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I. Introduction

• Nonlinear panel data models with individual effects are very common in economics.

Examples of nonlinear models

• Discrete choice models:
yit = 1

(
x ′it θ + αi + vit > 0

)
e.g. labor force participation (Hyslop, 1999).

• VAR models of transmission of shocks:

yit = (βyit−1 + α1i + vit ) dit
dit = 1 (γdit−1 + α2i + φvit + εit )

e.g. employment status and earnings (Altonji, Smith, and Vidangos, 2009).
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Nonlinear examples (continued)

• Distributional dynamics in a location—scale model:

yit = x
′
it θ1 + α1i + σ

(
x ′it θ2, α2i

)
εit

e.g. earnings dynamics (Meghir and Pistaferri, 2004; Hospido, 2012).

• A semiparametric generalization of the above is the quantile model

yit = x
′
it β (uit ) + αiγ (uit )

where uit is the rank of the error vit , so that

uit | xi1, ..., xiT , αi ∼ U (0, 1) ,

and β (u) and γ (u) are nonparametric functions.

3



Nonlinear examples (continued)

• Structural models with unobserved heterogeneity
e.g. schooling choice, search-matching models, production functions...

• Non-additive fixed effects may also arise in continuous response functions. An
example is the following heterogeneous constant elasticity of substitution (CES)
production function:

log yit = λ log hit + (1− λ) log
[
γxσi
it + (1− γ) zσi

it

]1/σi + αi + vit ,

• This model allows for different degrees of complementarity between high-skill labor
(hit ), low-skill labor (xit ), and capital equipment (zit ).
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Remarks

Additive vs non-additive errors

• Linear panel ideas generalize easily to nonlinear models with additive errors. These
include nonlinear WG:

yit = gt (xit , θ0) + αi0 + vit where E (vit |xi , αi0) = 0

and nonlinear implicit structural equations (Euler equations, production functions):

ρt (wit , θ0) = αi0 + vit where E (vit |zi , αi0) = 0.

• For these models one can construct moment conditions that mimic the linear ones.
• Linear models with random coeffi cients generalize to nonlinear models that are linear
in the random coeffi cients:

yit = g0 (xit , θ) + g1 (xit , θ)
′ αi + vit .

This model was studied in Chamberlain (1992) and has been recently re-examined in
Arellano & Bonhomme (2012) and Graham & Powell (2012).

• The situation is fundamentally different in the absence of additivity. A leading
example is the binary choice model.
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Remarks (continued)

Policy parameters (derivative effects)

• Effect on y of changing x from xA to xB . In linear models:

(xB θ0 + αi0 + vit )− (xAθ0 + αi0 + vit ) = (xB − xA) θ0

• In binary choice the effect is individual-specific:

1 (xB θ0 + αi0 + vit ≥ 0)− 1 (xAθ0 + αi0 + vit ≥ 0)

Letting F be the cdf of v , the average effect for a given αi0 is

F (xB θ0 + αi0)− F (xAθ0 + αi0)

• The conclusion is that in nonlinear models derivative effects mix common and
individual effects.
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Average derivative effects

• A derivative version of the above is

∂F (xθ0 + αi0)

∂x
|x=xA

• We may wish to consider averages wrt αi0 using either the marginal density of αi0
(Chamberlain 1984): ∫

∂F (xθ0 + αi0)

∂x
|x=xA dG (αi0)

or the density of αi0 conditioned on x = xA :∫
∂F (xθ0 + αi0)

∂x
|x=xA dG (αi0 | x = xA) .

• The former is the identifiable quantity in the Blundell-Powell control function
approach for cross-sectional models with endogeneity, whereas the latter is identified
in the approach of Altonji and Matzkin discussed below.

• The difference between these two averages is similar to the difference between
average treatment effects and average treatment effects on the treated in the
program evaluation literature.
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II. Integrated / weighted likelihood

• Parametric likelihood model: fi (θ0, αi0) = f (yi1, ..., yiT |xi ; θ0, αi0), i = 1, ...,N .
• Interest centers in the estimation of θ or other common policy parameters.

• Central feature of this estimation problem is the presence of many nuisance
parameters (the individual effects) when N is large relative to T .

• Many approaches to estimation of θ are based on an average or integrated likelihood
that assigns weights to different values of αi :

f ai (θ) =
∫
fi (θ, αi )wi (αi ) dαi

where wi (αi ) is a weight, broadly defined.

• Weights may depend on θ, on the distribution of the data, as well as on covariates.

• An estimate of θ is then usually chosen to maximize the integrated likelihood of the
sample under cross-sectional independence:

N

∏
i=1

f ai (θ) .
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II.1 Fixed effects maximum likelihood

• A fixed effects approach that estimates θ jointly with the individual effects falls in this
category with weights assigning all mass to αi = α̂i (θ), where α̂i (θ) is the MLE of
the i -th effect for given θ.

• That is,
wi (αi ) = δ (αi − α̂i (θ))

where δ (.) is Dirac’s delta function.

• The resulting average likelihood in this case is just the concentrated likelihood:

fi (θ, α̂i (θ)) .

• In this case the weights depend on the data.
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II.2 Random effects maximum likelihood

• A random effects approach is also based on an average likelihood in which the weights
are chosen as a model for the distribution of individual effects in the population given
covariates and initial observations.

• In this case wi (αi ) is a parametric or semiparametric density or probability mass
function, which does not depend on θ, but includes additional unknown coeffi cients:

wi (αi ) = gi (αi ; ξ) .

• The integrated likelihood is the random-effects (pseudo) likelihood:∫
fi (θ, αi ) gi (αi ; ξ) dαi

• Examples include:

• Gaussian uncorrelated-RE ML: g is the normal density. It depends on parameters
ξ = (µ, σ2α).

• Chamberlain (1984)’s correlated-effects probit: g also depends on covariates xi .

• Wooldridge (2005)’s approach to solving the initial conditions problem.

• Discrete (mass point) probability distributions.
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II.3 Bayesian inference

• In a Bayesian approach, an average likelihood is also constructed, choosing as weights
a formulation of the prior probability distribution of αi given θ, covariates and initial
observations.

• Assuming prior independence conditional on θ:

π(α1, ...αN |θ) = π1(α1 |θ)...πN (αN |θ).

• Inference is based on the posterior:

π(θ|y , x) ∝ π(θ)
N

∏
i=1

[∫
fi (θ, αi )πi (αi |θ)dαi

]
.

• Weights wi (αi ) = πi (αi |θ) may depend on θ and covariates.

• Random-effects specifications are a special case of hierarchical Bayesian approaches,
where the prior of the effects is assumed independent of common parameters.
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III. Fixed-T perspective

• All previous approaches, in general, lead to estimators of θ that are not consistent as
N tends to infinity for fixed T , but have biases of order 1/T .

• This situation, known as the “incidental parameter problem”, is of particular concern
when T is small relative to N , and has become one of the main challenges in modern
econometrics.

• In (micro) panels typically T is much smaller than N .

• The traditional reaction to this problem has been to look for estimators yielding
fixed-T consistency as N goes to infinity.

• One drawback of these methods is that they are somewhat limited to linear models
and certain nonlinear models, often due to the fact that fixed-T point identification
itself is problematic.

• Other considerations are that their properties may deteriorate as T increases, and
that there may be superior methods that are not fixed-T consistent.
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The incidental parameter problem

• The fixed effects estimator θ̂ solves the first order conditions

N

∑
i=1

∂ ln fi (θ, α̂i (θ))
∂θ

= 0

where α̂i (θ) = arg maxα ln fi (θ, α) (based on T observations).

• Computationally ok even if N is large (the Newton-Raphson iteration decomposes
nicely due to additivity of the log likelihood in the effects).

• Under standard regularity conditions θ̂ is consistent if T is large:

1
NT

N

∑
i=1

∂ ln fi (θ0, α̂i (θ0))
∂θ

p→ 0 as T → ∞

but in general

plim
N→∞

1
NT

N

∑
i=1

∂ ln fi (θ0, α̂i (θ0))
∂θ

6= 0.

• The reason is that α̂i (θ0) is a noisy estimate of αi0 and the noise only goes away as
T increases.
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The incidental parameter problem: Example 1

• Consider yit ∼ N (αi0, θ0) so that

ln fi (θ, αi ) = k −
T
2
ln θ − 1

2θ

T

∑
t=1

(yit − αi )
2

• Here α̂i (θ) = y i for all θ, and

θ̂ =
1
NT

N

∑
i=1

T

∑
t=1

(yit − y i )2

• Taking a cross-sectional expectation

E
(

θ̂
)
= E

(
1
T

T

∑
t=1

(yit − y i )2
)
= θ − θ

T

• The inconsistency only disappears as T increases.
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The incidental parameter problem: Example 2
• Let yit = 1 (θ0xit + αi0 + vit ≥ 0) where vit | xi , αi0 is logistic with cdf Λ (.), so that

ln fi (θ, αi ) =
T

∑
t=1
{yit lnΛ (θxit + αi ) + (1− yit ) ln [1−Λ (θxit + αi )]}

• Take T = 2 and xi1 = 0, xi2 = 1. Here α̂i (θ) solves the FOCs:

Λ (θxi1 + α̂i (θ)) +Λ (θxi2 + α̂i (θ)) = yi1 + yi2.

• Thus, α̂i (θ) = ∓∞ if yi1 + yi2 = 0 or 2, and α̂i (θ) = −θ/2 if yi1 + yi2 = 1.

• Next, the MLE θ̂ solves the FOCs from the concentrated likelihood:

1
N

N

∑
i=1

1 (yi1 + yi2 = 1) [yi2 −Λ (θ/2)] = 0,

leading to

θ̂ = 2 ln
(

p̂
1− p̂

)
,

where p̂ = P̂r (yi1 = 0, yi2 = 1 | yi1 + yi2 = 1)→ Λ (θ0) as N → ∞.

• Therefore, θ̂ satisfies
plim
N→∞

θ̂ = 2θ0

• MLE estimates a relative log odds ratio that is twice as large as the truth.
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Fixed effects fixed-T approaches

16



Fixed effects fixed-T approaches

• The general idea is separating the likelihood or at least finding a component of the
likelihood that is free from the incidental parameter problem:

• Likelihood separation: fixed-effects Poisson model.

• Conditional likelihood: conditional logit.

• Semiparametric generalizations: Find some feature of the data (eg moments or
medians) whose distribution depends on θ but not on α. These features are used to
estimating θ without making assumptions about α.

• Maximum score binary choice (Manski 1987).

• Censored regression (Honoré 1992).

• Dynamic binary choice (Honoré and Kyriazidou 2000).

• Functional differencing (Bonhomme 2012).
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Conditional likelihood

• Let fi (yi | θ, αi ) be the likelihood for unit i . Suppose there is a statistic si such that

fi (yi | θ, αi ) ≡ f1i (yi | si , θ, αi ) f2i (si | θ, αi ) = f1i (yi | si , θ) f2i (si | θ, αi )

• f1i is a component of the likelihood which does not depend on αi . The idea is to base
inference about θ on f1i as long as there is identification.

Example 1: Linear regression

• The Gaussian linear model is

yi | xi , θ0, αi ∼ N
(
Xi β0 + αi0 ιT , σ

2
0IT
)

• Letting si = y i , ỹit = yit − y i , etc.

ln f1 (yi | xi , y i , θ, αi ) = ln f1 (yi | xi , y i , θ) = k −
(T − 1)
2

ln σ2 − 1
2σ2

T

∑
t=1

(ỹit − x̃it β)2

• Maximizing ∑Ni=1 ln f1i wrt θ =
(

β, σ2
)
provides WG estimates of β and bias-corrected

estimates of σ2.
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Example 2: Conditional logit

• The model is
Pr (yit = 1 | xi , αi ) = Λ

(
x ′it θ0 + αi

)
where Λ (r ) = e r/ (1+ e r ).

• Take T = 2 to illustrate, and consider:

Pr (yi1, yi2 | xi , αi , yi1 + yi2) =


1 if (yi1, yi2) = (0, 0) or (1, 1)
1−Λ (∆x ′i2θ0) if (yi1, yi2) = (1, 0)
Λ (∆x ′i2θ0) if (yi1, yi2) = (0, 1)

• To see this, note that letting zit = x ′it θ0 + αi we have

Pr (yi1 = 0, yi2 = 1 | xi , αi , yi1 + yi2 = 1) =
Pr (yi1 = 0, yi2 = 1 | xi , αi )
Pr (yi1 + yi2 = 1 | xi , αi )

=
[1−Λ (zi1)]Λ (zi2)

[1−Λ (zi1)]Λ (zi2) +Λ (zi1) [1−Λ (zi2)]
=

ezi2

ezi2 + ezi1
= Λ (∆zi2) .

• So we obtain a binary logit likelihood for movers in which the two outcomes are
(yi1 = 0, yi2 = 1) and (yi1 = 1, yi2 = 0) and the x’s are in first differences.

19



Semiparametric binary choice

• Manski (1987) considered a fixed-effects binary model

yit = 1
(
x ′it θ0 + αi + vit ≥ 0

)
,

in which the cdf of −vit | xi , αi is non-parametric.
• Basic assumption:

Pr(−vit ≤ r | xi , αi ) = Pr(−vis ≤ r | xi , αi ) = F (r | xi , αi ) for all t and s .

• That is, F (r | xi , αi ) does not change with t but is otherwise unrestricted.
• This imposes stationarity and strict exogeneity, but allows for serial dependence in vit .
• Time-invariance of F implies (for T = 2):

med (yi2 − yi1 | xi , yi1 + yi2 = 1) = sgn
(
∆x ′i2θ0

)
.
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• Given yi1 + yi2 = 1, the difference yi2 − yi1 can only equal 1 or −1. So the median
will be one or the other depending on whether

Pr (yi2 = 1, yi1 = 0 | xi ) Q Pr (yi2 = 0, yi1 = 1 | xi ) .

• Thus

med (∆yi2 | xi , yi1 + yi2 = 1) = sgn[Pr (yi2 = 1, yi1 = 0 | xi )−Pr (yi2 = 0, yi1 = 1 | xi )]

= sgn [Pr (yi2 = 1 | xi )− Pr (yi1 = 1 | xi )] .
• Moreover, given the model

Pr (yi1 = 1 | xi , αi ) = F
(
x ′i1θ0 + αi | xi , αi

)
Pr (yi2 = 1 | xi , αi ) = F

(
x ′i2θ0 + αi | xi , αi

)
,

and monotonicity of F , we have that for any αi (the constancy of F is crucial here):

Pr (yi2 = 1 | xi , αi ) Q Pr (yi1 = 1 | xi , αi )⇔ x ′i2θ0 Q x ′i1θ0.

• Therefore, the implication also holds on average:

Pr (yi2 = 1 | xi ) Q Pr (yi1 = 1 | xi )⇔ x ′i2θ0 Q x ′i1θ0.
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Identification and estimation

• Under some conditions, θ0 uniquely maximizes (up to scale) the expected agreement
between the signs of ∆x ′i2β and ∆yi2 conditioned on yi1 + yi2 = 1

θ0 = arg max
θ
E
[
sgn

(
∆x ′i2θ0

)
∆yi2 | yi1 + yi2 = 1

]
• Manski’s identification result required an unbounded support for at least one of the
explanatory variables with a non-zero coeffi cient.

Maximum score estimation

• This estimator selects the value that matches the signs of ∆x ′i2θ and ∆yi2 for as many
observations as possible in the subsample with yi1 + yi2 = 1 subject to ‖ θ ‖= 1:

θ̂ = arg max
θ

N

∑
i=1

sgn
(
∆x ′i2θ

)
(yi2 − yi1) .

• The estimation criterion is unaffected by removing observations having yi1 = yi2.
• It is consistent under the assumption that there is at least one unbounded continuous
regressor, but it is not root-N consistent, and not asymptotically normal.
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Alternative representations of the objective function
• The score objective function is

SN (θ) =
N

∑
i=1

{
d10i1

(
∆x ′i2θ < 0

)
+ d01i1

(
∆x ′i2θ ≥ 0

)}
.

where d10i = 1 (yi1 = 1, yi2 = 0) and d01i = 1 (yi1 = 0, yi2 = 1)
• The score SN (θ) gives the number of correct predictions we would make if we
predicted (yi1, yi2) to be (0, 1) whenever ∆x ′i2θ ≥ 0.

• In contrast, ∑Ni=1 sgn (∆x ′i2θ)∆yi2 gives the no. of successes minus the no. of failures.
• Median regression interpretation: minimizer of the no. of failures, which is given by

1
2

N

∑
i=1

1 (yi1 6= yi2)
∣∣∆yi2 − sgn

(
∆x ′i2θ

)∣∣ .
Smoothed Maximum Score
• Replace SN (θ) with a smooth S∗N (θ) whose limit a.s. as N → ∞ is the same as SN (θ):

S∗N (θ) =
N

∑
i=1

{
d10i

[
1−K

(
∆x ′i2θ/γN

)]
+ d01iK

(
∆x ′i2θ/γN

)}
where K (.) is a cdf and γN is a sequence of positive numbers with limN→∞ γN = 0.

• In this way we obtain an alternative estimator which is still not
√
N-consistent but is

asymptotically normal (as in Horowitz, 1992).
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Identification problems in binary choice with fixed T

• Useful to know which models for Pr (yi1, ..., yiT | xi , αi ) are point identified for fixed
T without restricting G (αi | xi ) and which ones are not.

• There are 2T different possible values of yi = (yi1, ..., yiT ), denoted dj j = 1, ..., 2T .
So a model is a 2T × 1 vector p (xi , θ, αi ) that specifies the probabilities

Pr
(
yi = dj | xi , θ0, αi

) (
j = 1, ..., 2T

)
.

• Let G0 (αi | xi ) be the true cdf. Identification will fail at θ0 if for all x in their support,
there is another cdf G ∗ (αi | xi ) and θ∗ 6= θ0 in the parameter space, such that∫

p (xi , θ0, αi ) dG0 (αi | xi ) =
∫
p (xi , θ

∗, αi ) dG
∗ (αi | xi )

• If so (θ0,G0) and (θ∗,G ∗) are observationally equivalent.

• In a binary model with Pr(−vit ≤ r | xi , αi ) = F (r ), if F is not logistic and x has
bounded support, θ0 suffers from local underidentification (Chamberlain 1992).

• Moreover, if x is unbounded, θ0 is identifiable but
√
N-consistent estimation is

possible only for the logit model.
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Partial identification: set identification

• Some results for dynamic discrete choice:
• dynamic logit: index parameters identified if T ≥ 4.
• dynamic probit: only set identified in general.

• In a discrete choice model where x and α are multinomial, the identified region can be
written as the solution to linear programming. This is a practical way of calculating
identified regions for simple models.

• Honoré and Tamer (2006) calculate identified regions in this way for an autoregressive
probit model with or without a time trend or time dummies.

• The main lessons are in establishing lack of point identification for these models, and
showing that, even for small values of T , the identified regions are small and tighten
fast as T increases.

• Lack of identification for models with multinomial individual effects imply
nonidentification of the corresponding fixed effects models.

• Set estimation and inference, a way forward (e.g. Chernozhukov, Hong, and Tamer,
2007).
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Partial identification: point identification of certain marginal effects

• In a panel model, some objects of interest may be identified while others are not.

Example 1: Random coeffi cients model with predetermined regressor

• A simple example of identification of average effects for movers (predetermined binary
regressor):

yit = βidit + αi + vit E (vit | dit , dit−1, ...) t = 1, 2

E (∆yi2 | di1 = 0) = E (βi | di1 = 0, di2 = 1)Pr (di2 = 1 | di1 = 0)
E (∆yi2 | di1 = 1) = −E (βi | di1 = 1, di2 = 0)Pr (di2 = 0 | di1 = 1)

• E (βi | di1 = 0, di2 = 1) and E (βi | di1 = 1, di2 = 0) are identified but not E (βi ).
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Example 2: Static probit with binary regressor
• Here the common parameter θ is not point-identified. The model is

yit = 1 {θxit + αi ≥ vit} vit | xi , αi ∼ N (0, 1) .
• The average effect of an increase in xit from 0 to 1 is:

∆ = E [E (yit |xit = 1, αi )− E (yit |xit = 0, αi )] = E [Φ (θ + αi )−Φ (αi )] .

• Although the overall average ∆ is not point-identified for fixed T , the average effect
on the subpopulation of units whose x’s change over time is.

• Let us see this when T = 2:

∆10 = E [E (yi1 |xi1 = 1, αi )− E (yi1 |xi1 = 0, αi ) | xi1 = 1, xi2 = 0]
= E [E (yi1 |xi1 = 1, xi2 = 0, αi )− E (yi2 |xi2 = 0, αi ) | xi1 = 1, xi2 = 0]
= E [E (yi1 |xi1 = 1, xi2 = 0, αi )− E (yi2 |xi1 = 1, xi2 = 0, αi ) | xi1 = 1, xi2 = 0]
= E [yi1 − yi2 |xi1 = 1, xi2 = 0] .

• We have used two assumptions:
• Strict exogeneity of xit , which ensures that E (yi1 |xi1, xi2, αi ) and E (yi1 |xi1, αi ) coincide.
• A stationarity assumption, which implies that the conditional expectation E (yit |xit , αi )
does not depend on t (Chernozhukov, Fernandez-Val, Hahn, and Newey 2012).

• A similar result holds for the average ∆01 over units with xi1 = 0 and xi2 = 1.
• However, the two remaining conditional averages ∆00 and ∆11 are not point-identified.
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Functional differencing

• In discrete choice models there is a large loss of information in going from the right-
to the left-hand side.

• Nonlinear fixed-effects models with continuous outcomes offer greater identification
opportunities (Bonhomme 2012).

• Firm-level nonlinear production functions is a relevant context of application.

• General framework: The density of yi = (yi1, ..., yiT ) conditional on xi and αi is given
by the parametric function fyi |xi ,αi ,θ . The density fαi |xi is left unrestricted.
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Functional differencing: discrete outcomes

• Intuition: the multinomial case. Suppose that yi ∈ {ξ1, ..., ξJ} and αi ∈ {ζ1, ..., ζK }:

Pr
(
yi = ξ j | xi

)
= ∑K

k=1 Pr
(
yi = ξ j | xi , αi = ζk , θ

)
Pr (αi = ζk | xi )

• In matrix form:
Py |x = Px (θ)πx , for all x ,

where Px (θ) is the J ×K matrix of the model probabilities for xi = x , Py |x is the
J-vector of data frequencies, and πx the K -vector of probabilities of αi .

• If J ≥ K it is easy to obtain restrictions on θ that do not involve πx . When Px (θ) has
independent columns (for simplicity), we obtain the following restrictions on θ alone:[

IJ − Px (θ)
(
Px (θ)′Px (θ)

)−1 Px (θ)′]Py |x = 0.
• This “functional differencing” approach differences out the distribution of the effects.
• A differencing strategy works, even though the panel model is nonlinear, because the
system that relates outcome probabilities to individual effect probabilities is linear.

• This approach delivers conditional moment restrictions for θ (given xi ) because the
projection matrix above multiplies the vector of outcome probabilities.
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Functional differencing: continuous outcomes

• When outcomes are continuously distributed, the matrix Px (θ) of conditional
probabilities becomes a linear mapping, or operator, which maps functions of α to
functions of y .

• The image of a function g (α) by this operator is given by a function Lθ,xg of y such
that:

[Lθ,xg ] (y ) =
∫
fy |x ,α (y |x , α; θ) g (α)dα, for all y .

• Bonhomme shows that a similar projection (“functional differencing”) approach as in
the discrete case can be applied in the continuous case. This approach provides
conditional moment restrictions on θ that do not involve αi .

• For these restrictions to be informative it is necessary that the image of the operator
Lθ,x does not span the whole space of functions of y (a "non-surjective" operator).

• In the discrete case, this condition requires that the rows of the matrix Px (θ) be
linearly dependent, which is automatically satisfied provided the number of points of
support of yi exceeds that of αi .
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Random effects methods
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II.2 Random effects methods

• Random effects index model:

yit = m (xit θ + αi + vit )

vit | xi , αi ∼ N (0, 1)
and

gi (αi | xi ) is N
[
λ (xi ) , σ

2
α

]
.

• Uncorrelated effects: λ (xi ) = µ

• Mundlack (1978): λ (xi ) = x iγ

• Chamberlain (1984): λ (xi ) = x ′i λ

• Newey (1994): λ (xi ) nonparametric.

• Altonji and Matzkin (2005): nonparametric generalization.
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Mundlack’s interpretation of WG

• WG can be interpreted in a much tighter random effects normal framework. In the
linear model

yit = x
′
it θ0 + αi + σvit ,

assuming
vit | xi , αi ∼ iidN (0, 1)

and
αi | xi ∼ N

(
x ′iγ, σ

2
α

)
,

it turns out that WG maximizes∫
∏T

t=1 f (yit | xi , αi ) f (αi | xi ) dαi .
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Uncorrelated random effects: linear model

• Consider a special case where there is independence between αi and xi (γ = 0):

αi | xi ∼ N
(
0, σ2α

)
.

• In this case, letting uit = αi + σvit and σ2 = Var (u i ) = σ2α +
(
σ2/T

)
, the integrated

log-likelihood is

L
(

β, σ2, σ2
)
= LWG

(
β, σ2

)
+ LBG

(
β, σ2

)
where

LWG
(

β, σ2
)
=

N

∑
i=1

[
− (T − 1)

2
ln σ2 − 1

2σ2

T−1
∑
t=1

(
y ∗it − x∗′it β

)2]
and

LBG
(

β, σ2
)
=

N

∑
i=1

[
−1
2
ln σ2 − 1

2σ2
(
y i − x ′i β

)2]
• The (uncorrelated) random effects estimator that maximizes L

(
β, σ2, σ2

)
is

consistent despite correlation between x and α, but only as T → ∞, because as T
increases the LBG

(
β, σ2

)
component of the likelihood becomes irrelevant.

• However, when T is small it is important to allow for dependence between x and α.
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Random effects probit

• The correlated random effects probit model is

yit = 1
(
x ′it θ0 + αi + vit ≥ 0

)
with the same distributional assumptions as in Mundlack’s model.

• However, the robustness to distributional assumptions in the linear case does not
extend to binary choice.

• The uncorrelated random effects model is the special case with γ = 0.
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Altonji-Matzkin’s nonparametric generalization
• The model is

yit = m (xit , αi , vit )

(αi , vit ) ⊥ xi | λ (xi )

gi (αi | xi ) = gi (αi | λ (xi )) where λ (xi ) is an exchangeable function of xi (e.g. x i ).

• The following average derivative effect is identified:

β (xit ) ≡ E(α,v )|xt
[

∂m (xit , αi , vit )
∂xit

| xit
]
= Eλ|xt

[
∂E (yit | xit ,λ (xi ))

∂xit
| xit

]
• Note that

∂E (yit | xit ,λi )
∂xit

=
∂

∂xit

∫
(α,v )

m (xit , α, v ) f (α, v | xit ,λi ) d (α, v )

=
∫
(α,v )

∂m (xit , α, v )
∂xit

f (α, v | xit ,λi ) d (α, v ) .

The second equality follows from the conditional exogeneity of x given λ, i.e.
∂f (α, v | xit ,λi ) /∂xit = 0.

• Exchangeability is a strong assumption.

• Basic idea is conditioning on λ (xi ) as a substitute for conditioning on αi .
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Dynamic discrete choice panel models
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Dynamic discrete choice panel models
Introduction

• Prototypical model is

yit = 1
(

αyi (t−1) + βxit + ηi + vit ≥ 0
)

vit | xi , ηi , yi (t−1), ..., yi1 ∼ iid F
• This is a model for

Pr
(
yit = 1 | y t−1i , xi , ηi

)
= F

(
αyi (t−1) + βxit + ηi

)
• The lagged dependent variable yi (t−1) captures “state dependence” and is
“fixed-effects endogenous” by construction.

• The external regressor xit is also fixed-effects endogenous but strictly exogenous with
respect to vit .
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Spurious state dependence

• Unobserved heterogeneity may cause spurious state dependence. That is, we might
have no genuine state dependence:

Pr
(
yit = 1 | yi (t−1), ηi

)
= Pr (yit = 1 | ηi )

but spurious state dependence

Pr
(
yit = 1 | yi (t−1)

)
6= Pr (yit = 1)

just because

Pr
(
yit = 1 | yi (t−1)

)
=
∫
Pr (yit = 1 | ηi ) dG

(
ηi | yi (t−1)

)
and ηi depends on yi (t−1).
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Dynamic discrete choice panel models vs. duration models

• The previous model can be regarded as a convenient discrete duration model for exits
from two states:

hu (x , η) = Pr
(
yit = 1 | yi (t−1) = 0, xi , ηi

)
= F (βxit + ηi )

he (x , η) = Pr
(
yit = 0 | yi (t−1) = 1, xi , ηi

)
= 1− F (α+ βxit + ηi )

where hu (x , η) is the exit rate from state 0 into state 1 (e.g. exit rate from
unemployment) while he (x , η) is the exit rate from state 1 into state 0 (e.g. exit rate
from employment).

• Note that
∂hu (x , η)

∂xj
/

∂hu (x , η)
∂xk

=
βj
βk
= − ∂he (x , η)

∂xj
/

∂he (x , η)
∂xk

So, as a model for durations the specification above has the unattractive property
that relative effects from the two exit rates are equal but with opposite signs.

• An example of a more flexible specification in this context is in Card and Hyslop
(2005) discussed below.
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The initial conditions problem in dynamic models
• We have f (y1, ..., yT | x , η). To do random effects we integrate:

f (y1, ..., yT | x) =
∫
f (y1, ..., yT | x , η) dG (η | x)

• Now consider

f (y1, ..., yT | x , η) = ∏T
t=2 f (yt | yt−1, x , η) f (y1 | x , η) .

• If we proceed as above the density f (y1 | x , η) needs to be specified, which may not
be available. This is the so called “initial conditions problem”.

• Typically, we just have specified a model for the transitions f (yt | yt−1, x , η).
• f (y1 | x , η) could be chosen as the steady state distribution. One problem is that the
steady state may be unknown or may not exist. Another problem is that we may not
wish to impose stationarity in estimation even if available.

• Alternatively, we could start from

f (y2, ..., yT | y1, x , η) = ∏T
t=2 f (yt | yt−1, x , η)

and integrate using G (η | y1, x):

f (y2, ..., yT | y1, x) =
∫

∏T
t=2 f (yt | yt−1, x , η) dG (η | y1, x) .

• Doing this save us having to specify f (y1 | x , η) but requires us to specify
G (η | y1, x) as opposed to G (η | x).
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Fixed T consistent dynamic models

• Conditional logit does not work with lagged dependent variables or other
predetermined variables. It requires independence of all x’s on the transitory errors,
but there is still a fixed T fixed effects approach available under certain circumstances.

Autoregressive logit (Chamberlain)

• The model is
Pr
(
yit = 1 | y t−1i , ηi

)
= Λ

(
αyi (t−1) + ηi

)
• Consider T = 4. The main result is

Pr (yi2 = 1 | yi4, yi2 + yi3 = 1, yi1, ηi ) = Λ [α (yi1 − yi4)] ,

which does not depend on η.

• Therefore, sequences of the form (y1, 0, 0, y4) or (y1, 1, 1, y4) drop out of the
conditional likelihood.

• Contributions of the form (y1, 1, 0, y4) and (y1, 0, 1, y4) are retained in principle. But
of those, observations with y1 = y4 are not informative about α.

• We are allowed to only retain (y1 = 1, y4 = 0) and (y1 = 0, y4 = 1) because we are
conditioning on these random variables.
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• So we end up with 4 different types of informative contributions:

(1, 1, 0, 0) −→ eα

1+ eα
= p, say

(0, 1, 0, 1) −→ e−α

1+ e−α
=

1
1+ eα

= 1− p

(1, 0, 1, 0) −→ 1
1+ eα

= 1− p

(0, 0, 1, 1) −→ 1
1+ e−α

=
eα

1+ eα
= p

• Let n1 = # (1, 1, 0, 0), n2 = # (0, 1, 0, 1), n3 = # (1, 0, 1, 0), n4 = # (0, 0, 1, 1), and
let the total number of usable observations be n5 = n1 + n2 + n3 + n4.

• So we can estimate p as

p̂ =
n1 + n4
n5

and

α̂ = ln
(

p̂
1− p̂

)
= ln

(
n1 + n4
n2 + n3

)
• Population wise we have α = ln (pA/pB ) where

pA = Pr {(1, 1, 0, 0) or (0, 0, 1, 1)}
pB = Pr {(0, 1, 0, 1) or (1, 0, 1, 0)} .
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Honoré and Kyriazidou’s method

• Their basic model is

Pr
(
yit = 1 | y t−1i , xi , ηi

)
= Λ

(
αyi (t−1) + βxit + ηi

)
• The following is the central result:

Pr (yi2 = 1 | yi4, yi2 + yi3 = 1, yi1, xi , xi3 = xi4, ηi ) = Λ [α (yi1 − yi4) + β (xi2 − xi3)]

• The method conditions on ∆xi4 = 0 in addition to the autoregressive-logit type of
conditioning.

• Identification relies on variation in ∆xi3 and in lack of variation in ∆xi4.
• If x is discrete root-N consistent estimation is possible, but not if x is continuous.

• We may think of this estimation problem as based on two functions of
xi1,∆xi2,∆xi3,∆xi4 (or just ∆xi3,∆xi4) for (y1 = 1, y4 = 0) and (y1 = 0, y4 = 1).

• Effectively, estimation of the model’s parameters is based on a nonparametric
estimate of a conditional expectation at one particular value (∆xi4 = 0).
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Random effects approaches for discrete choice dynamic models

• These include:
• Models with autocorrelation that are estimated by simulation (Hajivassiliou and Ruud,
1994).

• Extensions of Chamberlain (1984)’s method to observed lagged dependent variables,
latent lagged dependent variables and general predetermined variables.

• Latent lagged dependent variables: Arellano, Bover, and Labeaga (1999) for censored
VAR models.

• Binary choice with general predetermined variables: Arellano and Carrasco (2003).
• Observed lagged dependent variables: Wooldridge (2005)

• The idea is to specify the density of the effects given strictly exogenous x’s and initial
conditions.
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Illustration: Effect of a time-limited earnings subsidy on welfare participation
(Card and Hyslop, 2005)

The SSP experiment (Self Suffi ciency Project, 1992—1995, Canada)
The following program was designed:

• Out of concern that the welfare system was promoting long-term dependency.
• The target group was single parents that were welfare recipients for at least one year.
• Those selected for the policy, become “eligible” for subsidy payments if they manage
to get a full time job within a year of selection.

• Once they are eligible, they can move back and forth between work and welfare. When
they are at (full time) work, they are entitled to subsidy payments, for 3 years from
the time of the first payment. After that, they return to regular welfare conditions.

• The subsidy is substantial. Some monthly figures are:
• maximum welfare grant: $712
• minimum wage job for 30 hours per week: $650
• min. wage + SSP subsidy = 650+ 1

2 (2500− 650) = $1575
• gain from welfare to work without SSP = —$62
• gain with SSP = $863

• SSP used a randomized design in two different locations:
• Control group: 2826 single parents (95.3% women, aged 32 on average)
• Program group: 2858 (of which 34% were eventually eligible for subsidies)
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Results of the experiment

• Figures 1a and 3 in the paper summarize the situation:
• Figure 3 shows employment rates of controls and treatments for the duration of the
program (approx 4 years): very large employment effects around the time of eligibility,
followed by declining effects until a full collapse and the end of the program.

• Figure 1a tells a similar story for welfare participation rates.

• The SSP experiment produced one of the largest impacts on welfare participation ever
recorded in the experimental evaluation literature. At peak, SSP produced a 14
percentage point reduction in welfare participation.

• The bad news is that SSP had no permanent impact, giving no support to the idea
that temporary wage subsidies can have a permanent effect on program dependency
(presumably through the development of work habits, labor market experience, etc.).
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A baseline empirical model for welfare participation for controls
• Let y = 1 if person is a welfare participant. Card and Hyslop say they “adopt a panel
data approach rather than a hazard modelling approach because of the high incidence
of multiple spells in our data”.

Pr (yit = 1 | yit−1, yit−2, xit , αi ) =
Λ (xit β+ (γ10 + γ11αi ) yit−1 + (γ20 + γ21αi ) yit−2 + (γ30 + γ31αi ) yit−1yit−2 + αi )

(t = 1, ...,T = 69)

P
(
yi1, ..., yiT | yi0, yi (−1), xi , αi

)
=

T

∏
t=1

P (yit | yit−1, yit−2, xit , αi )

P
(
yi1, ..., yiT | yi0, yi (−1), xi

)
=

∫
P
(
yi1, ..., yiT | yi0, yi (−1), xi , αi

)
dF
(

αi | yi0, yi (−1), xi
)

• The only x is time since random assignment (a fourth order polynomial)

• Because of the design, everyone has yi0 = yi (−1) = 1. Thus, F
(

αi | yi0, yi (−1), xi
)

does not vary with yi0, yi (−1), xi and we write just F (αi ) for shortness.
• If γk1 = 0, for k = 1, 2, 3 the degree of state dependence is restricted to be invariant
to the unobserved heterogeneity.

• Almost half of the sample have just one spell on welfare. For many individuals in the
sample the ML estimate of αi is +∞.
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This model specifies the following different transitions:

• Transition or exit rate (from work to welfare) in the first month of a work spell:

Λ (xit β+ (γ20 + γ21αi ) + αi )

• Transition rate (from work to welfare) in subsequent months of a work spell:

Λ (xit β+ αi )

• Transition rate (from welfare to work) in the first month of a welfare spell:

1−Λ (xit β+ (γ10 + γ11αi ) + αi )

• Transition rate (from welfare to work) in subsequent months of a welfare spell:

1−Λ (xit β+ (γ10 + γ11αi ) + (γ20 + γ21αi ) + (γ30 + γ31αi ) + αi )

They do a detailed and informative goodness of fit analysis.

49



Joint model of welfare participation and eligibility for SSP payments for treatments

• The model for treatments is

Pr (yit = 1 | yit−1, yit−2, xit , αi ,Eit , tei )
= Λ [xit β+ (γ10 + γ11αi ) yit−1 + (γ20 + γ21αi ) yit−2

+ (γ30 + γ31αi ) yit−1yit−2 + αi + τit ]

where
τit = τ (t,Eit , t

e
i , yit−1)

and Eit = 1 if eligible at the beginning of month t.

A model of the eligibility process that accounts for the potential correlation between the
probability of entering or leaving welfare and the probability of attaining SSP eligibility.

• This is a hazard model for the event of establishing eligibility in month t, conditional
on not establishing it earlier:

Pr (Eit | Eit−1,Eit−2, ..., xit , αi ) =


Φ [d (t)− k (αi )]
1
0

if Eit−1 = 0 and t ≤ 14
if Eit−1 = 1
if Eit−1 = 0 and t > 14
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• Therefore, the model recognizes that Eit is an endogenous explanatory variable in the
sense that it is correlated with αi . We have

P
(
yi1, ..., yiT ,Ei1, ...,EiT | yi0, yi (−1), xi , αi

)
=

T

∏
t=1

P (yit ,Eit | yit−1, yit−2,Eit−1, xit , αi )

=
T

∏
t=1

P (yit | yit−1, yit−2,Eit , xit , αi )Pr (Eit | Eit−1,Eit−2, ..., xit , αi )

and

P
(
yi1, ..., yiT ,Ei1, ...,EiT | yi0, yi (−1), xi

)
=

∫ T

∏
t=1

P (yit | yit−1, yit−2,Eit , xit , αi )Pr (Eit | Eit−1,Eit−2, ..., xit , αi ) dF (αi ) .
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Experimental versus nonexperimental effects

• The point of the paper (similar to Ham and LaLonde, 1996) is that, although the
experimental comparisons between the treatment and control groups remain valid, the
interpretation of such impacts is confounded by the different treatment effects
associated with two different sets of incentives:
• An entitlement effect that makes you lower your reservation wage (and hence increase
your exit rate from welfare) while you still have a chance of attaining the eligibility
status.

• An establishment effect for those enjoying eligibility status that leads to a lower
reservation wage relative to controls and the non-established treated.

• These effects are clear from a theoretical model of the welfare-work decision that
serves to guide the formulation of the empirical model.

• Treatment status is independent of αi by construction, but treatment status is not
independent of αi conditionally on Eit = 1. Thus, F (αi ) is the same for treatments
and controls but F (αi | Eit ) is not.

• Card and Hyslop claim that although their model is not structural (utility based), it
can be used to evaluate the impacts of alternative subsidy programs.
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Bayesian methods
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Bayesian methods
Integration versus simulation
• A classical approach to estimation is to maximize the log-average likelihood wrt
(θ, ξ), which requires computing integrals with respect to α.

• In nonlinear panels the integrals are generally not available in closed form and must
be approximated numerically (using quadrature or simulation-based approaches).

• The Bayesian connection suggests another way to estimate θ. Indeed, random-effects
ML coincides with the posterior mode of θ, where the prior for αi is gi (αi ; ξ), and
(θ, ξ) have independent flat (improper) priors.

• So, an alternative approach is to generate a Markov chain of parameter draws using
these priors, which may be interpreted as a computationally convenient way of
calculating random-effects ML estimates.

• The statistical equivalence between Bayesian and classical approaches is not limited
to posterior mode with flat priors. Any non-dogmatic priors on (θ, ξ) will result in
large-N asymptotically equivalent estimates.

• Using posterior mean instead of posterior mode has asymptotically negligible effects.

• Advances in computation have made Bayesian methods increasingly attractive from an
applied perspective. Leading to a pragmatic Bayesian-frequentist synthesis, as MCMC
methods are viewed as a way of computing estimators with a frequentist justification.

• Bayesian techniques are also useful for computing frequentist confidence intervals.
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Markov Chain Monte Carlo (MCMC) methods applied to panel models

• MCMC methods are used to generate a (recursive) sequence of draws from the
posterior distribution of the model’s parameters, starting with initial parameter values.

• The posterior corresponds to the equilibrium distribution of the Markov chain, which
is reached after a suffi ciently large number of steps.

• The output of the chain is interpreted as a sequence of draws from the parameters’
posterior distribution, so that its features (mean, mode..) can be directly computed.

• In a panel context, it is often convenient to treat α1, ..., αN as additional parameters
that are drawn jointly with (θ, ξ). The s-th step of the chain may take the form:

• Update ξ(s) given α
(s−1)
1 , ..., α

(s−1)
N . This step treats the draws of individual effects

obtained in the previous step as observations.
• For each i = 1, ...,N , update α

(s)
i given yi , xi , θ(s−1), and ξ(s).

• Update θ(s) given y1, ..., yN , x1, ..., xN , and α
(s)
1 , ..., α

(s)
N . To draw θ, the researcher

proceeds as if the individual effects were observed.

• Metropolis-Hastings methods are typically used here.

• An appealing feature is that the output of the Markov chain does not only provide
estimates of θ and ξ, but also asymptotically valid frequentist confidence intervals.
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Average marginal effects
• Common parameters aside, we are interested in averages of individual quantities taken
over the distribution of (xi , αi ). The general form for some known function m() is:

M = E(xi ,αi ) [m (xi , αi ; θ)] .

• Examples are moments of the distribution of individual effects: mi (θ, αi ) = αki , or the
marginal effect of a covariate in a probit model: mi (θ, αi ) = θk

1
T ∑Tt=1 φ (x ′it θ + αi ).

• A first approach to estimate M is to replace in the expectation the distribution of
individual effects by its random-effects estimate. This results in the following estimate:

M̂ =
1
N

N

∑
i=1

∫
m
(
xi , α̂i ; θ̂

)
gi
(

αi ; ξ̂
)
dαi .

• Under correct specification, M̂ is root-N consistent. Numerical integration is required.
• An alternative estimate may be computed from the outcome of a Markov chain.
MCMC will deliver a sequence of draws of θ and α1, .., αN , from which it is easy to
get a sequence of draws from the posterior distribution of the average marginal effect

MN (θ, α1, ..., αN ) =
1
N

N

∑
i=1

m (xi , αi ; θ) .

• A natural estimate is then the posterior mode, or mean, of MN (θ, α1, ..., αN ).
• When gi (αi ; ξ) is misspecified, the posterior mean (or mode) of MN is large-T
consistent while M̂ is not. This is due to the impact of the prior of αi on the posterior
of M tending to disappear as T → ∞. 56



Bias-reduction methods
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IV. An alternative population framework: non-fixed T perspective

• Often T is much smaller than N and this situation has justified the mainstream
approach, which treats data as a multivariate sample from a cross-sectional
population with a fixed number of observations per unit.

• However, there are also panels in which T may not be negligible from the point of
view of time series inference, and not negligible relative to N , even if N may still be
much larger than T . For example, N may be small relative to T 3.

• An alternative approach in those situations is to think of the data as a realization
from a random field in which neither T nor N are fixed.

• This is an alternative population framework where statistical learning from individual
time series is not ruled out, so it may lead to different conclusions on what quantities
are identified.

58



Non-fixed T asymptotic properties

• Let θ̂ be a fixed effects estimator that maximizes some concentrated (pseudo) log
likelihood ∑Ni=1 ∑Tt=1 ln fit (θ, α̂i (θ)) and let θT = plimN→∞ θ̂.

• In general θT 6= θ0, but usually for smooth objective functions

θT = θ0 +
B
T
+O

(
1
T 2

)
.

• Under standard regularity conditions θ̂ − θT is asymptotically normal as N ,T → ∞:
√
NT

(
θ̂ − θT

)
d→ N (0,V )

where V is the large-T asymptotic variance of θ̂.
• Under these conditions θ̂ is centered at θ0 if N/T → 0 but it is asymptotically biased
if T grows at the same rate as N . If N/T → c > 0 and N/T 3 → 0:

√
NT

(
θ̂ − θ0 −

B
T

)
d→ N (0,V ) .

• Thus, unless N/T ≈ 0, asymptotic confidence intervals based on θ̂ will be incorrect,

due to the limiting distribution of
√
NT

(
θ̂ − θ0

)
not being centered at 0.
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Bias-reduced estimation

• The aim in this literature has been to obtain estimators of θ with biases of order
1/T 2 (as opposed to 1/T ) and similar large-sample dispersion as the corresponding
uncorrected methods when T/N tends to a constant. That is, find θ̃ that satisfies

θ̃ = θ̂ − B
T
+ op (1) .

• This is done in the hope that the reduction in the order of magnitude of the bias will
essentially eliminate the incidental parameter problem, even in panels where T is
much smaller than N .

• An interesting property of panel data estimators is that bias reduction happens with
no increase in the asymptotic variance as N/T tends to a constant.

• To obtain suffi ciently accurate confidence intervals from this type of asymptotic
approximation, the bias should be small relative to the standard deviation.
• For first-order bias corrected estimators, this requires that N be small relative to T 3

(e.g. N small relative to 1, 000 or to 8, 000 for T = 10 or 20, respectively).
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Reducing the bias of estimating equations and the bias of the objective function

• Similar to the bias of the fixed effects estimand θT − θ0, the bias in the expected
fixed effects score at θ0 can be expanded in orders of magnitude of T :

E

[
1
T

T

∑
t=1

∂

∂θ
ln fit (θ0, α̂i (θ0))

]
=
bi (θ0)
T

+ o
(
1
T

)
and also the bias in the expected concentrated likelihood in a neighborhood of θ0:

E

[
1
T

T

∑
t=1

ln fit (θ, α̂i (θ))−
1
T

T

∑
t=1

ln fit (θ, αi (θ))

]
=

βi (θ)

T
+ o

(
1
T

)
where αi (θ) = plimT→∞ α̂i (θ) uniformly in θ.

• These expansions motivate alternative approaches to bias correction based on
adjusting

• the estimator (Hahn and Newey 2004, Hahn and Kuersteiner 2011),

• the estimating equation (Woutersen 2002, Arellano 2003, Carro 2007),

• or the objective function (Arellano and Hahn 2007, Bester and Hansen 2009).

• Each of them based on analytical or simulation-based approximations to the bias.
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Bias-reducing priors
• A different approach to bias reduction is in Arellano and Bonhomme (2009). They
consider estimators that maximize an integrated likelihood

θ̂ = argmax
θ

N

∑
i=1

ln
∫
fi (θ, αi )wi (αi ) dαi

and describe the class of weights wi (αi ) that produce first-order unbiased estimators.

• The idea is to look for priors such that the corresponding estimator has B = 0.

• It turns out that bias reducing priors depend on the data in general, unless an
orthogonal reparameterization is available.

• Bayesian techniques can be used for estimation.
• Asymptotically valid (as N ,T → ∞) confidence intervals can be read from the
posterior distribution of θ.

Random effects
• In general RE ML is not bias reducing. Exceptions are:

• a) The true population distribution of the effects belongs to the postulated family.

• b) Gaussian RE ML is bias reducing in models that are linear in the individual effects.

• c) Individual effects and common parameters are information orthogonal.

• The RE ML bias depends on the Kullback-Leibler distance between the population
distribution of the effects and its best approximation in the random effects family.
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Automatic bias reduction: jackknife approaches
• In addition to analytical approaches and weighted likelihood approaches, the literature
has emphasized automatic approaches to bias reduction.

• In static panel models, Hahn and Newey (2004) propose the delete-one jackknife:

θ̃ = T θ̂ − (T − 1) 1
T

T

∑
t=1

θ̂(t)

or

θ̃ = θ̂ − B̃
T

where θ̂(t) is the FE estimator based on the subsample excluding the t-th period
observation, and

B̃
T
= (T − 1)

(
1
T

T

∑
t=1

θ̂(t) − θ̂

)
• To see why this works consider

θT = θ0 +
B
T
+
D
T 2

+O
(
1
T 3

)
θT−1 = θ0 +

B
T − 1 +

D

(T − 1)2
+O

(
1

(T − 1)3

)

T θT − (T − 1) θT−1 = θ0 +

(
1
T
− 1
T − 1

)
D +O

(
1
T 2

)
= θ0 +O

(
1
T 2

)
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Jackknife approaches (continued)

• Hahn and Newey (2004) proved that
√
NT

(
θ̃ − θ0

)
has the same asymptotic

variance as
√
NT

(
θ̂ − θ0

)
when N/T → c and no asymptotic bias.

• The delete-last-observation approach is not to be recommended as it will remove bias
but increase variance (ie using θ̂(T ) as the sample analog for θT−1).

Dynamic models
• The split-panel jackknife method of Dhaene and Jochmans (2006) allows for
dynamics and predetermined variables.

• The idea is to obtain the fixed-effects estimator on the two subsamples [1,T/2] and
[T/2+ 1,T ] (assuming T even for simplicity).

• Let θ̂1 and θ̂2 denote the two estimates, and let θ̂ denote the estimate based on the
full sample. The first-order bias term of θ̂1 is B/(T/2) = 2B/T , while that of θ̂ is
B/T . Thus, the following estimator is unbiased to first order:

θ̂
R
= 2θ̂ − θ̂1 + θ̂2

2
.

• Split-panel jackknife estimators have the same asymptotic variance as the MLE and
no asymptotic bias when N/T → c .

• Dhaene and Jochmans also show that within the class of split-panel jackknife
estimators, the half-panel jackknife estimator θ̂

R
minimizes all higher-order bias terms.
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Jackknife approaches (continued)
• Jackknife bias-corrected estimates of average marginal effects can be readily obtained.
• Split-panel jackknife relies on stationarity and this rules out aggregate time effects.
• Fernández-Val and Weidner (2011) discuss a generalized jackknife approach to deal
simultaneously with individual and time effects.

Finite sample performance of bias-reduction estimators
• The available evidence on the finite-sample performance of the various approaches to
bias reduction is encouraging.

• In static and dynamic settings that mimic PSID data (e.g. Carro 2007), these
techniques tend to remove at least half of the bias, while keeping the variance
virtually unchanged.

• An issue concerns the possibility to reduce the bias further. Second-order bias
reduction can be simply implemented using a variant of the split-panel jackknife
approach. However, the Monte Carlo evidence presented in Dhaene and Jochmans
suggests that higher-order bias reduction may be associated with increased variance.

• There is so far too little comparison of the various bias reduction approaches on
simulated data.

• Moreover, although panel data bias reduction has been used in some empirical
applications (e.g. Fernández-Val and Vella 2011, Hospido 2012), more applications
are needed.
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Concluding remarks

• The random effects perspective is a general estimation approach.

• Link between classical RE and Bayesian approaches. Worth stressing because MCMC
methods are convenient for computing RE estimates and their confidence intervals.

• RE approaches, however, rely on parametric assumptions on the distribution of REs.
When violated, RE estimates are subject to an incidental parameter problem, just as
fixed-effects MLE. As a result, RE estimators are generally fixed T inconsistent.

• Point identification may fail when T is fixed and the distribution of REs is left
unrestricted. In discrete choice panel models, parameters are typically set-identified.

• However, in models with continuous outcomes, panel data offer opportunities for
point-identification that remain largely unexplored.

• When T is not negligible relative to N , it makes sense to view incidental parameter
problems as TS finite-sample bias. In general, RE estimates are consistent as T → ∞.
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Concluding remarks (continued)

• The first-order bias of RE MLE is a function of the (Kullback-Leibler) distance
between the true RE density and its best approximation in the parametric family.

• This characterization suggests that one may achieve bias reduction by letting the
parametric distribution of REs become increasingly flexible as N → ∞.

• In the absence of covariates, this is within reach but in the presence of covariates,
however, achieving the required level of “flexibility” so as to remove the first-order
bias on the parameter of interest is more challenging.
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