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Machine learning (ML)/High-Dimensional methods provide exciting tools for
dealing with big data, but

m ML methods designed with forecasting/description in mind

m Naive application may be highly misleading when inference for features
of a model is the goal

For example, many economic analyses rely on observational data and aim
to infer some sort of “treatment effect”
m Often want to control for other factors

m make exogeneity of “treatment” more plausible
m conditional object is object of interest

m Fundamental question: What controls should be used?

m Model selection mistakes may result in invalid estimates of the effect of
treatment
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Problems for Inference

Two problems with employing ML methods and then doing inference for
model parameters:

1. ML methods are “regularized”
m Informative unstructured learning in highly complex models is
impossible
m Regularization refers to introducing additional structure to solve an
ill-posed inverse problem
m Fundamentally involves making a bias/variance tradeoff
m More structure/regularization increases bias
m More structure/regularization decreases variance

m Regularization bias contaminates estimation of model parameters
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Problems for Inference

Two problems with employing ML methods and then doing inference for
model parameters:

2. ML methods are easy to overfit
m To try to keep bias contained, might try to use mild regularization
m Leads to larger variance in forecasts (termed overfitting)
m With flexible/exotic ML methods hard to know you’re not overfitting

m Intuitively, overfitting means that model fits are related not just to true
features of the model but also idiosyncratic unobservables =
endogeneity

m Overfitting introduces additional bias into estimates of model
parameters
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Problems
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Semi-
p::::netric . ) . .

Broblens Let’s first consider a semiparametric problem:
m Prespecified low-dimensional target parameter of interest (ag)

m To learn «ag, need to learn a high-dimensional nuisance parameter (1)

Canonical examples:
m Interested in specific coefficient(s) in a linear model
m Interested in an average treatment effect
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Two useful ingredients for inference about model parameters in
high-dimensions:

1. Base estimation on “orthogonal” estimating equations to alleviate
regularization bias

2. Use method which provably controls overfitting or sample splitting to
alleviate bias introduced by overfitting
m Sensible ways to choose regularization in low-dimensional models and for
prediction (and some high-dimensional models)
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Orthogonal Estimating Equations

Intro to HD .
Inference Let ag be the parameter of interest.

Suppose «y identified by moment condition

E[¢(W, ap,m0)] =0

Orthogonal
Estimating
Equations

m W denotes data
m 7 denotes high-dimensional nuisance parameters

Moment conditions are orthogonal if

OmE[Y(W, a0, n)]ly=n, =0

m 0, is an appropriate functional derivative

m Essentially means that moment condition used to learn «ay is not
violated by small perturbations of  away from n
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Inference Data (y;, di, z), i = 1,..., n, independent across i,
)

Yi = dioo + go(21) + Ci»  E[Gi | z,d] =0
d = mo(Z,') + Vi, E[V,' ‘ Z,'] =0

Orthogonal
Estimating
Equations

B oo denotes the parameter of interest
B 9o(Zz) is a nuisance parameter
m my(z;) is a nuisance parameter

Two potential moment conditions for learning «g (there are others):
1. E[p(W, o, n = g)] = E[(Y — Doe — g) D] = 0 (non-orthogonal)
2. E[p(W, o, n = (¢,m))] = E[((Y — £) — (D —m)a)(D—m)] =0
(orthogonal)
m Now have two nuisance functions: ¢(Z) = E[Y|Z] and m(Z) = E[D|Z]

m Relationship to treatment effects literature with binary D: ¢(Z) is the
regression function, m(Z2) is the propensity score
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Think linear case:

! !
Yi=aodi+Zifo+ ¢ ; di=2Zivw+V
Orthogonal
Estimating
Equations

Approach 1: When z; is low-dimensional, OLS estimator of ag is numerically
equivalent to OLS estimator from

,Vi—?izozo(di—ai)-i-Ci

m J is the i element of Y = P, Y and d is defined similarly
m Equivalent to using moment condition 2.

Intro to HD Inference



Example: Partially Linear Model

Intro to HD
Inference

Think linear case:

Vi=aodi+ZiBo+ ¢ di=2ziv+V

Orthogonal
Estimating
Equations

Approach 2: When z; is low-dimensional, OLS estimator of ag is numerically
equivalent to OLS estimator from

Yi— 2B = aodi +¢
[ | 3 is the OLS estimator of 3y

m Equivalent to using moment condition 1.

When you regularize, Approach 1 and Approach 2 are not generally
equivalent.
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Consider regularization via variable selection

Condition 1 corresponds (heuristically) to
1. Remove correlation between Y and D and X and D - call the new
variables Y and X.

Orthogonal
Estimating

Equations 2. Select variables from X by finding any elements of X that predict ¥
3. Estimate ag by regressing Y on D and any selected elements of X

m Problem: Association between X and D leads to potential omitted
variables bias.

Condition 2 corresponds to

1. Select variables from X that predict Y
2. Select variables from X that predict D
3. Estimate «ag by regressing Y on D and any variables that predict Y or D

m Alleviates potential for omitted variables bias by explicitly addressing
correlation between D and X
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Non-Orthogonal, n =500, p = 20

Orthogonal
Estimating
Equations

Results from simulation using moment conditions 1. and 2. (with nuisance
parameters estimated using random forests)

Orthogonal, n =500, p = 20

015 01 0056 0 005 01 015 02
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2.B. Bias from Overfitting
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Overfitting

Problem with Overfitting

Overfitting in estimating nuisance functions also leads to strong bias in
estimators of parameters of interest.

lllustrate this bias again in partially linear model using a contrived example.

Example:

® Suppose £(z;) = Lo(zi) + (i — bo(2:))/n
m (y; — £o(2))/n"/?~< captures overfitting - estimator is truth plus a term that
depends on the idiosyncratic realizations in our observed sample
lEmeWZQﬂmemdbmhnmmsmbdmcmm&kMaMcmwa@mat
essentially the v/n rate (which is infeasible in
high-dimensional/nonparametric settings)

1/2—¢
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What happens to the estimator of oy based on the orthogonal moment
condition now?

m Assume we know mo(-).
m Recall that d; — mo(z) = v;.

m Recall that yi= apd; + go(Z,') + ¢ = fo(Z,') + apV; + ¢; where
bo(2;) = aomo(2i) + Go(Zi)

m S0y — Uz) = agVi + ¢ — (agVi + () /n' /2

Overfitting

Substituting in to the solution @ to condition 2 gives

% Zi V"(C/ - (aov,- + C;)/n1/2*5)
%Zi sz

SO MTEED VAL W
= 0u(1(Ou(1) + M O(1) + 04(1))

which diverges (akin to endogeneity bias).

V(@ — ao) =
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Overfitting

Solutions to Bias due to Overfitting

1. Use procedures that provably do not overfit

m Traditional semiparametric approaches: Levit (1975), Ibragimov and
Hasminskii (1981), Bickel (1982), Robinson (1988), Newey et al.
(1998), Newey (1990), van der Vaart (1991), Andrews (1994a), Newey
(1994), Newey et al. (2004), Robins and Rotnitzky (1995), Linton
(1996), Bickel et al. (1998), Chen et al. (2003), van der Laan and Rose
(2011), and Ai and Chen (2012)

m ML approaches that provably control overfitting (mostly lasso-based):
Belloni, Chen, Chernozhukov, and Hansen (2012), Belloni,
Chernozhukov, and Hansen (2014); Belloni, Chernozhukov,
Fernandez-Val, and Hansen (2017); Javanmard and Montanari (2014);
van de Geer, Buhlmann, Ritov, and Dezeure (2014); Zhang and Zhang
(2014)

m Seem to be somewhat special and require leveraging special structure
on the problem
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Overfitting

Solutions to Bias due to Overfitting

2. Sample split
Basic idea in partially linear model.
m Suppose sample split into two parts (A and B, equal sized for simplicity)

m Part A used to estimate nuisance functions. Part B to estimate the
parameter of interest
m Model overfitting as #(z;) = £o(z;) + RA(z;)/(n/2)"/2=<. Note that RA(z;)
independent of everything in sample B (under independence)
What happens to the estimator & under condition 2 gives

\/ﬁ > ies VilGi — I-_t"q(z,-)/(n/2)1/27E

V/2(@ — ag) =

%ﬂ i VF
A
\/—Z ViGi — n/2 ZVIR Z,
ieB ieB

= Op(1)(N(0, V) + (n/2)""/2*°0p(1)) = Op(1)N(0, V) + 0p(1)

because v; is mean zero and independent of R*(z)

Full efficiency can be restored by flipping roll of sample A and B and
averaging the results.
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Simulation Evidence

Intro to HD
jbleience Results from simulation using moment condition 2 with and without sample

splitting (with nuisance parameters estimated using random forests)

A. Full Sample B. Split Sample
05 P 0.5 P P
Simuiation Simuiation
04 —N(0,1) 04 —N(0,1)
Overfitting

03 0.3
02 0.2
0.1 0.1

0 0

10 5 0 5 10 -10 5 0 5 10

[Note: Previous figure for comparison of condition 1 and 2 used sample
splitting for both estimators]
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Overfitting

Cross-Fitting

Lots of ways to use sample-splitting to control bias from overfitting

Cross-fitting:
m Split the data into K approximately equal-sized parts
m Fork=1,..K
(a) Remove subsample k
(b) Fit high-dimensional component using remaining K — 1 subsamples
(c) Use only observations from subsample k to estimate parameter of interest
using estimator of nuisance function from (b) — &, and estimated standard
error &y

m Estimate ag as & = £ 35, éx with standard error & = /-5 Sk, 52

The specific sample split also introduces variability. We can account for
some of this by considering many different sample spilits.

m Consider b =1, ..., B splits — {¢p, 5p}5_,
m Report summaries of {&s, 5s 5 4. E.Q.
o= 1§ 2521 &p

/58 (3R + (o — 6)2)

Intro to HD Inference



Intro to HD
Inference

Semi-
parametric
Examples

3. Semiparametric Examples
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Application: Effect of Abortion on Crime Rates
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Estimate the consequences of abortion rates on crime,
Donohue and Levitt (2001)

Yie = vt + dirag + Xiltﬂg + Cit

Semi- ® y; = change in crime-rate (violent, property, or murder per 1000) in

parametric

Examples state i between tand t — 1,
m d; = change in the “effective” abortion rate,

m X; = controls for time-varying confounding state-level factors, including
initial conditions, interactions, squared terms, and interactions of all
these variables with trend and trend-squared

m ~; time effects (not-selected over)
m p=284,n=576
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Application: Effect of Abortion on Crime Rates

Intro to HD
Inference

Violent Property Murder
Estimator Effect Std. Err.  Effect Std. Err.  Effect  Std. Err.

DL Table 4 -.129 .024 -.091 .018 -.121 .047
First-Diff -.152 .034 -.108 .022 -.204 .068
All Controls .006 483 -.154 163 2.240 2.184
Non-Orthogonal -.155 .033 -.101 .022 -.021 .051
Semi- Orthogonal -.089 .053 -.020 .051 -.045 .069
osioidl  Orthogonal - Sample Split  -.048 077 -.040 .042 -.075 .103

m Use lasso for fitting nuisance functions

m Without sample-splitting, use tuning choices that theoretically provide good
fit while avoiding overfitting (specifically, Belloni, Chernozhukov, Hansen,
and Kozbur (2016) which accommodates clustering)

m With sample-splitting, use iid 10-fold cross-validation

m Results in-line with the heuristic critique raised by Foote and Goetz (2008).

Intro to HD Inference



Application: Effect of 401(k) Participation on Accumulated Assets
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Follow Poterba et al (97), Abadie (03). Data from 1991 SIPP, n = 9,915

m Y is net total financial assets or total wealth

m D is indicator for working at a firm that offers a 401(k) plan

m X includes age, income, family size, education, and indicators for
Semi- married, two-earner, defined benefit pension, IRA participation, and

parametric

Examples home ownership

D is perhaps plausibly exogenous at the time when 401 (k) was introduced
Important to control for income to capture unobserved heterogeneity in
employment decisions (Poterba, Venti, and Wise 94, 95, 96, 01)

m How do we specify what it means to control? Is our functional form
right?
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Estimate of ATE allowing for full heterogeneity of treatment effects:

Model:

yi=dgi(x)+ (1 = d)go(xi) + ¢
Semi- d,' = m(X,') + Uj

parametric
Examples

Orthogonal estimating equation for ATE («) from Hahn (1998):

g | g0 —gi1(x)) (1= d)(yi — Go(xi))
m(x;) 1-— m(x;)

+91(Xi)) — Go(X)) —| =0

Estimate nuisance functions using go(*), g1(+), and m(-) ML methods
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Estimated Effect of 401 (k) Eligibility on Net Financial Assets

Lasso Reg. Tree Forest Boosting Neural Net. Ensemble Best

A. Interactive Regression Model

) ATE (2fold) 6830 7713 7770 7806 7764 7702 7546
ot - [1282] [1208] [1276] [1159] [1328] [1149] [1360]
Ei;",;“,je': (1530) (1271) (1363) (1202) (1468) (1170) (1533)

ATE (5fold) 7170 7993 8105 7713 7788 7839 7753
[1201] [1198] [1242] [1155] [1238] [1134] [1237]
(1398) (1236) (1299) (1177 (1293) (1148) (1294)

B. Partially Linear Regression Model

ATE (2fold) 7717 8709 9116 8759 8950 9010 9125
[1346] [1363] [1302] [1339] [1335] [1309] [1304]
(1749) (1427) (1877)  (1382) (1408) (1344) (1357)
ATE (5fold) 8187 8871 9247 9110 9038 9166 9215
[1298] [1358] [1295] [1314] [1322] [1299] [1294]
(1558) (1418) (1328)  (1328) (1355) (1310) (1312)
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Conditional
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Not all problems fall within the semiparametric framework

Some good examples come in the context of policy evaluation with
heterogeneous conditional average treatment effects (CATE(x) =
E[Y: — Yo|X = x])
m E.g. Suppose D(x) is a new policy based on what you've learned such
as D(x) = 1(CATE(x) > 0). Want to evaluate Ep([Y] (mean of Y
Conditional under counterfactual that D(x) is adopted)

m E.g. Might want to test CATE(x™) > 0 for some x™ chosen after looking
at the data

Rely on using the data to learn what you want to test - Object of interest not
prespecified before seeing the data
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Inference problem is easy if we are willing to
. Split the sample

—_

2. Learn the object of interest using only sample A
3. Condition on the answer from sample A
4. Do inference using only sample B

Conditional

Inference Works because object of interest is prespecified from standpoint of sample
B - standard inference problem

Drawbacks

m have to “commit” to answer from sample A

m only use a subset of the data - higher variance
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Inference
Example

5. Conditional Inference Example
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JTPA Data
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JTPA (Job Training Partnership Act) Experiment:
m males randomly assigned offer of JTPA training services (n = 5102)
m outcome: total earnings over the 30 month period following treatment
assignment (average $19,147)

m controls

high school dummy

m black and hispanic dummies

Conditional m worked at least 12 weeks in 12 months prior to assignment dummy
| |
[ |

Inference 5 age dummies
Example .
earnings from second follow-up survey dummy

Split sample into two equal halves - estimating and testing sample
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Evaluating Treatment Policies

Intro to HD
Inference Consider simple set-up where we want to do inference on which to

implement.

Use several different ML methods to estimate CATE(x).
m lasso (with fully saturated model)
m tree
m random forest
m boosted trees

Several different policies:

Conditional

Nfreres m Treat no one
Example
m Treat everyone

m Treat if CATE(x) > 0 for each CATE estimator

m Treat if CATE(x) > 0 for majority of CATE estimators

m Treat if average CATE(x) across estimators is positive

Use the bootstrap to do inference using data from sample B
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Estimated Average outcomes under each policy

Policy Average Outcome
None 14991.34
All 16085.51
Lasso - CV 16081.01
Lasso - Plug-in 16090.79
Tree 16088.16
Forest 16087.83
Conditional BOOSting 16089.12
e Forward Selection 16091.39
Majority 16086.94
Average 16089.17

Everything but treating no one looks pretty similar.

Intro to HD Inference



Intro to HD
Inference

Confidence intervals for difference from no treatment (multiplicity adjusted):

Policy LB uB
all 86.81 2101.54
lasso - cv 338.24 1850.74
lasso - plug-in  346.68 1852.20
tree 340.71 1852.93
forest 340.45 1852.52
boost 341.87 1853.68
Conditional Step 344.16 1855.93
Evample. majority 339.71 1851.48
mean 341.79 1853.87

Not much evidence that worrying about heterogeneity is worth it in this
example.
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Sample A is estimation sample. Sample B is testing sample.

Intro to HD Inference



Intro to HD
Inference

For fun, let's suppose there’s a cost of $500 to offering the policy and we
only want to treat people where the benefit exceeds the cost. Estimated
Average outcomes under each policy

Policy Average Outcome
None 14991.34
All 15585.51
Lasso - CV 15644.65
Lasso - Plug-in 15835.97
Coniion! Tree 15710.98
Inference Forest 15781.06
Example Boosting 15651.06
Forward Selection 15838.53
Majority 15670.21

Average 15707.97
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Confidence intervals for difference from no treatment (multiplicity adjusted):

Policy LB uB
all -406.11  1594.45
lasso - cv -92.51 1399.13
lasso - plug-in  101.77  1587.47
tree -26.33  1465.59
forest 43.81 1535.63
boost -85.75  1405.20
Conditional step 101.69 1592.69
Example majority -66.65 1424.39
mean -29.01 1462.26

Maybe a little more going on here
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Let’s look at fraction treated under each rule:

Policy Average Outcome
None 0.00
All 1.00
Lasso - CV 0.88
Lasso - Plug-in 0.51
Tree 0.75
Forest 0.61
e Boosting 0.88
Example Forward Selection 0.51
Majority 0.83

Average 0.76
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6. “Nonparametric” Inference
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Not all problems are readily treated in the two previous paradigms
m Might be truly nonparametric
m Do not want conditional inference
m Finding orthogonal moment functions may be difficult

Examples:
m E[Y: — Y| X = x] =CATE(x)
m Expected profit from implementing optimal strategy when cost of
Nom treatmentis ¢ =
it E[Yo|D*(X) = O]Pr(D*(X) = 0) + E[Y1 — ¢c|D*(X) = 1]Pr(D*(X) = 1)
where D*(X) = 1(CATE(X) > ¢)
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With p =~ nor p > n, cannot do inference for many objects without further
assumptions

For this section, we will stop being agnostic about structure and impose
(approximate) sparsity:

m Let 0 (p x 1) be the (full) model parameter

m Assume ||6ollo = Sn < n

m Estimation problem becomes find and estimate non-zero elements of 6

. m lasso/post-lasso, forward selection, ...
“Non- . . e
parametric” m Do not impose Bmin-like conditions
Inference . . . .
m include models where perfect model selection impossible
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Simple Example

Intro to HD Consider the model

Inference

\y/ =W Bo + Ti(W/y0) + € = X{0 + €

with 6o = (8,7)", ll6llo < s, supp(fh) = S, E[ei|xi] = 0.
Consider an inference target:

a(fo)
for some fixed a € {R? — R}.

“Non- Eg

parametric”

Inference m a(3) = xp for some xo
m a(B) = xgy for some xo
m a(B) = Z/p:1 Bj
B 3(B) = max; ||

Note that a(-) may depend on x; or other objects and need not be linear.
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parametric”

Inference

What We Need to Learn

All arrows relevant: no parameters
are nuisance parameters

Intro to HD Inference




Potential Procedure
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One way to construct a confidence set Z for a(6y) if we knew an
upper-bound s on s:

m Foreach K C {1, ..., p}, where |K| < s, form asymptotic 1 — «
confidence interval [¢k, uk] supposing that K = supp(6p) = S'is
correctly specified

m SetZ = UK[£K7 UK]

m This yields correct coverage

“Non-

parametric” P{a(@o) S I} > P{a(eo) S [fs, Us]} > 1—a+ 0(1)

Inference
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Potential Procedure
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Alternatively, we can perform the following optimizations and define
T = [¢, u] with

B /= minpcge a(b) — C1_,S.€.(a(b))

s.t. ||b||o < §, b= reg.coeff(y,- on Xi,supp(b))

B U = maxpepe a(b) + Cc1_qS.€.(a(b))

. s.t.||bllo £'5, b= reg.coeff(y; on X;supp(s))
“Non-

pa:,ame!ric"

Inference

[For instance, using delta method for s.e.(a(b))]
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Potential Procedure

This approach yields correct coverage, but has at least 2 major drawbacks:

m Computationally difficult for even moderate s

m Gives VERY large confidence regions
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The optimization is not local to the true model:

m Ifthe set K C {1, ..., p} consists of irrelevant regressors which are
orthogonal to true regressors, the corresponding estimate
reg.coeff(y; on x; k) will be approximately 0 with high probability

m Under this case, the interval [¢k, uk] > 0 with high probability

m The resulting inference has no power against some fixed alternatives
“Non-

parametric”
Inference
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“Non-

parametric”

Inference

Proposed Procedure

“Local” procedure:

Step 1.
Use Lasso (or other) to perform model selection y; on x;:
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Step 2.

m Define S by the following program:

Q(low) __ . _
S = arg Kg?;,'?,p} a(b) — ci_qs.e.(a(b))

st |K| <3, K238,
b = reg.coeff(y; on x; k).

“Non-
parametric”
Inference

m Define S“?) similarly.
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Two drawbacks:

m Cannot rule out 3j ¢ S : j selected. Then all subsets
SO C K C {1, ..., p} contain some j ¢ S. This means we cannot
leverage a central limit theorem for 3_7 , x/ se; since S was not even
considered in the optimization. Furthermore,

E[xjei|j selected, j ¢ S] # 0.

m Though much faster than the original (non-local) optimization, it can still
— be computationally infeasible.
parametric”

Inference
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Proposed Procedure

Intro to HD To address the first problem, we require s > | T| where T C {1, ..., p} such
that

P(T° NS £ 0) = o(1)
m Essentially states that set of variables liable to be falsely selected into

initial model is not too large
m Can be shown to hold under design conditions

Sample split:
m Partition {1, ..., n} into ALl B. Estimate S©© on sample A. Construct

" union of confidence intervals on sample B.

iy m Allows Gaussian inference

Inference

Formal conditions under which this all works exist.

m Essentially, need that asymptotic inference if you knew the true model
would work

m Mild regularity on functional a(-) - complexity of a(-) shows up in rates

f convergence
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“Non-

parametric”

Inference

Proposed Procedure

To address computational problem

m Solve the two optimizations approximately
m Use greedy algorithm
m e.g. forward selection (we do this in the simulations and empirical example)

m Other approaches are also possible, eg. semidefinite relaxations
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Table: Inference Simulation [n = 1000, p = 501] Results: 31

Coverage Prob. Interval Length

True Support 0.95 0.83
All 0.94 1.17
Oracle-Style 0.00 0.01
Lasso + log(n) 1.00 1.06
Lasso + n'/3 1.00 1.14
“Non- Lasso + n'/? 1.00 1.54

parametric”

Inference PrOjeCtion 0.95 0.83
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Preliminary Simulation Evidence
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Table: Inference Simulation [n = 1000, p = 501] Results: g(xp)

Coverage Prob. Interval Length

True Support 0.95 0.46
All 0.95 2.92
Oracle-Style 0.00 0.21
Lasso + log(n) 1.00 2.28
Lasso + n'/® 1.00 2.89
“Non- Lasso + n'/2 1.00 5.76

parametric”

Inference PrOjeCtion 1.00 238.40
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Preliminary Simulation Evidence
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Table: Inference Simulation [n = 1000, p = 501] Results: h(x)

Coverage Prob. Interval Length

True Support 0.94 0.62
All 0.95 413
Oracle-Style 0.00 0.28
Lasso + log(n) 1.00 3.26
Lasso + n'/® 1.00 4.13
“Non- Lasso + n'/2 1.00 8.25

parametric”

Inference PrOjeCtion 1.00 283.04
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Preliminary Simulation Evidence
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Table: Inference Simulation [n = 1000, p = 501] Results: E[Ax(D*)]

Coverage Prob. Interval Length

True Support 0.89 0.16
All 0.00 0.17
Oracle-Style 0.00 0.14
Lasso + log(n) 0.99 0.27
Lasso + n'/® 0.99 0.29

“Non- Lasso + n'/? 1.00 0.40

parametric”

Inference P rOjeCtion —
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“Non-

parametric”

Example

7. “Nonparametric” Examples
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Example 1: JTPA Data

Intro to HD
Inference

Suppose we are interested in actual individual specific treatment effects.

We report intervals for 50 observations from

m OLS with all interactions (with near collinear columns removed by
default in R)

m s.e’s are potentially badly off - (jackknife fails - returns “not a number”)
m Selection based estimates assuming perfect selection
m Forward selection procedure

“Non-
parametric”
Example
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OLS Results
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“Non-

parametric”
Example
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Oracle Results
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“Non-
parametric”
5000-

Example
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individual index
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Undersmoothing

Intro to HD

Inference One additional variable:

FS (1)
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10000-

“Non-
parametric”
Example
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Undersmoothing
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FS (2)
20000~
0 FS_estimates
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g b
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20000~

“Non-
parametric”
Example

2 62014552229 B082BAY 1141122284 7 7 316613
individual index

Intro to HD Inference



Undersmoothing
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Undersmoothing
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FS (4)
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Undersmoothing
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Inference 5 additional variables:

FS (5)
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Undersmoothing
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Undersmoothing
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Inference 7 additional variables:

FS(7)
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E b
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parametric”
Example
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Undersmoothing
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Inference 8 additional variables:
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Undersmoothing
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Example: Targeted Marketing

Intro to HD
Inference

Data:

m y;: Total expenditure

m x;: Consumer /’s characteristics
m Demographics
m Purchasing history

m d;: Whether consumer i received a promotion

We have n = 287970, p = 2139 (Characteristics and interactions with
treatment indicator). d; is assigned randomly with treatment probability of
2/3.

“Non-
parametric”
Example
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Yi =X Bo~+ (di- x;) v +ei

m Cost of promotion:
Ci=C+ni
ni~ N(07 02)

m The firm gets fixed margin M from sales.

“Non-
parametric”
Example
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Expected profit from strategy d:

E[r(d)] = E[M(Bo + X' + d(x, ¢)(70 + x'7)) — d(x, ¢)c]
= E[M(Bo + X'8) + d(x, c)(M(0 + x'v) — ¢)]

Strategy: Given known costs, strategy is D* = 1(M(yo + x') > C). We
then integrate over distribution of C.

“Non-
parametric”
Example
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Profit Differential

Intro to HD
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Profit differential relative to no mailing is reported:

E[An(D*)] = E[®((M(70 + X'7) — C)/0)
x (M(y0 4+ x'v) — C)]
—E[1(M(70 + X'7) — C > n)n]

m Indata, we have M~ 3, C~ .7, 0 ~ 1.
“Non-

parametric”
Example
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Table: Average Profit Differential (15 S (Elmr] —E[?] ))

Estimator Estimate S.E. Lower  Upper
OoLS 1.4295 0.0652 1.3017 1.5573
Post-Lasso 0.3332 0.0412 0.2524 0.4140
FS(1) 0.2225 0.4524
FS(2) 0.2169 0.4739
FS(3) 0.2125 0.4866
FS(4) 0.2080 0.4993
FS(5) 0.2044 0.5100
FS(6) 0.2019 0.5231
FS(7) 0.1997 0.5318
FS(8) 0.1979 0.5399
FS(9) 0.1967 0.5463
;:?a"n}emcv FS(10) 0.1947 0.5536
Example FS(1 1 ) 01 936 05598
FS(12) 0.1926 0.5654
(13) 0.1918
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8. Summary

Conclusion
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Summary

Intro to HD
Inference

Inference in high-dimensional settings complicated by
m regularization bias
m overfitting

Outlined three different paradigms for doing inference for different objects
that address these complications.

Conclusion

Intro to HD Inference
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