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1 Textbooks / Overview Material

The about of unstructured data in the world continues to grow rapidly, and is increasingly

being incorporated into economic analysis. However the very nature of unstructured data

makes it difficult to handle using traditional econometric tools since it is typically high

dimensional. A related problem is that many unstructured data sources are naturally

occurring, which generates potential samples biases. This short course presents various

tools for handling these challenges, as well as numerous applications mainly in macroe-

conomics and monetary policy. An additional goal is to allow attendees to experiment

with hands on analysis via a sequence of practical sessions with code demonstrations.

There is no one source that covers all of the material in the course. Grimmer and

Stewart (2013), Bholat et al. (2015), and Gentzkow et al. (2019a) are survey articles that

provide accessible introductions to text mining. Manning et al. (2008) is an information

retrieval textbook that is referenced below as MRS, and Murphy (2012) is a machine

learning textbook written from a probabilistic, and in particular Bayesian, perspective

referenced below as KM.

In the references below, material in blue refers to core methodological background,

material in black refers to applications, and material in green refers to readings outside

the scope of the course related to extensions of the core ideas.

2 Theme I: Happenstance Data and Economic Statis-

tics

� The DELVE Initiative (2020)

� Baker and Kueng (2021)

� Carvalho et al. (2021)
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3 Theme II: Unstructured Data in Empirical Eco-

nomics

3.1 Bag-of-Words Model

� MRS 1, 2.2, 6.1-6.3

� Tetlock (2007), Loughran and Mcdonald (2011), Shapiro et al. (2020), Nyman et al.

(2021)

� Baker et al. (2016)

� Shapiro and Wilson (2021)

� Deming and Kahn (2018)

� Hassan et al. (2019)

3.2 Word Embeddings

� MRS 18

� Deerwester et al. (1990)

� Mikolov et al. (2013a,b)

� Ash et al. (2020)

� Hansen et al. (2021)

� Rudolph et al. (2016), Ruiz et al. (2020)

� Goldberg (2016)

� Devlin et al. (2019)

3.3 Probability Models for Discrete Data

� MRS 13

� KM 2.5.4, 3.3-3.4

� Taddy (2013, 2015)

� Gentzkow et al. (2019b)

� Davis et al. (2020)
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3.4 Latent Variable Models

� KM 27.1-27.3.2, 27.3.1-27.3.6

� Blei et al. (2003)

� Hansen et al. (2018)

� Mueller and Rauh (2018)

� Larsen and Thorsrud (2019), Thorsrud (2020)

� Hansen and McMahon (2016), Hansen et al. (2019)

� Roberts et al. (2014, 2016)

� Neal (2012), Betancourt (2018)

� Srivastava and Sutton (2017)

4 Theme III: Survey Data

� Erosheva et al. (2007)

� Bandiera et al. (2020)

� Munro and Ng (2020)

� Draca and Schwarz (2021)

� Sacher et al. (2021)
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