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This course will work through the recent Stock-Watson Handbook of Macroeconomics 
chapter of the same title as this course.  Software (in Matlab) will be provided to carry 
out empirical analysis.   
 
The chapter's abstract: 
 
"This chapter provides an overview of and user's guide to dynamic factor models 
(DFMs), their estimation, and their uses in empirical macroeconomics. It also surveys 
recent developments in methods for identifying and estimating SVARs, an area that has 
seen important developments over the past 15 years. The chapter begins by introducing 
DFMs and the associated statistical tools, both parametric (state-space forms) and 
nonparametric (principal components and related methods). After reviewing two mature 
applications of DFMs, forecasting and macroeconomic monitoring, the chapter lays out 
the use of DFMs for analysis of structural shocks, a special case of which is factor-
augmented vector autoregressions (FAVARs). A main focus of the chapter is how to 
extend methods for identifying shocks in structural vector autoregression (SVAR) to 
structural DFMs. The chapter provides a unification of SVARs, FAVARs, and structural 
DFMs and shows both in theory and through an empirical application to oil shocks how 
the same identification strategies can be applied to each type of model." 
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Outline 

 
 

Monday:  Dynamic Factor Models – Part 1 
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SVARs – Part 1 
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FAVAR/SDFM 
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Historical Evolution of DFMs 
 
 
I. Factor Analysis 
 
• Spearman (1904) 

 
• Lawley (1940), Joreskög (1967) … Lawley and Maxwell (1971) 
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Spearman's problem: 
 

Data:  Xij,  i = 1, … , N (individuals)   
 
           and j = 1, … n (measurements for each individual) 
 
 

 and SXX = cov(Xi) 

 
 
How can we measure 'intelligence'? 
 

Xi =

Xi1
Xi2
!
Xin
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Factor Model 
 

 
Xij = lj fi + eij  or 

 
Xi = lfi + ei 

 
SXX =  ll' + See with See diagonal 

 
 

σ f
2
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Xi = lfi + ei 
 

SXX =  ll' + See with See diagonal 
 

Issues: 
 

(1) Estimation of parameters ( , l, )   (Lawley: Gaussian MLE) 
 
(2) Estimation of fi | Xi, ( , l, ):  'reverse regression' 
 

(Xi | fi) ~ N(lfi, See )  and  fi ~ N(0, ) 
⇒ fi | Xi ~ N(b 'Xi ,  )  

with  b =   

  

σ f
2

σ f
2 σ ei

2

σ f
2 σ ei

2

σ f
2

σ f |Y
2

ΣYY
−1ΣYf = σ f

2λλ '+ Σee( )−1λσ f
2

σ f |Y
2 =σ f

2 −σ f
2λ ' σ f

2λλ '+ Σee( )−1λσ f
2
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Historical Evolution of DFMs: 
 

2a:  Replace covariance matrices with spectral density matrices. (Geweke 
(1977), Sargent and Sims (1977), Brillinger (1975)). 

 
 

Xi = lfi + ei 
 

SXX =  ll' + See with See diagonal 
 

becomes  
 

Xt = l(L)ft + et 
 

SXX(w) =  l(e-iw)l(eiw)' + See(w) with See(w) diagonal 

σ f
2

s f
2 (ω )
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Sargent and Sims  used various subsets of 14 variables: long rate, short  
rate,  GNP, prices, wages, money supply, government purchases, 
government deficit, unemployment rate, residential construction, 
inventories, plant and equip investment, consumption, corporate profits.   
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Xt = l(L)ft + et 
 

SXX(w) =  l(e-iw)(eiw)l' + See(w) with See(w) diagonal 
 

Issues: 
 

(1) Estimation of parameters ( , l(e-iw),  See(w))  (Local Gaussian 
MLE, frequency by frequency) 
 
(2) Estimation of f (w) | X(w):  can use 'reverse regression' 

 
 

New issues:  Converting frequency domain back to time domain. 
Leads/lags. Constraints across frequencies.  
 
 

s f
2 (ω )

s f
2 (ω )
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2b: Use linear state-space models:  (e.g., Engle and Watson (1981)) 
 

Xt = l(L)ft + et  and f(L)ft = ht 
 

  

 

  

Xt = λ0  λ1  ! λk( )
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ft−1
!
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or  
 

Xt = L Ft + et 
Ft = FFt-1 + Ght  

 
(More generally F equation can be VAR(p)) 

 
Issues: 

(1) Estimation of parameters (L, , F, See)   (Gaussian MLE using 
prediction-error decomposition from Kalman filter) 
 
(2) Estimation of ft | :  'reverse regression' computed using Kalman 

smoother. 
 
New issues: 
(a) State-space modeling afforded lots of flexibility. 
(b) MLE hard when Xt is high dimensional. 

ση
2

X j{ }
j=1

T
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Some Jargon: 
 

 
 

Xt = l(L)ft + et  and f(L)ft = ht:   Dynamic form of DFM 
 
 
 

stacked version 
 
 

Xt = L Ft + ut   and Ft = FFt-1 + Ght:  Static form of DFM 
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Example: “Improving GDP Measurement: A Measurement-Error 
Perspective” Aruoba, Diebold, Nalewaik, Schorfheide, Song (2016) 

S.B. Aruoba et al. / Journal of Econometrics 191 (2016) 384–397 387

Fig. 1. GDP and unemployment data. GDPE and GDPI are in growth rates and Ut is in changes. All are measured in annualized percent.

3. Data and estimation

We intentionallyworkwith a stationary system in growth rates,
because we believe that measurement errors are best modeled as
iid in growth rates rather than in levels, due to BEA’s devoting
maximal attention to estimating the ‘‘best change’’. 11 In its above-
cited ‘‘Concepts and Methods . . .’’ document, for example, the BEA
emphasizes that:

Best change provides the most accurate measure of the period-
to-period movement in an economic statistic using the best
available source data. In an annual revision of the NIPAs,
data from the annual surveys of manufacturing and trade
are generally incorporated into the estimates on a best-
change basis. In the current quarterly estimates, most of the
components are estimated on a best-change basis from the
annual levels established at the most recent annual revision.

The monthly source data used to estimate GDPE (such as retail
sales) and GDPI (such as nonfarm payroll employment) are
generally produced on a best-change basis aswell, using a so-called
‘‘link-relative estimator’’. This estimator computes growth rates
using firms in the sample in both the current and previousmonths,
in contrast to a best-level estimator, which would generally use all
the firms in the sample in the currentmonth regardless of whether
or not theywere in the sample in the previousmonth. For example,
for retail sales the BEA notes that12:

11 For example, see ‘‘Concepts and Methods in the U.S. National Income and
Product Accounts’’, available at http://www.bea.gov/national/pdf/methodology/
chapters1-4.pdf.
12 See http://www.census.gov/retail/marts/how_surveys_are_collected.html.

Advance sales estimates for the most detailed industries are
computed using a type of ratio estimator known as the link-
relative estimator. For each detailed industry, we compute a
ratio of current-to-previous month weighted sales using data
from units for which we have obtained usable responses for
both the current and previous month.

Indeed the BEA produces estimates on a best-level basis only at
5-year benchmarks. These best-level benchmark revisions should
drive only the very-low frequency variation in GDPE , and thus
probablymatter very little for the quarterly growth rates estimated
on a best-change basis.

3.1. Descriptive statistics

We show time-series plots of the ‘‘raw’’ GDPE and GDPI data
in Fig. 1, and we show summary statistics for the raw series in
the top panel of Table 1. Not captured in the table but also true
is that the raw data are highly correlated; the simple correla-
tions are corr(GDPE,GDPI) = 0.85, corr(GDPE,U) = �0.67, and
corr(GDPI ,U) = �0.73. Median GDPI growth is a bit higher than
that of GDPE , and GDPI growth is noticeably more persistent than
that of GDPE . Related, GDPI also has smaller AR(1) innovation vari-
ance and greater predictability as measured by the predictive R

2.
Fig. 1 also depicts the sample paths of changes in the unemploy-
ment rate, whichwe use to estimate the 3-equationmodel, and the
discrepancy between the growth ratesGDPE andGDPI . According to
our state-space models, the discrepancy equals the measurement
error difference ✏Et �✏It . Themean of the discrepancy series is zero,
and its variance is approximately 30% of the variance of GDPE . The
first-order autoregressive coefficient is slightly negative, but the R2

associated with an AR(1) regression is only about 4%.
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GDPt = a + rGDPt-1 + eGt 
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⎥
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Results:  
 

 
 

388 S.B. Aruoba et al. / Journal of Econometrics 191 (2016) 384–397

Table 1
Descriptive statistics for various GDP series.

x̄ 50% �̂ Sk ⇢̂1 ⇢̂2 ⇢̂3 ⇢̂4 Q12 �̂e R
2

V̂e

GDPE 3.03 3.04 3.49 �0.31 .33 .27 .08 .09 47.07 3.28 .06 12.12
GDPI 3.02 3.39 3.40 �0.55 .47 .27 .22 .08 81.60 2.99 .12 11.43

GDPM 2-eqn, ⌃ diag 3.02 3.22 3.00 �0.56 .56 .34 .21 .09 108.25 2.48 .18 8.92
GDPM 2-eqn, ⌃ block 3.02 3.35 2.64 �0.64 .70 .45 .28 .13 170.08 1.89 .29 6.90
GDPM 2-eqn, ⇣ = 0.65 3.02 3.32 2.61 �0.64 .67 .43 .27 .12 157.56 1.92 .26 6.73
GDPM 2-eqn, ⇣ = 0.75 3.02 3.30 2.77 �0.63 .65 .41 .26 .11 148.23 2.08 .25 7.60
GDPM 2-eqn, ⇣ = 0.80 3.02 3.29 2.87 �0.62 .64 .39 .25 .11 141.14 2.19 .24 8.16
GDPM 2-eqn, ⇣ = 0.85 3.02 3.31 2.89 �0.64 .66 .41 .28 .12 153.27 2.15 .25 8.29
GDPM 2-eqn, ⇣ = 0.95 3.02 3.26 3.02 �0.64 .66 .40 .28 .12 149.61 2.27 .25 9.07
GDPM 2-eqn, ⇣ = 1.05 3.01 3.22 3.12 �0.65 .67 .40 .28 .12 155.60 2.30 .26 9.69
GDPM 2-eqn, ⇣ = 1.15 3.04 3.34 3.07 �0.67 .76 .47 .31 .15 201.15 1.99 .35 9.46
GDPM 3-eqn 3.02 3.37 3.02 �1.14 .63 .37 .21 .03 141.79 2.33 .23 9.03

GDPF 3.02 3.29 3.30 �0.51 .46 .29 .19 .07 78.28 2.92 .12 10.80

Notes: The sample period is 1960Q1–2011Q4. In the top panel we show statistics for the raw data. In the middle panel we show statistics for various posterior-median
measurement-error-based (‘‘M ’’) estimates of true GDP , where all estimates are smoothed extractions. In the bottom panel we show statistics for the forecast-error-based
estimate of true GDP produced by Aruoba et al. (2012), GDPF . x̄, 50%, �̂ and Sk are sample mean, median, standard deviation and skewness, respectively, and ⇢̂⌧ is a sample
autocorrelation at a displacement of ⌧ quarters. Q12 is the Ljung–Box serial correlation test statistic calculated using ⇢̂1, . . . , ⇢̂12. R2 = 1�

�̂ 2
e

�̂ 2 , where �̂e denotes the estimated

disturbance standard deviation from a fitted AR(1) model, is a predictive R
2. V̂e is the unconditional variance implied by a fitted AR(1) model, V̂e =

�̂ 2
e

1�⇢̂2 .

3.2. Estimation

Bayesian estimation involves parameter estimation and latent
state smoothing. First, we generate draws from the posterior dis-
tribution of themodel parameters using a Random-WalkMetropo-
lis–Hastings algorithm. Next, we apply the simulation smoother
of Durbin and Koopman (2001) to obtain draws of the latent
states conditional on the parameters. See (online) Appendix C for
details.

Here we present and discuss estimation results for our various
models. In Table 2 we show details of parameter prior and
posterior distributions, as well as statistics describing the overall
posterior and likelihood, for various 2-equation models, and in
Table 3 we provide the same information for the 3-equation
model.

The complete estimation information in the tables can be
difficult to absorb fully, however, so here we briefly present
aspects of the results in a more revealing way. For the 2-equation
models, the parameters to be estimated are those in the transition
equation and those in the covariance matrix ⌃ , which includes
variances and covariances of both transition and measurement
shocks. Hencewe simply display the estimated transition equation
and the estimated ⌃ matrices. For the 3-equation model, we also
need to estimate a factor loading in the measurement equation,
so we display the estimated measurement equation as well. Below
each posterior median parameter estimate, we show the posterior
interquartile range in brackets.

For the 2-equation model with ⌃ diagonal, we have

GDPt = 3.07
[2.81,3.33]

(1 � 0.53) + 0.53
[0.48,0.57]

GDPt�1 + ✏Gt , (10)

⌃ =

2

664

6.90
[6.39,7.44]

0 0

0 2.32
[2.12,2.55]

0

0 0 1.68
[1.52,1.85]

3

775 . (11)

For the 2-equation model with ⌃ block-diagonal, we have

GDPt = 3.06
[2.77,3.34]

(1 � 0.62) + 0.62
[0.57,0.68]

GDPt�1 + ✏Gt , (12)

⌃ =

2

664

5.17
[4.39,5.95]

0 0

0 3.86
[3.34,4.48]

1.43
[0.96,1.95]

0 1.43
[0.96,1.95]

2.70
[2.25,3.22]

3

775 . (13)

For the 2-equation model with benchmark ⇣ = 0.80, we have

GDPt = 3.08
[2.79,3.35]

(1 � 0.57) + 0.57
[0.51,0.62]

GDPt�1 + ✏Gt , (14)

⌃ =

2

664

7.09
[6.54,7.70]

�0.69
[�1.15,�0.29]

�0.38
[�0.74,�0.04]

�0.69
[�1.15,�0.29]

3.90
[3.14,4.77]

1.29
[0.80,1.85]

�0.38
[�0.74,�0.04]

1.29
[0.80,1.85]

2.36
[1.98,2.82]

3

775 . (15)

Finally, for the 3-equation model, we have

2

4
GDPEt

GDPIt

Ut

3

5 =

2

64
0
0

1.62
[1.53,1.71]

3

75 +

2

64
1
1

�0.52
[�0.55,�0.50]

3

75GDPt +

2

4
✏Et
✏It
✏Ut

3

5 (16)

GDPt = 2.78
[2.60,2.95]

(1 � 0.58) + 0.58
[0.54,0.63]

GDPt�1 + ✏Gt , (17)
2

664

✏Gt
✏Et
✏It
✏Ut

3

775

⇠ N

0

BBBBB@

2

664

0
0
0
0

3

775 ,

2

666664

6.96
[6.73,7.35]

�1.10
[�1.27,�0.84]

�0.82
[�1.03,�0.59]

1.46
[1.27,1.66]

�1.10
[�1.27,�0.84]

4.57
[4.17,4.79]

1.95
[1.70,2.12]

0

�0.82
[�1.03,�0.59]

1.95
[1.70,2.12]

3.07
[2.54,3.27]

0

1.46
[1.27,1.66]

0 0 0.59
[0.50,0.71]

3

777775

1

CCCCCA
.

(18)

Many aspects of the results are noteworthy; here we simply
mention a few. First, every posterior interval in every model
reported above excludes zero. Hence the diagonal and block
diagonal models do not appear satisfactory.

Second, the ⌃ estimates are qualitatively similar across
specifications. Covariances are always negative, as per our con-
jecture based on the counter-cyclicality in the statistical discrep-
ancy (GDPE � GDPI ) documented by Fixler and Nalewaik (2009)
and Nalewaik (2010). Shock variances always satisfy �̂ 2

GG
> �̂ 2

EE
>

�̂ 2
II
.
Finally, GDPM is highly serially correlated across all specifica-

tions (⇢ ⇡ .6), much more so than the current ‘‘consensus’’ based
on GDPE (⇢ ⇡ .3).We shall havemore to say about these and other
results in Section 4.
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Fig. 3. GDP sample paths, 1960Q1–2011Q4. In each panel we show the sample path of GDPM (light color) together with posterior interquartile range with shading and we show one of the competitor series (dark color). For
GDPM we use our benchmark estimate from the 2-equation model with ⇣ = 0.80.
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Figure 4: GDP Sample Paths, 2007Q1-2009Q4

Notes: In each panel we show the sample path of GDPM in red together with a light-red posterior in-

terquartile range, and we show one of the competitor series in black. For GDPM we use our benchmark

estimate from the 2-equation model with ⇣ = 0.80.

(2012).

First consider Figure 5. Across measurement-error models M , GDPM is robustly more

serially correlated than both GDPE and GDPI , and it also has a smaller innovation variance.

Hence most of our models achieve closely-matching unconditional variances, but they are

composed of very di↵erent underlying (�2, ⇢) values from those corresponding to GDPE.

GDPM has smaller shock volatility, but much more shock persistence – roughly double that

of GDPE (⇢ of roughly 0.60 for GDPM vs. 0.30 for GDPE).

Now consider Table 1. The various GDPM series are all less volatile than each of GDPE,

GDPI and GDPF , and a bit more skewed left. Most noticeably, the GDPM series are much

more strongly serially correlated than the GDPE, GDPI and GDPF series, and with smaller

innovation variances. This translates into much higher predictive R2’s for GDPM . Indeed

GDPM is twice as predictable as GDPI or GDPF , which in turn are twice as predictable as

GDPE.

18
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Historical Evolution of DFMs: 
 

3. Large-n approximations. Connor and Karijczyk (1986), Chamberlain and 
Rothschild (1983), Forni and Reichlin (1998), Stock and Watson (2002), … 

 
Large n … from curse to blessing: An example following Forni and 
Reichlin (1998).   Suppose ft is scalar and l(L) = l (“no lags in the factor 
loadings”), so  
 

Xit = lift + eit   for i = 1, … n 
 

Then:     =  =  

 
If the errors eit have limited dependence across series, then as n gets large, 

  ft 

Large n lets us recover ft up to a scale factor. 
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A “least squares” reason to use the sample mean.   
 
Consider 
 

  subject to  = 1 

Yields:   

 

(Other normalizations:  = 1) 

  

min{ ft },{λi } (Xit − λi ft )
2

i,t
∑ l

f̂t =
1
n

Xit
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∑

T −1 ft
2
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T

∑
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Multivariate Problem:  Xit = li'Ft + eit, where li' is ith row of L. 
  

  subject  = G (diagonal, with gi ≥ gi+1) 

 
Yields:  as the principal components (PC) of Xt,  (i.e., the linear 
combinations of Xt  with the largest variance).  
 
Odds and ends: 

Missing data 
Weighted least squares 
… 

 
 

min{ ft },{λi } (Xit − λi 'Ft )
2

i,t
∑ T −1 FtFt '

t=1

T

∑

F̂t
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More generally  
 
Xt = l(L)ft + et  and f(L)ft = ht  ⇒ Xt = L Ft + et   and F(L)Ft = Ght 
 
So Principal Components (PC) can be used to estimate F in DFM. 
 
A simple 2-step estimation problem:  
 
(1) Estimate Ft by PC 
 
(2) Estimate li and var(eit) from regression of Xit onto . 
 
(3) Estimate dynamic equation for F using VAR with  replacing F. 
 

F̂t

F̂t
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Some results about these simple 2-step estimators when n and T are large: 
 
Results for the exact static factor model: 

Connor and Korajczyk (1986): consistency in the exact static FM with T 
fixed, n → ∞. 
 

Selected results for the approximate DFM: Xt = LFt + et 
Typical conditions (Stock-Watson (2002), Bai-Ng (2002, 2006)): 

(a)   SF  (stationary factors) 

(b) L¢L/n ® (or ) SL   Full rank factor loadings 
(c) eit are weakly dependent over time and across series  
(d) F, e are uncorrelated at all leads and lags  
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Selected results for the approximate DFM, ctd. 
 
Stock and Watson (2002a) 

o consistency in the approximate DFM, n, T → ∞.  
o justify using  as a regressor (no errors-in-variable bias. etc.) 
o oracle property for forecasts 

 
Bai and Ng (2006)  

o N2/T ® ¥  
o asymptotic normality of PC estimator of the common component 

at rate min(n1/2, T1/2) in approximate DFM. These can be used to 
compute confidence sets for Ft. 

o Similar results are rates for the two estimators of L, F, See and Shh. 
  

t̂F
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Historical Evolution of DFMs: 
 

An issue in PC estimates of DFMs: Ft is estimated using averages of 
Xt. This ignores information in leads and lags of X that would be 
utilized using optimal estimator (Kalman smoother). 
 
 
4. Hybrid estimators:  Use PCs to get first-round estimates of  L, F, 
See and Shh, then use Kalman smoother to get estimates of F, or do 
MLE using these as initial guesses of parameters.  (Doz, Giannone, 
Reichlin (2011, 2012).) 
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Example: Nowcasting (Good reference: Banbura, Giannoni, Modugno, 
and Reichlin (2013).) 
 
 

• Problem: yt is a variable of interest (e.g., GDP growth rate in quarter t). 
It is available with a lag (say in t+1 or t+2). Xt is a vector of variables 
that are measured during period t (and perhaps earlier). How do you 
guess the value of yt given the X data that has been revealed. 

 
• ‘Solution’: Suppose  denotes the information known at time t1. Then 

best guess of yt is E(yt| ). 
o But how do you compute E(yt| )? 
o How do you update the estimate as another element of Xt is 

revealed? 
 

Xt1

Xt1

Xt1
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Giannone, Reichlin, et al modeling approach: 
 

 

 
F(L)Ft = ht 

 
• E(yt| ) = ly´E(Ft | )  
• E(Ft | ) computed by Kalman filter 

 
(Lots of details left out) 
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Historical Evolution of DFMs: 
 

Issue:  Many parameters in DFM. Shrinkage might be useful. 
 
5. Bayes estimators (Kim and Nelson (1998), Otrok and Whiteman (1998)) 
 
                       Xt = L Ft + et   and F(L)Ft =  Ght 
 
Model is particularly amenable to MCMC methods: 
 
(i)   (L, See, F, Shh | {Xt, Ft}):  Linear regression problem 
 
(ii)  ({Ft} | {Xt}, L, See, F, Shh): Linear signal extraction problem 
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Xt = L Ft + et   and F(L)Ft = Ght 
 

Generalizations (see paper for references): 
 
(1) Serial correlation in e 
(2) Additional regressors in either equation 
(3) Constraints on L ('sparsity') 
(4) (Limited) cross-correlation between elements of e.  
(5) Non-linearities and non-Gaussian evolution. 
 
… many more. 
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Example (Non-linear and non-Gaussian): Stock and Watson (2016) 
'Core Inflation and Trend Inflation' and earlier (2007) paper. 
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Unobserved Components Model with Stochastic Volatility and Outliers.  
 
πt = τt +  εt  
 
τt = τt-1 + sDt,t  × ht,t 
 
et = se,t × st × he,t 
 
Dln( ) =  gene,t 
Dln( ) =  gDtnDt,t 
 
(he, ht, ne, nDt) are iid N(0, I4) 
 
st = i.i.d. multinomial with values 1, 5, 10  

and probability 0.975, 1/60, and 1/120 
 
 

σε ,t
2

σ Δτ ,t
2
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• Kim-Shephard-Chib (1998) approximate model for stochastic volatility: 

 
       Let xt = stht and ln( ) =  ln( ) + gnt with (ht, nt) ~ iidN(0, I2). 
 
      Then  ln(  ) = ln( ) + ln( ), where ηt ~ N(0,1) so ln( ) ~ ln( ) 
              ln( ) =  ln( ) + gnt 
 

which is a linear state-space model with non-Gaussian measurement error.   

• KSC approximate ln( ) using a mixture of normals: ln( ) ~ , 

where wit are iid (0-1) variables with wit = 1 for only value of i at each t, and 
with p(wit = 1) = pi.  The ait variables are ait ~ N(µi, ), and n = 7. 
 

o Omori, Chib, Shephard, and Nakajima (2007) propose a more accurate 10-
component Gaussian mixture approximation.  
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17 PCE Sectors 
Sector Share 

Motor vehicles and parts 0.042 
Furnishings and durable household equip. 0.027 
Recreational goods and vehicles 0.031 
Other durable goods 0.016 
Food and bev.s purch. for off-premises cons.* 0.077 
Clothing and footwear 0.033 
Gasoline and other energy goods* 0.030 
Other nondurable goods 0.081 
Housing & utilities 0.182 

Housing excluding gas & electric utilities 0.162 
Gas & electric utilities* 0.020 

Health care 0.158 
Transportation services 0.033 
Recreation services 0.039 
Food services and accommodations 0.063 
Financial services and insurance 0.076 
Other services 0.085 
Final cons exp of nonprof. insti. serving  h.h. 0.028 
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Multivariate model 
 

  

 
Aggregate (average) inflation and trend 
 

  

 
where the averages are computed using consumption share weights. 

π1t
π 2t
!
π nt

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

α1
α 2

!
α n

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
t

τ t
C +

β1
β2
!
βn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

ε t
C +

τ1t
u

τ 2t
u

!
τ 2t
u

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

+

ε1t
u

ε2t
u

!
ε2t
u

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

  

π t = ατ t
c +τ t

u⎡⎣ ⎤⎦ + βε t
c + ε t

u⎡⎣ ⎤⎦
=         τ t       +        ε t



 47 

 

 
 



 48 

Recent Values of Inflation in the United States 
(Quarterly inflation in percentage points at an annual rate) 

 
 Inflation measures  Estimates from 17 component 

model 
Date Headline XFE  Trend 67% Band 

2016:Q3 1.81 2.11  1.49 1.29 – 1.70 
2016:Q4 1.67 1.21  1.48 1.29 – 1.68 
2017:Q1 2.50 2.05  1.60 1.40 – 1.80 
2017:Q2 0.40 0.94  1.49 1.28 – 1.70 
2017:Q3 1.56 1.38  1.52 1.32 – 1.73 
2017:Q4 2.94 2.00  1.62 1.41 – 1.83 
2018:Q1 2.45 2.25  1.70 1.48 – 1.92 
2018:Q2 1.96 2.21  1.82 1.57 – 2.06 
2018:Q3 1.42 1.30  1.69 1.42 – 1.96 
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A 207-Variable Macro Dataset for the U.S. 
 

 
 

6.1 Data and Preliminary Transformations
The data are quarterly observations on 207 time series, consisting of real activity variables,

prices, productivity and earnings, interest rates and spreads, money and credit, asset and

wealth variables, oil market variables, and variables representing international activity.

The series are listed by category in Table 1, and a full list is given in the Data Appendix.

Data originally available monthly were converted to quarterly by temporal averaging.

Real activity variables and several other variables are seasonally adjusted. The dataset

updates and extends the dataset used in Stock and Watson (2012a); the main extension

is that the dataset used here includes Kilian’s (2009) international activity measure and

data on oil market, which are used in the analysis in the next section of the effects of

oil market shocks on the economy. The full span of the dataset is 1959Q1-2014Q4. Only

145 of the 207 series are available for this full period.

From this full dataset, a subset was formed using the 86 real activity variables in the first

four categories in Table 1; this dataset will be referred to as the “real activity dataset.” Of

the real activity variables, 75 are available over the full sample.

The dataset is described in detail in the Data Appendix.

6.1.1 Preliminary Transformations and Detrending
The data were subject to four preliminary transformations. First, the DFM framework

summarized in Section 2 and the associated theory assumes that the variables are

second-order stationary. For this reason, each series was transformed to be approximately

Table 1 Quarterly time series in the full dataset

Category
Number
of series

Number of series used
for factor estimation

(1) NIPA 20 12
(2) Industrial production 11 7
(3) Employment and unemployment 45 30
(4) Orders, inventories, and sales 10 9
(5) Housing starts and permits 8 6
(6) Prices 37 24
(7) Productivity and labor earnings 10 5
(8) Interest rates 18 10
(9) Money and credit 12 6
(10) International 9 9
(11) Asset prices, wealth, and household balance

sheets
15 10

(12) Other 2 2
(13) Oil market variables 10 9

Total 207 139

Notes: The real activity dataset consists of the variables in the categories 1–4.

479Factor Models and Structural Vector Autoregressions
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Table A.1: Data Series 

 
 Name Description Sample Period T O F 
 (1) NIPA 

 
1   GDP Real Gross Domestic Product 3 Decimal 1959:Q1-2014:Q4 5 0 0  
2   Consumption Real Personal Consumption Expenditures 1959:Q1-2014:Q4 5 0 0  
3   Cons:Dur Real Personal Consumption Expenditures: Durable Goods Quantity Index 1959:Q1-2014:Q4 5 0 1  
4   Cons:Svc Real Personal Consumption Expenditures: Services Quantity Index 1959:Q1-2014:Q4 5 0 1  
5   Cons:NonDur Real Personal Consumption Expenditures: Nondurable Goods Quantity Index 1959:Q1-2014:Q4 5 0 1  
6   Investment Real Gross Private Domestic Investment 3 Decimal 1959:Q1-2014:Q4 5 0 0  
7   FixedInv Real Private Fixed Investment Quantity Index 1959:Q1-2014:Q4 5 0 0  
8   Inv:Equip Real Nonresidential Investment: Equipment Quantity Idenx 1959:Q1-2014:Q4 5 0 1  
9   FixInv:NonRes Real Private Nonresidential Fixed Investment Quantity Index 1959:Q1-2014:Q4 5 0 1  
10  FixedInv:Res Real Private Residential Fixed Investment Quantity Index 1959:Q1-2014:Q4 5 0 1  
11  Ch. Inv/GDP Change in Inventories /GDP 1959:Q1-2014:Q4 1 0 1  
12  Gov.Spending Real Government Consumption Expenditures & Gross Investment 3 Decimal 1959:Q1-2014:Q4 5 0 0  
13  Gov:Fed Real Federal Consumption Expenditures Quantity Index 1959:Q1-2014:Q4 5 0 1  
14  Real_Gov Receipts Government Current Receipts (Nominal) Defl by GDP Deflator 1959:Q1-2014:Q3 5 0 1  
15  Gov:State&Local Real State & Local Consumption Expenditures Quantity Index 1959:Q1-2014:Q4 5 0 1  
16  Exports Real Exports of Goods & Services 3 Decimal 1959:Q1-2014:Q4 5 0 1  
17  Imports Real Imports of Goods & Services 3 Decimal 1959:Q1-2014:Q4 5 0 1  
18  Disp-Income Real Disposable Personal Income 1959:Q1-2014:Q4 5 0 0  
19  Ouput:NFB Nonfarm Business Sector: Output 1959:Q1-2014:Q4 5 0 0  
20  Output:Bus Business Sector: Output 1959:Q1-2014:Q4 5 0 0  
 (2) Industrial Production 

 
21  IP: Total index IP: Total index 1959:Q1-2014:Q4 5 0 0  
22  IP: Final products Industrial Production: Final Products (Market Group) 1959:Q1-2014:Q4 5 0 0  
23  IP: Consumer goods IP: Consumer goods 1959:Q1-2014:Q4 5 0 0  
24  IP: Materials Industrial Production: Materials 1959:Q1-2014:Q4 5 0 0  
25  IP: Dur gds materials Industrial Production: Durable Materials 1959:Q1-2014:Q4 5 0 1  
26  IP: Nondur gds materials Industrial Production: nondurable Materials 1959:Q1-2014:Q4 5 0 1  
27  IP: Dur Cons. Goods Industrial Production: Durable Consumer Goods 1959:Q1-2014:Q4 5 0 1  
28  IP: Auto  IP: Automotive products 1959:Q1-2014:Q4 5 0 1  
29  IP:NonDur Cons God Industrial Production: Nondurable Consumer Goods 1959:Q1-2014:Q4 5 0 1  
30  IP: Bus Equip Industrial Production: Business Equipment 1959:Q1-2014:Q4 5 0 1  
31  Capu Tot Capacity Utilization: Total Industry 1967:Q1-2014:Q4 1 0 1  
 (3) Employment and Unemployment 

 
32  Emp:Nonfarm Total Nonfarm Payrolls: All Employees 1959:Q1-2014:Q4 5 0 0  
33  Emp: Private All Employees: Total Private Industries 1959:Q1-2014:Q4 5 0 0  



 51 

34  Emp: mfg All Employees:  Manufacturing 1959:Q1-2014:Q4 5 0 0  
35  Emp:Services All Employees: Service-Providing Industries 1959:Q1-2014:Q4 5 0 0  
36  Emp:Goods All Employees: Goods-Producing Industries 1959:Q1-2014:Q4 5 0 0  
37  Emp: DurGoods All Employees: Durable Goods Manufacturing 1959:Q1-2014:Q4 5 0 1  
38  Emp: Nondur Goods All Employees: Nondurable Goods Manufacturing 1959:Q1-2014:Q4 5 0 0  
39  Emp: Const All Employees: Construction 1959:Q1-2014:Q4 5 0 1  
40  Emp: Edu&Health All Employees: Education & Health Services 1959:Q1-2014:Q4 5 0 1  
41  Emp: Finance All Employees: Financial Activities 1959:Q1-2014:Q4 5 0 1  
42  Emp: Infor All Employees: Information Services 1959:Q1-2014:Q4 5 1 1  
43  Emp: Bus Serv All Employees: Professional & Business Services 1959:Q1-2014:Q4 5 0 1  
44  Emp:Leisure All Employees: Leisure & Hospitality 1959:Q1-2014:Q4 5 0 1  
45  Emp:OtherSvcs All Employees: Other Services 1959:Q1-2014:Q4 5 0 1  
46  Emp: Mining/NatRes All Employees: Natural Resources & Mining 1959:Q1-2014:Q4 5 1 1  
47  Emp:Trade&Trans All Employees: Trade  Transportation & Utilities 1959:Q1-2014:Q4 5 0 1  
48  Emp: Gov All Employees: Government 1959:Q1-2014:Q4 5 0 0  
49  Emp:Retail All Employees: Retail Trade 1959:Q1-2014:Q4 5 0 1  
50  Emp:Wholesal All Employees: Wholesale Trade 1959:Q1-2014:Q4 5 0 1  
51  Emp: Gov(Fed) Employment Federal Government 1959:Q1-2014:Q4 5 2 1  
52  Emp: Gov (State) Employment State government 1959:Q1-2014:Q4 5 0 1  
53  Emp: Gov (Local) Employment Local government 1959:Q1-2014:Q4 5 0 1  
54  Emp: Total (HHSurve) Emp Total (Household Survey) 1959:Q1-2014:Q4 5 0 0  
55  LF Part Rate LaborForce Participation Rate (16 Over) SA 1959:Q1-2014:Q4 2 0 0  
56  Unemp Rate Urate 1959:Q1-2014:Q4 2 0 0  
57  Urate_ST Urate Short Term (< 27 weeks) 1959:Q1-2014:Q4 2 0 0  
58  Urate_LT Urate Long Term (>= 27 weeks) 1959:Q1-2014:Q4 2 0 0  
59  Urate: Age16-19 Unemployment Rate - 16-19 yrs 1959:Q1-2014:Q4 2 0 1  
60  Urate:Age>20 Men Unemployment Rate - 20 yrs. & over  Men 1959:Q1-2014:Q4 2 0 1  
61  Urate: Age>20 Women Unemployment Rate - 20 yrs. & over  Women 1959:Q1-2014:Q4 2 0 1  
62  U: Dur<5wks Number Unemployed for Less than 5 Weeks 1959:Q1-2014:Q4 5 0 1  
63  U:Dur5-14wks Number Unemployed for 5-14 Weeks 1959:Q1-2014:Q4 5 0 1  
64  U:dur>15-26wks Civilians Unemployed for 15-26 Weeks 1959:Q1-2014:Q4 5 0 1  
65  U: Dur>27wks Number Unemployed for 27 Weeks & over 1959:Q1-2014:Q4 5 0 1  
66  U: Job losers Unemployment Level - Job Losers 1967:Q1-2014:Q4 5 0 1  
67  U: LF Reenty Unemployment Level - Reentrants to Labor Force 1967:Q1-2014:Q4 5 1 1  
68  U: Job Leavers Unemployment Level - Job Leavers 1967:Q1-2014:Q4 5 0 1  
69  U: New Entrants Unemployment Level - New Entrants 1967:Q1-2014:Q4 5 1 1  
70  Emp:SlackWk Employment Level - Part-Time for Economic Reasons  All Industries 1959:Q1-2014:Q4 5 1 1  
71  EmpHrs:Bus Sec Business Sector: Hours of All Persons 1959:Q1-2014:Q4 5 0 0  
72  EmpHrs:nfb Nonfarm Business Sector: Hours of All Persons 1959:Q1-2014:Q4 5 0 0  
73  AWH Man Average Weekly Hours: Manufacturing 1959:Q1-2014:Q4 1 0 1  
74  AWH Privat Average Weekly Hours: Total Private Industry 1964:Q1-2014:Q4 2 0 1  
75  AWH Overtime Average Weekly Hours: Overtime: Manufacturing 1959:Q1-2014:Q4 2 0 1  
76  HelpWnted Index of Help-Wanted Advertising in Newspapers (Data truncated in 2000) 1959:Q1-1999:Q4 1 0 0  
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 (4) Orders, Inventories, and Sales 
 

77  MT Sales Manufacturing and trade sales (mil. Chain 2005 $) 1959:Q1-2014:Q3 5 0 0  
78  Ret. Sale Sales of retail stores (mil. Chain 2000 $) 1959:Q1-2014:Q3 5 0 1  
79  Orders (DurMfg) Mfrs' new orders durable goods industries (bil. chain 2000 $) 1959:Q1-2014:Q4 5 0 1  
80  Orders (Cons. Gds & 

Mat.) 
Mfrs' new orders  consumer goods and materials (mil. 1982 $) 1959:Q1-2014:Q4 5 0 1  

81  UnfOrders(DurGds) Mfrs' unfilled orders durable goods indus. (bil. chain 2000 $) 1959:Q1-2014:Q4 5 0 1  
82  Orders(NonDefCap) Mfrs' new orders  nondefense capital goods (mil. 1982 $) 1959:Q1-2014:Q4 5 0 1  
83  VendPerf ISM Manufacturing: Supplier Deliveries Index© 1959:Q1-2014:Q4 1 0 1  
84  NAPM:INV ISM Manufacturing: Inventories Index© 1959:Q1-2014:Q4 1 0 1  
85  NAPM:ORD ISM Manufacturing: New Orders Index©; Index; 1959:Q1-2014:Q4 1 0 1  
86  MT Invent Manufacturing and trade inventories (bil. Chain 2005 $) 1959:Q1-2014:Q3 5 0 1  
 (5) Housing Starts and Permits 

 
87  Hstarts Housing Starts: Total: New Privately Owned Housing Units Started 1959:Q1-2014:Q3 5 0 0  
88  Hstarts >5units Privately Owned Housing Starts: 5-Unit Structures or More 1959:Q1-2014:Q3 5 0 0  
89  Hpermits New Private Housing Units Authorized by Building Permit 1960:Q1-2014:Q4 5 0 1  
90  Hstarts:MW Housing Starts in Midwest Census Region 1959:Q1-2014:Q3 5 0 1  
91  Hstarts:NE Housing Starts in Northeast Census Region 1959:Q1-2014:Q3 5 0 1  
92  Hstarts:S Housing Starts in South Census Region 1959:Q1-2014:Q3 5 0 1  
93  Hstarts:W Housing Starts in West Census Region 1959:Q1-2014:Q3 5 0 1  
94  Constr. Contracts Construction contracts (mil. sq. ft.)  (Copyright  McGraw-Hill) 1963:Q1-2014:Q4 4 0 1  
 (6) Prices  

 
95  PCED Personal Consumption Expenditures: Chain-type Price Index 1959:Q1-2014:Q4 6 0 0  
96  PCED_LFE Personal Consumption Expenditures: Chain-type Price Index Less Food and Energy 1959:Q1-2014:Q4 6 0 0  
97  GDP Defl Gross Domestic Product: Chain-type Price Index 1959:Q1-2014:Q4 6 0 0  
98  GPDI Defl Gross Private Domestic Investment: Chain-type Price Index 1959:Q1-2014:Q4 6 0 1  
99  BusSec Defl Business Sector: Implicit Price Deflator 1959:Q1-2014:Q4 6 0 1  
100 PCED_Goods Goods 1959:Q1-2014:Q4 6 0 0  
101 PCED_DurGoods Durable goods 1959:Q1-2014:Q4 6 0 0  
102 PCED_NDurGoods Nondurable goods 1959:Q1-2014:Q4 6 0 0  
103 PCED_Serv Services 1959:Q1-2014:Q4 6 0 0  
104 PCED_HouseholdServic

es 
Household consumption expenditures (for services) 1959:Q1-2014:Q4 6 0 0  

105 PCED_MotorVec Motor vehicles and parts 1959:Q1-2014:Q4 6 0 1  
106 PCED_DurHousehold Furnishings and durable household equipment 1959:Q1-2014:Q4 6 0 1  
107 PCED_Recreation Recreational goods and vehicles 1959:Q1-2014:Q4 6 0 1  
108 PCED_OthDurGds Other durable goods 1959:Q1-2014:Q4 6 0 1  
109 PCED_Food_Bev Food and beverages purchased for off-premises consumption 1959:Q1-2014:Q4 6 0 1  
110 PCED_Clothing Clothing and footwear 1959:Q1-2014:Q4 6 0 1  
111 PCED_Gas_Enrgy Gasoline and other energy goods 1959:Q1-2014:Q4 6 0 1  
112 PCED_OthNDurGds Other nondurable goods 1959:Q1-2014:Q4 6 0 1  
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113 PCED_Housing-Utilities Housing and utilities 1959:Q1-2014:Q4 6 0 1  
114 PCED_HealthCare Health care 1959:Q1-2014:Q4 6 0 1  
115 PCED_TransSvg Transportation services 1959:Q1-2014:Q4 6 0 1  
116 PCED_RecServices Recreation services 1959:Q1-2014:Q4 6 0 1  
117 PCED_FoodServ_Acc. Food services and accommodations 1959:Q1-2014:Q4 6 0 1  
118 PCED_FIRE Financial services and insurance 1959:Q1-2014:Q4 6 0 1  
119 PCED_OtherServices Other services 1959:Q1-2014:Q4 6 0 1  
120 CPI Consumer Price Index For All Urban Consumers: All Items 1959:Q1-2014:Q4 6 0 0  
121 CPI_LFE Consumer Price Index for All Urban Consumers: All Items Less Food & Energy 1959:Q1-2014:Q4 6 0 0  
122 PPI:FinGds Producer Price Index: Finished Goods 1959:Q1-2014:Q4 6 0 0  
123 PPI Producer Price Index: All Commodities 1959:Q1-2014:Q3 6 0 0  
124 PPI:FinConsGds Producer Price Index: Finished Consumer Goods 1959:Q1-2014:Q4 6 0 1  
125 PPI:FinConsGds (Food) Producer Price Index: Finished Consumer Foods 1959:Q1-2014:Q4 6 0 1  
126 PPI:IndCom Producer Price Index: Industrial Commodities 1959:Q1-2014:Q4 6 0 1  
127 PPI:IntMat Producer Price Index: Intermediate Materials: Supplies & Components 1959:Q1-2014:Q4 6 0 1  
128 Real_P:SensMat Index of Sensitive Matrerials Prices (Discontinued) Defl by PCE(LFE) Def 1959:Q1-2004:Q1 5 0 1  
129 Real_Commod: spot 

price 
Spot market price index:BLS & CRB: all commodities(1967=100) Defl by PCE(LFE) 1959:Q1-2009:Q1 5 0 0  

130 NAPM com price ISM Manufacturing: Prices Paid Index© 1959:Q1-2014:Q4 1 0 1  
131 Real_Price:NatGas PPI: Natural Gas Defl by PCE(LFE) 1967:Q1-2014:Q4 5 0 1  
 (7) Productivity and Earnings 

 
132 Real_AHE:PrivInd Average Hourly Earnings: Total Private Industries Defl by PCE(LFE) 1964:Q1-2014:Q4 5 0 0  
133 Real_AHE:Const Average Hourly Earnings: Construction Defl by PCE(LFE) 1959:Q1-2014:Q4 5 0 0  
134 Real_AHE:MFG Average Hourly Earnings: Manufacturing Defl by PCE(LFE) 1959:Q1-2014:Q4 5 0 0  
135 CPH:NFB Nonfarm Business Sector: Real Compensation Per Hour 1959:Q1-2014:Q4 5 0 1  
136 CPH:Bus Business Sector: Real Compensation Per Hour 1959:Q1-2014:Q4 5 0 1  
137 OPH:nfb Nonfarm Business Sector: Output Per Hour of All Persons 1959:Q1-2014:Q4 5 0 1  
138 OPH:Bus Business Sector: Output Per Hour of All Persons 1959:Q1-2014:Q4 5 0 0  
139 ULC:Bus Business Sector: Unit Labor Cost 1959:Q1-2014:Q4 5 0 0  
140 ULC:NFB Nonfarm Business Sector: Unit Labor Cost 1959:Q1-2014:Q4 5 0 1  
141 UNLPay:nfb Nonfarm Business Sector: Unit Nonlabor Payments 1959:Q1-2014:Q4 5 0 1  
 (8) Interest Rates 

 
142 FedFunds Effective Federal Funds Rate 1959:Q1-2014:Q4 2 0 1  
143 TB-3Mth 3-Month Treasury Bill: Secondary Market Rate 1959:Q1-2014:Q4 2 0 1  
144 TM-6MTH 6-Month Treasury Bill: Secondary Market Rate 1959:Q1-2014:Q4 2 0 0  
145 EuroDol3M 3-Month Eurodollar Deposit Rate (London) 1971:Q1-2014:Q4 2 0 0  
146 TB-1YR 1-Year Treasury Constant Maturity Rate 1959:Q1-2014:Q4 2 0 0  
147 TB-10YR 10-Year Treasury Constant Maturity Rate 1959:Q1-2014:Q4 2 0 0  
148 Mort-30Yr 30-Year Conventional Mortgage Rate 1971:Q2-2014:Q4 2 0 0  
149 AAA Bond Moody's Seasoned Aaa Corporate Bond Yield 1959:Q1-2014:Q4 2 0 0  
150 BAA Bond Moody's Seasoned Baa Corporate Bond Yield 1959:Q1-2014:Q4 2 0 0  
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151 BAA_GS10 BAA-GS10 Spread 1959:Q1-2014:Q4 1 0 1  
152 MRTG_GS10 Mortg-GS10 Spread 1971:Q2-2014:Q4 1 0 1  
153 tb6m_tb3m tb6m-tb3m 1959:Q1-2014:Q4 1 0 1  
154 GS1_tb3m GS1_Tb3m 1959:Q1-2014:Q4 1 0 1  
155 GS10_tb3m GS10_Tb3m 1959:Q1-2014:Q4 1 0 1  
156 CP_Tbill Spread CP3FM-TB3MS 1959:Q1-2014:Q4 1 0 1  
157 Ted_spr MED3-TB3MS (Version of TED Spread) 1971:Q1-2014:Q4 1 0 1  
158 gz_spread Gilchrist-Zakrajsek  Spread (Unadjusted) 1973:Q1-2012:Q4 1 0 0  
159 gz_ebp Gilchrist-Zakrajsek  Excess Bond Premium  1973:Q1-2012:Q4 1 0 1  
 (9) Money and Credit 

 
160 Real_mbase St. Louis Adjusted Monetary Base; Bil. of $; M; SA; Defl by PCE(LFE) 1959:Q1-2014:Q4 5 0 0  
161 Real_InsMMF Institutional Money Funds Defl by PCE(LFE)  1980:Q1-2014:Q4 5 0 0  
162 Real_m1 M1 Money Stock Defl by PCE(LFE)  1959:Q1-2014:Q4 5 0 0  
163 Real_m2 M2SL Defl by PCE(LFE)  1959:Q1-2014:Q4 5 0 0  
164 Real_mzm MZM Money Stock Defl by PCE(LFE)  1959:Q1-2014:Q4 5 0 0  
165 Real_C&Lloand Commercial and Industrial Loans at All Commercial Banks Defl by PCE(LFE)  1959:Q1-2014:Q4 5 0 1  
166 Real_ConsLoans Consumer (Individual) Loans at All Commercial Banks/ Outlier Code because of change in data in 

April 2010.  See FRB H8 Release Defl by PCE(LFE) 
1959:Q1-2014:Q4 5 1 1  

167 Real_NonRevCredit Total Nonrevolving Credit Outstanding Defl by PCE(LFE)  1959:Q1-2014:Q4 5 0 1  
168 Real_LoansRealEst Real Estate Loans at All Commercial Banks Defl by PCE(LFE)  1959:Q1-2014:Q4 5 0 1  
169 Real_RevolvCredit Total Revolving Credit Outstanding Defl by PCE(LFE)  1968:Q1-2014:Q4 5 1 1  
170 Real_ConsuCred Total Consumer Credit Outstanding Defl by PCE(LFE)  1959:Q1-2014:Q4 5 0 0  
171 FRBSLO_Consumers FRB Senior Loans Officer Opions. Net Percentage of Domestic Respondents Reporting Increased 

Willingness to Make Consumer Installment Loans (Fred from 1982:Q2 on Earlier is DB series) 
1970:Q1-2014:Q4 1 0 1  

 (10) International Variables 
 

172 Ex rate: major FRB Nominal Major Currencies Dollar Index (Linked to EXRUS in 1973:1)  1959:Q1-2014:Q4 5 0 1  
173 Ex rate: Euro U.S. / Euro Foreign Exchange Rate 1999:Q1-2014:Q4 5 0 1  
174 Ex rate: Switz Foreign exchange rate: Switzerland (Swiss franc per U.S.$) Fred  1971. EXRSW previous 1971:Q1-2014:Q4 5 0 1  
175 Ex rate: Japan Foreign exchange rate: Japan (yen per U.S.$)  Fred 1971- EXRJAN previous 1971:Q1-2014:Q4 5 0 1  
176 Ex rate: UK Foreign exchange rate: United Kingdom (cents per pound)  Fred 1971->  EXRUK Previous 1971:Q1-2014:Q4 5 0 1  
177 EX rate: Canada Foreign exchange rate: Canada (Canadian $ per U.S.$) Fred  1971 -> EXRCAN previous 1971:Q1-2014:Q4 5 0 1  
178 OECD GDP OECD: Gross Domestic Product by Expenditure in Constant Prices: Total Gross; Growth Rate 

(Quartely); Fred Series NAEXKP01O1Q657S 
1961:Q2-2013:Q4 1 0 1  

179 IP Europe OECD: Total Ind. Prod (excl Construction) Europe Growth Rate (Quarterly); Fred Series 
PRINTO01OEQ657S 

1960:Q2-2013:Q4 1 0 1  

180 Global Ec Activity Kilian's estimate of glaobal economic activity in industrial commodity markets (Kilian website) 1968:Q1-2014:Q4 1 0 1  
 (11) Asset Prices, Wealth, and Household Balance Sheets 

 
181 S&P 500 S&P's Common Stock Price Index: Composite (1941-43=10) 1959:Q1-2014:Q4 5 0 1  
182 Real_HHW:TA Households and nonprofit organizations; total assets (FoF) Seasonally Adjusted (RATS X11) Defl by 

PCE(LFE)  
1959:Q1-2014:Q3 5 0 0  
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183 Real_HHW:TL Households and nonprofit organizations; total liabilities Seasonally Adjusted (RATS X11) Defl by 
PCE(LFE)  

1959:Q1-2014:Q3 5 0 1  

184 liab_PDI Liabilities Relative to Person Disp Income 1959:Q1-2014:Q3 5 0 0  
185 Real_HHW:W Households and nonprofit organizations; net worth (FoF) Seasonally Adjusted (RATS X11) Defl by 

PCE(LFE) 
1959:Q1-2014:Q3 5 0 1  

186 W_PDI Networth Relative to Personal Disp Income 1959:Q1-2014:Q3 1 0 0  
187 Real_HHW:TFA Households and nonprofit organizations; total financial assets  Seasonally Adjusted (RATS X11) 

Defl by PCE(LFE) 
1959:Q1-2014:Q3 5 0 0  

188 Real_HHW:TA_RE TotalAssets minus Real Estate Assets Defl by PCE(LFE)  1959:Q1-2014:Q3 5 0 1  
189 Real_HHW:TNFA Households and nonprofit organizations; total nonfinancial assets (FoF) Seasonally Adjusted (RATS 

X11) Defl by PCE(LFE)  
1959:Q1-2014:Q3 5 0 0  

190 Real_HHW:RE Households and nonprofit organizations; real estate at market value Seasonally Adjusted (RATS 
X11) Defl by PCE(LFE)  

1959:Q1-2014:Q3 5 0 1  

191 DJIA Common Stock Prices: Dow Jones Industrial Average 1959:Q1-2014:Q4 5 0 1  
192 VXO VXO (Linked by N. Bloom) .. Average daily VIX from 2009 -> 1962:Q3-2014:Q4 1 0 1  
193 Real_Hprice:OFHEO House Price Index for the United States Defl by PCE(LFE)  1975:Q1-2014:Q4 5 0 1  
194 Real_CS_10 Case-Shiller 10 City Average Defl by PCE(LFE) 1987:Q1-2014:Q4 5 0 1  
195 Real_CS_20 Case-Shiller 20 City Average Defl by PCE(LFE)  2000:Q1-2014:Q4 5 0 1  
 (12) Other 
196 Cons. Expectations Consumer expectations NSA (Copyright  University of Michigan) 1959:Q1-2014:Q4 1 0 1  
197 PoilcyUncertainty Baker  Bloom  Davis Policy Uncertainty Index 1985:Q1-2014:Q4 2 0 1  
 (13) Oil Market Variables 

 
198 World Oil Production World Oil Production.1994:Q1 on from EIA (Crude Oil including Lease Condensate); Data prior to 

1994 from  From Baumeister and Peerlman (2013) 
1959:Q1-2014:Q3 5 0 0  

199 World Oil Production World Oil Production.1994:Q1 on from EIA (Crude Oil including Lease Condensate); Data prior to 
1994 from  From Baumeister and Peerlman (2013); Seasonally adjusted using RATS X11 (note 
seasonality before 1970) 

1959:Q1-2014:Q3 5 0 1  

200 IP: Energy Prds IP: Consumer Energy Products 1959:Q1-2014:Q4 5 0 1  
201 Petroleum Stocks U.S. Ending Stocks excluding SPR of Crude Oil and Petroleum Products (Thousand Barrels); SA 

using X11 in RATS 
1959:Q1-2014:Q4 5 0 1  

202 Real_Price:Oil PPI: Crude Petroleum Defl by PCE(LFE)  1959:Q1-2014:Q4 5 0 1  
203 Real_Crudeoil Price Crude Oil: West Texas Intermediate (WTI) - Cushing Oklahoma Defl by PCE(LFE)  1986:Q1-2014:Q4 5 0 1  
204 Real_CrudeOil Crude Oil Prices: Brent - Europe Defl by PCE(LFE) Def 1987:Q3-2014:Q4 5 0 1  
205 Real_Price Gasoline Conventional Gasoline Prices: New York Harbor  Regular Defl by PCE(LFE)  1986:Q3-2014:Q4 5 0 1  
206 Real_Refiners Acq. Cost 

(Imports) 
U.S. Crude Oil Imported Acquisition Cost by Refiners (Dollars per Barrel) Defl by PCE(LFE)  1974:Q1-2014:Q4 5 0 1  

207 Real_CPI Gasoline CPI Gasoline (NSA) BLS: CUUR0000SETB01 Defl by PCE(LFE)  1959:Q1-2014:Q4 5 0 1  
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Dealing with large datasets 
 

(1) Outliers 
 
(2) Non-stationarities and 'trends' 
 

Usual transformations  (logs, differences, spreads, etc.) 
 
Low-frequency 'demeaning' 
 

(3) Aggregates (139 vs. 207) 
 
(4) Estimate factors using standarized data ('weights' in weighted least 
squares).  [ ] 

 

min{Ft },{λi } (Xit − λi 'Ft )
2

i,t
∑
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Low-frequency 'demeaning' weights and sprectral gain 

 

 
Prescott filter, which places most of its weight on lags of!15 quarters. The biweight filter

estimates trends at multidecadal frequencies, whereas the Hodrick and Prescott trend

places considerable weight on fluctuations with periods less than a decade.

The biweight filter needs to be modified for observations near the beginning and end

of the sample. One approach would be to estimate a time series model for each series, use

forecasts from that model to pad the series at end points, and to apply the filter to this

Fig. 2 Lag weights and spectral gain of trend filters. Notes: The biweight filter uses a bandwidth
(truncation parameter) of 100 quarters. The bandpass filter is a 200-quarter low-pass filter
truncated after 100 leads and lags (Baxter and King, 1999). The moving average is equal-weighted
with 40 leads and lags. The Hodrick and Prescott (1997) filter uses 1600 as its tuning parameter.

482 Handbook of Macroeconomics
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How Many Factors? 
 

(1) Scree plot 
 
(2) Information criteria 
 
(3) Others 
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Least squares objective function for r factors: 
 
 

 

 
where Ft and li are r × 1 vectors. 
 
 
Scree plot: Marginal (trace) R2 for factor k: 
 

SSR(r) = min{Ft },{λi } (Xit − λi 'Ft )
2

i,t
∑
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Scree plot for 58 real variables 
 
 

 
 



 61 
 Fig. 1 Detrended four-quarter growth rates of US GDP, industrial production, nonfarm employment,

andmanufacturing and trade sales (solid line), and the common component (fitted value) from a single-
factor DFM (dashed line). The factor is estimated using 58 US quarterly real activity variables. Variables
all measured in percentage points.
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of the fits for all series suggests that the factors beyond the first serve mainly to explain

movements in some of the disaggregate series.

In principle, there are at least three possible reasons why there might be more than

one factor among these real activity series.

The first possible reason is that there could be a single dynamic factor that manifests as

multiple static factors; in the terminology of Section 2, perhaps q¼1, r>1, and G in (7)

has fewer rows than columns. As discussed in Section 2, it is possible to estimate the num-

ber of dynamic factors given the number of static factors, and applying the Amengual and

Watson (2007) test to the real activity dataset, with three static factors, estimates that there

is a single dynamic factor. That said, the contribution to the traceR2 of possible additional

dynamic factors remains large in an economic sense, so the estimate of a single dynamic

factor is suggestive but not conclusive.

The second possible reason is that these series move in response to multiple struc-

tural shocks, and that their responses to those shocks are sufficiently different that the

innovations to their common components span the space of more than one aggregated

shock.

The third reason, discussed in Section 2, is that structural instability could lead to spu-

riously large numbers of static factors; for example, if there is a single factor in both the

first and second subsamples but a large break in the factor loadings, then the full-sample

PC would find two factors, one estimating the first-subsample factor (and being noise in

the second subsample), the other estimating the second-subsample factor.

Fig. 4 Four-quarter GDP growth (black) and its common component based on 1, 3, and 5 static factors:
real activity dataset.

486 Handbook of Macroeconomics
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Scree plot – Full data set (139 variables) 
 

blocks of Table 3 suggest that these higher factors, both static and dynamic, capture com-

mon innovations that are important for explaining some categories of series.

The scree plot in Fig. 6A and the statistics in Tables 2 and 3 point to a relatively small

number of factors—between 4 and 8 factors—describing a large amount of the variation

in these series. This said, a substantial amount of the variation remains, and it is germane

to ask whether that remaining variation is from idiosyncratic disturbances or whether

Fig. 6 (A) Scree plot for full dataset: full sample, pre-1984, and post-1984. (B) Cumulative R2 as a
function of the number of factors, 94-variable balanced panel.

489Factor Models and Structural Vector Autoregressions
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Information criteria:  Bai and Ng 
 
IC(r) = ln(SSR(r)) + rg(sample size) 
 
Sample size: n and T 
 

  

 
Note: when n = T this is BNIC(r) = ln(SSR(r)) + 2r×ln(T)/T. 
 

BNIC(r) = ln SSR(r)( )+ r n+T
nT

⎛
⎝⎜

⎞
⎠⎟
ln min(n,T )( )
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Table 2 Statistics for estimating the number of static factors
(A) Real activity dataset (N558 disaggregates used for estimating factors)

Number of static factors Trace R2 Marginal trace R2 BN-ICp2 AH-ER

1 0.385 0.385 !0.398 3.739
2 0.489 0.103 !0.493 2.338
3 0.533 0.044 20.494 1.384
4 0.565 0.032 !0.475 1.059
5 0.595 0.030 !0.458 1.082

(B) Full dataset (N5139 disaggregates used for estimating factors)

Number of static factors Trace R2 Marginal trace R2 BN-ICp2 AH-ER

1 0.215 0.215 !0.183 2.662
2 0.296 0.081 !0.233 1.313
3 0.358 0.062 !0.266 1.540
4 0.398 0.040 20.271 1.368
5 0.427 0.029 !0.262 1.127
6 0.453 0.026 !0.249 1.064
7 0.478 0.024 !0.235 1.035
8 0.501 0.024 !0.223 1.151
9 0.522 0.021 !0.205 1.123
10 0.540 0.018 !0.185 1.057

(C) Amenguel-Watson estimate of number of dynamic factors: BN-ICpi values, full dataset (N5139)

No. of
dynamic
factors

Number of static factors

1 2 3 4 5 6 7 8 9 10

1 !0.098 !0.071 !0.072 !0.068 !0.069 !0.065 !0.064 !0.064 !0.064 !0.060
2 20.085 !0.089 !0.087 !0.089 !0.084 !0.084 !0.084 !0.085 !0.080
3 20.090 20.088 20.091 20.088 20.088 20.086 20.086 20.084
4 !0.077 !0.080 !0.075 !0.075 !0.073 !0.072 !0.069
5 !0.064 !0.060 !0.062 !0.057 !0.055 !0.052
6 !0.045 !0.043 !0.040 !0.037 !0.036
7 !0.024 !0.022 !0.020 !0.018
8 !0.002 0.000 0.003
9 0.021 0.023
10 0.044

Notes: BN-ICp2 denotes the Bai and Ng (2002) ICp2 information criterion. AH-ER denotes the Ahn and Horenstein (2013) ratio of (i+1)th to ith eigenvalues. The minimal
BN-ICp2 entry in each column, and themaximal Ahn–Horenstein ratio entry in each column, is the respective estimate of the number of factors and is shown in bold. In panel
C, the BN-ICp2 values are computed using the covariancematrix of the residuals from the regression of the variables onto lagged values of the column number of static factors,
estimated by principal components.
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 'Static' and 'Dynamic' factors (again) 
 

Xt = l(L)ft + et  and f(L)ft = ht 
 

  

 

  

Xt = λ0  λ1  ! λk( )
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or  
 

Xt = L Ft + et 
Ft = FFt-1 + Ght 

 
 
Number of static factors (r) = number of elements in F 
 
Number of dynamic factors (q) = number of elements in f = number of 
elements in h = number of common shocks. 
 
Determining q:  Several ways.  Here is one: 
 

Xt = LFt + et = Lht + bFt-1 + et  (with b = LF). 
 
⇒  
 

Use BNIC on the residuals from the regression of Xt onto  . F̂t−1
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Table 2 Statistics for estimating the number of static factors
(A) Real activity dataset (N558 disaggregates used for estimating factors)

Number of static factors Trace R2 Marginal trace R2 BN-ICp2 AH-ER

1 0.385 0.385 !0.398 3.739
2 0.489 0.103 !0.493 2.338
3 0.533 0.044 20.494 1.384
4 0.565 0.032 !0.475 1.059
5 0.595 0.030 !0.458 1.082

(B) Full dataset (N5139 disaggregates used for estimating factors)

Number of static factors Trace R2 Marginal trace R2 BN-ICp2 AH-ER

1 0.215 0.215 !0.183 2.662
2 0.296 0.081 !0.233 1.313
3 0.358 0.062 !0.266 1.540
4 0.398 0.040 20.271 1.368
5 0.427 0.029 !0.262 1.127
6 0.453 0.026 !0.249 1.064
7 0.478 0.024 !0.235 1.035
8 0.501 0.024 !0.223 1.151
9 0.522 0.021 !0.205 1.123
10 0.540 0.018 !0.185 1.057

(C) Amenguel-Watson estimate of number of dynamic factors: BN-ICpi values, full dataset (N5139)

No. of
dynamic
factors

Number of static factors

1 2 3 4 5 6 7 8 9 10

1 !0.098 !0.071 !0.072 !0.068 !0.069 !0.065 !0.064 !0.064 !0.064 !0.060
2 20.085 !0.089 !0.087 !0.089 !0.084 !0.084 !0.084 !0.085 !0.080
3 20.090 20.088 20.091 20.088 20.088 20.086 20.086 20.084
4 !0.077 !0.080 !0.075 !0.075 !0.073 !0.072 !0.069
5 !0.064 !0.060 !0.062 !0.057 !0.055 !0.052
6 !0.045 !0.043 !0.040 !0.037 !0.036
7 !0.024 !0.022 !0.020 !0.018
8 !0.002 0.000 0.003
9 0.021 0.023
10 0.044

Notes: BN-ICp2 denotes the Bai and Ng (2002) ICp2 information criterion. AH-ER denotes the Ahn and Horenstein (2013) ratio of (i+1)th to ith eigenvalues. The minimal
BN-ICp2 entry in each column, and themaximal Ahn–Horenstein ratio entry in each column, is the respective estimate of the number of factors and is shown in bold. In panel
C, the BN-ICp2 values are computed using the covariancematrix of the residuals from the regression of the variables onto lagged values of the column number of static factors,
estimated by principal components.
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(Use VAR(4) and AR(4) for e's to compute forecast error variances)
there are small remaining correlations across series that could be the result of small, higher

factors. Fig. 6B shows the how the trace R2 increases with the number of principal com-

ponents, for up to 60 principal components. The key question is whether these higher fac-

tors represent common but small fluctuations or, alternatively, are simply the consequence

of estimation error, idiosyncratic disturbances, or correlated survey sampling noise because

multiple series are derived in part from the same survey instrument. There is a small amount

of work investigating the information content in the higher factors. De Mol et al. (2008)

find that Bayesian shrinkage methods applied to a large number of series closely approx-

imate principal components forecasts using a small number of factors. Similarly, Stock

and Watson (2012b) use empirical Bayes methods to incorporate information in higher

factors and find that for many series forecasts using this information do not improve on

forecasts using a small number of factors. Carrasco and Rossi (forthcoming) use shrinkage

methods to examine whether the higher factors improve forecasts. Onatski (2009, 2010)

develops theory for factor models with many weak factors. Although the vast bulk of the

literature is consistent with the interpretation that variation in macroeconomic data are

Table 3 Importance of factors for selected series for various numbers of static and dynamic factors: full
dataset DFM

Series

A. R2 of common
component

B. Fraction of four
quarters ahead forecast
error variance due to
common component

Number of static
factors r

Number of dynamic
factors q with r58 static

factors

1 4 8 1 4 8

Real GDP 0.54 0.65 0.81 0.39 0.77 0.83
Employment 0.84 0.92 0.93 0.79 0.86 0.90
Housing starts 0.00 0.52 0.67 0.49 0.51 0.75
Inflation (PCE) 0.05 0.51 0.64 0.34 0.66 0.67
Inflation (core PCE) 0.02 0.13 0.17 0.24 0.34 0.41
Labor productivity (NFB) 0.02 0.30 0.59 0.12 0.46 0.54
Real hourly labor compensation (NFB) 0.00 0.25 0.70 0.19 0.67 0.71
Federal funds rate 0.25 0.41 0.54 0.52 0.54 0.62
Ted-spread 0.26 0.59 0.61 0.18 0.33 0.59
Term spread (10 year–3 month) 0.00 0.36 0.72 0.32 0.38 0.63
Exchange rates 0.01 0.22 0.70 0.05 0.60 0.68
Stock prices (SP500) 0.06 0.49 0.73 0.14 0.29 0.79
Real money supply (MZ) 0.00 0.25 0.34 0.15 0.24 0.29
Business loans 0.11 0.49 0.51 0.13 0.16 0.23
Real oil prices 0.04 0.68 0.70 0.40 0.66 0.71
Oil production 0.09 0.10 0.12 0.01 0.04 0.12

490 Handbook of Macroeconomics
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What about many more factors?  

(Full 138-variable dataset) 

 
 

Is there useful information in additional factors? (For forecasting, maybe)
blocks of Table 3 suggest that these higher factors, both static and dynamic, capture com-

mon innovations that are important for explaining some categories of series.

The scree plot in Fig. 6A and the statistics in Tables 2 and 3 point to a relatively small

number of factors—between 4 and 8 factors—describing a large amount of the variation

in these series. This said, a substantial amount of the variation remains, and it is germane

to ask whether that remaining variation is from idiosyncratic disturbances or whether

Fig. 6 (A) Scree plot for full dataset: full sample, pre-1984, and post-1984. (B) Cumulative R2 as a
function of the number of factors, 94-variable balanced panel.

489Factor Models and Structural Vector Autoregressions
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Instability in Factor Models (references in paper) 

 
 

Two key results: 
 
(1) Common discrete changes increase the number of factors 
 
(2) Idiosynchratic (or weakly correlated) changes have little effect on 
estimated factors. 
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Return to single factor model:  Xit = li,t ft + et 
 

Result 1: 
 

Suppose  and break is pervasive: 

 
Write  

 

  where  

 

 and f2t is defined analogously 

λi,t =
λi1  for t ≤ T1

λi2  for t > T1

⎧
⎨
⎪

⎩⎪

Xit = (λi1  λi2 )
f1t
f2t

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+ eit

f1t =
ft  for t ≤ T1

0 for t > T1

⎧
⎨
⎪

⎩⎪
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Xit = li,t ft + et 
 
⇒  
 

 

 
 
Results 2 follows from this. 
 

1
n

Xit
i=1

n

∑ = 1
n

λi,t
i=1

n

∑⎛
⎝⎜

⎞
⎠⎟
ft +

1
n

eit
i=1

n

∑
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Odds and ends: 
 
(1) Testing for breaks in ls.  (Chow-tests, sup-Wald (QLR) tests etc.) 
 
 
 
(2) Testing for instability of second moments of common components, 
var(LFt). 
 
 
 
(3) What's changing,  li or second moments of Ft?  ( the composite, liFt 
affects Xit).  (What changed during Great Recession … Stock-Watson BPEA 2012) 
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Stability in the 207-variable macro dataset 
(some results shown already previous figures) 

 

 
 

Table 4 Stability tests for the four- and eight-factor full dataset DFMs
(A) Fraction of rejections of stability null hypothesis

Level of test Chow test (1984q4 break) QLR test

(i) Four factors

1% 0.39 0.62
5% 0.54 0.77
10% 0.63 0.83

(ii) Eight factors

1% 0.55 0.94
5% 0.65 0.98
10% 0.72 0.98

(B) Distribution of correlations between full- and split-sample common components

Percentile of distribution

5% 25% 50% 75% 5%

(i) Four factors

1959–84 0.65 0.89 0.96 0.99 1.00
1985–2014 0.45 0.83 0.95 0.97 0.99

(ii) Eight factors

1959–84 0.57 0.83 0.92 0.97 0.99
1985–2014 0.43 0.80 0.94 0.97 0.99

(C) Results by category (four factors)

Category
Number
of series

Fraction of Chow test
rejections for 5% test

Median correlation
between full- and

split-sample common
components

1959–84 1985–2014

NIPA 20 0.50 0.98 0.96
Industrial production 10 0.50 0.98 0.97
Employment and
unemployment

40 0.40 0.99 0.99

Orders, inventories, and sales 10 0.80 0.98 0.96
Housing starts and permits 8 0.75 0.96 0.91
Prices 35 0.49 0.88 0.90
Productivity and labor
earnings

10 0.80 0.92 0.67

Interest rates 12 0.33 0.98 0.94
Money and credit 9 0.89 0.93 0.89
International 3 0.00 0.97 0.97
Asset prices, wealth, and
household balance sheets

12 0.58 0.95 0.92

Other 1 1.00 0.95 0.91
Oil market variables 6 0.83 0.79 0.79

Notes: These results are based on the 176 series with data available for at least 80 quarters in both the pre- and post-84
samples. The Chow tests in (A) and (C) test for a break in 1984q4.
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DFM:   

 
Xt = L Ft + ut 

 
F(L)Ft =  Ght 

 
Question: Identify "structural" shocks in ht and their effects on {Xt} 

 
And how is this related to the analogous question in VARs 

 
 
 
 

Start with discussion of VAR and then return to DFM 
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SVAR 
 

Yt is an n×1 vector of observables  (n typically 'small') 
 
VAR dynamics:  E(Yt | lags of Yt) = A1Yt-1 + … + ApYt-p. 
 
 
so that  Yt = A1Yt-1 + … + ApYt-p + ht  or A(L)Yt = ht. 
   
ht = 1-period ahead forecast error. (Note change of notation from DFM.) 
 
No constant term for notational convenience. 
 
VMA representation: 
 
  Yt = C(L)-1ht  where C(L) = A(L)-1 
 
Note: C(L) = C0 + C1L + C2L2 + …  and C0 = I 
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SVAR  (Sims (1980)):  Why do we make forecast errors? 
 

ht = Het  where et are 'structural' shocks. (Shocks interpretable in the 
context of particular theoretical economic models). 
 
Yt = C(L)ht = C(L)Het = D(L)et  is structural MA 
 
and with B(L) = H-1A(L) 
 
B(L)Yt = et is SVAR  
 
From SMA:  Yt = D0et + D1et-1 + …   with Dk = CkH 
 

Note:  = Dk,ij.    (These are "impulse responses" or "dynamic causal 

effects" or 'dynamic multipliers' … ) 
 
 

∂Yi,t+k
∂ε jt
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Issues:  
 

1. E(Yt | lags if Yt) = A1Yt-1 + … + ApYt-p. Reasonable? 
 

2. C(L) = A(L)-1; when is this a well-defined one-sided inverse? 
 

3. Estimation of A(L) and C(L).  When do usual large-sample linear 
properties obtain? 
  

4. ht = Het with H non-singular. Reasonable? 
 

5. Identification of H. 
 

6. Properties of  . Ĉk Ĥ
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Issues:  
 

1. E(Yt | lags if Yt) = A1Yt-1 + … + ApYt-p. Reasonable? 
 

2. C(L) = A(L)-1; when is this a well-defined one-sided inverse? 
 

3. Estimation of A(L) and C(L).  When do usual large-sample linear 
properties obtain. 

 
"Hayashi":   Roots of A(L) outside unit circle (difference equation is 
stable). ht are MDS with appropriate moments.  
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Issue: ht = Het with H non-singular. Reasonable? 
 

 
In some cases NO: 
 
Non-invertibility:  Static problem H is nY × ne.  What if ne > nY ? 
 
Dynamics:   
 
Invertibility (required here): Can I determine et from current and lagged Y. 
 
'Recoverability' (Chahrour and Jurado (2017), Plagbor-Moller and Wolf (2018)): Can I 
determine et from current, lagged and future Y. 
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Simplist example: 
 

Yt = et - qet-1 
 

  (so invertible when |q | < 1). 

 
Also 

 

 

 
(so recoverable as long as |q | ≠ 1) 

ε t = θ jYt− j
j=0

t−1

∑ +θ tε0

ε t = −θ −1 θ − jYt+ j
j=1

T−1

∑ +θ −TεT
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More complicated example:  
(Fernandez-Villaverde, Rubio-Ramirez, Sargent and Watson (2007)) 

 
yt+1 = Cxt + Dwt+1 

 
xt+1 = Axt + Bwt+1 

 
 
Invertibilty:  eigenvalues of (A - BD-1C) are less than 1 in modulus. 
 
 
(Recoverability): When is   ?  (Exercise) 

 

var wt | yt+ j{ }
j=−∞

∞⎛
⎝

⎞
⎠ = 0
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Issue 5: Identification of H 
 

h = He  ⇒ Shh = HSeeH'   
 

Shh estimable from data, so question is whether their a unique solution for 
H and See  from Shh = HSeeH'. 
 
'Order condition' .. count equations and unknowns. 
 
• n(n+1)/2 elements in Shh  (number of equations) 

 
• n2 + n(n+1)/2 in H and See (number of unknowns) .. n2 too many 

parameters 
 
o Uncorrelated Structural Shocks:  Restrict See to be diagonal: n2 + n 

unknowns .. n(n+1)/2 too many parameters. 
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o Scale normalization 

 
scalar model:  ht = Het   ('units' of et are not identified) 
 
2 normalizations:  (1) se = 1 

 
     (2) H = 1    (or H-1 = 1) 
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Standard deviation normalization: Gertler Karadi (2015) – IRF or 
Monetary Policy Shock 
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We begin with the external instruments case. As noted earlier, we use the three 
month ahead funds rate future surprise FF4 to identify monetary policy shock. As a 
check to ensure that this instrument is valid, we report the F-statistic from the first 
stage regression of the one-year bond rate residual on FF4. We find an F-value of 21 
and half. We also compute a robust F-statistic (which allows for heteroskedasticity) 
of 17.5. Both values are safely above the threshold suggested by Stock et al. (2002) 
to rule out a reasonable likelihood of a weak instruments problem.

As the top left panel shows, a one standard deviation surprise monetary tight-
ening induces a roughly 25 basis point increase in the one-year government bond 
rate. Consistent with conventional theory, there is a significant decline in industrial 
production that reaches a trough roughly a year and a half after the shock. Similarly 
consistent with standard theory, there is a small decline in the consumer price index 
that is not statistically significant. Note that in contrast to the Cholesky identifica-
tion, we do not impose zero restrictions on the contemporaneous responses of output 
and inflation. The identification of the monetary policy shock is entirely due to the 
external instrument.

 regression is incorporated in the reported confidence bands, because both stages of the estimation are included in 
the bootstrapping procedure. Thereby, we avoid any potential “generated regressor” problem. 
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Figure 1. One-Year Rate Shock with Excess Bond Premium
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Scale normalization does not matter in population.   
 
It will matter for inference.   
 
Moving from one normalization to another involves dividing by 

 or . 
 
We will use normalization on elements of H.   
 
• e.g., Diagonal elements of H are unity 

 
• Alternatives: 

o See = I 
o Diagonal elements of H-1  = I.  (Scale normalization used in 

classical simultaneous equations literature.) 
 

Ĥ σ̂ ε
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Back to counting: with scale normalization the model needs only n(n-1)/2 
additional restrictions.  
 
Example: VAR(1) with  n = 3 
 
 

Yt = AYt-1 +   

 

1 H12 H13
H21 1 H23

H31 H32 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

ε1t
ε2t
ε3t

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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Yt = AYt-1 +   

 
 

Timing restriction example:  Yt = AYt-1 +   

 

1 H12 H13
H21 1 H23

H31 H32 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

ε1t
ε2t
ε3t

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 0 0
H21 1 0

H31 H32 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

ε1t
ε2t
ε3t

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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Long-run restriction example: 
 
Arithmetic:  Let D = A(L)-1H and let Zt = (1-L)-1Yt  then 
 

  = Dij. 

 
Restrict H so that Dij has n(n-1)/2 zeros. 
 
 
And so forth. 
 
 

limk→∞

∂Zi,t+k
∂ε j ,t
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Identification of one shock, say e1t and its effect on Yt+k 
 

Recall: Yt = C(L)ht = C(L)Het with C(L) = A(L)-1 
 

Thus  
 

Yt = C(L)  = C(L)H1e1t + distributed lag of   

 
where 	denotes elements 2 through n  
 
 
To identify the effect of e1 on Yt+k we need only identify the first column 
of H. 
 
And, if H1 is known ('identified') and H is invertible, then it turns out e1t 
can be 're-constructed' from ht (up to scale) – Algebra in paper. 

H1  H•⎡⎣ ⎤⎦
ε1t
ε•,t

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

ε•t

•
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Identification of H1 

 

Yt = AYt-1 +   

 

Timing restriction example:  Yt = AYt-1 +   

 
e1 = h1, and H1 is identified by regressing ht onto h1,t. 
 
Similar for other timing restrictions, long-run restrictions, etc. 

1 H12 H13
H21 1 H23

H31 H32 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

ε1t
ε2t
ε3t

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 0 0
H21 1 H23

H31 H32 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

ε1t
ε2t
ε3t

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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Other populator identification schemes 
 
(1) Heteroskedasticity 
 
(2) Sign Restrictions 
 
(3) External Instruments ('Proxy variables') 
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Identification by Heteroskedasticity (Rigobon (2003), Rigobon and Sack (2003,2004)) 
 
 
Idea:    and  ⇒   and  
 
Order condition (counting): 
 
Number of equations (unique elements in  and ): n(n+1) = n2 + n 
 
Number of unknowns: (H,  and ): (n2-n) + 2n = n2 + n. 
 
Note: 'rank condition' .. relative variances of et must change to get 
independent information on elements of H. 
 
Potentially powerful tool. 
 
Generalizes to time-varying conditional heteroskedasticity. 

Σεε
1 Σεε

2 Σηη
1 = HΣεε

1 H ' Σηη
2 = HΣεε

2 H '

Σηη
1 Σηη

2

Σεε
1 Σεε

2
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Example: 
 

,   j = 1, 2. 

 
 

Algebra ⇒               

 
 

 

Estimator:                 

 
 

 

Ση1η1
j Ση1η2

j

Ση2η1
j Ση2η2

j

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=

1 H12
H21 1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

σε1, j
2 0

0 σε2
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1 H21

H12 1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1 2 1 2

1 1 1 1

2 1

21 2 1H hh hh

hh hh

S -S
=
S -S

Ĥ21 =
Σ̂η1η2
2 − Σ̂η1η2

1

Σ̂η1η1
2 − Σ̂η1η1

1
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Denominator:   
 
 
Estimator will have poor sampling properties when denominator is noisy: 
 

 is big relative to   . 
 
Or, (1) when change in variance is small or one or both of the samples is 
small. 
 

Ĥ21 =
Σ̂η1η2
2 − Σ̂η1η2

1

Σ̂η1η1
2 − Σ̂η1η1

1

Σ̂η1η1

2 − Σ̂η1η1

1 = Ση1η1

2 − Ση1η1

1( )+Sampling Error Σ̂η1η1

2 − Σ̂η1η1

1( )

Sampling Error Σ̂η1η1

2 − Σ̂η1η1

1( ) Ση1η1
2 − Ση1η1

1( )
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Inequality (Sign) Restrictions (Faust (1998), Uhlig (2005)) 
 

 
Typical identifying restrictions:  RH = r  where R and r are pre-specified 
are can be computed from the data. (Or RH1 = r, when focused on a single 
shock.) 
 
Inequality Restrictions: RH ≥  r. 
 
This 'set identified' the impulse responses. 
 
Determining the identified set.  A computational method using See = I 
normalization. 
 
Shh = HSeeH' = HH', so H is a matrix square root of Shh    ⇒ 
 
H =  where  is any particular matrix square root (e.g., the 
Cholesky factor) and C is an orthonormal matrix (so CC' = I). 

Σηη
1/2C Σηη

1/2
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(1) Compute   
 
(2) For a particular value of C, compute H = .  
 
(3) Check to see if RH ≥ r.  If so, keep H. If not discard H. 
 
(4) Repeat step 2 for all possible values of C.   
 
(5) The resulting values of H from (3) are the set of values of H that are 
identified by the inequality restriction. 
 

Σηη
1/2

Σηη
1/2C
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Inference in a "set identified" model 
 
Easy example:  Suppose q is a parameter of interest.  You know that q  is 
restricted to lie between µL and µU.  That is  µL ≤ q  ≤ µU. 
 
You have an i.i.d. sample of data on (Xi, Yi) where: 
 

  

 
 
and you want to conduct inference about q.  What should you do? 
 

Xi
Yi

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
~ N

µL
µU

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
, 1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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Frequentist:  Data give you information about µL and µU.  Estimate these 
bounds.  That's it. 
 
 
Bayes:  Priors on µL, µU and q.  Form posterior.  Data tells you about µL, 
µU, but nothing more about q.  Likelihood is flat for all values of q 
between µL and µU.  In large samples posterior for q is the prior, but 
truncated at µL and µU. 
 
 
Bayes and frequentist inference couldn't be more different here. For 
example, a 95% Bayes posterior credible set for q has a frequentist 
coverage of 0% or 100%.  (The Bayes 95% set is a 0% or 100% 
confidence set.) 
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What should you do: 
 
(1) Estimate the identified set.  (Estimate µL and µU in the example.  
Sampling uncertainty is over the boundary of this set.) 
 
(2) Do Bayes analysis.  Prior is critical. In large samples the prior is the 
posterior. Think carefully about prior. 
 
 
What you shouldn't do. 
 
(3) Do Bayes analysis without careful thought about prior. 
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Back to Sign-restricted VARs: Baumeister and Hamilton (2015, 2017). 
 
SVAR (one lag for notationaly convenience): 
 
Yt = AYt-1 + ht = AYt-1 + Het   or   
 

B0Yt = B1Yt-1 + et 
 
with B0 = H-1 and B1 = H-1A. 
 
Baumeister-Hamilton, use normalization with 1's on diagonal of B0  
(= H-1). They advocate using informative priors about off-diagonal 
elements of B0, loose priors on B1 and variances of et + sign restrictions. 
 
  



 30 

Alternative (originally used on Uhlig(2005) and many others) 
 
(1) Compute   
 
(2) For a particular value of C, compute H = .  
 
(3) Check to see if RH ≥ r.  If so, keep H. If not discard H. 
 
(4) Repeat step 2 for all possible values of C.   
 
(5) The resulting values of H from (3) are the set of values of H that are 
identified by the inequality restriction.  Use the values from (3) as the 
posterior. 
 
This amounts to having a flat prior on C ('Harr' prior on columns of 
orthonormal matrix). 
 
 

Σηη
1/2

Σηη
1/2C
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What is a flat prior on C? 
 

2-dimensional problem:   with q ~ U(0,2p) 

 
 

H =  , so B0 = H-1 = .  Write  , so that  

 

Y1t = −b12Y2t + lags + e1t 
 

Y2t = −b21Y1t + lags + e2t 
 

 
 
 
 

C = cosθ −sinθ
sinθ cosθ

⎡

⎣
⎢

⎤

⎦
⎥

Σηη
1/2C C−1Σηη

−1/2 B0 =
1 b12
b21 1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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Prior on C is 'flat'. What is implied prior on b12 ? 

 

Implied prior for b12 …  

 

Σηη =
1 0.9
0.9 1

⎡

⎣
⎢

⎤

⎦
⎥
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Implied prior for b12 …  

 

 
 
 
Prior on C  is flat and does not depend on Shh. 
 
Implied Prior on b12 is not flat, not symmetric, and depends on Shh. 

Σηη =
1 −0.9

−0.9 1
⎡

⎣
⎢

⎤

⎦
⎥
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Bottom line:  With sign-restricted SVARs, data cannot completely pin 
down the effects of et on Yt+k.   
 
Frequentist:  Determine what the data can say about this. 
 
Bayesian:  Add judgement (prior) + data to make probabilistic statements 
about the effects.  Prior matters.   
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Identification of H: (3) External Instruments ('Proxy variables') 
(Discussion follows Stock-Watson (2018) Economic Journal paper) 

 
 

Step back for a moment and consider general problem of estimating 
Dynamic causal effects and IRFs 
 
 
                     Yt = D0 et + D1 et -1 + … = D(L)et 
 
                         nY                    ne 
 
 
(Note: D0 = H in our discussion above.) 
 
 
DO NOT ASSUME INVERTIBILITY  (yet) 
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Estimating dynamic causal effects in macroeconomics 
 
Standard Approach:   

• Estimate VAR for Y 
• Assume "invertibility" to relate et to VAR forecast errors. 
• Impose some restrictions on H for identification 

 
Alternative Approach:  

• Find an "external" instrument Z that captures some exogenous 
variation in one of the structural shocks. 

• Use instrument (with or without VAR step) to estimate dynamic 
causal effects. 
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Some references on external instruments 
 

 
VARs: Stock (2008), Stock and Watson (2012), Mertens and Ravn (2013, 
2014), Gertler and Karadi (2015), Caldera and Kamps (2017), Montiel 
Olea, Stock and Watson (2012), Lumsford (2015), Jentsch and Lunsford 
(2016), Drautzburg(2017), Carriero, Momtaz, Theodoridis and 
Theophilopoulou (2015),  …  
 
 
Local-projections: Jordà, Schularick, and Taylor (2015), Ramey and 
Zubairy (2017), Ramey (2016), Mertens (2015), Fieldhouse, Mertens, 
Ravn (2017) …  
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A Running Empirical Example: Gertler-Karadi (2015) 
 

• Yt = [ Rt, 100×Dln(IP), 100×Dln(CPI), EBP ] 
 
• Monetary policy shock = e1,t 

 
• Causal Effects: E(Yi,t+h | e1,t = 1) - E(Yi,t+h | e1,t = 0) = Qh,i 

 
• Kuttner (2001)-like instrument, Zt = change in Federal Funds rate 

futures in short window around FOMC announcements. 
o Zt correlated with e1,t but uncorrelated with 

.,t is 
   ε2:nε ,t = (ε2,t ,ε3,t ,…,εnε ,t )
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Direct estimation of Dh,i1 
 
 

Yt = D0 et + D1 et -1 + … = D(L)et 
 

Yi,t+h = Dh,i1 e1,t + ut          (LP) 
  

ut = {et+h, … , et+1, , et -1, … } 

{x}: linear combinations of elements of x  
 

E(e1,t ut) = 0 
 

But e1,t is not observed 

  ε2:nε ,t
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IV estimation of Dh,i1 
 

Yi,t+h = Dh,i1e1,t + {et+h, … , et+1, , et -1, … } 

 
Y1,t = D0,11e1,t + { , et -1, … } = e1,t + { , et -1, … } 

 
(unit-effect normalization D0,11 = 1) 

 
Yi,t+h = Dh,i1Y1,t + {et+h, … , et+1, , et -1, … } 

  
Condition LP-IV: 

(i) E(e1,t Zt) = a ≠ 0 
(ii) E(  Zt') = 0 

(iii) E(et+j Zt') = 0 for j ≠ 0 

  ε2:nε ,t

  ε2:nε ,t   ε2:nε ,t

  ε2:nε ,t

  ε2:nε ,t
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Odds and ends 
 
• HAR SEs 

 
• Dyn. Causal Effects for levels vs. differences 

 
• Weak-instrument robust inference 

 
• "News" Shocks  

o replace D0,11 = 1 normalization with Dk,11 = 1 normalization 
 

• Smoothness constraints (Barnichon &Brownlees, Plagborg-
Møller, …)  
 

• e1t (or its variance) is not identified.  (see Plagborg-Møller-
Wolf for bounds). 
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Results for [R and 100×ln(IP)] 
(1990m1 -2012:m6) 

 

 lag (h) (a) 
R 0 1.00 (0.00) 
 6 -0.07 (1.34) 
 12 -1.05 (2.51) 
 24 -2.09 (5.66) 
   
IP 0 -0.59 (0.71) 
 6 -2.15 (3.42) 
 12 -3.60 (6.23) 
 24 -2.99 (10.21) 
   
Controls  none 
First-stage F  1.7 
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Results for [R and 100 ×ln(IP)] 
(1990m1 -2012:m6) 
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Results for [R and 100 ×ln(IP)] 
(1990m1 -2012:m6) 

 

 lag (h) (a) 
R 0 1.00 (0.00) 
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IV Estimation of Dh,i2 with additional controls -1 
 

Yi,t+h = Dh,i1Y1,t + {et+h, … , et+1, , et -1, … } 

 
2 Motivations for adding controls: 

 
(1) eliminate part of error term 

• controls should be uncorrelated with e1,t. 
o Examples: lags of Z, Y, other macro variables, 'factors,' etc., 

leads of Z. 
 

(2) Zt may be correlated with error, but uncorrelated after adding controls 
(a) Example: GK-Z = {DFFFt, DFFFt -1}. Add lags of FFFt. 

  ε2:nε ,t
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IV Estimation of Dh,i1 with additional controls - 2 
 

Yi,t+h = Dh,i1Y1,t + g'Wt + ut  
 

  = xt  - Proj(xt | Wt) 
 

 
Condition LP-IV^  

(i)    

(ii)   

(iii)  for j ≠ 0.

 xt
⊥

  
E ε1,t

⊥ Zt
⊥′( ) = ′α ≠ 0

  
E ε2:nε ,t

⊥ Zt
⊥′( ) = 0

  
E ε t+ j

⊥ Zt
⊥′( ) = 0
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Results for [R and 100 ×ln(IP)] 
Yi,t+h = Dh,i1Y1,t + g'Wt + {et+h, … , et+1, , et -1, … } 

 
 lag (h) (a) (b) (c)  
R 0 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 
 6 -0.07 (1.34) 1.12 (0.52) 0.67 (0.57) 
 12 -1.05 (2.51) 0.78 (1.02) -0.12 (1.07) 
 24 -2.09 (5.66) -0.80 (1.53) -1.57 (1.48) 
     
IP 0 -0.59 (0.71) 0.21 (0.40) 0.03 (0.55) 
 6 -2.15 (3.42) -3.80 (3.14) -4.05 (3.65) 
 12 -3.60 (6.23) -6.70 (4.70) -6.86 (5.49) 
 24 -2.99 (10.21) -9.51 (7.70) -8.13 (7.62) 
     
Controls  none 4 lags of  

(z,y) 
4 lags of 

(z,y,factors) 
First-stage F  1.7 23.7 18.6 

 

  ε2:nε ,t
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Results for [R and 100 ×ln(IP)] 
Yi,t+h = Dh,i1Y1,t + g'Wt + {et+h, … , et+1, , et -1, … } 
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  ε2:nε ,t
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Results for [R and 100 ×ln(IP)] 
Yi,t+h = Dh,i1Y1,t + g'Wt + {et+h, … , et+1, , et -1, … } 
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4 lags of  

(z,y,factors) 
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  ε2:nε ,t
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SVARs with External Instruments - 1 
 

VAR:  Yt = A1Yt-1 + A2Yt-2 + … + ht 
 

Structural MA: Yt = Het + D1 et -1 + … = D(L)et 
 

(D0 = H in notation above) 
 
 

Invertibility: et = Proj(et|Yt, Yt-1, … ) 
 
⇒ 
 

ht = Het  with H nonsingular (so ny = ne)  
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SVARs with External Instruments - 2   
 

A(L)Yt = nt = D0et  
 

⇒  Yt = C(L)Het  with  C(L)=A(L)-1 
 

thus Dh,i1 = ChHi1 
 

Unit-effect normalization yields:  hi,t = Hi1h1,t + { } 

 
Condition SVAR-IV  

(i) E(e1,tZt) = a ≠ 0 
(ii) E( Zt') = 0 

  ε2:nε ,t

  ε2:nε ,t
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SVAR with external instruments – estimation  
 

1. Regress Yi,t onto Y1,t using instruments Zt and p lags of Yt as controls. 
This yields  . 
 
2. Estimate a VAR(p) and invert the VAR to obtain  .  
 
3. Estimate the dynamic causal effects of shock 1 on the vector of 
variables as 
 

 
 

(odds and ends: (1) News shocks; (2) Dif. sample periods in (1) and (2)) 

Ĥi1

  Ĉ(L) = Â(L)−1

D̂h,1 = ĈhĤ1
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SVAR with external instruments – inference 
 

• Strong instruments:  
 

 Normal + d-method 

 
• Weak instruments:  

o  Normal.  

o  NonNormal.  
o Use weak-instrument robust methods. (Montiel Olea, Stock 

and Watson (2018)).   
 

T
Â− A
Ĥ1 − H1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

d⎯ →⎯

  T ( Â− A) d⎯ →⎯
Ĥ1 − H1

d⎯ →⎯
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Results for [R and 100 ×ln(IP)] 
 

 lag (h) LP-IV 
1990m1-2012m6 

SVAR-IV 
IV: 1990m1-2012m6 

VAR:1980m7-2012m6 
R 0 1.00 (0.00) 1.00 (0.00) 
 6 1.12 (0.52) 0.89 (0.31) 
 12 0.78 (1.02) 0.78 (0.46) 
 24 -0.80 (1.53) 0.40 (0.49) 
    
IP 0 0.21 (0.40) 0.16 (0.59) 
 6 -3.80 (3.14) -0.81 (1.19) 
 12 -6.70 (4.70) -1.87 (1.54) 
 24 -9.51 (7.70) -2.16 (1.65) 
    
Controls  4 lags of (Z,Y) 

 
12 lags of Y 
4 lags of Z 

First-stage F  23.7 20.5 
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Results for [R and 100 ×ln(IP)] 

 lag (h) LP-IV 
1990m1-2012m6 

SVAR-IV 
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 56 

SDFM 
SVAR analysis, but now using DFM 

 
 

SVAR problems that the DFM might solve: 
 

(a) Many variable, thus invertibility is more plausible. 
 
(b) Errors-in-variables, several indicators for same theoretical 
concept ('aggregate prices','oil prices', etc.) 
 
(c) Framework for computing IRFs from structural shocks to many 
variables. 
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Can't I just do a VAR?  .. No 
 

 
additionally has the ISMmanufacturing index, the oil price PPI, the corporate paper-90-day

treasury spread, and the 3 month–10 year treasury term spread. The eight variables in the

thirdVAR(VAR-C)were selectedusing a stepwiseprocedure toproduceahigh fit between

VARresiduals andthe innovations in theeight static factors (ie, the residuals in theVARwith

the eight static factors).This procedure led to theVAR-Cvariablesbeing the indexof IP, real

personal consumption expenditures, government spending, thePPI for industrial commod-

ities, unit labor costs for business, the S&P500, the 6 month–3 month term spread, and a

trade-weighted index of exchange rates.kk The final VAR, VAR-O, is used for the SVAR

analysis of the effect of oil shocks in Section 7 and is discussed there.

Table 5 Approximating the eight-factor DFM by a eight-variable VAR
Canonical correlation

1 2 3 4 5 6 7 8

(A) Innovations

VAR-A 0.76 0.64 0.6 0.49
VAR-B 0.83 0.67 0.59 0.56 0.37 0.33 0.18 0.01
VAR-C 0.86 0.81 0.78 0.76 0.73 0.58 0.43 0.35
VAR-O 0.83 0.80 0.69 0.56 0.50 0.26 0.16 0.02

(B) Variables and factors

VAR-A 0.97 0.85 0.79 0.57
VAR-B 0.97 0.95 0.89 0.83 0.61 0.43 0.26 0.10
VAR-C 0.98 0.93 0.90 0.87 0.79 0.78 0.57 0.41
VAR-O 0.98 0.96 0.88 0.84 0.72 0.39 0.18 0.02

Notes:All VARs contain four lags of all variables. The canonical correlations in panel A are between the VAR residuals and
the residuals of a VAR estimated for the eight static factors.
VAR-Awas chosen to be typical of four-variable VARs seen in empirical applications. Variables: GDP, total employment,
PCE inflation, and Fed funds rate.
VAR-B was chosen to be typical of eight-variable VARs seen in empirical applications. Variables: GDP, total employ-
ment, PCE inflation, Fed funds, ISM manufacturing index, real oil prices (PPI-oil), corporate paper-90-day treasury
spread, and 10 year–3 month treasury spread.
VAR-C variables were chosen by stepwise maximization of the canonical correlations between the VAR innovations and
the static factor innovations. Variables: industrial commodities PPI, stock returns (SP500), unit labor cost (NFB), exchange
rates, industrial production, Fed funds, labor compensation per hour (business), and total employment (private).
VAR-O variables: real oil prices (PPI-oil), global oil production, global commodity shipment index, GDP, total employ-
ment (private), PCE inflation, Fed funds rate, and trade-weighted US exchange rate index.
Entries are canonical correlations between (A) factor innovations and VAR residuals and (B) factors and observable
variables.

kk The variables in VAR-C were chosen from the 207 variables so that the ith variable maximizes the ith
canonical correlation between the residuals from the i-variable VAR and the residuals from the eight-
factor VAR. In the first step, the variable yielding the highest canonical correlation between its autore-

gressive residual and the factor VAR residuals was chosen. In the second step, the variable that maximized
the second canonical correlation among all 206 two-variable VAR residuals (given the first VAR variable)
and the factor VAR residuals was chosen. These steps continued until eight variables were chosen.
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The SDFM: 
 

 

 

 
 

where F(L) = I – F1L – … – FpLp, 
 

 
 

Xt = ΛF(L)-1GHεt + et 
 

IRFs: ΛF(L)-1GH  
 

IRF from e1t: ΛF(L)-1GH1 
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Three Normalizations 
 

1. LFt = LPP-1Ft for any matrix P.  Set P rows of L equal to rows of 
identity matrix.  Rearranging the order of the Xs this yields 
 

 

 
This 'names' the first factor as the X1 factor, the second factor as the X2 
factor and so forth.  Example:  X1,t is the logarithm of oil prices, then F1,t is 
called the oil price factor. 
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2. G = I (if q = r) or G1:q = Iq if q < r.     Recall 
 

Xt = l(L)ft + et  and f(L)ft = ht 
 

  

 

  

 
where ft and ht are q × 1. 
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3. The diagonal elements of H are unity. That is, e1t has a unit effect of F1,t 
and so forth.  Same as in SVAR. 
 
 
Putting these together: 
 
X1:q,t = Het + lags of et + et     
 
(Same normalization used in SVAR, but only applied to the first q 
elements of Xt). 
 
F1:q,t = Het + lags of et 
 
etc. 
 
This means that everything in SVARs carry over here. 
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Additional flexibility in SDFM 
 

(1) Measurement error allowed:  With normalization, F follows SVAR, 
and  X = LF + e. 
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(2) Multiple measurements:  Example Oil prices 

 

Real oil price (Brent) 

A

B

Quarterly percent change in real oil price: four oil price series and the common component  

Fig. 7 Real oil price (2009 dollars) and its quarterly percent change.
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(3) "Factor Augmented" VAR ) (FAVAR)  (Bernanke, Boivin, Eliasz (2005)) 
 
Easily implemented in this framework: 
 

 

 

 
 

where  
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               ηt = Hεt. 
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Example: Macroeconomic Effects of Oil Supply Shocks 
 

2 Identifications: 
 
(1) Oil Price exogenous 

 

 

 

 

 
SVAR, FAVAR and SDFM versions 
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(2) Killian (2009) Identification  
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Some Results 
 

 
 

7.5 Results: Kilian (2009) Identification
As discussed in Section 7.2, the Kilian (2009) identification scheme identifies an oil sup-

ply shock, a global aggregate demand shock, and an oil-specific demand shock. Because

there are eight innovations total in all the models examined here, this leaves five uniden-

tified shocks (or, more precisely, a five-dimensional subspace of the innovations on

which no identifying restrictions are imposed).

7.5.1 Hybrid FAVAR-SDFM
As indicated in Table 6, the innovations in the first eight principal components explain a

very small fraction of the one step ahead forecast error of oil production, that is, the inno-

vation in oil production is nearly not spanned by the space of factor innovations. Under

the Kilian (2009) identification scheme, the innovation in oil production is the oil supply

shock; but this oil supply shock is effectively not in the space of the eight shocks that

explain the variation in the macro variables. This raises a practical problem for the SDFM

because the identification scheme is asking it to identify a shock from the macro factor

innovations, which is arguably not in the space of those innovations, or nearly is not in

that space. In the extreme case that the common component of oil production is zero, the

estimated innovation to that common component will simply be noise.

For this reason, wemodify the SDFM to have a single observed factor, which is the oil

production factor. The global demand shock and the oil-specific demand shock are,

however, identified from the factor innovations. Thus this hybrid FAVAR–SDFM

has one identified observed factor, two identified unobserved factors, and five unidenti-

fied unobserved factors.

As discussed in Section 7.2, the FAVAR treats the oil price (PPI-oil), global oil

production, and the global activity index as observed factors, with five latent factors.

Table 6 Fraction of the variance explained by the eight factors at horizons
h¼1 and h¼6 for selected variables: 1985:Q1–2014:Q4
Variable h5 1 h5 6

GDP 0.60 0.80
Consumption 0.37 0.76
Fixed investment 0.38 0.76
Employment (non-ag) 0.56 0.94
Unemployment rate 0.44 0.90
PCE inflation 0.70 0.63
PCE inflation—core 0.10 0.34
Fed funds rate 0.48 0.71
Real oil price 0.74 0.78
Oil production 0.06 0.27
Global commodity shipment index 0.39 0.51
Real gasoline price 0.72 0.80
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Oil Price Exogenous 
 

 
SVAR. The SVAR SIRFs are available only for the eight variables in the SVAR. The

figure shows SIRFs in the log levels of the indicated variables. For example, according to

the SDFMSIRFs in the upper left panel of Fig. 8, a unit oil price shock increases the level of

oil prices by 1% on impact (this is the unit effect normalization), by additional 0.3% after

one quarter, then the price of oil reverts partially and after four quarters is approximately

Fig. 8 Structural IRFs from the SDFM (blue (dark gray in the print version) solid with !1 standard error
bands), FAVAR (red (gray in the print version) dashed), and SVAR (black dots) for selected variables with
respect to an oil price shock: “oil prices exogenous” identification. Units: standard deviations for Global
Commodity Demand and percentage points for all other variables.
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Killian identification IRFs (see paper) 
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Variance Explained: 
 

  
   

spanned by the space of the factor innovations, (b) the innovations in the commodity

index being a noisy measure of the unobserved global factor innovations, and (c) the

one step ahead forecast errors for the commodity index being close using either the fac-

tors or SVAR variables as conditioning sets. Evidence for (a) is the large fraction of the

one step ahead forecast error variance of the global commodity index that is explained by

the factor innovations (Table 6). But because the global commodity index is just one

noisy measure of global demand, it follows from the general discussion of Section 5 that

the innovations in the global commodity index in the FAVAR and SVARmodels will be

noisy measures of—that is, an imperfect proxy for—the innovation in global economic

activity (this is point (b)). Evidence for (c) is the high correlation (0.82) between the

SVAR and FAVAR estimates of the global demand shocks in Table 8.

For the oil-specific demand shock (Fig. 11), the FAVAR and SVAR SIRFs are also

attenuated relative to the SDFM SIRFs. The issues associated with interpreting these dif-

ferences are subtle. In addition to the oil supply and aggregate demand shocks discussed

earlier, the hybrid SDFM allows for two oil price-specific shocks: one that explains some

of the comovements of other macro variables, and one that is purely idiosyncratic (actu-

ally, an idiosyncratic disturbance for each oil price) which has no effect on other macro

Table 7 Forecast error variance decompositions for six periods ahead forecasts of selected variables:
FAVARs and SDFMs

B. Kilian (2009) identification

A. Oil price
exogenous Oil supply

Global
demand

Oil spec.
demand

Variable F D F D(O) F D(U) F D(U)

GDP 0.07 0.07 0.04 0.01 0.02 0.04 0.09 0.04
Consumption 0.19 0.22 0.09 0.08 0.02 0.22 0.11 0.01
Fixed investment 0.04 0.04 0.05 0.04 0.03 0.04 0.03 0.01
Employment (non-ag) 0.03 0.02 0.04 0.01 0.02 0.01 0.03 0.01
Unemployment rate 0.04 0.03 0.04 0.03 0.02 0.03 0.04 0.01
PCE inflation 0.28 0.40 0.02 0.04 0.09 0.16 0.17 0.29
PCE inflation—core 0.05 0.04 0.01 0.02 0.03 0.05 0.02 0.02
Fed funds rate 0.02 0.04 0.00 0.01 0.05 0.11 0.03 0.02
Real oil price 0.81 0.53 0.14 0.10 0.22 0.44 0.42 0.09
Oil production 0.03 0.01 0.75 0.78 0.07 0.02 0.03 0.01
Global commodity
shipment index

0.11 0.23 0.05 0.07 0.79 0.33 0.03 0.02

Real gasoline price 0.61 0.48 0.05 0.06 0.25 0.43 0.34 0.08

Notes: Entries are the fractions of the six periods ahead forecast error of the row variable explained by the column shock,
for the “oil price exogenous” identification results (columns A) and the Kilian identification scheme (columns B). For each
shock, “F” refers to the FAVAR treatment in which the factor is treated as observed and “D” refers to the SDFM treat-
ment. In the hybrid SDFM using the Kilian (2009) identification scheme, the oil supply factor is treated as observed (the oil
production variable) (D(O)) while the global demand and oil-specific demand factors are treated as unobserved (D(U)).
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International Long-run Growth Dynamics 

 
(work in progress) 

 
 

Ulrich Müller, Jim Stock, Mark Watson 
 
 
 
 

Central Bank of Chile, October 2018 
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Original motivation for work 
 
Long-horizon predictive distributions for global GDP/Population as an 
input into determining the “Social Cost of Carbon” (SCC) from CO2 
emissions.  
 
(SCC is used by regulators and others) 
 
Reference:  NAS (2017) 
 
Damages are long-lived ⇒ Predictive distributions over 100, 200, or 
more years. 
 
Damages depend on location ⇒ Joint predictive distributions for many 
countries. 
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Develop a statistical model for joint long-run dynamics for many 
countries 
 
 
Useful for:  
 
 

(1) Reduced form description of cross-country long-run growth 
dynamics (convergence, persistence of development gaps, etc.) 
 
 
(2) Long-run international probabilistic forecasts (original motivation) 
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Data:  Annual 1915-2014 for 112 countries 
(Merged: PWT 1950-2014 and Maddison 1915-1949 

countries with at least 50 years of post-1949 data and population > 3 million) 

 
• 97% of World GDP in 2014 and 96% of World Population 
• Unbalanced Panel (39-52 countries before 1950, 107 in 1950, 110 in 1952 and 112 in 

1960) 
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Data: GDP/Population for 112 countries 
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United States 



 7 

OECD 



 8 

Chile 
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Long-Run Forecasting Problem 
 

 
 



 10 

 or  
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Convergence, persistence and comovement 
 

 

 

Predictive
densities



 12 

 

F

means ofPraids tons
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Outline: 
 

1.  Look at the data to determine sensible features of a model. 
 

2.  Simplification: focus on 'long-run' variation/covariation.  
 

3.  Detailed description of model. 
 

4.  Estimation mechanics  
 

5.  Results 
a.  Convergence 
b. Long-run predictions 

 
6.  Different modelling choices 

 
Notation: Yit = per-capita GDP for country i in year  t.
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4 Features of the data and implications for modelling 
 

Feature 1: "Common" Growth Factor 

 
 

OECD    and    Average all countries 
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Model:  yit = ln(Yit) 
 

yit = ft + cit 
 

        common global growth factor          country i factor 
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Feature 2: No reduction in cross-sectional dispersion 
 

 
Medians, IQR and 90-10 range for histograms of yit 

 
Average value over  median 75th-25th 90th-10th 
1950 - 1954 7.8 1.5 2.6 
1960 - 1964 7.9 1.6 2.7 
1985 - 1989 8.6 2.2 3.3 
2010 - 2014 9.3 2.1 3.4 
 
 



 19 

 
Model: 

 
yit = ft + cit 

 
(long-run)  variance of  cit is constant 

 
(examined in more detail in Different modeling choices below)  
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 Feature 3: Substantial persistence in cross section  
 

Averages of yit over 25+ year periods: Probability of moving from 
quartile i (1960-1987)  to quartile j (1988-2014) 

 
 

  Quartile in 1988-2014 
  1 2 3 4 
Quartile in 
1960-1987 

1 0.786 0.214 0 0 
2 0.214 0.643 0.107 0.036 
3 0 0.143 0.714 0.143 
4 0 0 0.179 0.821 

 

 
• Country in Q1; years until Prob(Q3 + Q4) > 0.25  ≈  220 years 
• Country in Q4: years until Prob(Q1 + Q2) > 0.25  ≈  80 years 

 
• Kremer, Onatski, Stock (2001) using 5 year transitions of relative income levels:  

Half-life = 285 years  (Related: Quah (1993), Jones (1997, 2016)) 
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Model: 

 
yit = ft + cit 

 
(long-run)  variance of  cit is constant 

 
cit is very persistent (but stationary) 
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Feature 4: Comovement of yit within cross section 
 

Examples: 
(a) Hong Kong, South Korea, Singapore, Taiwan, Thailand  
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(b) Argentina, Bolivia, El Salvador, Uruguay, Peru 
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(c) Belgium, France, Italy, Netherlands, Denmark 
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(d) Bulgaria, Croatia, Russia, Serbia, Romania 
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(e) China, India, Laos, Sri Lanka, Vietnam 
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Model: 

 
yit = ft + cit 

 
(long-run)  variance of  cit is constant 

 
cit is very persistent (but stationary) 

 
cit is correlated within "groups" 
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Outline: 
 

1.  Look at the data to determine some sensible features of  a model. 
 

2.  Simplify problem: focus on 'long-run' variation/covariation.  
 

3.  Detailed description of model. 
 

4.  Estimation mechanics  
 

5.  Results 
a.  Convergence 
b. Long-run predictions 

 
6.  Different modelling choices 
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Original Data 
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Low-Frequency Transformed Data 
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A Simplification: Focus on low-frequency variability in data 
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Low-frequency data compression 
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Implications for long-run forecasting: 
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Simplification: Focus on low-frequency variability in data 
 

Selected Literature 
 

• I(0): classic time series work on periodogram analysis, band-
spectrum regression (Engle (1974)), etc. 
 

• More recent: 
 
o Müller (2004): HAR/HAC inference ('Student-t inference', etc.) 

 
o Müller and Watson (2008), (2013), (2016), (2018) 

 



 35 

 
Why is this a simplification ?  

 
• Number of observations: (fewer dots than time series observations) 

 
• Dots are "averages" of data ⇒  Normally distributed  

o Rationalizes Gaussian likelihood 
o Prediction of future (red dot) from past (blue dots)  

 
• Modelling: only low-frequency features of model matter 

 
• Inference:  Y ~ N(0,S(q)) … inference about parameters of 

covariance matrix of normal 
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Implications for long-run forecasting: 
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Outline: 
 

1.  Look at the data to determine some sensible features of  a model. 
 

2.  Simplify problem: focus on 'long-run' variation/covariation.  
 

3.  Detailed description of model 
 

4.  Estimation mechanics  
 

5.  Results 
a.  Convergence 
b. Long-run predictions 

 
6.  Different modelling choices 
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Details of model: Cross-country covariation: 
 
 

  yit = ft + cit 
 

 
ci,t = µ + lc,i gJ(i),t + uc,i,t 

 
 

gj,t = lg,j hK(j),t + ug,j,t 
 
 
 

"Clustered" factor model for cit (Frühwirth-Schnatter and Kaufmann (2008), 
Hamilton and Owyang (2012), etc.) with added hierarchical structure. 
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Details of model: Cross-country covariation 
 
 

  yit = ft + cit 
 

                                                                                                                          
                                        cit = µ + lc,i gJ(i),t + uc,i,t          
 

• gJ(i),t  is a "group factor" 
 

• Each country is a member of 1 group 
 

gj,t = lg,j hK(j),t + ug,j,t 
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Details of model: Cross-country covariation 
 
 

  yit = ft + cit 
                                                                                                  
                                        cit = µ + lc,i gJ(i),t + uc,i,t          
 
 

• gJ(i),t  is a "group factor" 
• Each country is a member of 1 group 

 
gj,t = lg,j hK(j),t + ug,j,t 

 
• Correlation across groups 
• hK(j),t  is a "group-of-group factor" 
• Each group is a member of 1 group-of-group 
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Details of model:  Temporal Covariation 
(Note: Only low-frequency characteristics of model matter.) 

 
yit = ft + cit 

 
 

ft = f0 + mt × t + at 

                 

                            local growth rate        deviation from local trend  

 

mt, at are independent Gaussian random walks: Dmt = em,t,  Dat = ea,t    

 

With var(em,t) ≪ var(ea,t), ft evolves like a random walk with drift, but with a 

slowly varying drift term (mt).  ("local-level" model for ft). 
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yit = ft + cit 
 

• cit is "very" persistent 

• cit -    is persistent 

o ADFµ statistics 

§ Fraction of ADF_tstats < -2.57 (10% CV) =  0.17 
§ Fraction of ADF_tstats < -2.86 (5% CV) = 0.10 

 

ci,1:T
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Histogram of 112 median unbiased estimate of largest AR root from 
ADFµ statistics (Stock (19xx)). 

 
 
 

 

Deviation from country-specific means have half – life of 140 years:  

(0.995)140  ≈  0.5
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AR component process: ARComp(r1, r2) 

 

xt = x1,t + x2,t 

 

x1,t = r1x1,t-1 + e1,t 

 

x2,t = r2x2,t-1 + e2,t 

 

r2 < r1 < 1 

 

 

An alternative model:  (1-rL)d xt  = et 
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Parameterization: separating persistence and variability 

 

yit = ft + cit 

cit = µ + lc,i gJ(i),t + uc,i,t 

gj,t = lg,j hK(j) + ug,j,t 

 

uc,i,t = sc,iwc,i,t   

ug,j,t = sg,jwg,j,t 

hk,t = sh,kwh,k,t 

 

where w·,·,t are independent ARC(r·1, r·2) processes with unit variance 

and s·  are scale factors. 
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   Outline: 
 

1.  Look at the data to determine some sensible features of  a model. 
 

2.  Simplify problem: focus on 'long-run' variation/covariation.  
 

3.  Detailed description of model 
 

4.  Estimation mechanics  
 

5.  Results 
a.  Convergence 
b. Long-run predictions 

 
6.  Different modelling choices 

 



 46 

Estimation: 

yit = ft + cit 

ci,t = µ + lc,i gJ(i),t + uc,i,t 

gj,t = lg,j hK(j) + ug,j,t 

 

Many parameters:  

• f: (m0, f0, sDm, sDa) 

• group factors: 25 g-factors, 10 h-factors, (112 - lc,i, 25 - lg,j) 

• persistence: 112 + 25 + 10 values of  (r1,r2,s1/s2) 

• variability:  112 + 25 + 10 values of s. 

Observations: (number of dots) = NCountries × Ndots/country ≈ 112 × 10.5 

Estimation by Bayes methods: Some priors will matter 
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Parameters with priors that don't matter much: 
 
(1) ft:    

• Shrinkage toward OECD:    with  
  ~ N(0,small)  

 
• f0, m0, and overall scale (uninformative priors) 

 
(2) cit:   
 

• mean µ, 'average' value of scales s. (Uninformative priors) 
 

• exchangeable hierarchical priors on relative scales and factor loadings 
(li) (shrunk toward uniform with sensible support). 

 
 

yt
OECD = ft + ct

OECD

ct
OECD
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Parameters with prior that matter: 
 
(1) mt is local average annual growth rate of ft: 
s(mt+h - mt) = sDm × h1/2 

 
• h = 50 

 
o Very large value of sDm  ⇒   = 2% 

 
o Very small value  sDm  ⇒    = 0% 

 
o Prior with linearly decreasing weights between these 

two values. Mean yields  =  (2/3)% for h = 50. 
 

σ (mt+h −mt )

σ (mt+h −mt )

σ Δm h
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(2) (ri,1, ri,2, si,1/si,2): for each of the 112+25+10 components.  These 
are exchangeable with hierarchical prior that is shrunk toward a prior 
with 'half-life' distributions given below: 
 

 
 

half-life :  h such that cor(xt, xt+h) = ½ 
 

Percentile 0.10 0.25 0.50 0.75 0.90 
h 45 83 193 371 539 
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Estimation: Practical details 
 
(1) Gaussian Likelihood ... dots ~ N(0,S(q)),  

S(q) = S1(q1) + S2(q2) + S3(q3) … + SN (qN) 
 
(2) Handful of parameters with standard diffuse priors, analytic 
posterior 
 
(3) Other parameters specified on grid.  (Si(qi) can be precomputed) 
 
(4) Exchangeable (over countries, factors, etc.) Dirichlet (multinomial) 
prior on grid of values. 
 
(5) UM computes a zillion draws in 3 minutes. 
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Outline: 
 

1.  Look at the data to determine some sensible features of  a model. 
 

2.  Simplify problem: focus on 'long-run' variation/covariation.  
 

3.  Detailed description of model 
 

4.  Estimation mechanics  
 

5.  Results 
a.  Convergence 
b. Long-run predictions 

 
6.  Different modelling choices 
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Selected Results:  f-factor 
 

 yt = ft + ci,t      ft = f0 + mt × t + at 
 

  
Median and 68% pointwise credible set  

(WIP . narrowing of bands in (c) at end of sample) 
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Selected Results: Persistence and variance of cit



 54 

Posterior means of cit: Liberia 

 
 

Percentiles of posterior 
 0.05 0.16 0.50 0.84 0.95 

half-life 37 44 63 98 136 
sc 1.3 1.4 1.5 1.6 1.7 

 1.1 1.2 1.4 1.6 1.7 σ Δ50cit



 55 

Posterior means of cit: Iraq 

 
 

Percentiles of posterior 
 0.05 0.16 0.50 0.84 0.95 

half-life 38 50 85 158 229 
sc 0.8 0.9 1.2 1.5 1.6 

 0.7 0.8 1.0 1.2 1.3 σ Δ50cit
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Posterior means of cit: Singapore 

 
     

Percentiles of posterior 
 0.05 0.16 0.50 0.84 0.95 

half-life 62 90 163 277 370 
sc 0.8 0.9 1.1 1.4 1.5 

 0.6 0.6 0.8 1.0 1.1 σ Δ50cit
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 Posterior means of cit: Chile 

 
 

Percentiles of posterior 
 0.05 0.16 0.50 0.84 0.95 

half-life 117 168 270 416 387 
sc 0.9 1.0 1.2 1.4 1.5 

 0.5 0.6 0.7 0.8 0.9 σ Δ50cit
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Posterior means of cit: Brazil 

 
Percentiles of posterior 

 0.05 0.16 0.50 0.84 0.95 
half-life 155 206 313 441 523 
sc 0.7 0.7 0.9 1.1 1.2 

 0.6 0.7 0.8 0.9 1.0 σ Δ50cit
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Posterior means of cit: United States 

 
Percentiles of posterior 

 0.05 0.16 0.50 0.84 0.95 
half-life 218 277 396 527 599 
sc 0.7 0.8 0.9 1.1 1.3 

 0.3 0.4 0.4 0.5 0.5 σ Δ50cit
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Distribution of Posterior Means Across 112 Countries 
 

 Percentile 
 0.05 0.16 0.50 0.84 0.95 

Half-life 120 171 242 321 386 
sc 0.86 0.94 1.11 1.27 1.35 

  0.40 0.48 0.66 0.84 0.97 
 

σ Δ50cit
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Selected Results: Initial Conditions,  sc  and half-life 
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Selected Results: Covariability  
 

Posterior Means of pairwise correlations 
 D50 yi,t  D50 ci,t 

average 0.37  0.08 
largest 0.95 

(France, Netherlands) 
 0.92 

(France, Netherlands) 
smallest 0.12 

(Liberia, Saudi Arabia) 
 0.00 

(Fraction < 0.01 = 0.39) 
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Average Pairwise Correlations of D50cit (Posterior means) 
 in Selected 5-country groups 

 
 

Countries Correlation 
China India Laos Sri Lanka Vietnam 0.71 

Hong Kong Korea Singapore Taiwan Thailand 0.67 
Cent. African Rep. Guinea Haiti Senegal Madagascar 0.63 

Belgium Denmark France Italy Netherlands 0.59 
Benin Bangladesh Kenya Nepal Tanzania 0.53 

Bulgaria HRV ROU Russia Serbia 0.51 
Australia Canada Great Britain New Zealand United States 0.47 

Burkino FAso Ghana Mozambique Chad Uganda 0.45 
Brazil Costa Rica Dominincan Rep. Ecuador Poland 0.41 

Cote d'Ivoire Mauritania Niger Togo Zambia 0.41 
Argentina Bolivia Peru El Salvador Uruguay 0.40 

Switzerland Finland Norway Portugal Sweden 0.36 
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Selected Results:  Long-run Forecasts 

 
Average growth over next h years:    for h = 50, 100 

 
Univariate Benchmarks (location, scale, equivariant prediction intervals): 
 

• (1-L)yit = µ + uit    
 

• (1-L)1+d yit = µ + uit     ( d ~ U(-0.4, 1.0) ) 
 

yi,T+h − yi,T( ) / h
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Univariate benchmarks: (1-L)yit = µ + uit 
 
67% prediction intervals for average growth over next 100 years. Countries ordered from 
poorest to richest (2010-2014) 
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Univariate benchmarks: (1-L)yit = µ + uit and (1-L)1+dyit = µ + uit 
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Univariate and Multivariate  
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50 and 100 year forecasts: f-factor 

 
 

Percentiles of Predictive Distribution: 100-year average growth rate (PAAR) 
 5% 16% 50% 84% 95% 
f-factor 0.4 1.2 2.1 2.9 3.5 
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50 and 100 year forecasts: Liberia 

 
Percentiles of Predictive Distribution: 100-year average growth rate (PAAR) 

 5% 16% 50% 84% 95% 
f-factor 0.4 1.2 2.1 2.9 3.5 
Liberia  1.1 2.2 3.6 5.0 6.0 
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50 and 100 year forecasts: USA 

 
Percentiles of Predictive Distribution: 100-year average growth rate (PAAR) 

 5% 16% 50% 84% 95% 
f-factor 0.4 1.2 2.1 2.9 3.5 
USA  0.1 0.9 1.9 2.9 3.5 
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50 and 100 year forecasts: Denmark 

 
Percentiles of Predictive Distribution: 100-year average growth rate (PAAR) 

 5% 16% 50% 84% 95% 
f-factor 0.4 1.2 2.1 2.9 3.5 
Denmark 0.1 0.9 1.9 2.9 3.5 
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50 and 100 year forecasts: Singapore 

 
Percentiles of Predictive Distribution: 100-year average growth rate (PAAR) 

 5% 16% 50% 84% 95% 
f-factor 0.4 1.2 2.1 2.9 3.5 
Singapore -0.5 0.4 1.5 2.6 3.4 
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50 and 100 year forecasts: Bulgaria 

 
Percentiles of Predictive Distribution: 100-year average growth rate (PAAR) 

 5% 16% 50% 84% 95% 
f-factor 0.4 1.2 2.1 2.9 3.5 
Bulgaria 0.2 1.0 2.1 3.1 3.8 
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50 and 100 year forecasts: Chile 

 
Percentiles of Predictive Distribution: 100-year average growth rate (PAAR) 

 5% 16% 50% 84% 95% 
f-factor 0.4 1.2 2.1 2.9 3.5 
Chile 0.3 1.0 2.1 3.1 3.8 
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50 and 100 year forecasts: global average (2014 population weights) 

 
Percentiles of Predictive Distribution: 100-year average growth rate (PAAR) 

 5% 16% 50% 84% 95% 
f-factor 0.4 1.2 2.1 2.9 3.5 
Global avg.   0.5 1.3 2.3 3.2 3.8 
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Summary 
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Convergence, persistence and comovement 
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That's it so far …  
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Monetary Policy, a Phillips Curve Retrospective, Federal Reserve Bank of Boston, 2009. 
 

37. The Evolution of National and Regional Factors in U.S. Housing Construction (with James H. Stock), 
forthcoming in Volatility and Time Series Econometrics: Essays in Honour of Robert F. Engle, Tim Bollerslev, 
Jeffrey Russell and Mark Watson (eds), 2009, Oxford: Oxford University Press. 

 
38. Financial Conditions Indexes: A Fresh Look after the Financial Crisis (with Jan Hatzius, Peter Hooper, 

Frederic Mishkin, and Kermit Schoenholtz), U.S. Monetary Policy Forum Report No. 4, Initiative on 
Global Financial Markets, University of Chicago Graduate School of Business, 2010. 
 

39. Modeling Inflation After the Crisis (with James H. Stock), Macroeconomic Policy: Post-Crisis and Risks Ahead, 
FRB Kansas City symposium, Jackson Hole, Wyoming, August 26-28, 2010. 
 

40. Dynamic Factor Models (with James H. Stock), Oxford Handbook of Forecasting, Michael P. Clements and 
David F. Hendry (eds), 2011, Oxford University Press. 
 

41. Disentangling the Channels of the 2007-2009 Recession (with James Stock), Brookings Papers on Economic 
Activity, Spring 2012, 81-135. 
 

42. Low-Frequency Econometrics (with Ulrich Müller), Advances in Economics and Econometrics (World 
Congress of the Econometric Society 2015), forthcoming. 
 

43. Factor Models and Structural Vector Autoregressions in Macroeconomics (with James Stock), Handbook 
of Macroeconomics, vol. 2A, John B. Taylor and Harald Uhlig (eds), 2016, Chapter 8, pp 415-526. 
 

44. The Disappointing Recovery of Output after 2009 (with John. G. Fernald, Robert E. Hall, and James H. 
Stock), Brookings Papers on Economic Activity, Spring 2017. 

 

NOTES, COMMENTS AND REVIEWS: 

1. Imperfect Information and Wage Inertia in the Business Cycle: A Comment, Journal of Political Economy, 
Vol. 91, No. 5, 1983, pp. 876-879. 
 

2. Comment on "Irregular Data Revisions," by A.C. Harvery, C.R. McKenzie, D.P.C. Blake, and M.J. 
Desai, in Applied Time Series Analysis of Economic Data, edited by Arnold Zellner, U.S. Department 
of the Census, Economic Research Report ER-5 
 

3. Does GNP Have a Unit Root ? (with J.H. Stock), Economics Letters, 22, pp. 147-151. 
 

4. Comment on "Vector Autoregressions and Reality," by David Runkle, Journal of Business and Economic 
Statistics, 1987. 
 

5. Comment on "A Reexamination of Friedman's Consumption Puzzle" by James H. Stock, Journal of 
Business and Economic Statistics, 1988. 
 

6. Comment on "Sensitivity Analysis of Seasonal Adjustments: Empirical Case Studies" by J.B. Carlin and 
A.P. Dempster, Journal of the American Statistical Association, March 1989. 
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7. Review of Time Series Analysis by John Cryer, Journal of the American Statistical Association, December 

1987, Volume 82, Number 400, 1195. 
 

8. Software Review Journal of Applied Econometrics, 4, pp. 205-206. 
 

9. Review of The Collected Works of John W. Tukey, Vols. I, II, and V, edited by D. Brillinger and W.P. 
Cleveland,   Journal of the American Statistical Association, 1988. 
 

10. Comment on "Inflation Indicators and Inflation Policy" by Stephen G. Cecchetti, NBER Macroeconomics 
Annual, 1995. 
 

11. Comment on "Is Seasonal Adjustment a Linear or Nonlinear Data Filtering Process," Journal of Business 
and Economic Statistics, Vol. 14, No. 3, July 1996 
 

12. Comment on "On the Fit of a Neoclassical Monetary Model in High Inflation: Israel 1972-1990" by 
Eckstein and Bental, Journal of Money, Banking and Credit, November 1997. 
 

13. Comment on “Assessing Changes in the Monetary Transmission Mechanism: A VAR Approach,” by 
Jean Boivin and Marc Giannone, Federal Reserve Bank of New York Policy Review, 8(1), 2002.  
 

14. Comment on “Market Anticipations of Monetary Policy Actions” by William Poole, Robert H. Rasche 
and Daniel L. Thornton, Federal Reserve Bank of St. Louis Review, Jul/Aug 2002, 84(4). 
  

15. Comment on “Monetary Policy in Real Time,” by Domenico Giannone, Lucrezia Reichlin, and Luca 
Sala, NBER Macroeconomics Annual, 2004. 
 

16. Comment on “What’s Real About the Business Cycle” by James Hamilton, forthcoming Federal Reserve 
Bank of St. Louis Review,  2005. 
 

17. Comment on “Assessing Structural VARs” by L. Christiano, M. Eichenbaum, and R. Vigfusson, NBER 
Macroeconomics Annual, 2006. 
 

18. Comment on “Shocks and Crashes” by M. Lettau and S. Ludvigson, NBER Macroeconomics Annual, 
2013. 
 

19. Comment on “Trends and Cycles in China’s Macroeconomy,” by C. Chang, K. Chen, D.F. Waggoner, 
and T. Zha, NBER Macroeconomics Annual, 2015. 
 

20. Comment on “Macroeconomic Effects of Disruptions in Global Food Commodity Markets: Evidence 
for the United States,” by Jasmien De Winne and Gert Peersman, Brookings Papers on Economic Activity, 
Fall 2016. 

 

UNPUBLISHED PAPERS: 
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1. Confidence Sets in Regressions with Highly Serially Correlated Regressors, (with James Stock), 
November 1996. 

 
2. Empirical Bayes Forecasts of One Time Series Using Many Predictors (with Thomas Knox and James 

H. Stock), September 2000, revised March 2002.  
 

3. Optimal Tests for Reduced Rank Time Variation in Regression Coefficients and Level Variation in the 
Multivariate Local Level Model (with Piotr Eliasz and James Stock). 
 

4. Implications of Dynamic Factor Models for VAR Analysis (with James Stock), revised June 2005. 
 
5. Measuring Changes in the Value of the Numeraire (with Ricardo Reis), May 2007. 

 
6. Long-Run Covariability (with Ulrich Müller), August 2016. 

 
  
 



12 
 

PROFESSIONAL SERVICE AND MISC: 
Program Committee, North American Winter Meetings of the Econometric Society, 1987. 
Program Committee, North American Summer Meetings of the Econometric Society, 1988. 
Co-Organizer, NBER/NSF Time Series Conference, Chicago Il, 1988. 
Program Committee, World Congress of the Econometric Society, 1990. 
National Science Foundation, Economics Advisory Panel, 1990-1992. 
Chair, Program Committee, North American Winter Meetings of the Econometric Soc., 1995. 
Fellows Nominating Committee, Econometric Society, 1997. 
Business Cycle Indicators Advisory Committee, The Conference Board, 1996-present, (Chair 2010-present) 
Program Committee, World Congress of the Econometric Society, 2000. 
Co-Organizer NBER/NSF Co-Organizer, NBER/NSF Conference on Forecasting & Empirical Methods 
in Macroeconomics & Finance, 2001-2012. 
Cornell Department of Economics Review Panel, 2001. 
Program Committee, Winter Meetings of the Econometric Society, 2002. 
Nominating Committee, American Economic Association, 2002. 
Sloan Foundation Fellowship Selection Committee in Economics, 2004-2010. 
Selection Committee, Robert F. Engle Prize in Financial Econometrics (Journ. of Fin. Econometrics), 2005. 
Co-Editor (with Kenneth West), June 2005 special issue of the Journal of Money Credit and Banking. 
Program Committee, Summer Meetings of the Econometric Society, 2006. 
U.S. Monetary Policy Forum Panelist, 2007-2011 
University of Pennsylvania, Department of Economics Review Panel, 2009. 
NBER Business Cycle Dating Committee, 2009-Present. 
UC Irvine Department of Economics Review Panel, 2010. 
UC Riverside Department of Economics Review Panel, 2011. 
Program Co-chair, International Association of Applied Econometrics, 2016. 
University of Washington, Department of Economics Review Panel, 2016. 
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