lags each (k=Mq coefficients each

equation, Mk total coefficients in total), no constant.

yt = B(L)yt−1 + et et ∼ N(0,Σe)

Letting B = [B1, . . . Bq];Xt = [yt−1, . . . yt−p], β = vec(B), the VAR is:

y = (IM ⊗X)β + e e ∼ (0,Σe ⊗ IT ) (1)

where y, e are MT×1 vectors, IM is the identify matrix, and β is a Mk×1

vector. Conditioning on initial observations yp = [y−1, . . . , y−q]:

L(β,Σe|y, yp) =
1

(2π)0.5MT
|Σe ⊗ IT |−0.5

× exp{−0.5(y − (IM ⊗X)β)′(Σ−1
e ⊗ IT )(y − (IM ⊗X)β)}



Some manipulations of the likelihood function:

(y − (IM ⊗X)β)′(Σ−1
e ⊗ IT )(y − (IM ⊗X)β) =

(Σ−0.5
e ⊗ IT )(y − (IM ⊗X)β)′(Σ−0.5

e ⊗ IT )(y − (IM ⊗X)β) =

[(Σ−0.5
e ⊗ IT )y − (Σ−0.5

e ⊗X)β)]′[(Σ−0.5
e ⊗ IT )y − (Σ−0.5

e ⊗X)β)]

Also (Σ−0.5
e ⊗ IT )y − (Σ−0.5

e ⊗X)β = (Σ−0.5
e ⊗ IT )y − (Σ−0.5

e ⊗X)β̂ +

(Σ−0.5
e ⊗X)(β̂ − β) where β̂ = (Σ−1

e ⊗X ′X)−1(Σ−1
e ⊗X)y. Therefore:

(y − (IM ⊗X)β)′(Σ−1
e ⊗ IT )(y − (IM ⊗X)β) =

((Σ−0.5
e ⊗ IT )y − (Σ−0.5

e ⊗X)β̂)′((Σ−0.5
e ⊗ IT )y − (Σ−0.5

e ⊗X)β̂) +

(β̂ − β)′(Σ−1
e ⊗X ′X)(β̂ − β)



Putting the pieces together:

L(β,Σe) ∝ |Σe ⊗ IT |−0.5exp{−0.5((β − β̂)′(Σ−1
e ⊗X ′X)(β − β̂)

− 0.5[(Σ−0.5
e ⊗ IT )y − (Σ−0.5

e ⊗X)β̂)′

[(Σ−0.5
e ⊗ IT )y − (Σ−0.5

e ⊗X)β̂)]}
= |Σe|−0.5kexp{−0.5(β − β̂)′(Σ−1

e ⊗X ′X)(β − β̂)}
× |Σe|−0.5(T−k)exp{−0.5tr[(Σ−0.5

e ⊗ IT )y

− (Σ−0.5
e ⊗X)β̂)′(Σ−0.5

e ⊗ IT )y − (Σ−0.5
e ⊗X)β̂)]}

∝ N(β|β̂,Σe, X, y, yp)× iW (Σe|β̂, X, y, yp, T − ν) (2)

where tr = trace of the matrix.



• The conditional likelihood of a VAR(q) is the product of Normal density

for β conditional on β̂ and Σe, and an inverted Wishart distribution for

Σe, conditional on β̂, with scale (y − (x⊗ Σe)β̂)′(y − (x⊗ Σe)β̂), where

(T − ν) degrees of freedom; ν = k +M + 1.

• In classical inference L(y|β,Σe, X, yp) is normal (in large samples). Here

β̂ = βols if errors are independent and regressors are the same in each

equation (so that ML=SUR=OLS). Typically, Σe = (Σe)ols = Σ̂, and

thus L(y|β,Σ, X, yp) ≈ (y|β, Σ̂e, X, yp).

• Bayesian inference: combine likelihood with a prior.



i)If the prior is conjugate and the hyperparameters are known (or esti-

mated): closed form solution for the conditional and marginal of β and

marginal of Σe.

ii) If hyperparameters are random, need numerical MC methods to get

conditional and marginal distributions, even if prior is conjugate in general.

What priors conjugate with (2)?



3 Conjugate priors for VARs

1. Normal prior for β with Σe fixed.

2. Diffuse prior for both β and Σe.

3. Normal prior for β, diffuse prior for Σe (semi-conjugate)

4. Normal for β|Σe, inverted Wishart for Σe (conjugate).



Case 1: β = β̄ + v, v ∼ N(0,Σb), where β̄,Σb known.

Then the prior is:

g(β) ∝ |Σb|−0.5exp[−0.5(β − β̄)′Σ−1
b (β − β̄)]

= |Σb|−0.5exp[−0.5(Σ−0.5
b (β − β̄))′Σ−0.5

b (β − β̄)] (3)



Posterior:

g(β|y) ∝ g(β)L(β|y)

= |Σb|−0.5 exp{−0.5(Σ−0.5
b (β − β̄))′Σ−0.5

b (β − β̄)} × |Σe ⊗ IT |−0.5

× exp {(Σ−0.5
e ⊗ IT )y − (Σ−0.5

e ⊗X)β)′(Σ−0.5
e ⊗ IT )y − (Σ−0.5

e ⊗X)β)}
= exp {−0.5(z − Zβ)′(z − Zβ)}
= exp {−0.5(β − β̃)′Z ′Z(β − β̃) + (z − Zβ̃)′(z − Zβ̃)} (4)

where z = [Σ−0.5
b β̄, (Σ−0.5

e ⊗ IT )y]′; Z = [Σ−0.5
b , (Σ−0.5

e ⊗X)]′ and

β̃ = (Z′Z)−1(Z′z) = [Σ−1
b +(Σ−1

e ⊗X ′X)]−1[Σ−1
b β̄+(Σ−1

e ⊗X)′y] (5)



Since Σe and Σb are fixed, the second term in (4) is a constant and

g(β|y) ∝ exp[−0.5(β − β̃)′Z′Z(β − β̃)] (6)

∝ exp[−0.5(β − β̃)′Σ̃−1
b (β − β̃)] (7)

Conclusion: g(β|y) is N(β̃, Σ̃b) where Σ̃b = [Σ−1
b + (Σ−1

e ⊗X ′X)]−1.

- If Σe is unknown, use Σ̂e = 1
T−1ê

′ê in formulas, where êt = yt−(I⊗X)β̂

and β̂ = βols.

- The β̃ obtained with this prior is related to the classical least square

estimator under uncertain linear restrictions.



Model

yt = xtB + et et ∼ (0, σ2)

B̄ = B − ε ε ∼ (0,Σb) (8)

where B = [B1, . . . Bq]
′, xt = [yt−1, . . . yt−q]. Set zt = [yt, B̄]′, Zt =

[xt, I]′, Et = [et, ε]
′. Then zt = ZtB + Et where Et ∼ (0,ΣE),ΣE is

known, t = 1, . . . , T . Thus:

BGLS = (Z′Σ−1
E Z)−1(Z′Σ−1

E z) = B̃ (Theil’ s mixed estimator).

• Prior on VAR coefficients can be treated as a dummy observation added

to the system of VAR equations.

• Prior can treat it as initial condition. If we write the initial observation

as y0 = x0B + e0, then y0 = σ2W−1B̄, x0 = σ2W−1, e0 = σ2W−1ε,

WW ′ = Σb.



Special case 1: Ridge Estimator

Consider a univariate model. If B̄ = 0; Σe = I ∗ σ2
e, Σb = I ∗ σ2

v,

B̃ = (Iq + κ(X ′X)−1)−1B̂ (9)

where κ =
σ2
e
σ2
v

and B̂ = (X ′X)−1(X ′Y ).

- Prior reflects the belief that all the coefficients of an AR(q) are small.

- Posterior estimator increases the smallest eigenvalues of the data matrix

by a factor κ (useful when q is large: (X ′X) matrix ill-conditioned)



Special case 2: Litterman (Minnesota) setup

Multivariate setup. Now β̄,Σβ have special structure: β̄ = 0 except
β̄i1 = 1. Σb = Σb(φ) where:

σij,` =
φ0

h(`)
if i = j

= φ0
φ1

h(`)
∗ (
σi
σj

)2 otherwise (10)

= φ0 ∗ φ2 for exogenous variables (11)

φ0 = tightness on the variance of the first lag; φ1 = relative tightness on
other variables; h(l) = tightness of the variance of lags other than the first
one; (decay parameter); (σiσj

)2scaling factor.

Typically, h(`) regulated by one (decay) parameter. Useful structures:
harmonic decay h(`) = lφ3; geometric decay h(`) = φ−`+1

3 ; linear decay
h(`) = l.
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Logic for this (shrinkage) prior:

- Mean chosen so that the VAR is M a-priori random walks (good for
forecasting).

- Σb very big. Decrease dimensionality by setting Σb = Σb(φ).

- Σb is a-priori diagonal (no expected relationship among equations and
coefficients); φ0 is the relative importance of prior to the data.

- The variance of lags of LHS variables shrinks to zero as lags increase.
Variance of lags of other RHS variables shrinks to zero at a different rate
(governed by φ1). φ1 ≤ 1 relative importance of other variables.

- Variance of the exogenous variables is regulated by φ2. If φ2 is large,
prior information on the exogenous variables diffuse.



Example 1 Bivariate VAR(2) with h(`) = `.

β̄ = [1, 0, 0, 0, 0, 1, 0, 0]

Σb =



φ0 0 0 0 0 0 0 0
0 φ0φ1(σ1

σ2
)2 0 0 0 0 0 0

0 0
φ0
2 0 0 0 0 0

0 0 0
φ0
2 φ1(σ1

σ2
)2 0 0 0 0

0 0 0 0 φ0φ1(σ1
σ2

)2 0 0 0

0 0 0 0 0 φ0 0 0

0 0 0 0 0 0
φ0
2 φ1(σ1

σ2
)2 0

0 0 0 0 0 0 0
φ0
2





- If Σb is diagonal, φ1 = 1 and the same variables belong to all equations,

then β̃=vec(β̃i), where β̃i computed equation by equation. In other setups,

Σb is not diagonal and this result does not hold.

- Let α = (β, vech(Σb)). Minnesota prior makes α = α(φ), φ small

dimension. Better estimates of φ than for α from the data. Better forecasts

than univariate ARIMA models or traditional multivariate SES (see e.g.

Robertson and Tallman (1999)).

- Standard approaches: ”unimportant” lags purged using t-test. (see e.g.

Favero (2001)). Strong a-priori restrictions on what variables and which

lags enter in the VAR. Unpalatable.

- Minnesota prior imposes probability distributions on VAR coefficients (un-

certain linear restrictions). It gives a reasonable account of the uncertainty

faced by an investigator.



• How do we choose φ = (φ0, φ1, φ2, . . .) and (σiσj
)2?

1) Use rules of thumb. Typical default values: φ0 = 0.2, φ1 = 0.5, φ2 =

105, an harmonic specification for h(`) with φ3 = 1 or 2, implying loose

prior on lagged coefficients and uninformative prior for the exogenous vari-

ables.

2) Estimate them using ML-II approach. That is, maximize L(φ|y) =∫
f(β|y, φ)g(β|φ)dβ on training sample.

3) Set up prior g(φ), produce hierarchical posterior estimates. For this we

need MCMC methods, see later.



Example 2 Consider yt = Bxt + ut, B scalar, ut ∼ N(0, σ2
u), σ2

u known

and let B = B̄ + υ where υ ∼ N(0, σ2
υ), B̄ fixed and σ2

υ = q(φ)2, where

φ is a set of hyperparameters.

Then yt = B̄xt + εt where εt = et + υxt and posterior kernel is:

g̀(β, φ|y) =
1

(2π)0.5σuσυ
exp{−0.5

(y −Bx)2

σ2
u

− 0.5
(B − B̄)2

σ2
υ

} (12)

where y = [y1, . . . yt]
′, x = [x1, . . . xt]

′. Integrating B out of (12):

g̃(φ|y) =
1

(2πq(φ)2tr|X ′X|+ σ2
u)0.5

exp{−0.5
(y − B̄x)2

σ2
u + q(φ)2tr|X ′X|

}

(13)

Maximize (13) using gradient or grid methods. Alternative: compute pre-

diction error decomposition of g̀(φ|y) with the Kalman filter; find modal

estimates of φ.



- Recent applications of this method.

i) Giannone, Primiceri, Lenza (2012): employ marginal likelihood to choose

the informativeness of prior restrictions.

Idea: β ∼ N(β̄,Σ ⊗ Ωζ) where ζ is a scalar Σ the covariance matrix of

VAR shocks and Ω a known scale matrix. problem choose ζ in an optimal

way.

ii) Belmonte, Koop, Korobilis (2012): employ marginal likelihood to choose

the informativeness of prior distribution for time variations in coefficients

and in the variance.

iii) Carriero, Kapetanios, Marcellino (2011): employ marginal likelihood to

select the variance of the prior from a grid.



Fully Hierachical VARs

Model is

yt = (I ⊗X)β + e e ∼ N(0,Σ) (14)

β = β̄ + v v ∼ N(0,Σ⊗ Ω ∗ ζ) (15)

ζ = ζ̄ + ε ε ∼ N(0, η) (16)

β̄, Ω, η known (or estimable).

- Need to compute the joint posterior of β, ζ.

- Then g(ζ|β, y,X, yp) =
∫
g(ζ, β|y,X, yp)dβ.

- Typically impossible to compute g(ζ|β, y,X, yp) analytically. One exam-

ple when this is possible is in Canova (2007, chapter 9). Otherwise use

MCMC methods to get draws from this distribution.



Results for other prior structures (Kadiyala and Karlsson (1997)):

Case 2) g(β,Σe) is diffuse, i.e. g(β,Σe) ∝ |Σe|−0.5(M+1). Then

g(β|Σe, y) ∼ N(β̂,Σe ⊗ (X ′X)−1) (17)

g(Σe|y) ∼ iW ((y −XB̂)′(y −XB̂), T − k) (18)

Note: the marginal g(β|y) is a t-distribution with parameters ((X ′X), (y−
XB̂)′(y −XB̂), B̂, T − k), where a B̂ = (X ′X)−1(X ′Y ), β = vec(B).



Case 3): g(β,Σe) is Normal-diffuse, i.e. g(β) ∼ N(β̄, Σ̄b); β̄ and Σb
known, and g(Σe) ∝ |Σe|−0.5(M+1). This prior is semi-conjugate. This

means that the conditional posteriors are of the same form as case 2)

(moments of the normal are different) but the marginal posterior g(β|y) ∝
exp{0.5(β− β̃)′Σ̄−1

b (β− β̃)}×|(y−XB̂)′(y−XB̂)+(B−B̂)′(X ′X)(B−
B̂)|−0.5T has an unknown format.

Case 4): g(β|Σe) ∼ N(β̄,Σe⊗Ω̄) and g(Σe) ∼ iW (Σ̄, ν̄). Then g(β|Σe, y) ∼
N(β̃,Σe ⊗ Ω̃), g(Σe|y) ∼ iW (Σ̃, T + ν̄) where Ω̃ = (Ω̄−1 + X ′X)−1;

Σ̃ = B̂′X ′XB̂+ B̄′Ω̄−1B̄+ Σ̄ + (y−XB̂)′(y−XB̂)− B̃(Ω̄−1 +X ′X)B̃;

β̃ = Ω̃(Ω̄−1β̄ +X ′Xβ̂).

Marginal of β is t with parameters (Ω̃−1, Σ̃e, B̃, T + ν̄).

- In cases 2)-4) there is posterior dependence among the equations (even

with prior independence and φ1 = 1).



• Any additional uncertain restrictions on the coefficients can be tagged

on to the system in exactly the same way as in case 1).

i) Quasi-deterministic seasonality

Example 3 In quarterly data, a prior for a bivariate VAR(2) with 4 seasonal

dummies has mean β̄ = [1, 0, 0, 0, 0, 0, 0, 0|0, 0, 1, 0, 0, 0, 0, 0] and the block

of Σa corresponding to the seasonal dummies has diagonal elements σdd =

θ0θs where θs is the tightness of seasonal information (large θs means little

prior information).



ii) Stochastic seasonality: there is peak in spectrum at ωq = π
2 or π or

both (quarterly data).

Let yt = D(`)et. If there is a peak at ωq : |D(ωq)|2 is large or |B(ωq)|2
small, where B(`) = D(`)−1.

A small |B(ωq)|2 implies
∑∞
j=1Bjcos(jωq) ≈ −1. This is a ”sum-of-

coefficients” restrictions.

In a VAR model: 1 +
∑∞
j=1Bjcos(jωq) ≈ 0, Bj where AR coefficients in

equation j. (see Canova, 1992).

Set Rβ = r + v, r = [−1, . . . ,−1]′ and R is a 2 ×Mk. For quarterly

data, if the first variable of the VAR displays seasonality at π
2 and π:



R =

[
0 −1 0 1 0 −1 . . . 0
−1 1 −1 1 −1 1 . . . 0

]

Add these restrictions to original prior. Use Theil’s Mixed estimator.

iii) Trend restrictions on variable i:
∑∞
j=1Bji ≈ −1;

iv) Cyclical peak restriction
∑∞
j=1Bjicos(jω) ≈ −1 for all ω ∈ (2π

d ± δ),

some d, δ small, i = 1, 2, . . ..

v) High coherence at frequency π
2 in series i and i′ of a VAR implies that∑∞

j=1(−1)jBi′i′(2j) +
∑∞
j=1(−1)jBii(2j) ≈ −2.



Some tips

- If hyperparameters are treated as fixed, we need some sensitivity analysis.

Rule-of-thumb parameters work well for forecasting. Do they work well in

structural estimation?

- You can set prior mean or prior variance as you wish (after all this is a

prior!!). In all cases we consider, the covariance matrix has a Kroneker

product form (easy to compute).

- What are the gains from using fully hierarchical methods (relative to

empirical based or rules of thumb)? Not much is known (see Giannone et

al. (2012), Carriero et al. (2012)).



Example 4 (Forecasting inflation rates in Italy)

- Large changes in the persistence of inflation: AR(1) coefficient is 0.85 in
1980s and 0.48 in 1990s.

- Which model to use? Univariate ARIMA; VAR(4) with annualized three
month inflation, rent inflation and the unemployment rate; two trivariate
BVAR(4) (one with arbitrary hyperparameters 0.2, 1, 0.5; one with optimal
ones =(0.15, 2.0, 1.0)). Report one year ahead Theil-U Statistics.

Sample ARIMA VAR BVAR1 BVAR2

1996:1-2000:4 1.04 1.47 1.09 (0.03) 0.97 (0.02)
1990:1-1995:4 0.99 1.24 1.04 (0.04) 0.94 (0.03)

- Difficult to forecast; VAR poor, BVAR better.

- Results robust to changes of the forecasting sample.



4 Forecasting with BVARs: Fan Charts

Let the VAR be written in a companion form:

Yt = BYt−1 + Et (19)

where Yt and Et are Mq × 1 vectors, B is a Mq ×Mq matrix.

Repeatedly substituting: Yt = BτYt−τ +
∑τ−1
j=0 B

jEt−j or

yt = JBτYt−τ +
τ−1∑
j=0

Bjet−j (20)

where J is such that JYt = yt, JEt = et and J ′JEt = Et.



• Unconditional point forecast for yt+τ

yt (τ) = JBτYt (21)

Use the posterior mean or median or mode,B̃ depending on the loss func-

tion. Recall that if Et is normal, mean, mode and median coincide.

Forecast error is yt+τ − ŷt (τ) =
∑τ−1
j=0 B̃

jet+τ−j + [yt (τ)− ŷt (τ)].



• Unconditional probability distributions for forecasts (fan charts).

Algorithm 4.1 Assume β ∼ N(β̃, Σ̃b). Set P̃P̃ ′ = Σ̃b.

- Draw a normal (0,1) random vector vt and set β` = β̃ + P̃vt

- Construct point forecasts yt(τ), τ = 1, 2, , . . . using β`

- Repeat previous steps L times.

- Construct distributions at each τ using kernel methods and extract per-

centiles (fan charts).

Can also be used for recursive forecasts charts, only difference would be

that β̃ and Σ̃b depend on t (they are recursively estimated).



• ”Average” τ -step ahead forecasts

Construct f (yt+τ | yt) =
∫
f (yt+τ | yt, β) g (β | yt) dβ where f (yt+τ | yt, β)

is the conditional density of yt+τ and g (β | yt) the posterior of β.

- Can calculate this numerically. Draw βl from g (β | yt). Compute

f
(
yt+τ | yt, βl

)
. Average over yt+τ paths.



- Can use the above algorithm to calculate turning point probabilities

i) A upturn turn τ in yt(τ) (typically, GDP) if yt(τ − 2) < yt(τ − 1) <

yt(τ) > yt(τ + 1) > yt(τ + 2).

ii) A downturn at τ in yit(τ) if yt(τ−2) > yt(τ−1) > yt(τ) < yt(τ +1) <

yt(τ + 2).

Implementation: draw β`, construct (yt(τ))`, ` = 1, . . . L; apply above

rule for each τ . The fraction of times for which the condition is satisfied

at each t is an estimate of the probability of an upturn (downturn).



Example 5 Use a BVAR to construct one year ahead bands for inflation,

recursively updating posterior estimates over 1995:4-1998:2.

- The bands are relatively tight: errors at the beginning. Distribution of

one year ahead forecasts (based on 1995:4) also tight.

- Sample 1996:1 2002:4: 4 downturns. Median forecasted downturns 3;

Pr(n≤ 3)= 0.9, Pr(n> 4)= 0.0.



Recursive forecasts
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5 DSGE priors for VARs

Log linearized solution of a DSGE model:

y1t+1 = Γ(θ)y1t + et+1 (22)

y2t = Π(θ)y1t (23)

y1t are exogenous and endogenous (d1×1) states; y2t are endogenous (d2×
1) controls; et+1 are the innovations in the shocks; Γ(θ),Π(θ) function of
θ, structural parameters. Letting yt = [y2t, y1t]

′ the system is:[
0 0
0 Id1

]
yt+1 =

[
−Id2

Π(θ)
0 Γ(θ)

]
yt +

[
0

et+1

]
(24)

or

B0yt+1 = B1(θ)yt + ut+1

• (Log-)linear DSGE solution is a restricted VAR!



Given g(θ), the model implies priors g(Π(θ)) and g(Γ(θ)) for the decision

rule coefficients and thus a prior β = [B(`)].

• A DSGE model implies restrictions on the VAR coefficients. It can be

used to link (in a hierarchical fashion) the VAR coefficients β and DSGE

parameters θ).

Note: if θ ∼ N(θ̄,Σθ), vec(Π(θ)) ∼ N(vec(Π(θ̄)),
∂vec(Π(θ))

∂θ Σθ
∂vec(Π(θ))

∂θ
′);

vec(Γ(θ)) ∼ N(vec(Γ(θ̄)),
∂vec(Γ(θ))

∂θ Σθ
∂vec(Γ(θ))

∂θ
′).

Example 6 Consider a VAR(q) yt+1 = B(`)yt + ut. From (24) g(B1) is

normal with mean BG0 B1(θ̄), BG0 is the generalized inverse of B0 and vari-

ance Σb = βG0 Σb1
βG
′

0 ; βG0 = vec(BG0 ); Σb1
is the variance of vec(B1(θ)).

A DSGE prior on B`, ` ≥ 2 has a dogmatic form: mean zero and zero

variance.



If there are unobservables, want a prior for VAR with observables only.

Example 7 (RBC prior: Ingram and Whiteman, 1994). A RBC model with
utility function U(c, n) = log(ct) + log(1− nt) implies[

Kt+1
lnAt+1

]
=

[
γkk γka

0 ρ

] [
Kt

lnAt

]
+

[
0

et+1

]
≡ Γ

[
Kt

lnAt

]
+ ut+1

(25)[
ct nt yt it

]′
= Π

[
Kt

lnAt

]
(26)

Kt is the capital stock, At a technological disturbance; ct consumption,
nt hours, yt output and it investments.

Here Π and Γ are function of α, the share of labor in production; β the dis-
count factor, δ the depreciation rate, ρ the AR parameter of the technology
shock. Let y1t = [ct, nt, yt, it]

′ and y2t = [kt, lnAt]
′, θ = (α, β, δ, ρ).



A VAR for y1t only is y1t = H(θ)y1t−1+ε1t where H(θ) = Π(θ)Γ(θ)(Π(θ)′

Π(θ))−1Π(θ); ε1t = Π(θ)ut and (Π(θ)′Π(θ)−1)Π(θ) is the generalized

inverse of Π(θ).

If θ ∼ N(


0.58

0.988
0.025
0.95

 ,


0.0006
0.0005

0.0006
0.00015

), the model

implies that the prior mean forH(θ) is ¯H(θ) =


0.19 0.33 0.13 −0.02
0.45 0.67 0.29 −0.10
0.49 1.32 0.40 0.17
1.35 4.00 1.18 0.64

;

(Note substantial feedback from C, Y, N to I in the last row).



The prior variance for H(θ̄) is ΣH = ∂H
∂θ Σθ

∂H
∂θ
′.

• A Minnesota-style prior for y1t consistent with the RBC is

- Coefficient on y1t−1 ∼ N( ¯H(θ), φ0 ∗ ΣH).

- Coefficients on y1t−j ∼ N(0,
φ0
h(`)
∗ ΣH), j > 1 where φ0 is a tightness

parameter and h(l) a decay function. Note that here φ1 = 1.

• Move from statistical to economic priors.



Del Negro and Schorfheide (2004):

- DSGE model provides more than a ”form” of the prior restrictions (zero

mean on lags greater than one, etc.). It gives quantitative info.

- Exploit the idea that prior is an additional set of equations that can be

appended to a model.

- Can make the DSGE prior more or less informative for the VAR depending

on how much DSGE data is appended to the actual data.

- Setup a hierarchical model that allows us to compute the posterior of

DGSE and VAR parameters jointly.



Idea of the approach:

- Given θ, simulate data from model. Append simulated data to actual
data and estimate a VAR on extended data set.

- Estimates of the VAR coefficients and of the covariance matrix will reflect
sample and model information. The weight will be given by the precision
of the two types of information.

- Precision of data information depends on T (which is fixed). Precision of
simulated information depends on T1, which can be chosen by the investi-
gator. By varying κ = T1

T , one can make the prior more or less informative
and thus assess of important the model is for the data.

- The model has restrictions. If κ large is optimal it means that the
restrictions imposed by the model are not violated. If κ is small, restrictions
are violated (test of the model).



• Let g(θ) =
∏k
i=1 g(θk) be the prior on DGSE parameters.

• The DSGE model implies a prior g(β|θ) ∼ N(β̄(θ), Σ̄b(θ)); Σe ∼ IW (T1Σ̄(θ), T1−
k) on the VAR parameters of the decision rule where

β̄(θ) = (Xs′Xs)−1(Xs′ys)

Σ̄b(θ) = Σe(θ)⊗ (T1X
s′Xs)−1

Σ̄(θ) = (ys
′
ys − (ys

′
Xs)β̄(θ)) (27)

ys simulated data, Xs lags in the VAR of simulated data, T1 =length of

simulated data.

Let κ = T1
T control the relative importance of two types of information.

κ→ 0 (κ→∞) actual (simulated) data dominates.

• The VAR implies a density f(β,Σu|y).



The model has a hierarchical structure: f(β,Σe|y)g(β|θ)g(Σe|θ)g(θ). Since

likelihood and the prior are conjugate (see the Normal-IW assumption

above); the conditional posteriors for VAR parameters are available in an-

alytical format.

• g(β|θ, y,Σe) ∼ N(β̃(θ), Σ̃b(θ)); g(Σe|θ, y) ∼ iW ((κ+T )Σ̃(θ), T+κ−k)

where

β̃(θ) = (T1X
s′Xs +X ′X)−1(T1X

s′ys +X ′y)

Σ̃b(θ) = Σe(θ)⊗ (T1X
s′Xs +X ′X)−1

Σ̃(θ) =
1

(1 + κ)T
[(T1y

s′ys + y′y)− (T1y
s′Xs + y′X)α̃(θ)] (28)

• If we pick a θ we can immediately construct these posteriors.



• g(θ|y) ∝ g(θ)×|Σe|−0.5(T−M−1) exp{−0.5tr[Σ−1
e (Y−Xβ)′(Y−Xβ)}×

|Σe(θ)|−0.5(T1−M−1) exp{−0.5tr[Σe(θ)−1(Y s−Xsβ(θ))′(Y s−Xsβ(θ))}.
This conditional posterior is non-standard: need Metropolis-Hasting step

to calculate it.

- Use g(θ|y), g(β|θ, y,Σe), g(Σe|θ, y) in the Gibbs sampler to obtain a

marginal for β.

- All posterior moments in (28) are conditional on κ. How do we select it?

i) Use Rules of thumbs (e.g. κ = 1, T observation added). ii) Maximize

the marginal likelihood.



Example 8 (sticky price model) In a basic NK sticky price-sticky wage

economy, set η = 0.66, πss = 1.005, Nss = 0.33, c
gdp = 0.8, β = 0.99, ζp =

ζw = 0.75, a0 = 0, a1 = 0.5, a2 = −1.0, a3 = 0.1. Run a VAR with out-

put, interest rates, money and inflation using actual quarterly data from

1973:1 to 1993:4 and data simulated from the model conditional on these

parameters. Overall, only a modest amount of simulated data (roughly, 20

data) should be used to set up a DSGE prior.

ML: Sticky price sticky wage model.
κ = 0 κ = 0.1 κ = 0.25 κ = 0.5 κ = 1 κ = 2

-1228.08 -828.51 -693.49 -709.13 -913.51 -1424.61



6 Structural BVARs

So far we set priors for reduced form VAR parameters. Can we set directly
priors for structural VARs?

B0yt − B(`)yt−1 = et et ∼ (0, I) (29)

yt −B(`)yt−1 = ut ut ∼ (0,Σ) (30)

B(`) = B1L+ . . .BqLq; B0 non singular; B(`) = B−1
0 B(`); Σ = B−1

0 B
−1′
0 .

- (29) is a structural system, while (30) is the corresponding VAR.

- Why do we want prior for (29)? We may have a-priori restrictions on the
structural dynamics (output responses to a monetary shock have a hump).

- We may have a-priori restrictions on the structural impacts effects of
shocks (output responses to a monetary shocks take time to materialize).



What priors do you use for B0 and B(`)? How do you draw from their

posterior?

• Standard approach (Canova (1991), Gordon and Leeper (1994)): Use

Normal- inverted Wishart prior for reduced form coefficients (B(`),Σ).

This implies a Normal- inverted Wishart posterior. Draw B(`)l,Σl) and

use identification restrictions to draw structural parameters i.e. Σl =

(B−1
0 )l(B−1′

0 )l; Blj = Bl0Blj.

- Procedure is OK for just-identified systems. For overidentified systems it

does not take into account the extra restrictions.

• Sims and Zha (1998) work directly with the structural model (valid for

both just-identified and over-identified systems). Staking the observations

in (29):



Y B0 −XB+ = E (31)

where Y is a T ×M , X is a T ×k matrix of lagged variables; E is a T ×M
matrix. Setting Z = [Y,−X]; B = [B0,B+]′, the likelihood is:

L(B|y) ∝ |B0|T exp{−0.5tr(ZB)′(ZB)} ∝ |B0|T exp{−0.5b′(I ⊗ Z′Z)b}
(32)

where b = vec(B) is a M(k + M) × 1 vector; b0 = vec(B0) is a M2 × 1
vector; b+ = vec(B+) is a Mk×1 vector, I a (Mk×Mk) identity matrix.

Priors:
- g(b) = g(b0)g(b+|b0), where g(b0) may have singularities (due to zero
identification restrictions).
- g(b+|b0) ∼ N(h(b0),Σ(b0)).

•Make prior on dynamics conditional on prior for contemporaneous effects.



Posterior kernel:

g(b|y) ∝ g(b0)|A0|T |Σ(b0)|−0.5 exp{−0.5[b′(I ⊗ Z′Z)b}
exp{(b+ − h(b0))′Σ(b0)−1(b+ − h(b0))} (33)

- Since b′(I⊗Z′Z)b = b′0(I⊗Y ′Y )b0 +b′+(I⊗X ′X)b+−2b′+(I⊗X ′Y )b0,

conditional on b0, the quantity in the exponent is quadratic in b+, thus

- g(b+|b0, y) ∼ N(b̃0, Σ̃(b0)−1) where b̃0 = ((I⊗X ′X)+Σ(b0)−1)−1((I⊗
X ′Y )b0 + Σ(b0)−1h(b0)); Σ̃(b0) = ((I ⊗X ′X) + Σ(b0)−1).

- g(b0|y) ∝ g(b0)|B0|T |(I ⊗X ′X)Σ(b0) + I|−0.5

exp{−0.5[b′0(I ⊗ Y ′Y )b0 + h(b0)′Σ(b0)−1µ(b0)− b̃0Σ̃(b0)b̃0}

- g(b0|y) has unknown format!! In addition, dim(b+) = M(Mq + 1) so

the calculation of g(b+|b0, y) is complicated.



To simplify the computations: Choose Σ(b0) = Σ1 ⊗ Σ2 and restrict

Σ1 = ϕ ∗ I.

Then even if Σ2i 6= Σ2j, independence across equations is guaranteed since

(I ⊗X ′X) + Σ(b0)−1) ∝ (I ⊗X ′X) + diag{Σ21, . . .Σ2m} = diag{Σ21 +

X ′X, . . .Σ2m + X ′X}. This means that we can proceed to estimate the

equations one by one, without worrying about simultaneity.

In general, if had we started from VAR then Σ̃(b0) = (Σe⊗X ′X)+Σ(b0)−1

(correlation across equations).



• Structural Minnesota priors.

Given B0, let yt = B(`)yt−1 + C + et. Let β = vec[B1, . . . Bq, C]. Since

β = [B+B−1
0 ]; E(β) = [Im, 0, . . . 0] and var(β) = Σb imply

E(B+|B0) = [B0, 0, . . . , 0]

var(B+|B0) = diag(Σ+(ijl)) =
φ0φ1

h(`)σj
i, j = 1, . . .m, ` = 1, . . . , p

= φ0φ2 otherwise (34)

where i stands for equation, j for variable, ` for lag.



(i) No distinction own vs. other coefficients (in SES no normalization with

respect to one RHS variable).

(ii) Scale factor differ from reduced form Minnesota prior since var(vt) = I.

(iii) Prior for constant independently parametrized.

(iv) Because β = vec[B+B−1
0 ] there is a-priori correlation in the coefficients

across equations (since they depend on the beliefs about B0). For example,

if Σ2i = Σ2 ∀i, g(β|B0) is normal with covariance matrix Σe ⊗ Σ2 (see

Kadiyala and Karlsson (1997)).



• Additional restrictions for a structural system:

- Average value of lagged yi’s (say ȳio) is a good predictor of yit for each

equation. Then YdB0 − XdB+ = V where Yd = {yij} = φ3ȳ0i if i = j

and zero otherwise, i, j = 1, . . .M ; Xd = {xis} = φ3ȳ0i if i = j, s < k

and zero otherwise i = 1, . . .M, s = 1, . . . k.

Note that as φ3 →∞, this restriction implies model in first difference.

- Initial dummy restriction: suppose YdcB0 − XdcB+ = E where Ydc =

{yj} = φ4ȳ0j if j = 1, . . .M Xdc = {xs} = φ4ȳ0j if s < k − 1 and = φ4

if s = k.

If φ4 → ∞, the dummy observation becomes [I − A(1)]ȳ0 +A−1
0 C = 0.

If C 6= 0, this implies cointegration.



• How do we choose g(b0).

b0 contains contemporaneous structural parameters. We need to make a

distinction between soft vs. hard restrictions.

- Hard restrictions give you identification (possibly of blocks of equations).

- Select the prior for non-zero coefficients as non-informative i.e. if bn0 are

the non-zero elements of b0, g(bn0 ) ∝ 1 or normal.

Example 9 Suppose M(M − 1)/2 restrictions, e.g. B0 upper triangular.

One prior could be to set g(b̄0) to be independent normal with zero mean

so E(b̄0(ij)b̄0(kh)) = 0 - no relationship across equations. The variance

σ2(b̄0(ij)) = (
φ5
σi

)2 i.e. all the elements of equation i have the same

variance.



An alternative would be to use a Wishart prior for Σ−1
e , i.e. g(Σ−1

e ) ∼
IW (ν̄, Σ̄) where ν̄ are dof and Σ̄ the scale. If ν̄ = M+1, Σ̄ = diag (

φ5
σi

)2,

then a prior for b̄0 is the same as before except for the Jacobian |∂Σ−1
e

∂B0
| =

2m
∏m
j=1 a

j
jj. Since likelihood contains a term |B0|T =

∏m
j=1 b

T
jj, ignoring

the Jacobian makes no difference if T >> m.

How do we draw samples from g(b0|y)? Need MC techniques:

Algorithm 6.1 [1.] Calculated mode of g(b0|y) and the Hessian at the

mode.

[2.] Draw b0 from a normal centered at mode with covariance equal to the

Hessian at the mode or a t-distribution with the same mean and covariance

and ν̄ = M + 1 degrees of freedom.



[3.] Use importance sampling to weight the draw (use ratio IRl =
gAP (bl0)

ξ(bl0)
),

and check the magnitude of IR over l = 1, . . . , L.

Alternative: MH algorithm with a normal or a t-distribution as the candi-

dates or a restricted Gibbs (Waggoner-Zha (2003)).

What if the identification restrictions are of non-contemporaneous form?

Same idea. Long run restrictions imply special form of B0. Sign restrictions

Σe = PDP ′ = P̃ P̃ ′ and B0 = P̃−1.



Extensions:

- VAR with exogenous variables: e.g. Oil prices in a VAR for domestic

variables.

- partial VARs (different lag lengths) (special case of 1).

- VAR with block exogenous variables and overidentifying restrictions in

some block, e.g. a two country VAR model where one is block exogenous.

General structure for last case

Bi(`)yt = vit i = 1, . . . , N (35)



i is the number of blocks and M =
∑
iMi and Mi is the number of

equations in each block. eit is a Mi × 1 vector for each i and Bi(`) =

(Bi1(`), . . . ,Bin(`)). Let B0 = diag{Bii(0)} and rewrite (35) as

B−1
0 Bi(`)yt = B−1

0 vit

or

yit = Bi(`)yit−1 + eit (36)

where Bi(`) = (0−, Ii, 0+) − B−1
ii (0)Bi(`) 0− is a Mi ×Mi− matrix of

zeros of dimension , 0+ is a Mi ×Mi+ matrix of zeros, where Mi− = 0

for i = 1 and Mi− =
∑i−1
j Mj for i = 2, . . . , n Mi+ = 0 for i = n and

Mi+ =
∑n
j=i+1Mj for i = 1, . . . , n− 1 and where E(ete

′
t) = diag{Σii} =

diag{Bii(0)−1Bii(0)−1′} .

Stack all the observations to have

yi = zibi + Ei (37)



where yi and vi are T ×mi matrices, xi is a T × k matrix and k is the

number of coefficients in each block, bi = vec(Bi), zi = (I ⊗ Xi) The

likelihood is

L(bi|y−q . . . , y0, y1, . . . , yT ) ∝
n∏
i=1

|Bii(0)|T exp{−0.5tr[(Si(bi)Bii(0)′Bii(0)]}

∝
n∏
i=1

|Bii(0)|T exp{−0.5tr[(Si(b̂i)Bii(0)′Bii(0)

+ (bi − b̂i)′x′ixi(bi − b̂i)Bii(0)′Bii(0)]} (38)

where b̂i = (z′izi)
−1(z′iyi) and Si(bi) = (yi − zibi)′(yi − zibi).

Suppose g(Bii(0), bi) ∝ |Bii(0)|k. The posterior are

g(Bii(0)|y) ∝ |Bii(0)|T exp{−0.5tr[(Si(b̂i)Bii(0)′Bii(0)]} (39)

g(b|Bii(0), y) ∼ N(b̂, (Bii(0)′Bii(0))−1 ⊗ (X ′iXi)
−1) (40)



where b̂i = vec(B̂i). To draw posterior sequences for b,Bii(0) need to

distinguish whether the system is just or over-identified.

i) If just-identified (e.g. Bii(0) is the Choleski factor of Σii), then there

is one-to-one mapping between the prior and the posterior of Bii(0) and

for Σii. So we can draw from (39) or from the posterior of Σii and use

identification restrictions to get a draw for Bii(0).

ii) If Bii(0) is overidentified, then we need to draw Bii(0)l, l = 1, . . . J

from the marginal posterior directly and use, e.g.



Algorithm 6.2 [1.] Draw Bii(0)l, l = 1, . . . J from N(B ∗ii (0), HB∗ii
)

where B∗ii(0) is the mode of the posterior and H(B∗ii)
Hessian at the mode.

[2.] Draw bl from g(bi|Bii(0)l, y) and calculateBi(`)
l = Bii(0)l(0−, Ii, 0+)−

Bi(`)l.

[3.] Calculate any function h(Bi(`)
l), weighting the Bi(`)

l with the im-

portance ratio IRl =
g(Bi(`)

l)
N(Bi(`)l

).



An importance sampling algorithm can be inefficient when the degree of

simultaneity is high and the number of degrees of freedom is small since

the posterior of the parameters can be far from a normal (or even a t-

distribution).

- Alternative 1: Use the Gibbs sampler of Waggoner and Zha (2003).

- Alternative 2: Use a Metropolis algorithm to draw Bii(0)l, l = 1, . . . J .

That is, rather than step [1.] of the previous algorithm use the following:

[1’.] Draw Bii(0)l, l = 1, . . . J from Bii(0)† = Bii(0)l−1 + uii where

var(uii) ∝ H(B∗ii)
and accept it if

g(Bii(0)†|y)
g(Bii(0)l−1|y)

> U(0, 1) random variable.

Otherwise set Bii(0)l = Bii(0)l−1.



Example 10 (Transmission of monetary shocks) Use US data, 1960:1 to

2003:1 for the log IP, log of CPI, Fed Funds rate and the log of M2.

Overidentify the system: the central bank only looks at money when manip-

ulating the nominal rate, i.e. contemporaneous impact matrix is Choleski

form except (3,1), (3,2) elements which are zero.

g(b̄i) ∼ N(0, 1). Use an importance sampling to draw from a normal

centered at the mode and with dispersion equal to Hessian at the mode.

Importance ratio: in 17 out of 1000 draws weight is large.
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• Both output and money persistently decline in response to an increase

in interest rates. The response of price initially close to zero but turns

positive and significant after about 5 months (price puzzle?).

• Monetary shocks explain 4-18% of var(Y ) at the 48 month horizon and

0-7% of var(P ).



7 Bayesian panel data analysis

7.1 Univariate dynamic panels

yit = %i +B1i(`)yit−1 +B2i(`)xt + eit eit ∼ (0, σ2
i ) (41)

Bji(`) = Bji1`+Bji2`
2+. . . Bjiqj`

qj , Bjil is a scalar, %i is the unit specific

fixed effect, xt are exogenous variables, common to all units. Assume

E(eitejτ) = 0 ∀i 6= j, ∀t, τ .

- Interesting quantities that can be computed: bi1(1) = (1 − B1i(1))−1,

bi2(1) = (1 − B1i(1))−1B2i(1) (long run effects), bi1(`), bi2(`) (impulse

responses).



- Stack the T observations to create yi, x, ei, 1. Let Xi = (yi, x, 1), X =

diag{Xi}, β = [B1, . . . BN ]′; Bi = (%i, B1i1, . . . , B1iq1
, B2i1, . . . , B2iq2

),

Σi = σ2
i ∗ IT ,Σ = diag{Σi} then:

y = Xβ + e e ∼ (0,Σ) (42)

y = (y′1, . . . y
′
N)′, e = (e′1, . . . e

′
N)′.

- Comparing (42) with (1) one can see dynamic panel has same structure

as a VAR but Xi are unit specific and the covariance matrix has a (block)

heteroschedastic structure.

- Likelihood is of (42) is still the product of a normal for β, conditional

on Σ, and N inverted gammas for σ2
i . Note that since var(e) is diagonal,

ML=OLS equation by equation.



What kind of priors could be used?

- Semi-conjugate prior: g(β) ∼ N(β̄, Σ̄b) and g(σ2
i ) ∼ IG(0.5a1, 0.5a2).

- Exchangeable prior: g(β) =
∏
i gi(β); βi ∼ N(β̄, σb), where σb measures

a-priori heterogeneity. With exchangeability β̃ can be computed equation

by equation.

- Exchangeable prior on the difference (Canova and Marcet (1998)): βi−
βj ∼ N(0,Σb). Σb has a special structure.

- Depending on the choice of prior, the posterior will reflect prior and

sample or prior and pooled info (see Zellner and Hong, 1989).



Example 11 (Growth and convergence)

Yit = %i +BiYit−1 + eit eit ∼ N(0, σ2
i ) (43)

where Yit = log(yityt
), yt is the average EU GDP.

Let βi = (%i, Bi) = β̄ + vi, where vi ∼ N(0, σ2
b). Assume σ2

i given, β̄

known (if not get it from pooled regression on (−τ , 0)) and treat σ2
b fixed.

Let κi,j =
σ2
i

σ2
bjj

, j = 1, 2 be the relative importance of prior and sample

information. Choose loose prior (κi,j = 0.5).

Use income per-capita for 144 EU regions from 1980 to 1996 to construct

SSi = %̃i
1−B̃Ti
1−B̃i

+ B̃T+1
i zi0 where %̃i, B̃i are posterior mean, and CVi =

1− B̃i (the convergence rate).





-Mode of CVi distribution is 0.09: fast catch up. The highest 95% credible

set is large (from 0.03 to 0.45).

- Distribution of SS has many modes (at least 2).

What can we say about the posterior of the cross sectional mean SS?

Suppose g(SSi) ∼ N(µ, ζ2). Assume g(µ) ∝ 1 and ζ = 0.4.

- g(µ|y) combines the prior and the data and the posterior of g(SSi|y)

combines unit specific and pooled information.

- µ̃ = −0.14 (highly left skewed distribution); variance is 0.083; 95 percent

credible interval is (-0.30, 0.02).



7.2 Endogenous grouping

• Are there groups in the cross section? Convergence clubs; credit con-

strained vs non-credit constrained consumers, large vs. small firms, etc.

Classifications typically exogenous (see e.g., Gertler and Gilchrist (1991)).

- Want an approach that simultaneously allows for endogenous cross sec-

tional grouping and Bayesian estimation of the parameters.

- Idea: if units i and j belong to a group, coefficients αi and αj have same

distribution. If not, they have different distributions.

- Basic problem: what ordering of the cross section gives grouping? There

are ℘ = 1, 2, . . . N ! orderings. How do you find groups?



• Suppose ς = 1, 2, . . . , ς̄ breaks, ς̄ given. For each ς + 1 groups let the

model be:

yit = %i +B1i(`)yit−1 +A2i(`)xt−1 + eit (44)

β
j
i = β̄

j
+ vj (45)

where i = 1, . . . , nj(℘); nj(℘) is the number of units in group j, given

the ℘-th ordering,
∑
j n

j(℘) = N , each ℘ and eit ∼ (0, σ2
ei

), vj ∼ (0, Σ̄j)

βi = [%i, B1i1, . . . , B1iq1
, B2i1, . . . , , B2iq2

]. Let hj(℘) be the location of

the break for group j = 1, . . . , ς + 1.

Alternative to (45): ς̄ = 0 and exchangeable structure ∀i, i.e

βi = β̄ + vi i = 1, . . . , N vi ∼ N(0, Σ̄i) (46)



Want to evaluate (44)-(45) against (44)-(46) and estimate (β, σei) jointly
with optimal (℘, ς, hj(℘)) (ordering, number of breaks, location of break).

- Given an ordering ℘, the number of breaks ς, and the location of the
break point hj(℘), rewrite (44)− (45) as:

Y = Xβ + E E ∼ (0,Σe) (47)

β = Ξβ0 + V V ∼ (0,ΣV ) (48)

where ΣE is (NTM)× (NTM) and ΣV = diag{Σi} is (Nk)× (Nk).

- Specify priors for (β0,Σe,ΣV ). Construct posterior estimates for (β,ΣE),
(β0,ΣV ) jointly with posterior estimates of (℘, ς , hj(℘)). Problem com-
plicated!

- Split the problem in three steps. Use Empirical Bayes techniques to
construct posteriors estimates of β, conditional on optimal (℘, ς , hj(℘))
and estimates of (β0,ΣV ,ΣE).



• Step 1: How do you compute ℘, ς, hj(℘) optimally?

a) Given (β0, ΣV , Σe), and a ℘, examine how many groups are present

(select ς).

b) Given ℘ and ς̂, check for the location of the break points (select hj(℘)).

c) Iterate on the first two steps, altering ℘.

Conclusion: selected submodel maximizes the predictive density over or-

derings ℘, groups ς + 1 and break points hj(℘).

Let: f(Y |H0) be the predictive density under cross sectional homogeneity.



Let f(Y |Hς ;hj(℘), ℘) =
∏ς+1
j=1 f(Y j|Hς , hj(℘), ℘) the predictive density

for group j, with ς break points at location hj(℘), using ordering ℘.

Define: - Iς : set of possible break points when there are ς groups

- J : set of possible orderings of the cross section.

- π
j
h(℘): (diffuse) prior of a break at location h for group j of ordering ℘.

• f−(Y |Hς , ℘) ≡ suphj(℘)∈Iς f(Y |Hς , hj(℘), ℘) (max w.r. to break)

• f†(Y |Hς) ≡ sup℘∈J f
−(Y |Hς , ℘) (max w.r. to break and ordering)

• f0(Y |Hς , ℘) ≡ ∑hj(℘)∈Iς π
j
h(℘)f(Y |Hς , hj(℘), ℘) (average).



To test for breaks (set ς̄ << (N/2)0.5).

1) Given ℘,H(0) no breaks, H(1) ς breaks:

PO(℘) =
π0f

0(Y |H0)∑
ς πςf

0(Y |Hς , ℘)
(49)

π0 (πς) the prior probability that there are 0 (ς) breaks.

2) Given ℘,H0 : ς − 1 breaks H(1) : ς breaks.

PO(℘, ς − 1) =
πς−1f

0(ς−1)(Y |Hς−1, ℘)

πςf0(ς)(Y |Hς , ℘)
(50)

Given ς, assign units to j i.e find f−(Y |Hς̄ , ℘). Alter ℘ to get f†(Y |Hς̄).



Questions:

i) Can we proceed sequentially to test for (cross sectional) breaks? Bai

(1997) OK consistent. But estimated break point is consistent for any of

the existing break points, location depends on the ”strength” of the break.

ii) How to maximize predictive density over ℘ when N is large? Do we

need N permutations? No, much less. Plus use economic theory to give

you interesting ordering.



• Step 2: Given (℘, ς, hj(℘)) estimate [β′0, vech(ΣV )′, vech(Σe)′]′ using

f† on a training sample.

If the e’s are normally distributed, then

β̂
j
0 =

1

nj(℘)

nj(℘)∑
i=1

βiols

Σ̂j =
1

nj(℘)− 1

nj(℘)∑
i=1

(βiols − β̂
i
)(βiols − β̂

i
)′ − 1

nj(℘)

nj(m)∑
i=1

(XiX
′
i)
−1σ̂2

i

σ̂2
i =

1

T − k
(Y ′i Yi − Y ′iXiβiols) (51)

j = 1, . . . , ς + 1; xi regressors and yi dependent variables for unit i of

group j , and β
j
ols = (xj

′
xj)−1(xj

′
yj) is the OLS estimator for unit i (in

group j).



• Step 3: Construct posterior estimates of β conditional on all other pa-

rameters.

- EB posterior point estimate β̂ = (X ′Σ̂−1
E X+Σ̂−1

V )−1(X ′Σ̂−1
E Y+Σ̂−1

V Aβ̂0).

- Alternatively, joint estimation prior and posterior if e’s and the v’s are

normal and the prior on hyperparameters diffuse (see Smith 1973).



Example 12 (Convergence clubs). The posterior in example 11 is multi-

modal. Are there at least two convergence clubs? Where is the break

point? How different are convergence rates across groups?

- Examine several ordering. More or less they give the same result. Best

use initial conditions of relative income per-capita.

- Set ς̂ = 4 and sequentially examine ς against ς + 1 breaks starting from

ς = 0. Three breaks, PO ratios of 0.06. 0.52, 0.66 respectively. Evidence

in favour of two groups.

- Figure reports the predictive density as a function of the break point (for

(ς = 1) and (ς = 0). Units up to 23 (poor, Mediterranean and peripheral

regions in the EU) belong to the first group and from 24 to 144 to the

second.



The average CV of two groups are 0.78 and 0.20: faster convergence to

below average steady state in the first group. Posterior distributions of the

steady states for the two groups distinct.
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8 Bayesian pooling

- Often in cross country studies we have only a few data points for a

moderate number of countries.

- If dynamic heterogeneities are suspected, exact pooling of cross sectional

information will lead to biases and inconsistencies.

- Any way to do some partial cross sectional pooling to improve over single

unit estimators?

- How do you compute ”average” effects in dynamic models which are

heterogeneous in the cross section?



• Simple univariate model to set up ideas:

yit = Xitβi + eit eit ∼ iid (0, σ2I) (52)

where Xit = [1, yit−1, . . . , yit−p], βi = [ai0, Ai1, Ai2, . . . , Aip]. Assume
that T is short. Suppose

βi = β̄ + vi

where vi ∼ (0,Σv).

• Coefficient of the dynamic model are drawn from the same distribution
(they are different realizations of the same process).

• Σv controls degree of dispersion. Σv = 0 coefficients equal; Σv → ∞
no relationship between the coefficients.

- Two interpretations of (??): i) uncertain linear restriction (classical ap-
proach); ii) prior which shrink coefficients of unit i and j toward a common
mean.



• Bayesian Random coefficient estimator.

If ei and vi are normal, β̄ and Σv known, g(βi|y) is normal with mean

(
1

σ2
i

x′ixi + Σ−1
v )−1(

1

σ2
i

x′ixiβi,ols + Σ−1
v β̄)

where βi,ols is the OLS estimator of βi and variance

(
1

σ2
i

x′ixi + Σ−1
v )−1

• Weighted mean of prior and sample information with weights given by

the relative precision of the two informations!!



- Use σ2
i,ols in the formulas.

- If Σv is large, β̃i → βi,ols.

• β̃ = 1
n

∑n
i=1 β̃i = βGLS applied to the uncertain linear model using Theil

mixed estimator.



- If β̄, σ2
i , Σv are unknown, need a prior for these parameters. No analytical

solution for the posterior mean of βi exists.

- Approximate posterior modal estimates (see Smith (1973))

β̄
∗

=
1

n

n∑
i=1

β∗i (53)

(σ∗i )2 =
1

T + 2
[(yi − xiα∗i )′(yi − xiα∗i )] (54)

Σ∗v =
1

n− dim(α)− 1
[
∑
i

(β∗i − β̄
∗
)(β∗i − β̄

∗
) + κ (55)

where ”*” are modal estimates from a training sample, κ = diag[0.001].

- Plug in these estimates in the posterior mean/variance formulas. Under-
estimate uncertainty (parameters treated as fixed when they are random).

- Two step estimator.



- Alternative estimator (see Rao (1975)) using a training sample:

β̄EB =
1

n

n∑
i=1

βi,ols (56)

σ2
i,EB =

1

T − dim(α)
(y′iyi − y′ixiβi,ols) (57)

Σ̂v,EB =
1

n− 1

n∑
i=1

(βi,ols − β̄EB)(βi − β̄EB)′ − 1

n

n∑
i=1

(x′ixi)
−1σ2

i,ols(58)

• The two estimators of β̄ are similar, but the first averages posterior

modes, the second averages OLS estimates.

Can use the procedure to partially pool subsets of the cross sectional units.

Assume (??) within each subset but not across subsets.



8.1 Bayesian pooling for VARs

- Can maintain same setup and same ideas. Approach is the same.

yit = (I ⊗Xt)βi + eit eit ∼ iid (0,Σe) (59)

where Xt = [1, yt−1, . . . , yit−p], βi = [ai0, Ai1, Ai2, . . . , Aip]. Suppose

βi = β̄ + vi vi ∼ (0,Σv) (60)

Case 1: β̄,Σv known. Posterior for αi is normal with mean and variance

given by

β̃i = (
1

σ2
i

x′ixi + Σ−1
v )−1(

1

σ2
i

x′ixiβi,ols + Σ−1
v β̄) (61)

Σ̃α = (
1

σ2
i

x′ixi + Σ−1
v )−1 (62)



Case 2:β̄,Σv unknown fixed quantities estimable on a training sample.

- (61)-(62) still applicable with estimates of β̄,Σv in place of true ones.

Case 3: β̄,Σv unknown random quantities with prior distribution.

- Use MCMC to derive posterior marginals of the parameters.

- Cross sectional prior can be used in addition or in alternative to time

series prior. Both have shrinkage features.



- Same logic can be applied if one expects impulse responses (rather than

VAR coefficients) to be similar. Model in this case is

yit =
∑
j

γijeit−j eit ∼ iid (0,Σe) (63)

γi = γ̄ + vi (64)

where vi ∼ (0,Σv) and γi = [γi1, γi2, . . .].

- Posterior distribution of impulse responses will reflect unit specific (sam-

ple) information and prior information. Weights will depend on the relative

precision of the two information.

- Note that we treat Σe as fixed (known or estimable quantity). If it

is a random variable we need to use some conjugate format to derive

analytically the posterior; otherwise we need to use MCMC methods.
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Outline

• Principles of policy evaluation

• In-sample evaluation

• Out-of-sample evaluation

• Evaluation via other features (internal propagation, co-cycles, cointe-

gration).

• Evaluation via VARs.

• Evaluation via loss functions.



References

Adolfson, M., Laseen, S., Linde, J. and Villani, M., (2008), Evaluating an estimated new

Keynesian small open economy model, Journal of Economic Dynamics and Control, 32,

2690-2721.

Box, G. (1980), Sampling and Bayes’ inference in scientific modelling and robustness,

Journal of the Royal Statistical Society, Seria A, 143, 383-430.

Brock, W. Durlauf, S. and West, K (2003), Policy analyses in an uncertain economic

environment, Brookings Papers on economic activity, 1, 235-322.

Canova, F. and M. Paustian (2011), Business Cycle measurement with some theory,

Journal of Monetary Economics, 48, 345-361.

Canova, F. and Ortega, E. (2000), ”Testing Calibrated General Equilibrium Models”, in

Mariano, R., T. Shuermann and M. Weeks (eds.) Inference using Simulation Techniques,

Cambridge University Press.



Canova, F., Finn, M. and Pagan, A. (1994), “Evaluating a Real Business Cycle Model”,

in C. Hargreaves (ed.), Nonstationary Time Series Analyses and Cointegration, Oxford,

UK: Oxford University Press.

Del Negro, M. and Schorfheide, F. (2005), ”Policy predictions if the model does not fit”,

Journal of the European Economic Association.

Del Negro, M., Schorfheide, F., Smets, F. and Wouters, R. (2006), On the fit of New-

keynesian models, Journal of Business and Economic Statistics, 25, 143-162.

Ferroni, F. (2011), Trend agnostic, one step estimation of DSGE models, The BE Journal

of Macroeconomics, volume 1, issue 1 (advances), article 25.

Faust, J. and Gupta, A. (2012) Posterior predictive analyses for evaluating DSGE models,

NBER working paper 17906.

Favero, C. (2006), Model evaluation in Macroeconomics from Cowles foundation to DSGE

models, IGIER manuscript.



Kapetanios, G., Pagan, A. and Scott, A. (2007), ”Making a match: Combining theory

and evidence in a policy-oriented macroeconomic modeling”, Journal of Econometrics,

126, 565-594.

Kydland, F. and Prescott, E. (1996), ”The Computational Experiment: An Econometric

Tool”, Journal of Economic Perspective, 10, 69-85

Pagan, A. (2003), Report on Modelling and forecasting at the Bank of England,Bank of

England Quarterly Bulletin, Spring, 1-29.

Pappa, P. (2009), The effects of government shocks on employment and real wages,

International Economic Review, 50, 217-244.

Schorfheide, F. (2000), Loss function based evaluation of DSGE models, Journal of Ap-

plied Econometrics. 15, 645-670.

Sims, C. (1996), ”Macroeconomics and Methodology”, Journal of Economic Perspectives,

10, 105-120.



Sims, C. (2002), ”The Role of Models and Probabilities in the Monetary Policy Process,

Brookings Papers on Economic Activity, 2, 1-40.

Zellner, A. (2007), Philosophy and objectives of econometrics, Journal of Econometrics,

136, 331-339.



1 Principles of policy evaluation: Theory

x = m(p, βm, η) (1)

p = policy variable, m = model, βm = parameters of model m, η random

errors.

• Case 1: Model, parameters, errors are known.

- Set up a loss function L(x).

- Find the p which minimizes the loss function.

Unrealistic setup!!



• Case 2: η unknown, but its pdf µη is available.

- L(x) is a random variable and, for each p, the loss function has a distri-

bution.

- Evaluate µ(L(x)|p,m, βm) (the pdf of the loss function) or L(µ((x)|p,m,
βm)) (the loss of the pdf of x), e.g. find the p which gives the µ(L(x))

with the lower variability.

- Still unrealistic setup.



• Case 3: η, βm unknown.

a) Evaluate policies using µ(L(x)|p,m, β̂m), where the data d is used

estimate βm.

b) Parameter averaging: use µ(L(x)|p,m) =
∫
µ(L(x)|p,m, βm)dµ(βm|d)

where dµ(βm|d) is the posterior distribution of βm, conditional on the data

d.

- Parameter uncertainty is small if T is sufficiently large.



• Case 4: η, βm and m all unknown. Why is m unknown?

i) Unclear which economic theory one should use.

ii) Different functional forms can represent the same theory.

What can you do in this situation?

a) Use model selection criteria (AIC, BIC, etc.), i.e. use µ(L(x)|p, m̂, β̂m)
where β̂m is chosen after m̂ is selected.

Problems: (i) data mining; (ii) pre-testing matters (artificially small s.e.);
(iii) a model could be good according to the chosen selection criteria but
may have low or zero posterior probability.

b) Do model averaging (m = 1, . . . ,M), i.e. use µ(L(x)|p) =∑
m
∫
µ(L(x)|p,m, βm)dµ(βm|m)µ(m|d), where µ(m|d) is the posterior

of model m, given the data.



In standard exercises one computes;

E(L(x)|p,m, β̂m) =
∫
L(x)µ(x|p,m, β̂m)dx.

With model averaging (but not parameter averaging) one computes:

E(L(x)|p, β̂m) =
∫
L(x)µ(x|p, β̂m)dx.

Example 1 Suppose we care about the long run effect of a policy choice

on the variability of x. One can compute:

var(x∞|p,m, βm)

var(x∞|p,m)

var(x∞|p) (2)

The latter is the effect of policy on long run variability of x without as-

suming that the model selection exercise has identified the correct one.



- Averaging is theoretically OK, but policymakers mainly interested in
knowing whether and how alternative assumptions about policy affect loss
function. (Calculating expected loss may not be that interesting for them).
Alternatives statistics:

1) Outcome Dispersion

L(x|m1, p)− L(x|m2, p) (3)

2) Action Dispersion

L(x|m1, p(m1))− L(x|m2, p(m2)) (4)

In 2) can ask: does conditioning the policy on a particular model changes
the outcome of the experiment? By how much?

In practice it is common to proceed as in case 3. Policymakers informally
do model averaging.



How do we use these principles for estimation purposes?

For estimation purposes, p is given (e.g. Taylor rule). Interested in mea-

suring model fit. Can use the same ideas:

i) Set up a loss function.

ii) Condition on a model-parameter estimate.

iii) Measure discrepancy.

or

ii’) Have an array of models and/or an array of potential estimates.

iii’) Average over models-estimates and measure discrepancy.



2 DSGE Model evaluation

• Statistical vs. economic evaluation?

- Cowles: Evaluation = test of overidentifying (statistical) restrictions.

- Calibration: Evaluation = informal distance of moments with economic

interpretation.

- DSGE-Bayesian: match conditional dynamics, measure credibility of mod-

els restrictions. Both statistical and economic evaluation are possible.

- Central Bank models: what criteria do they use?



2.1 In-sample evaluation

2.2 Graphical evaluation

Let yt − ŷt the prediction error of the model. Prediction error should be:

- mean zero, iid (no trend or serial correlation should be detected).

- be homoskedastic (no clear break in the variance should be spotted).

- no shock should have ” unreasonable” variance.



Residuals of a three equation sticky price model. Ok?
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Model residuals

- Alternative plot actual and predicted values. Any interesting discrepan-

cies? When?



2.2.1 Statistical tests

- Assume you have available a reference model (”the traditional one”) and
an alternative one.

• Test whether the Mean square Error (MSE) or Mean Absolute Error
(MAE) of two (or more) models is the same.

Let y1
t and y2

t be the predicted value of yt from models m1 and m2.
Estimate jointly

yt − y1
t = µ+ ε1t (5)

yt − y2
t = µ+ ε2t (6)

where ε1t , ε
2
t have the same variance, σ2. Estimate the mean and the

variance of each equation separately. Use a χ2(2) test to verify if the
restrictions hold (if they do than MSE = µ2 + σ2 is the same for the two
models, if they don’t, the MSE is different).



• Compute unbiasedness regressions

yt = a+ by∗t + ut (7)

y∗t is the predicted value. Ideally a = 0, b = 1 for a ” good” model.

• Compute predictive regressions

yt = aybt + by∗t + et (8)

y∗t the predicted value for the (structural) model, ybt is the predicted value

from a baseline (time series) model.

Check whether b 6= 0, i.e. does the new model adds information to the

previous model?



• Estimate an unobservable factor model

y∗t = δ + Λf∗t + ε1,t (9)

yt = a+ bf∗t + ε2,t (10)

f∗t is the (unknown) predictable part of yt. Here y∗t is not an unbiased

predictor for yt but only a noisy measure of its predictable component.

Does the first equation adds information to the estimates in the second?

• Add predicted values in a VAR and test significance (similar in spirit to

predictive regressions - here looks at lagged info).

yt = A(`)yt−1 +B(`)y∗t−1 + ut (11)

Test B(`) = 0, jointly or separately for each equation.

• Case studies: how does the model performs in particular episodes, i.e. a

recession or an expansion; a period of high or low inflation, etc.



• If models have a Bayesian setup (with proper priors) can use the marginal

likelihood. Priors can be non-informative but need to be proper.

Marginal likelihood of model j is ML(j) =
∫
f(y, θ)g(θ|M(j))dθ.

To compare alternatives: Posterior odds ratio/Bayes factor

PO =
g(Mj|y)

g(Mk|y)
=
g(Mj)

g(Mk)

ML(y|Mj)

ML(y|Mk)
(12)

The first term is the prior odds, the second the Bayes factor (BF).

Example 2 Want to evaluate the stability of a fixed exchange rate agree-

ment. Under H0 (normal conditions) there is a 50-50 chance that the

regime will be maintained (i.e. f(y = 1|H0) = f(y = 0|H0) = 0.5). Un-

der H1 (say, increasing oil prices) the probability that the fixed exchange



rate regime will be maintained is 0.25 f(y = 1|H0) = 0.75, f(y = 0|H0) =

0.25. Suppose g(H0) = g(H1) = 0.5 (equal prior probability), T = 100,

and that the fixed exchange rate was maintained in 90 periods. Then:

PO01 =
(0.5)0.1(0.5)0.9

(0.75)0.1(0.25)0.9
=

0.5

0.2790
= 1.79 (13)

Hence, odds in favor of H0 increased from 1 to 1.79.

• Bayes factors = ratio of marginal likelihood of the two models. It is

different than LR statistic!. What matters is the agreement of prior and

likelihood and the least square fit of different models. LR does not integrate

over αj.

• BF implicitly discounts the fit of large scale models!



• Can also perform posterior predictive analysis (Box, 1980; Faust and

Gupta, 2012).

Idea: provide a formal measure of how far a certain feature of the model

is at odds with the data

- Can be applied to moments, impulse responses, autocovariances, spectral

densities, etc. Only need the features to be a well defined continuous

function of the data.

• Canova (1994),(1995) use prior predictive analysis to discard models

which are going to be clearly at odds with the data.



Prior predictive analysis: For each θ simulate a sample y(θ) from the

model, and compute statistics of interest. Can construct distribution of

outcomes implied by the model and the prior. Check if the actual value of

the statistic is within the range of values produced by the model for that

statistic.

- If prior is sufficiently loose, values in the tails indicate that the model

should not be used to study that particular phenomena.



Posterior predictive analysis: draw θ from the posterior and do the exercise
as above.

Faust and Gupta (2012): alternative algorithm

- Draw θ from the posterior, compute h(Y (θ))

- Simulate Y d(θ) from every value of θ you have draws. Compute statistics
h(Y d(θ)

- Plot joint distributions of h(Y (θ)) and h(Y d(θ)). If they lie around the
45 degree line, data and model agree: otherwise data is unlikely form the
point of view of the model.

- The share of points on the 45 degree line is a p-value for the hypothesis
that model and data are from the same DGP.

- Apply the technique to SW model.









Example 3 Candidate models ARMA(1,1), BVAR-TVC with output, infla-

tion and interest rate and a New-Keynesian model. Evaluation based on

the fit of the inflation equation. Sample US 1955:1-2002:4.

1) ARMA : πt = ρ1πt−1 + et + ρ2et−1

2) TVC-BVAR (θ = vec(at, bt(`)):

yt = at + bt(`)yt−1 + et (14)

θt = ρθt−1 + (1− ρ)θ0 + ut, θt ∼ N(0,Ω) (15)



3) NK model:

IS: xt = Etxt+1 − 1
φ(rt − Etπt+1) + gt

PC: πt = βEtπt+1 +
φ(1−ζ)(1−βζ)

ζ xt + ut

Taylor-Rule: rt = ψrrt − 1 + (1− ψr)(φxxt−1 + φpπt−1) + et

vt = (gt, ut) = ρvt−1 + ηt; ηt iid N(0, σ2).

Pick estimates from Canova (2008) β = 0.983(0.0008), φ = 3.04(0.27), ζ =

0.7709(0.185).



In-sample RMSE, percentage points
Model ARIMA BVAR-TVC NK

1.88 1.04 1.33

In-sample, correlations: actual and predicted
Model -1 0 1
ARIMA 0.67 0.88 0.76
BVAR-TVC 0.77 0.89 0.72
NK 0.56 0.68 0.51



Why is the MSE different from in-sample correlation analysis?

- MSE sum of square bias and variance. MSE could be small is variance

small and bias not too large - a ”straight line prediction ” (a random walk)

is typically good.

- Good MSE des not mean that actual and predicted go up and down

together.

Unbiaseness regressions
Model a b p-value a = 0, b = 1
ARIMA 0.159 (2.01) 0.79 (1.88) 0.03
BVAR-TVC 0.109 (1.56) 0.67 (2.06) 0.02
NK 0.035 (0.99) 0.56 (1.71) 0.01



Predictive regressions
Model a b
ARIMA-NK 0.82 (2.17) 0.23 (1.65)
BVAR-NK 0.73 (1.96) 0.35 (2.00)

Output growth VAR regressions
Model p-value lags of predicted inflation
Just lagged output 0.00
Adding Inflation 0.15
Adding Nominal Rate 0.42

• Bayes factor: ML(NK)/ML(BVAR) = 0.02.



2.2.2 Economic tests

• Compute moments of actual data and predicted ones.

• Compute dynamic responses to shocks in the model and the data

• Compute turning points statistics, overall or at some dates.

• Compare favorite stylized facts with model implications.



Moments
Model Mean Variance Corr(π∗, y) Corr(π∗, R)
ARIMA 2.56 3.99 -0.23 0.65
BVAR 2.19 2.78 -0.39 0.67
NK 2.24 2.22 -0.37 0.88
Actual 2.08 2.57 -0.51 0.70

Peak inflation, late 1970s
Model date 68% range
ARIMA 1979:2 [1978:4, 1980:2]
BVAR 1979:4 [1979:1, 1980:4]
NK 1981:2 [1979:4, 1982:2]
Actual 1980:1



2.3 Forecasting with DSGE models

Recall: Log linearized aggregate decision rule of a DSGE model is:

y2t = A22(θ)y2t−1 +A21(θ)y3t (16)

y1t = A1(θ)y2t = A11(θ)y2t−1 +A12(θ)y3t (17)

y2t = states and the driving forces, y1t = controls, y3t shocks. Aij(θ), i, j =

1, 2 are time invariant functions of θ, the structural parameters.

- There are cross equation restrictions since θi, i = 1, . . . , n appears in

more than one entry of these matrices.

- (17) is a state space or a restricted VAR(1) model



• Unconditional forecast: y3t+τ = 0, ∀τ > 0, let the system run. With

a VAR(1) representation: let yt = (y1t, y2t). Then yt+τ = Âτyt and

y2t+τ = SÂτ , where Â is an estimate of A and S is a selection matrix,

picking up the second set of elements from A.

To calculate uncertainty around point forecasts.

If a distribution for Â is available (asymptotic or posterior) then:

1. Draw Al from this distribution, compute ylt+τ , l = 1, 2, . . . , L, each

horizon τ .

2. Order ylt+τ over l, each τ and extract 16-84 or 2.5-97.5 percentiles.



• Conditional forecast 1: Manipulating shocks.

This is the same as computing impulse responses, i.e. need to orthogonalize

the disturbances if they are not orthogonal. Only difference is that here

impulse may last more than one period. Choose y3t+τ = ȳ3t+τ , τ =

0, 1, 2, . . . , τ̄ . Given Â find y2t+τ = Â22(θ)y2t+τ−1 + Â21(θ)y3t+τ and

y1t+τ = Â1(θ)y2t+τ .

To calculate uncertainty around the forecasted path, use same algorithm

employed for unconditional forecasts (i.e. draw A’s from their distribu-

tions).



• Conditional Forecast 2: Manipulating endogenous states

This requires backing out shocks needed to produce the path ȳ2t+τ , τ =

0, 1, 2, . . .. Simply use the first equation of (17) to do this. Then y1t+τ =

A1(θ)ȳ2t+τ , τ = 1, 2, . . .. Same as above to compute uncertainty around

the forecasted path.

Identification problem: there may be different elements of y3t which may

induce the require path for y2t+τ .

Example 4 What is the range of paths for consumption from next quarter

up to 10 years if the capital stock is higher by ten percent in all these

periods? Question: how do we increase the capital stock? Via technology

shocks? Via labor supply shocks?



• Conditional Forecast 3: Manipulating endogenous controls. Separate

y1t = [yA1t, y
B
1t] and yA1t+τ = ȳA1t+τ , τ = 0, 1, 2, ..... Back out the path

of yA1t+τ needed to produce ȳA1t+τ . With this path compute yB1t+τ . Same

identification problems as above; less problematic in some cases.

Example 5 Suppose that interest rates are (discretionarily) kept 50 basis

point higher than the endogenous Taylor rule would imply. What is the

effect on inflation?



2.3.1 Out-of-sample evaluation

Use the same statistics employed for in-sample analysis. Now can evaluate

forecasts at different horizons.

Out-of-sample RMSE, percentage points, unconditional forecasts
Model 1 quarter 4 quartesr 8 quarters
ARIMA 1.43 2.16 2.92
BVAR-TVC 1.21 1.72 1.89
NK 1.33 1.58 1.87

Unconditional Out-of-sample Predictive regressions, estimates of b
Model 1 quarter 4 quarters 8 quarters
ARIMA-NK 0.35 (1.71) 0.42 (1.97) 0.34 (2.00)
BVAR-NK 0.17 (1.66) 0.35 (1.89) 0.44 (2.06)



3 Exploiting other features for evaluation

• Distinguish between internal vs. external dynamics. Models driven al-

most entirely by external dynamics not very useful.

- Plot together shocks (not the residuals) and the data. What is the

contribution of the model?

• Co-cycles analysis.

Log-linearized model (no distinction now states/controls):

yt = B(θ)Etyt+1 +A(θ)yt−1 + F (θ)ut (18)



Solution:

yt = Pyt−1 +D
∑
j

SjEtut+j (19)

where P − BP 2 − A = 0, D = (I − BP )−1F, S = (I − BP )−1B. If

ut = Φut−1 + ηt and we let G = D
∑
j S

jΦj

yt = Pyt−1 +Gut = Pyt−1 +GΦut−1 +Gηt (20)



Interested in features of P and G.

If rank(G) ≤ dim(u), let G+ = (G′G)−1G′ and ut = G+(yt − Pyt−1)

so that

yt = Pyt−1 +GΦ(G−1(yt−1 − Pyt−2) +Gηt (21)

= (P +GΦG−1)yt−1 +GΦG−1Pyt−2 +Gηt (22)

Since rank(P)=min(rank(I − BP ),rank(A)), if A is of reduced rank (i.e.

more states than controls), P will be of reduced rank, i.e. comovements

in yt driven by a reduced number of shocks. (Note this is different from

the fact that dim(u) <dim(y)).

Is this true in the data? Can use factor models to verify this.



• When models feature both long run and short run dynamics Possibility

of evaluation looking at long run features.

- Check if permanent component of the model has the same properties as

permanent component in the data.

- Can use both cointegration or BQ decompositions. If cointegration:

∆yt = C(`)ηt. Interested in C(1). Choose β′C(1) = 0. Partition yt =

[y1t, y2t] where y2t are I(0). Then φt = β′y1t are cointegrating vectors

and the VECM is[
∆y1t
y2t

]
=

[
α′

γ′

]
φt−1 +My2t−1 + vt

Use this to extract the permanent component of y1t in model and data

and to compare them.



Blanchard-Quah decomposition is:(
∆y1t
∆y2t

)
=

(
ȳ1
0

)
+

(
C1(1)

0

)
et +

 (1− `)C†1(`)

(1− `)C†2(`)

 et (23)

where C
†
1(`) =

C1(`)−C1(1)
1−` C

†
2(`) =

C2(`)
1−` , 0 < rank[C1(1)] ≤ m1 and

∆yxt = [ȳ1 + C1(1)et, 0]′ is the permanent component of yt.

• May want to choose (estimate) parameters so that the model tracks long

run properties of the data. Then check if dynamics (univariate) properties

fit.



A few issues to keep in mind

• Estimated DSGE models typically have driving forces that are correlated

(theory assumes that they are not). Misspecification!!!

• If the number of variables is different from the number of shocks, solution

is not a VAR but a VARMA: invertibility problems!

• Common to add measurement error but be careful:

yt = y∗t + et (24)

y∗t = Py∗t−1 +Gut (25)

a) if et is iid → signal extraction problem, use Kalman Filter to get y∗t .



b) If et is serially correlated (et = ρet−1 + vt) then:

∆yt = ∆y∗t + (1− ρ)(y∗t−1 − yt−1) + vt (26)

This is VECM linking observables yt and unobservables y∗t .

- On average yt = y∗t . In short run deviations are possible.

- Can’t use the KF to construct y∗t in this case.



4 Evaluation via VARs

- Long history in the literature

Canova, Finn, Pagan (1993): Evaluate quantitative properties of RBC

models through VARs.

Ingram and Whiteman (1994): Use model to setup a prior for the VAR. Is

it better than standard statistical priors?

Canova and Paustian (2007): Evaluate model using qualitative model-

based sign restrictions to identify shocks in a VAR.



Procedure

- Start with a broad class of structural models. The class should nest submodels through

parameter restrictions (price and wage stickiness, indexation, habit,...).

- Find implications that are robust to parameter variations.

(a) Some implications are robust across submodels.

(b) Some implications are robust within a particular submodel.

- Use a subset of implications robust across models to identify shocks in a VAR.

- Use implications that are robust within a submodel and different across submodels for

evaluation.

- Do this qualitatively and quantitatively using probabilistic criteria.



Details

- What are robust restrictions? Magnitude restrictions not robust. Zeros

not typically a feature of theory. Use sign of the impact response.

- Robust testing: sign and shape of dynamics of unrestricted variables to

shocks.

- Produce a partially identified model: standard statistical criteria prob-

lematic (Moon and Schorfheide (2008)).

- Can be used without estimation of the parameters - good if there are big

identification problems.

- VAR mispecification (relative to a DSGE) ok.



Why VAR misspecification not a problem?

- Use robust sign restriction.

- Shock identification robust to time series representation of decision rules.

x1t = A(θ)x1t−1 +B(θ)et

x2t = C(θ)x1t−1 +D(θ)et (27)



[
I − F11` F12`
F21` I − F22`

] [
y1t
y2t

]
=

[
G1
G2

]
et

Representation for y2t (integrating out y1t):

(I − F22`− F21F12(1− F11`)
−1`2)y2t = [G2 − (F21(1− F11`)

−1G1`]et
(28)

ARMA(∞,∞) but impact effects of et has correct sign and magnitude.



Example 6 (use model based restrictions to robustify inference). Use

Christiano, et. al. (2005) and Smets and Wouters (2003) class of models.

yt = cyct + iyit + gye
g
t (29)

ct =
h

1 + h
ct−1 +

1

1 + h
Etct+1 −

1− h
(1 + h)σc

(Rt − Etπt+1) +
1− h

(1 + h)σc
(ebt − Etebt+1) (30)

it =
1

1 + β
it−1 +

β

1 + β
Etit+1 +

φ

1 + β
qt −

βEteIt+1 − eIt
1 + β

(31)

qt = β(1− δ)Etqt+1 − (Rt − πt+1) + βr∗Etrt+1 (32)

yt = ω(αKt−1 + αψrt + (1− α)lt + ext ) (33)

kt = (1− δ)kt−1 + δit (34)

πt =
β

1 + βµp
Etπt+1 +

µp

1 + βµp
πt−1 + κpmct (35)

wt =
β

1 + β
Etwt+1 +

1

1 + β
wt−1 +

β

1 + β
Etπt+1 −

1 + βµw
1 + β

πt +
µw

1 + β
πt−1 − κwµWt (36)

lt = −wt + (1 + ψ)rt + kt−1 (37)

Rt = ρRRt−1 + (1− ρR)(γππt + γyyt) + eRt (38)



Support for the parameters
Parameter Support

σc risk aversion coefficient [1,6]
h consumption habit [0.0,0.8]
σl inverse labor supply elasticity [0.5,4.0]
ω fixed cost [1.0,1.80]
1/φ adjustment cost parameter [0.0001,0.002]
δ capital depreciation rate [0.015,0.03]
α capital share [0.15,0.35]
1/ψ capacity utilization elasticity [0.1,0.6]
gy share of government consumption [0.10,0.25]
ζp degree of price stickiness [0.4,0.9]
µp price indexation [0.2,0.8]
ζw degree of wage stickiness [0.4,0.9]
µw wage indexation [0.2,0.8]
εw steady state markup in labor market [0.1,0.7]
γR lagged interest rate coefficient [0.2,0.95]
γπ inflation coefficient on interest rate rule [1.1,3.0]
ρy output coefficient on interest rate rule [0.0,1.0]
%i persistence of shocks i = 1, . . . , 7 [0,0.9]



Question of interest: What is the relationship between hours and technol-

ogy shocks? Do hours robustly fall or robustly increase?

Sign of the impact responses to shocks
TFPMonetaryTaste InvMarkupLsG

∆yt + + + + + + +
πt - + + - - - +

∆ct + + + - + + -
∆gapt+ - - ? - + -
∆wt + + + - + - ?



Identification restrictions for technology shocks

a) π ↓,∆y ↑.

b) ∆c ↓ with Investment shock, ↑ with others.

c) ∆gap ↑ with TFP shocks, ↓ with markup

d) ∆w ↓ with Labor supply and investment shocks, ↑ markup and TPF

shocks.

- These restrictions produce mutually exclusive shocks.

- These restrictions do not involve hours. Once shocks are identified mea-

sure the response of hours and the contribution of various technology

shocks to their variability.
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Conclusions: a model based identification approach tells us:

- Response of hours depend on the source of technological disturbance

- With TFP shocks hours response insignificant contemporaneously, weakly

positive after a while (i.e. it is neither NK not RBC).

- With the other shocks hours typically increase.

- Proportion of the variance of hours explained by TPF shocks large but

very imprecisely estimated (can’t really say if TPF shocks matter or not).



Example 7 (use model based restrictions test RBC vs. NK transmission)

(Pappa, 2009). RBC and NK models have different implications for the

tranmisssion of goverment expenditure shocks to labor markets.

- In RBC a g shocks make hours and wage increase.

- In a NK a g shock make hours and wage move in the opposite direction.

Which mechanism is more consistent with the facts?

- Take a general specification where you can nest a RBC model as a

special case (take a NK model where the monopolistic distortions have

been eliminated and consider either a sticky price or a flexible price version

of the model).



- Find robust restrictions of the two class of models which do not involve

either hours or real wages. There are many. Choose restrictions which are

commonly satisfied across models.

Shock Y Deficit Cg Ig Ng

Cg shock> 0 > 0 > 0
Ig shock > 0 > 0 > 0
Ng shock> 0 > 0 > 0

- Contemporaneous effects only ( the distinction at longer horizons is

blurred).

- Sign consistent with a large range of parameter values.





Del Negro and Schorfheide (2004), Del Negro, et al. (2006): A VAR is a

bridge between a DSGE model and the data.

Add to the actual data, simulated DSGE data organized in a VAR. Use a

parameter to weight the two information. Model is the DGP of the data

if parameter is ∞, model totally fails if parameter is 0.

Interpretation: DSGE is a VAR with cross equation restrictions. If restric-

tions are false better to relax them completely, i.e. use a VAR for the

data.



Approach:

- Simulate data from model

- Append simulated data to VAR via a prior (use mean/variance of esti-

mated parameters on simulated data to set up a Normal-Wishart prior).

- Choose proportion of simulated to actual data (to test model).



Let θ be DSGE parameters; α the VAR parameters. Prior is:

g(θ) =
∏k
i=1 g(θk);

g(α) ∼ N(ᾱ(θ), Σ̄a(θ));

Σe ∼ IW (T1Σ̄(θ), T1 − k) where

ᾱ(θ) = (Xs′Xs)−1(Xs′ys)

Σ̄a(θ) = Σe(θ)⊗ (T1X
s′Xs)−1

Σ̄(θ) = (ys
′
ys − (ys

′
Xs)ᾱ(θ)) (39)

ys simulated data, Xs lags in the VAR of simulated data. T1 = length of

simulated data. κ = T1
T measures the relative importance of two types of

information. κ→ 0 (κ→∞) actual (simulated) data dominates.



Hierarchical structure: f(α,Σe|y)g(α|θ)g(Σe|θ)g(θ). Since the likelihood

and the prior are conjugate:

(α|θ, y,Σe) ∼ N(α̃(θ), Σ̃(θ));

(Σe|θ, y) ∼ iW ((κ+ T )Σ̃(θ), T + κ− k) where

α̃(θ) = (T1X
s′Xs +X ′X)−1(T1X

s′ys +X ′y)

Σ̃a(θ) = Σe(θ)⊗ (T1X
s′Xs +X ′X)−1

Σ̃(θ) =
1

(1 + κ)T
[(T1y

s′ys + y′y)− (T1y
s′Xs + y′X)α̃(θ)] (40)

and g(θ|y) ∝ g(θ)× |Σe|−0.5(T−M−1)

exp{−0.5tr[Σ−1
e (Y −Xα)′(Y −Xα)} × |Σe(θ)|−0.5(T1−M−1)

exp{−0.5tr[Σe(θ)−1(Y s −Xsα(θ))′(Y s −Xsα(θ))}.



• Can estimate jointly θ and α but also possible to calibrate θ.

• All posterior moments in (40) conditional on κ. How do we select it?

- Use Rules of thumbs (e.g. κ = 1, T observation added).

- Maximize marginal likelihood.



Example 8 In a basic sticky price-sticky wage economy, fix η = 0.66, πss =

1.005, Nss = 0.33, c
gdp = 0.8, β = 0.99, ζp = ζw = 0.75, a0 = 0, a1 =

0.5, a2 = −1.0, a3 = 0.1. Run a VAR with output, interest rates, money

and inflation using actual quarterly data from 1973:1 to 1993:4 and data

simulated from the model conditional on these parameters. Overall, only

a modest amount of simulated data (roughly, 20 data) should be used to

set up a prior.

Marginal Likelihood, Sticky price sticky wage model.
κ = 0 κ = 0.1 κ = 0.25 κ = 0.5 κ = 1 κ = 2

-1228.08 -828.51 -693.49 -709.13 -913.51 -1424.61



5 Using loss functions to evaluate DSGE models

Schorfheide (2000): Compare two DSGE models both misspecified.

- PO ratio for misspecified models uninteresting. One model preferred but
it may have very close to zero posterior probability.

Example 9 PO =
π1,T
π2,T

=
π1,0
π2,0

ML(YT |M1)
f(YT )

∗ f(YT )
ML(YT |M2)

. If use 0-1 loss

function the posterior risk is minimized by selecting M1 if PO > 1.

Potential presence of a third (better specified) model does not affect PO
if the prior odds

π1,0
π2,0

unchanged (M3 enters only in f(YT ), which cancels

out).

Problem if M1 and M2 have low posterior probability, M3 a large one.



• Solution: Use loss functions.

Procedure

1. Compute the posterior distribution for the parameters of each model,

using tractable priors and one of the available posterior simulators.

2. Obtain the marginal likelihood of the data, for each Mi, that is, com-

pute f(y|Mi) =
∫
f(y|θi,Mi)g(θi|Mi)dθi.

3. Compute posterior probabilities P̃i =
P̄if(y|Mi)∑
i P̄if(y|Mi)

, where P̄i is the

prior probability of model i. Note that if the distribution of y is degener-

ated under Mi (e.g. if number of shocks is smaller than the number of

endogenous variables), P̃i = 0.



4. Calculate the posterior distribution of h(θ) for each model and average

using posterior probabilities i.e. obtain g(h(θ)|y,Mi), and g(h(θ)|y) =∑
i P̃ig(h(θ)|y,Mi). If all but model i′ produce degenerate distributions

for θ, g(h(θ)|y) = g(h(θ)|y,Mi′).

5. Setup a loss function L(hT , hi(θ)) measuring the discrepancy between

model’s i predictions and data hT . Since the optimal predictor in model

Mi is ĥi(θ) = argminhi(θ)
∫
L(hT , hi(θ))g(hi(θ)|y,Mi)dhT , one can

compare models using the risk of ĥi(θ) under the overall posterior distrib-

ution g(h(θ)|y), i.e. R(ĥi(θ)|y) =
∫
L(hT , ĥi(θ))g(h(θ)|y)dhT .



In step 5) R(ĥi(θ)|y) measures how well model Mi predicts hT . Note

that while model comparison is relative, g(h(θ)|y) takes into account in-

formation from all models.

Taking step 5) further: for each i, θ can be selected so as to minimize

R(ĥi(θ)|y). Such an estimate provides a lower bound to the posterior risk

obtained by the ”best” candidate model.



• Possible loss functions:

(a) Quadratic loss: L2(h(θ), ĥ(θ)) = (h(θ)− ĥ(θ))′W (h(θ)− ĥ(θ)); W is

a weighting matrix.

(b) Penalized Loss: Lp(h(θ), ĥ(θ)) = I[g(h(θ)|YT ) > g(ĥ(θ)|YT )] , where

I(x, z) = 1 if x > z and zero otherwise.

(c) χ2 loss: Lχ2(h(θ), ĥ(θ)) = I[Cχ2(h(θ)|YT ) > Cχ2(ĥ(θ)|YT )] where

Cχ2(h(θ)|YT ) = (h(θ)−E(h(θ)|YT ))′V −1
θ (h(θ)−E(h(θ)|YT )) and Vθ is

a posterior covariance matrix of h(θ).

(d) 0-1 loss: L01 = 1 if ĥ(θ) 6= h(θ) and zero otherwise.



• Results:

1) If g(h(θ)|YT ) is normal L2 = Lχ2.

2) Optimal predictor under L2 and Lχ2 is E(h(θ)|YT ,Mi).

3) Optimal predictor for Lp is the posterior mode of g(h(θ)|Yt,Mi).

4) If for any positive definite W , M1 > M2 with probability one as

T →∞, Lq selection is consistent and identical to a PO ratio.



5) If the two models are so misspecified that their posterior probability

goes to zero as T →∞, the ranking depends on the discrepancy between

E(h(θ)|y,M3) ≈ E(h(θ)|y) and ĥi(θ), i = 1, 2. If M3 is any empirical

model, then using a L2 loss is equivalent to compare sample and population

moments obtained from different models informally.

Simplest calibration exercises is optimal Bayesian decision using L2 loss

function and the models are highly misspecified.



Example 10 Ferroni (2011).

Take a cyclical DSGE. Possibility that the data is generated by the model

plus three alternative specification for the non-cyclical part.

M1= DSGE + linear trend, M2= DSGE + HP trend, M3= DSGE + RW

trend

1) Which model has the higher posterior probability (starting from an equal

prior probability)?

- Log Bayes factor of M2 relative to M1=-31.80.

- Log Bayes factor of M3 relative to M2 = 98.47.



2) How do you robustify inference about DSGE parameters to trend un-

certainty? Construct

g(θ|y,DSGE) =

∑
j p(y|Mj)∑
k p(y|Mk)

∫
g(θ|y,Mj, α

j)dαj (41)

where αj represents the parameters of the non-cyclical specification for

model j. (Hint to do this you need to estimate cyclical and non-cyclical

parts jointly).



6 Some additional thoughts

Different kind of DSGE models:

• Academic model (typically small): generated by the idea of having inter-

nal consistency and well defined structure than the need to fit the data.

• Central Bank model (similar to academic model but typically large)

1) Why should a Central Bank model be big??

Can you figure out if it has a unique equilibrium?

Can you figure out what drives dynamics?



Is reality complex or are we unable to understand it?? ”Sophisticated

simplicity” Jeffreys(1963), Zellner(1981),

2) What defines a Central bank model?

”A tool to help to focus policy discussion around some stories rather than

degenerating into a discussion of many special events as it often happens

with data driven models”

• Operational Central Bank model (adjusted CB model to fit existing ev-

idence, e.g. adding extra sources of errors or dynamics, converting theo-

retical variables in measurable ones).

• Central Bank forecasting model (OCB model adjusted to incorporate

policymakers beliefs about the future (e.g. incorporate survey data infor-

mation, information from anticipatory variables, etc.).



• The above evaluation procedures can be applied to any type of CB model.

Careful if you use them with last two since posterior information is often

used to setup your model.

• How should one move down from theoretical to policy oriented models??

Or should we go the other way around?
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