Ecosystem Services, part 3: Sediment Retention

The Science

- Underneath each InVEST model, there is a large literature and synthesized science
 - Here is a small excerpt related to sedimentation
- Too much content to cover here, but is in the extensive Users Guide
 - Instead, I will present a quick "stylized version" of what's being computed.

Figure 1. General catchment sediment budget. The relative size of the arrows changes depending on the environment. The InVEST model focuses on the overland sources and sinks, and does not include the others.

Annual Soil Loss

The amount of annual soil loss on pixel i, $usle_i$ (units: $tons \cdot ha^{-1}yr^{-1}$), is given by the Revised Universal Soil Loss Equation (RUSLE1 - Renard et al. 1997):

$$usle_i = R_i \cdot K_i \cdot LS_i \cdot C_i \cdot P_i, \tag{69}$$

where

- R_i is rainfall erosivity (units: $MJ \cdot mm(ha \cdot hr \cdot yr)^{-1})$,
- K_i is soil erodibility (units: $ton \cdot ha \cdot hr(MJ \cdot ha \cdot mm)^{-1}$),
- LS_i is a slope length-gradient factor (unitless)
- C_i is a cover-management factor (unitless)
- and P_i is a support practice factor (Renard et al., 1997). (cf. also in (Bhattarai and Dutta, 2006)). (unitless)

The LS_i factor is given from the method developed by Desmet and Govers (1996) for a two-dimensional surface:

$$LS_{i} = S_{i} \frac{(A_{i-in} + D^{2})^{m+1} - A_{i-in}^{m+1}}{D^{m+2} \cdot x_{i}^{m} \cdot (22.13)^{m}}$$
(70)

where

• S_i is the slope factor for grid cell *i* calculated as a function of slope. *s* is the percentage slope and θ is the slope in degrees (Renard et al. 1997):

 $S = egin{cases} 10.8 \cdot \sin(heta) + 0.03, & ext{where } igsimes 8 < 9\% \ 16.8 \cdot \sin(heta) - 0.50, & ext{where } igsimes 8 \ge 9\% \end{pmatrix}$

- A_{i-in} is the contributing area (m^2) at the inlet of a grid cell which is computed from the Multiple-Flow Direction method
- D is the grid cell linear dimension (m)
- x_i is the mean of a spect weighted by proportional outflow from grid cell *i* determined by a Multiple-Flow Direction algorithm. It is calculated by

Sedimentation on a very simple LULC map

Hydrological routing depends on the topography of the area

- DEM: Digital Elevation model
- Literally from the Space Shuttle!
 - Basically shoots lasers at the same spot from two different directions to get a very precise elevation measurement.

DEM of Gura

The Gura is a critically important river in Kenya

Flow direction

- Calculated from the DEM.
 - Color indicates which direction (in degrees) the water is flowing.

SDR calculation for one pixel of interest

- Red: Upslope area
- Yellow: downslope path
- Calculate this for ALL the pixels.

Running the InVEST SDR model

Hit the "home" button to go back to the model selection

In invest-workbench

- screen.
- Select the Sediment
 Delivery Ratio
 model

Annual Water Yield	Nutrient Delivery Ratio	Set up a model from a sample datastack file (.json) or from an InVEST model's logfile (.txt):	Open
Carbon Storage and Sequestration	RouteDEM		
Coastal Blue Carbon Preprocessor	Scenario Generator: Proximity Based		
Coastal Blue Carbon	Scenic Quality		
Coastal Vulnerability	Seasonal Water Yield		
Trop Pollination	Sediment Delivery Ratio		
rop Production: Percentile	Urban Cooling		
op Production: Regression	Urban Flood Risk Mitigation		
elineatelt	Urban Stormwater Retention		
orest Carbon Edge Effect	Visitation: Recreation and Tourism		
GLOBIO	Wave Energy Production		
Habitat Quality	Wind Energy Production		
Habitat Risk Assessment			

– 🗆 🗙

 Start by setting the Workspace folder

In invest-workbench			- 🗆 X
File Edit View Window About			
♠ InVEST	Sediment Delivery Ratio $~\times~$		\$
Setup >	Workspace	<i>directory</i>	
Log >			
🗅 Load parameters from file	File Suffix (optional)	i text	
■ Save to JSON			
Save to Python script	Digital Elevation Model	f raster	×
Save datastack			
🛛 User's Guide	Erosivity	i raster	×
Frequently Asked Questions	Soil Erodibility	1 raster	×
	Land Use/Land Cover	1 raster	×
	Biophysical Table	CSV	×
	Watersheds	• vector	×
	Drainages (optional)	1 raster	
Pup	Threshold Flow Accumulation (number of pixels)	1 number	×
Kull	o, pixeloj		

- Start by setting the Workspace folder
- Create a new folder in the SDR model called results.
- Select this folder as your Workspace

	In invest-wo	orkbench						_	\Box \times
	File Edit Vi	iew Window About							
	≜ In\	VEST	Sediment Deliver	ry Ratio 🛛 🗙					\$
	Setup	>	Workspace		directory			×	
Select Folder								×	
\leftrightarrow \rightarrow \checkmark	<mark>,</mark> ≻ Just	in A Johnson > Files > Re	search → base_data	> invest_sample_data >	SDR > V	ې 5	Search SDR		
Organize 🔻	New folder	r						∷ .	
	^	Name		Date modified	Туре	Size			
Vuick acces	55	results		3/17/2023 9:50 AM	File folder				
Windows ((C) *								
Download	ls 🖈								
Desktop	*								
Files	*								
Research	*								
📙 base_data	A								
cge	*								
🕳 Google Dri	ive 🖈								
💍 apec_1101	_dev								
💍 Exercises									
🖲 Slides									
Slides									
📥 OneDrive - I	Persor								
This PC	~								
	Folder:	results							×
						Select	t Folder	Cancel	

• Input the first five inputs.

In invest-workbench

- You can probably guess which is which by the file name.
 - Refer to the User's Guide link if you can't.

File Edit View Window About		
♣InVEST	Sediment Delivery Ratio $ imes$	\$
Setup >	Workspace	C:\Users\jajohns\Files\Research\base (
Log >		
🗅 Load parameters from file	File Suffix (optional)	1 text
Save to JSON		
Save to Python script	Digital Elevation Model	i raster ×
Save datastack		
🖸 User's Guide	Erosivity	1 raster X
Frequently Asked Questions	Soil Erodibility	i raster ×
	Land Use/Land Cover	i raster ×
	Biophysical Table	
	Watersheds	() vector X
	Drainages (optional)	i raster
	Threshold Flow Accumulation (number	1 number X
Run	of pixels)	

×

Erosivity

 Map of rainfall erosivity, reflecting the intensity and duration of rainfall in the area of interest.

Soil Erodibility

 Map of soil erodibility, the susceptibility of soil particles to detachment and transport by rainfall and runoff.

- Now enter the Watersheds input.
- We have two options.
 - "watershed_gura.shp"
 - "subwatershed_gura.shp"
- Notice that we have a new file type (.shp)
 - This is a Vector file, also called a Shapefile
 - Or sometimes Area of • Interest (AOI) or just a Polygon.

In invest-workbench

- You can also add this to QGIS if you'd like to look at it.
- For now, select "watershed gura.shp"

File Edit View Window About				
♠InVEST		Sediment Delivery Ratio $ imes$	<	\$
Setup	>	Workspace	🚹 C:\Users\jajohns\Files\Research\base (<u> </u>
Log	>			
🗖 Load parameters from file		File Suffix (optional)	1 text	
Save to JSON				
Save to Python script		Digital Elevation Model	i C:\Users\jajohns\Files\Research\base_(כ
Save datastack				
🛛 User's Guide		Erosivity	C:\Users\jajohns\Files\Research\base_(נ
Frequently Asked Questions		Soil Erodibility	🚯 C:\Users\jajohns\Files\Research\base_(נ
		Land Use/Land Cover	i C:\Users\jajohns\Files\Research\base_(2
		Biophysical Table	€ C:\Users\jajohns\Files\Research\base_	ו
		Watersheds	i vector X	נ
		Drainages (optional)	i raster	נ
		Threshold Flow		
Run		Accumulation (number of pixels)	i number	•

X

- Next, input the following ٠ "model parameters"
- Each of these values has • important scientific context from Hydrology.
- For now, however, we are • going to set them according to the Default Values reported in the InVEST User's Guide

In invest-workbench File Edit View Window About				— —	×
♠InVEST		Sediment Delivery Ratio $ imes$		*	2
Setup	>				-
Log	>	Soil Erodibility		C:\Users\jajohns\Files\Research\bas 🗸	
🗅 Load parameters from file					
Save to JSON		Land Use/Land Cover	0	C:\Users\jajohns\Files\Research\bas 🗸 🗖	
Save to Python script		Biophysical Table	•	C:\Users\jajohns\Files\Research\bas 🗸 🗖	
Save datastack					
 User's Guide Frequently Asked Questions 		Watersheds	•	C:\Users\jajohns\Files\Research\bas 🗸 🗖	
		Drainages (optional)	0	raster 🗸 🗅	
		Threshold Flow		1000	
		of pixels)			
		Borselli K Parameter	•	2	
	1	Maximum SDR Value	•	.8 🗸	
		Borselli IC0 Parameter	•	.5 🗸	
Run		Maximum L Value	0	122	

Next, input the following ٠ "model parameters"

- Each of these values has • important scientific context from Hydrology.
- For now, however, we are ٠ going to set them according to the Default Values reported in the InVEST User's Guide
 - Access the Users • Guide with the info icon.
- One of the key reasons for ٠ InVEST's success is the thorough documentation it provides.

In invest-workbench		 Threshold Flow Accumula
File Edit View Window About		The number of upslope pixels
♠ InVEST	Sedime	stream.
Setup >		This threshold directly affects iment export result: when a fle
Log	Soil	and the sediment exported is a to choose this value carefully,
Load parameters from file		ble. See Appendix 1: Data Sou
Save to JSON	Land	information.
Save to Python script	Diam	• Borselli K Parameter (nun
Save datastack	вюр	$T_{i} = h_{i}$
🗹 User's Guide		This is κ in equation (70). Defi
Frequently Asked Questions	Wat	Borselli ICo Parameter (n parameter.
	Drai	This is IC_0 in equation (76). I
	Thre	• Maximum SDR Value (rati can have.
	Αccι of pi	This is SDR_{max} in equation (cally, it is defined as the fraction
	Bors	μm; Vigiak et al. 2012). This p studies. Its default value is 0.8
	Max	• Maximum L Value (numbe value of the slope length para
	Bors	Values of L that exceed this an
Run	Max	reasonable values in literature Govers, 1996 and Renard et al

Threshold Flow Accumulation (number, units: number of pixels, required): that must flow into a pixel before it is classified as a

the expression of hydrologic connectivity and the sedow path reaches the stream, sediment trapping stops assumed to reach the catchment outlet. It is important so modeled streams come as close to reality as possirces and Working with the DEM for more

- nber, units: **unitless**, *required*): Borselli k parameter. fault value: 2.
- number, units: unitless, required): Borselli ICo
- Default value: 0.5.
 - io, *required*): The maximum SDR value that a pixel

(76). This is a function of the soil texture. More specifiion of topsoil particles finer than coarse sand (1000 parameter can be used for calibration in advanced 8.

er, units: **unitless**, *required*): The maximum allowed meter (L) in the LS factor.

re thresholded to this value. Its default value is 122 but e place it anywhere between 122-333 see Desmet and l., 1997.

One key parameter: Flow accumulation

- Determines how much water must flow before we define it as a stream
- Here, red values show where little water has accumulated yet, but as it goes downhill, it eventually becomes a stream (blue)

• Click Run!

♠ InVEST	Sediment Delivery Ratio $~ imes$	
Setup >	6 1 F 11 11	
Log	Soll Erodibility	C: (Users (jajonns (Files (Research (bas V
🗅 Load parameters from file		
Save to JSON	Land Use/Land Cover	C:\Users\jajohns\Files\Research\bas ✓
Save to Python script	Biophysical Table	C:\Users\jajohns\Files\Research\bas ✓
Save datastack		
Frequently Asked Questions	Watersheds	C:\Users\jajohns\Files\Research\bas ✓
	Drainages (optional)	Taster ✓
	Threshold Flow	
	Accumulation (number of pixels)	1000
	Borselli K Parameter	1 2
	Maximum SDR Value	• .8
	Borselli IC0 Parameter	• .5
	Maximum L.Malua	

- Click the Open Workspace button.
- There are many more results than for the carbon model. Each has it's own interpretation.
- Load sed_export.tif into QGIS.

😽 Videos

🗧 📙 🚽 📑 🖛 🗧 results				
File Home Share	View			
← → × ↑ 📙 « Users	; > jajohns > Files > Research > base_data	> invest_sample_data >	SDR > results >	۸ ق م
Carbon ^	Name	Date modified	Туре	Size
🔄 Chilean Central I	intermediate_outputs	5/1/2023 11:20 AM	File folder	
Microeconomic:	avoided_erosion.tif	5/1/2023 11:20 AM	TIF File	2,150 KB
NAS - GTAP-In	avoided_export.tif	5/1/2023 11:20 AM	TIF File	2,084 KB
Our Drive Derror	InVEST-natcap.invest.sdr.sdr-log-2023-05	5/1/2023 11:20 AM	TXT File	32 KB
OneDrive - Persor	🖻 rkls.tif	5/1/2023 11:20 AM	TIF File	2,171 KB
This PC	sed_deposition.tif	5/1/2023 11:20 AM	TIF File	2,058 KB
🧊 3D Objects 🍡	sed_export.tif	5/1/2023 11:20 AM	TIF File	2,194 KB
Desktop	🖻 stream.tif	5/1/2023 11:20 AM	TIF File	38 KB
	🗉 usle.tif	5/1/2023 11:20 AM	TIF File	2,166 KB
Develoada	watershed_results_sdr.dbf	5/1/2023 11:20 AM	DBF File	1 KB
Downloads	watershed_results_sdr.prj	5/1/2023 11:20 AM	PRJ File	1 KB
Music	watershed_results_sdr.shp	5/1/2023 11:20 AM	SHP File	50 KB
Pictures	watershed_results_sdr.shx	5/1/2023 11:20 AM	SHX File	1 KB

- Pretty ugly on its own.
- One challenge for interpretation is that most values are very close to zero but some spots are very high.
- Let's colorize the map to showcase this.
- Double-click on the sed_export.tif in the Layers window

	🔇 *Untitled Project — QGIS							_		×
	Project <u>E</u> dit <u>V</u> iew <u>Layer</u> <u>S</u> ett	ings Divining Vector Raster Database Web Mesh	Drocessing Help			:	×			-
		Q	Band Rendering					- 62	»	
	Layers ≪ ⓓ ❣ 홈 ₁ → ঢ়	information	Render type Singleband ps	eudocolor	•					
	▼ ✓ ▼ <u>sed export</u> 0	Source	Band	Band 1 ((Gray)	•				
	790.561	Symbology	Min Min / Max Value Se	0 ettings	Max790	0.561				
rown		Transparency	Interpolation		Linear	•				
		Histogram	Color ramp							
ntilo		X Rendering	Label unit suffix							
n colo	Dr	Temporal	Value Co	olor	0					
er of		Pyramids	0.23665086358		0.23665086358525			1		
		Metadata Metadata	0.73632225841		0.736322258412391				K	
the		Legend	2.0480441879992		2.0480441879992					
o get a par.	а	QGIS Server	,1547155556,057		79,2271/04032					
			Mode Quantile -			Classes 5				
			Clip out of range value	5 5	<u>*</u>					
			Color Rendering							
			Blending mode Normal		•	👆 Reset				
			Brightness		0 Contrast	0				
	N.L. T.L.		Style *		OK Cancel A	Apply Help	•			
	Q Type to locate (Ctrl+K)	Coordinate 27937	1.9926822 Scale 1:136	789 👻	A Magnifier 100%	° 🚖 🗸 Render		EPSG:3	2737 (0
	Contraction of the second						de la			-

- I chose a thematic Brown color ramp.
- Set the mode to Quantile.
- This makes it so each color has the same number of pixels in its range.
- Optionally, increase the number of classes to get a more detailed colorbar.

- Much prettier!
- This map plots the Tons of Sediment exported from each pixel into the stream network.
- This may be exactly the number you are looking to report to the policy maker.
- However, it is still not the "Ecosystem Service" itself.

Avoided Erosion (tons)

- Here I have added a new layer, sed_retention.tif and colorized it.
- I chose a linear colorbar. This will highlight the places that are particularly bad.
- The policy advice becomes clear here. Do not degrade this natural land in particular!

- Avoided Erosion (top)
- Avoided export (into the stream, bottom)
- Similar, but imply different optimal management strategies:
 - Preserve steep, erodible slopes versus preserve riparian vegetation along the stream

Recap

- The Sediment Delivery Model calculates both erosion and stream export
- Shows some locations can be orders-of-magnitude more important to conservation outcomes
- Foreshadow:
 - Originally, most InVEST Sediment runs focused on export (and its impact on reservoir sedimentation).
 - Valued via e.g. avoided dredging values
 - We also calculate erosion's impact on crop yield
 - Degraded soil has lower yields

Appendix

Concepts VALUATION

- Very context-specific!
- Built-in replacement and avoided cost approaches for reservoir dredging or water treatment
- In InVEST: retention is calculated using a reference scenario of **bare soil**
 - Retention = Export_{bare_soil} Export_{current_land_use}

