Intro to HD
Estimation

Notes 1: Introduction and Penalized Estimation

Intro to HD Estimation



Intro to HD
Estimation

1. Introduction

Intro to HD Estimation



Intro to HD
Estimation

Introduction|

Introduction

“Big Data™:
1.

Large data sets: e.g. n observations, p variables, np too big to fit on a
computer

m e.g. eBay, Google, Amazon
High-dimensional models: n observations, p parameters, n ~ p or
n<gp

m traditional nonparametrics (easy to see with series/sieves)

m text data, big survey data sets

m flexible “parametric models”, semiparametric models
Statistical Learning/Data-mining: Exploit data to get good forecasting
rules

m want model that is flexible enough to accommodate important patterns but
not so flexible it overspecializes to specific data set (goal of
nonparametrics)
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Predictive Models
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Useful to think about relation between target (Y) and input (X) as

Yo =f(X)+ &
N~~~ N~

target signal noise

Goal: Learn f(-) from the data in a way that yields “generalizable” forecasts
OR

Get a forecast rule that minimizes expected forecast loss
m Focus on squared error loss minimization - f(X) = E[Y|X]
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Nonparametrics
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Nonparametric estimation/inference:

m fundamentally about fitting flexible models to data

m allows data to guide researcher in learning by leveraging weak structure
imposed by researcher (e.g. continuity and differentiability)

m Structure provides dimension reduction by not requiring the researcher to
try to learn the value of a function at point x* by looking only at
observations with x; = x*

m tries to trade off bias and variance in estimation by adapting model
complexity to the data at hand

m fundamentally about description/prediction but underlies learning about
more “structural” parameters (e.g. treatment effects)
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Nonparametrics
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Traditional nonparametric approaches (e.g. kernels, series, ...) perform
poorly when size of the input space is large (curse of dimensionality)

m if unwilling to assume much, need LOTS of data before informative
conclusions can be drawn

More recent nonparametric approaches - high-dimensional models
m drawn largely from machine learning, data-mining

m tend impose more structure - more dimension reduction - than
traditional nonparametrics

m scale better computationally and as the dimension of the problem
increases
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3. Traditional Nonparametric Methods
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Coarsely Discrete Regressors
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Suppose that X can take on R values, {x, ..., xg}. E.Q.
Nonparm m Gender, R = 2.
metrics

m Years of Schooling, R = 20ish.
m Gender x Years of Schooling, R = 2*20ish.

Estimation of E[Y|X = x,] is easy!!
m Find all observations with x; = x, and calculate sample mean with this
subsample
m No assumptions about E[Y|X] - completely flexible

m Will have usual properties as long as R finite (just learning about R
expectations)
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Example: Conditional Wages
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Data:
m 329,505 men from 1980 U.S. Census

aged 40-49

0-20 years of schooling

Traditional
Nonpara-
metrics

race (black, white)

married (married, non-married)

Condition on schooling or age:
m Schooling:

m 21 categories
m average of 15,691 observations per category
m Range: 215-122,934

m Age:
m 40 categories

m average of 8238 observations per category
m Range: 7327-9683
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Example: Conditional Wages
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Traditional
Nonpara-
metrics

(a) Schooling
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Example: Conditional Wages

Intro to HD Condition on schooling and age:

m 840 categories

m average number of observations per category: 392 (large range: O -
Traditional 41 81)

Nonpara-
metrics
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Example: Conditional Wages
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Traditional
Nonpara-
metrics

Things only get worse as we condition on Race and Marital Status
m 3360 categories

m average of 98 observations per category

m Range: 0 - 3635

m 259 empty categories (7.7%)

m 670 categories with 0-2 observations (19.9%)
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Example: Conditional Wages
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E[log(wage)|schooling,age, black=0 married=1] E[log(wage)|schooling,age,black=0,married=0]

Nonpara-
metrics

104
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Example: Conditional Wages
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Some questions:

Traditional
Nonpara- 1. Do we really think conditional expectation function is that bumpy?

metrics

2. What do we do about categories with 0 observations?

3. Estimates cell by cell are unbiased. What happens to variance as the
number of cells increases?

4. Suppose we conditioned on State of Birth too? (171,360 categories)
[Curse of dimensionality]

Fundamental statistical learning problem - Need for Regularization:

Structure and estimators that trade off bias and variance to produce
reasonable forecasts/models
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Traditional Nonparametrics - Kernels
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Traditiona! Literally averaging for each separate x value is only feasible in cases where
Nonpara- X is coarsely discrete - need beliefs/regularization

mees m Smoothness: E.g. E[Y|X] is a smooth (e.g. continuous, differentiable,
etc.) function of X

m Function shouldn’t change much across values of X that are close
m Estimate E[Y|X = x*] by averaging y’s over values of x close to x*

Kernel Regression:

—— S L YiKn(xi — x*
EIYIX = 1] = 5(x) = S =0
i=1 i

where Kj(-) is a kernel function and h is a bandwidth.
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Some kernel details
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Common Univariate Kernels:
Traditional m Uniform: Ky(u) = 2-1(|u| < h)

Nonpara-
metrics

m Gaussian: Ky(u) = ﬁ exp{%f}

m Epanechnikov: Kn(u) = 2 (1 - (%)2)+

m Triangular: Ki(u) = + (1 _ %)
N

Multivariate kernels:
m Most common to just take product of univariate kernels (“product
kernel”)
m Any multivariate density would also work
m E.g. g—dimensional multivariate normal with g x q bandwidth matrix H
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Intuition using uniform kernel
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jlraditiorss With uniform kernel,

Nonpara-
metrics

Yy X < )
x*) =
90 = 57 S —x < h)

1
- nx*,h Z yi

i |xj—x*|<h

B Ny~ is the number of observations such that |x; — x*| < h

m |.e. estimator is just sample average of the y; across all points where
|xi —x*| < h

Intro to HD Estimation



Local averaging picture
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W3 =15 X wcian i

Nonpara-
metrics
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Traditional Nonparametrics - K-NN
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Traditional
Nonpara-

metrics K- N N :

u f(X) - K ZIdX,,X)<d y’
® K: number of ne|ghbors to use
m d(xq, x2): distance from point x4 to point xz, usually Euclidean
m x the observation ranked K in distance from target point x

m Can be viewed as kernel with varying bandwidth

Kernels and K-NN are local methods
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Aside: Scaling
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Some data-mining/nonparametric methods depend heavily on scale of
Traditional observations

Nonpara-
metrics

E.g. KNN - very common to use Euclidean distance:
[1xi = Xill = /220 (X, — X )?

m very different answer depending on scale of x’s (e.g. meters versus
centimeters)

Very common to scale x’s before analysis:
m E.g. standardize: %24
)

m Scale to [0, 1]: L0 40

max X; j
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Traditional Nonparametrics - Series
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Series:
" = Model f(x) = >0, £ipi(X) + r(x)
Traditional
P m p;(x) are series/basis terms
m E.g. {pj(x)} =1,x,x2,x3, ... (or orthogonal polynomials)

m Eg. {pj(x)} =1,xx2,x3,(x — ks)3, (x — k)3, ... where Ky, ks, ... are
“knots” (cubic spline)

m Obtain f(x) by LS regression of Y on {p;(X)}7_,
m Global method

Regularization comes in through the choice of p.

m Higher p means less bias since we are leaving out less terms from the
infinite sum

m Higher p means higher variance since we are estimating more
regression coefficients from the same amount of data
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Series Estimation
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L’:::?‘;‘:;‘f" Operationally, series are extremely easy
m Define ¢"(X) = (9n1(X), .., onp(X))’
m Define Z, = [¢"(X1), ..., ©"(Xa)]’ (@n n x p matrix)
The series estimator of E[Y|X = x]:
G(x) = @"(x)'B where B =(Z,Z.)""(Z,Y)

l.e. estimate coefficients by OLS of Y on Z,. Can also do inference using
conventional OLS output (e.g. Newey (1997))
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Traditional
Nonpara-
metrics

The Curse of Dimensionality

Traditional nonparametric approaches perform poorly when the dimension of
the covariate space increases.

For example, how does data “fill-in” as dimensionality increases?
m Think about data uniformly distributed on the p-dimensional unit cube
m To get fraction b of the observations, need b of the volume
m On average, will need a cube with edge length b'/P
m Neighbors aren’t so local! (e.g. p = 10, b = .01, need .01-! ~ .63 - cover
63% of the support of each input

Traditional nonparametric estimators impose too little structure to produce
useful models in high-dimensions.
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3. High-Dimensional Linear Model
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HDLM: OLS Estimator
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High-dimensional linear model (HDLM):

o
Yi=X/B+e=Y BXi+en ElilXii.. X1 =0, p>n

j=1
Suppose observed data matrix X is full (row) rank
Least squares estimator solves X’ X3 = XY and yields family of solutions:
BY = (X'X)"X'Y +[I— (X' X)X X]w

for A~ the Moore-Penrose generalized inverse and w an arbitrary
conformable vector

No unique coefficient estimator.
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HDLM: OLS Prediction
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Least squares fitted values in HDLM satisfy
Y = xp”
= X(X'X)"X'Y +[X = X(X'X)” X' X]|w
= XX'(XX)HXX)TXX'Y 4+ [X — XX (XX) " (XX) T XX X|w
=Y
using (X’X)~ = X'(XX")~"(XX")~'X (property of Moore-Penrose inverse)

l.e. any solution perfectly fits Y within sample.

Linearity insufficient structure to allow informative estimation and inference
when dimensionality gets high enough. Need further
regularization/dimension reduction.
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HDLM Prediction
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Goal: Find a linear combination of X that provides a good forecast of Y

Need more structure:
m Popular additional structure is sparsity
m Of the p > n available predictors, only s < n are needed to obtain a
high-quality prediction of Y
m Want to find which (if any) elements of X we can drop and still get good
forecasts of Y

m Note that dropping a variable < setting coefficient on that variable to 0
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Series/Sieves
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Note that nonparametric series/sieve estimation falls within this framework:

Yi=9(z) + u
:Xi/ﬁ"rri-‘rui:)(i/ﬂ'i‘&

m z; some low-dimensional set of observed variables
. 2 3
B X; = {pk(zi)}Z:ﬂ e'g' Xi = {1,2,‘,2,- 7Zi ) "'7zlp}
m Believe decent forecast available using fewer than n series terms

m Allows approximation errors (just absorbed in ¢ in these notes) - needs
to be dealt with explicitly in the theory
m E.g. Belloni, Chernozhukov, and Hansen (2014) “Inference on Treatment
Effects after Selection amongst High-Dimensional Controls”
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Bias-Variance Tradeoff and Variable Selection

How do we decide which variables to drop?

m Leaving out variable with strong correlation to signal = model too
simplistic = bias

m Putting in many variables = hard to learn about all corresponding
coefficients = variance

m As with any nonparametrics, want enough variables to capture
predictability without over-complicating the model

In principle, want to try all possible combinations and choose the one that
does the best job forecasting out-of-sample

m Underlies best subsets selection methods

m Best subsets computationally infeasible when the dimension of X is not
small

m Forward selection and stepwise selection meant to approximate best
subsets solution

Penalized estimation offers another computationally tractable approach to
address the selection problem.
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4. Penalized Estimation
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Regularization
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Key idea in much of contemporary statistics is regularization:

At a high-level, regularization is just introducing additional information to
Penalized solve an ill-posed inverse problem

Estimation

m a very long history of use in mathematics
m any useful statistical method is doing some kind of regularization (e.g.
mean is not allowed to vary arbitrarily for each observation)

m Many modern statistical methods explicitly introduce regularization by
directly penalizing model complexity

m E.g. information criteria (such as AIC, BIC) for choosing variables
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Penalized Estimation
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Penalized estimator solves

f= arg mfin L(data, f) + AC(f)
Penalized
Estimation

m L(data, f) is a loss function that decreases as model fits data better (e.g.
sum of squared residuals)

m In principle, works for essentially any loss function and (theoretical) results
available for common ones

m C(f) is a penalty (cost) function that increases in model complexity

m )\ is penalty parameter (price) that controls how fit versus complexity
are balanced
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Squared Error Loss and Linear Models
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Canonical examples:

Penalized

Estimation BF’ = arg mBin ;(y, - Xi/ﬂ)z + Ap(,ﬁ)

m Ridge: p(8) = X0, ;5?
m LASSO: p(8) = X0, [v;8]
m g p(B) = 20 [iB°
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Squared Error Loss and Linear Models

Intro to HD
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More elaborate examples:

m Elastic Net:

P P
P(B) = > 198l + de Y w28}
j=1 j=1

Penalized m SCAD: For a > 2,

Estimation
, ;] if |;/1/ﬂj| <A
iBi2 —2ax|p;Bj|+A2 .
p(B) =3 —% if A < |18 < ax
=t DX if |y 3] > a
(a quadratic spline with knots at A and a)\)
m Lava: Decompose 3 = § + 7,

P P
P(B) =D [18]l + Ao > ve0f
j=1 j=1
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High-Level Comments on Penalty Functions
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Impose regularization by shrinking coefficients towards 0 (in principle
could shrink to other value)

Complexity measured by size of estimated coefficients

Builds in a belief that model is not too complicated in that coefficients
should not be “too big”
Scale of variables (and thus coefficients) very important for this belief
m Standard implementations assume homoscedasticity and standardize data
ex ante
m Take all the ¢’s = 1 in this case

m More generally, proper choice of 1) can allow for heteroscedasticity,
non-Guassian errors, dependence

B To my knowledge, only formally worked out for LASSO under heteroscedasticity
(BCH 2012) and clustering (BCHK 2016)

Penalized
Estimation

Key tradeoffs are type of shrinkage and computational complexity
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Penalty Functions
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Penalized
Estimation

LAN1/2)

po)
1

All have A = 1; a = 3 for SCAD
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Shrinkage Functions
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Shrinkage functions offer another device for thinking about what different
penalties do

Penalized

Estimation Idea: Consider a simple case where problems have explicit solution in terms
of MLE

Shrinkage function captures what penalty function does to MLE in that
setting

E.g. consider least squares estimation with orthonormal input matrix so
each By obtained by marginal regression
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Shrinkage Functions
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Shrinkage Functions

" MLE

—— Ridge

— LASSO
SCAD
lava

Penalized
Estimation

output
0

T T T T T
-a -2 0 2 4

input

X = 1 for all cases, a = 3 for SCAD, \» = 1 for lava
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Constrained Optimization Problem
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Penalized estimators have equivalent formulation in terms of a constrained
optimization problem:

E.g. LS criterion:

Penalized
Estimation

) . . ’ 2\2
= argmin i — X
Bp = arg ! ;:1 67 B)
subjectto  p(B) <M

Equivalent to penalized formulation when M and X set appropriately

Easy to see how kinked penalties lead to variable selection in this framework
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Constrained Optimization Problem Contours

Intro to HD
Estimation

Penalized
Estimation

Contours of LS criterion in 2-D case and shape of constraint region (LASSO
- diamond, Ridge - circle). (Figure 6.7 from ISL.)
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Shrinkage Bias
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Penalized estimators with convex penalty functions computationally
convenient (coupled with convex loss)

P Shrink all coefficients towards 0

Estimation

m Great for coefficients that are really zero (or vanishingly small)
m May lead to substantial biases for non-zero coefficients

Non-convex penalties (e.g. SCAD, ¢, with p < 1) motivated by desire to
mitigate this bias

Adaptive LASSO alters penalty loadings based on first step estimate to
alleviate bias
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Post-Penalized Estimation (Belloni and Chernozhukov (2013))

Intro to HD
Estimation

Computationally simple and intuitive idea to undo shrinkage bias by applying
unpenalized estimator using only variables selected to have non-zero
cofficient

Penalized
Estimation

—argmmz i — X! B)2 4+ MIB

Post-LASSO estimator

n

BpL = arg min > (yi—xB)°
B:B/=0 ¥ j such that B ;=0 “—3
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Post-LASSO Estimation
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Results in Belloni and Chernozhukov (2013) suggest Post-LASSO works at
P least as well as LASSO and sometimes much better

Estimation

Seems to work well with theoretically driven plug-in penalty given in Belloni
and Chernozhukov (2013)

Be careful with cross-validation
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5. Penalty Parameter Choice:

Cross-Validation
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Choice of penalty parameter
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With penalty selected to produce desired shrinkage/regularization, still need
to choose appropriate tuning parameters (e.g. \)

Cross-validation (CV) standard in statistics
Convex penalties are computationally very convenient

m E.g. fast/efficient algorithms for LASSO produce solution path for ALL A

Can also do some theory in this case to get some guidance (e.g. BCH 2012,
BCHK 2016)

m Probably especially useful in non-iid/dependent data settings
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Model Validation
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We don't really care about explaining what we’ve seen.
What matters is accuracy out-of-sample

If we got a bunch of new data NOT USED TO ESTIMATE MODEL (say
{x?, y?}1), could use this data to evaluate models:

Out-of-Sample MSE()) = 15 Z(y, -¥) Z(J’: - f (x%;A))?
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Model Validation

Intro to HD
Estimation

Don’t really have data we haven't seen...

Key Idea: Use sample to replicate forecasting environment by splitting data
to estimate out-of-sample predictive ability

Split the data:

m Training Sample - data used to estimate prediction rule(s)
m Testing Sample - data used to test estimated rule(s) on NEW data
m AKA *“validation” or “hold-out” sample
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Model Validation
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TNt

Training data: {y;/, x}7, — fr(-; \)

Testing data: {y’, x’}", m+nr=n

Estimate of out-of-sample MSE:

m

/\78\E()\) = lm Z(yi" — (x5 A))

i=1
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Cross-Validation
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Idea of splitting sample and using a training and validation sample good but

1. Depends on choice of training and validation samples

m Which observations in which sample?
m How many observations in each?

2. Not using all observations for estimation AND testing

Cross-validation (CV) refinement of sample splitting idea that helps address
these concerns
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Leave-one-out CV
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Leave-one-out CV (LOOCV):
1. Fori=1ton
m Estimate model using (Y_;, X_;) a?_,'(-; A)
m Forecast ¥;()\) :?_,-(x,-; A)

2. Estimate generalization error as MSE(A) = 1 S°7 (yi — Ji()))?

n
m Or use any other criterion for comparing forecast to realization as
appropriate

m Pretty close to solving 2 issues noted previously

Do this for each model/tuning parameter under consideration

Choose the model that does best according to forecasting criterion (or 1SE
rule)
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LOOCV has lots of nice features but not most common procedure used.

m Can be computationally intensive, especially in problems where “big
data” is interesting
m All training samples essentially identical (highly correlated)

m less variability in fitted models than under true repeated sampling
m underestimate prediction risk

Current standard is K-Fold CV (with K = 5 or 10)
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1. Divide sample into K approximately equal sized groups

2. Forg=1to K:

m Use subsample g as validation sample and use remaining groups as
training sample

m Estimate model using (Y_g, X_g) — f_g(; A\)

B Forecast y;(\) = f_g(x;; A) for all i € Zy where Iy is the set of all indices
belonging to group g

3. Estimate generalization error as MSE(\) = 1 S = YiN)?

n
m Or use any other criterion for comparing forecast to realization as
appropriate

Do this for each model/tuning parameter under consideration

Choose the model that does best according to forecasting criterion (or 1SE
rule)
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6. Penalty Parameter Choice: Theory
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Lasso Problem

Intro to HD
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Recall that lasso estimates parameters by solving

n p
Bp = arg mﬁin Z(yi —x/B)? + )\Z e

i=1 j=1

Lasso problem is convex (has a unique solution) but is not differentiable

* - Theey Can find solution by looking at subdifferential

m subderivative of function f(-) at point xo is a set of vectors v such that
f(x) — f(x0) > V'(x — Xo)

m at a point where a function is differentiable, subdifferential is the
conventional gradient

m a convex function is minimized at the point where 0 is included in the
subdifferential
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Scalar Lasso problem

Intro to HD Specialize to case where dim(x;) = 1, 1 3, x% = 1, ¢ = 1, so lasso solves

Estimation

Bp = argmin Q(f) = arg min ’;(yf — Bxi)° + A8

Subdifferential:
0Q(B) = —2x'y +2n8+ \it >0
A - Theory == 72X/y + 2’7[3 _ A |f B < 0
€ —2x'y+2n8+siforse[-1,1]if3=0

Estimator j3p found at point where 0 is in the subdifferential at that point:
= 1 1 1 1

_ ’ 0 . 7/ .
Bp = Xy 2n)\ if XY 2n/\>0
1., 1 L1, 1
_Exy—&-ﬁ)\ |fﬁxy+ﬁ)\<0
o1 1
= — < —
0 |f|nxy|_2n/\
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Intuition for penalty parameter choice

Intro to HD
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Estimate $3 to be exactly 0 whenever |1x'y| < 1

A desirable property would be that we get B =0when 3 really is 0 with
high-probability

m get this by choosing any X “big enough”

m but big X\ implies more shrinkage on non-zero coefficients

A=Wy Implies choosing A such that

Pr(|ix

NG \_2\[)\)—”

m X < N(0, 0?) [assuming, e.g., iid sampling, € L x, and E[¢?] = 0]

m Suggests choosing A = 2y/no® (1 — ~,/2) for 4, — 0
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High-p, non-iid case

Intro to HD
Estimation

Look back at general problem

n

I~ 1 / 2 A -
Bpeargmme;( n;
Need to choose A\ and ;Z, 1<j<p.

A - Theory

Key to good selection properties of Lasso is choosing these so that

%>20

p foreach1 <j<p

1 n
7 2%

i=1

occurs with high probability.
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General Intuition for Choice of \

Intro to HD
Estimation

1. Previous inequality holding < A\/v/n > 2¢ for each

1<j<p
m Setting \/+/n large enough to dominate p standard normals would work if
ﬁ@ S xj,ie; were standard normal.

_1_ N e
7 i e

A - Theory

B )\ =2¢y/nd~ (1 — vp/2p) with v, = o(1) will implement this
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General Intuition for Choice of v

Intro to HD
Estimation

2. Need 7; to be an appropriate measure of the variability of \‘—ﬁ 0 X €

m “ldeally”: 12, = v where

1 n
2 _Var [ - S x e
2 = Var ﬁgx,,,e,

X - Theory m Suggests using 1@ a consistent estimator of Var (ﬁ >, x,’,‘e,‘)

m Results for independent, heteroskedastic case given in Belloni,
Chernozhukov, and Hansen (2012) using Huber-Eicker-White variance
estimator

m Results for clustered case given in Belloni, Chernozhukov, Hansen, and
Kozbur (2016) using clustered variance estimator

| Both rely on application/extension of moderate deviation theory of Jing, Shao,
and Wang (2003)
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A - Theory

Implementation

To implement in practice, need to form QZ,

Feasible iterative procedure:

1. Form initial guess about {&;}7_+, {1}

m Simple choice is to set &; = y;

m Another choice is to set & = y; — (x°)’ 8% where x? is a (small) set of initial
variables thought likely to be important and ° are the associated least
squares regression coefficients

Form ¢ = Var (# > x,,,ve,-) using &; in place of ¢

Estimate lasso coefficients with A given above and zZ, — Bp

Update & = y; — x,’Bp

Repeat 2-4 a small number of times.

ok~ 0 DN
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Some Formal Properties

Intro to HD
Estimation

m Lets =[50
m a,s for a, — oo dimensional submatrices of 15 >°: Xix; have minimum
and maximum eigenvalue bounded with probability approaching one
m lots of bounded moments
2 2 3
m =@, 0and @ 0
A - Theory
Results:
m [ 32(XB — x/Bp)? = Op(slog(p)/n)
m Best possible forecast rate
ms=0(s)
m Selected model has similar size to true model - note that no guarantee you
get the right variables

Intro to HD Estimation



Intro to HD
Estimation

Penalized
Estimation
Examples

7. Penalized Estimation Examples
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Penalized
Estimation
Examples

Example: Baseball Data

Let’s look at ridge and LASSO in building a model to predict a baseball
player’s salary given performance metrics

Code: Hitters_Example2.R

m Y (Salary): Salary in $1000 in 1987
m X; (AtBat): Number of at bats in 1986

m Xig (NewLeague): Player’s league at start of 1987 (American or
National)

All x-variables standardized
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Example: Baseball Data

Intro to HD
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Plot Ridge coefficients against log(1/))

400
I

200
I

coefficients

Penalized
Estimation
Examples

-200

-20 -15 -10 -5 0 5
log(1/lambda)

Move smoothly between (essentially) 0 and (essentially) the unpenalized
values
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Example: Baseball Data

Can choose which value of X to use based on CV:

P
g 4
&
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g \
\
x
& 8 .
€ g \ best lambda is: 2.66
5 g [
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cmp = log(1/lambda)
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Example: Baseball Data

kel Plot LASSO coefficients against log(1/))

Estimation

400
I

200
I

coeficients

Penalized
Estimation
Examples

-200

-400

T T T T T T
-20 -15 -10 -5 0 5

log(1/lambda)

Move (fairly) smoothly between (exactly) 0 and (essentially) the unpenalized
values

Coefficients get zeroed out along the path
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Example: Baseball Data

Intro to HD
Estimation

Can choose which value of X to use based on CV:

200000
I

180000
I

Penalized best lambgla is: 0.87
Estimation

Examples \

160000
I

cv.outdcvm

140000
I

120000
I

-20 -15 -10 -5 0 5

cmp = log(1/lambda)
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Example: Baseball Data

Intro to HD
Estimation How do CV-min Ridge and LASSO coefficients compare to unpenalized?

g - e
* lasto

Penalized
Estimation
Examples

ridge-lasso coefficients

200

T T T T
200 o 200 400 600

linear coefficients
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Example: Baseball Data

Intro to HD
SSlEeten How do CV-min Ridge and LASSO fitted values compare to unpenalized?

linear

Penalized
Estimation
Examples
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Example: Baseball Data

Intro to HD
Estimation

Pretty close agreement in this example

LASSO model is slightly more parsimonious than ridge or full

Int. AtBat Hits HmRun Runs RBI Walks Years
oLs 535.9 -291.6 338.5 37.9 -60.7 -27.0 135.3 -16.7
Ridge 535.9 -258.0 278.4 1.6 -19.6 -3.3 120.2 -44.6
LASSO 535.9 -286.4 310.1 12.5 -29.9 0 123.4 -34.8
Penalized CAtBat CHits CHmRun CRuns CRBI CWalks Lea DivW
Estimation oLs -391.8 86.9 -14.2 481.7 261.2 -214.3 31.3 -58.5
Examples Ridge -180.8 138.21 53.95 276.2 132.2 -174.8 31.0 -60.9
LASSO -171.2 0 14.5 389.9 192.5 -195.9 24.2 -58.3
PutOuts Assists Err NewlLea
oLS 78.9 53.8 -22.2 -12.4
Ridge 78.6 45.3 -24.4 -14.0

79.0 43.2 -19.3 -5.9
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Example: Boston Housing Data

Intro to HD
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Code: LassoHousing_-Example3.R

Boston housing data from Harrison and Rubinfield (1978) - conveniently
included in the R library “MASS”:

m Outcome: medv - median home value

m Predictors: 13 raw predictors in data

crim (per capita crime rate)

zn (proportion residential land zoned for lots over 25,000 ft)
indus (proportion of non-retail business acres)

chas (Charles River dummy)

nox (nitrogen oxide concentration)

rm (average rooms per dwelling)

age (proportion of owner-occupied units build pre 1940)
dis (weighted mean of distances to 5 employment centers)
rad (index of highway accessibility)

tax (property tax rate per $10,000)

ptratio (pupil-teacher ratio by town)

black (1000*(proportion black - .63)?)

Istat (percent lower SES)

Penalized
Estimation
Examples
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Example: Boston Housing Data

Intro to HD
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Want to have a flexible model that captures predictive power in observed
explanatory variables.

Consider:

m Charles River dummy

B Cubic polynomial in all continuous variables including all first and second order
interactions

S m dummy variables formed by splitting all continuous variables at deciles
Estimation B where possible - otherwise form deciles, take unique elements and form dummies

E: I
emees m interact /stat and dis dummies with sixth order polynomials in /stat and dis and
third order polynomials in crim, nox, tax, and ptratio

m interact other dummies with cubic in base variable (e.g. crim dummies with cubic
in crim)
m 1240 variables (including some redundant ones)

Intro to HD Estimation



Intro to HD
Estimation

Penalized
Estimation
Examples

Example: Boston Housing Data

Consider Ridge and LASSO

Choose penalty parameter using 10-fold CV
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Example: Boston Housing Data

intro to HD CV function for Ridge:

Estimation

1203 1203 1203 1203 1203 1203 1203 1203 1203 1203 1203 1203 1203 1203 1203

Penalized || SR WL S et
Estimation
Examples

Mean-Squared Error

log(Lambda)

Lines give CV-minimizing value and largest value within 1 estimated
standard error
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Example: Boston Housing Data

ekbel  CV function for LASSO:

115 102 93 77 65 61 62 44 30 25 23 18 15 11 11 8 555 5 5 3 3 2 2 3 2 0

2000 2500
I I

1500
I

Mean-Squared Error

Penalized
Estimation
Examples

1000
I

500
I

log(Lambda)

Lines give CV-minimizing value and largest value within 1 estimated
standard error
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Example: Boston Housing Data

Intro to HD
Estimation

Performance on validation data set:

m OLS with raw variables: Validation MSE: 29.96
m Ridge(CV-Min): Validation MSE = 29.23
m Ridge(1SE): Validation MSE = 35.83
et m LASSO(CV-Min): Validation MSE = 19.43
Sxameles m LASSO(1SE): Validation MSE = 20.89
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Example: Riboflavin Production

Intro to HD
Estimation

Code: LassoRiboflavin_.Example4.R
Classic high-dimensional example
n = 71 observations, p = 4088 right-hand-side variables

Data:
R m Y - log(riboflavin production)
semeies m X - log(expression level of gene)), j =1, ..., 4088

Goal: Uncover genes likely associated with riboflavin production
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Example: Riboflavin Produ

Intro to HD
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5-Fold CV function for LASSO:

70 70 66 67 62 58 54 51 46 40 42 37 33 32 28 24 24 19 14 10 10 8 8 4 4 3 0

0.6

Penalized
Estimation
Examples

Mean-Squared Error

0.2

log(Lambda)
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Example: Riboflavin Produ

Intro to HD
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5-Fold CV function for SCAD:

Variables selected
023445880909 1010 14 14 10 9 12 15 18 13 15 14 17 20 23 26 30 25

Penalized
Estimation
Examples

Cross-validation error
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Example: Riboflavin Production

Intro to HD
Estimation Estimated (absolute value of) coefficients (blue - lasso-cv-min, red - lasso-cv-1se, green -

scad-cv-min):

Estimated Coefficients — 5 Fold CV

.
< |
3 .
.
o |
3
.
Penalized 5 M
Estimation 2 <
S
Examples
.
. .
.
o * M
S . . .
L .
. . .
. et e, . .
K .
. 5 o7 . . . . .
o | . - Beey L . . °
E
T T T T T
o 1000 2000 3000 4000

23, 40, and 16 variables selected by LASSO (1SE), LASSO (MIN), SCAD (MIN)
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Increasing p Simulation

Intro to HD
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Look at (simulated) LASSO performance in a couple of simple settings:

Simulation Design 1:
mY =X +.25¢
B (Xi,...Xp, €)' ~ N(O, Ip+1)
m n=100, p € {1,5,20,50,90, 100,200}

Penalized
Estimation
Examples

Simulation Design 2:
B Y = exp(—X1/2) + 75X 1(X5 > 0) + . 1(5, X)) + 10X — Xg + Xo — X5)? + .1¢
B (Xi,...Xp, &) ~ N(O, lp+1)

m n € {100,200}, p € {1,5,20,50,100,200}
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Increasing p Simulation

Intro to HD
Estimation

Consider (i) lasso using only linear terms and (ii) lasso using nonlinear
terms formed by “basis” expansion

Note that there’s a huge computational bottleneck in large p cases.

m Allowing for nonlinearity and interactions in all the terms blows up the
computational overhead quickly

oAl m E.g. with p variables and only allowing second order effects there are

Examples p+p(p+1)/2 terms - (20300 terms with p = 200) - That’s a really big
design matrix

m Allow all first and second order terms + dummies for quartiles
interacted with linear term
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Intro to HD
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Let’s look at results in linear model first.

LASSO penalty parameter allowing nonlinear terms selected by 5-fold CV

p=1 p=5 p =20 p =50
P cVv MSE cVv MSE cv MSE cVv MSE
Estimation oLS 0.056 0.064  0.058  0.069 0.076 0.074 0.134 0.119
Examples LASSO 0.056 0.064  0.057 0.066 0.058 0.066 0.059 0.070
LASSO.NL  0.051 0.068 0.055  0.070 0.060 0.071 0.060 0.076
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Intro to HD
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Nonlinear case with n = 100

LASSO penalty parameter allowing nonlinear terms selected by 5-fold CV

p=1 p=5 p =20 p =50
P cVv MSE cVv MSE cv MSE cVv MSE
Estimation oLS 0.439 0.552 0518  0.531 0.657 0.601 0.895 0.955
Examples LASSO 0.420 0577 0416 0577 0.424 0.577 0.379 0.591
LASSO.NL  0.253 0.407 0.038 0.016 0.169 0.072 0.339 0.339
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Increasing p Simulation

Nonlinear case with n = 200

LASSO penalty parameter allowing nonlinear terms selected by 5-fold CV

p=1 p=5 p=20 p =50
cv MSE cVv MSE cv MSE cv MSE
oLS 0.270 0.534  0.330 0.503 0.341 0.541 0.445 0.607
LASSO 0.286 0.535 0.321 0.503 0.307 0.526 0.331 0.524

LASSO.NL 0.230 0.369 0.015 0.017 0.031 0.032 0.086 0.060

For p = 100 and p = 200, computation and storage of matrices is a
headache even in these tiny examples
Some options:

m Consider ex ante screening to eliminate very unlikely candidates before
analysis (e.g. Fan and Lv (2008))

m Consider a different set of tools that don’t require precomputation of
large candidate design matrix
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8. Comments on Penalized Estimation

Comments

on
Penalized
Estimation
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Parting Thoughts
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Comments
on | |
Penalized

Estimation

Some remarks on penalized estimation/subset selection:
m Penalized/selection estimators attractive for a variety of reasons

Produce results interpretable within familiar modeling frameworks

Can perform remarkably well in forecasting (and other contexts) with
well-chosen variables and methods

Reasonably easy to build in functional restrictions (e.g. monotonicity, shape
constraints, etc.)

Readily extended to the usual models (e.g. penalized logistic regression)
Many extensions, related methods (e.g. fused LASSO and smoothing
splines for functional data, group LASSO, etc.)

Structure amenable to theoretical analysis

m Have some unappealing feature

Bookkeeping to deal with nonlinearities, interactions, etc. with even a few
X’s gets annoying

Need to construct all the relevant terms - memory/computation intensive
Not automatic - e.g. if you didn’t think of the interaction and include it in the
set of candidate variables, you won't find it (other methods - e.g. trees and
random forests do this)
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