Integrated Economic-Environmental Modeling (IEEM) for Evidence-Based Public Policy and Investment Design.

Onil Banerjee, PhD. RMGEO Consultants Inc. Martin Cicowiez, PhD. RMGEO and Universidad Nacional La Plata.

May 3, 2023. Santiago, Chile.

IEEM APPLICATION TO THE SDGs IN GUATEMALA

Guatemala was the first IEEM application. At the time, Guatemala had the most complete SEEA data and enabled us to pilot its integration in a CGE Model.

ECONOMIC-ENVIRONMENT INTERACTIONS IN IEEM

INVESTING IN THE SDGs IN GUATEMALA

- 1. SDG 2: ending hunger, achieving food security, promoting sustainable agriculture.
- Target 2.3: Double agricultural productivity and income of rural producers.
- Strategy- restore irrigation infrastructure (IRRIG1) and increase irrigated area (IRRIG2). Improved nutrition.
- 2. SDG 6: access to water and sanitation for all.
- Target 6.1: Access to drinking water.
- Target 6.2: Access to sanitation and hygiene.
- Strategy- expand infrastructure and access (WTSN); include health benefits.
- 3. SDG 2 and SDG 6. COMBI.

Analysis

Evaluating synergies and trade-offs in achieving the SDGs of zero hunger and clean water and sanitation: An application of the IEEM Platform to Guatemala

Onil Banerjee^{a,*}, Martin Cicowiez^b, Mark Horridge^c, Renato Vargas^d

SDG 2: ZERO HUNGER AND SDG 6: WATER AND SANITATION

Increase of irrigated area: 112,798 ha.

Investment: US\$7.996 million

Increase water and sanitation coverage by 6.2% and 10% to **81.5%** and 66%, respectively

Investment: US\$1.607 billion

Time horizon: 5 years

SDG 2, Target 2.3

Time horizon: 13 years

RESULTS

- 41% and 83% gap remain to double agricultural output and income, respectively. Additional investments in both agriculture and water and sanitation would be required to meet targets.
- Microsimulation: investments increased inequality between urban and poor rural households; greater output of higher value products which used less unskilled labor (which is predominantly rural); 117,000 less poor.
- Net Present Value of US\$126.7 million, US\$2.1 billion,

-US\$718.5 million, and US\$1.3 billion for IRRIG1, IRRIG2, WTSN and COMBI, respectively.

• Increase in wealth of over US\$595 million (savings vs. negative environmental impacts).

SYNERGIES AND TRADE-OFFS

Synergies

Certain lines of action (**2**- Zero Hunger) can contribute to various SDGs: **SDG 1**- Eliminating Poverty, and; **SDG 8**- Promoting Sustainable Economic Development and Employment (increase GDP by US\$1.37 billion).

Trade-offs

Trade-offs: **SDG 2** implies more deforestation, moving away from **SDG 15-** Sustainable Use of Forests. Increased emissions slows progress on **SDG 13-**Action on Climate Change.

CONCLUDING REMARKS

- Integration of SEEA enables reporting of indicators in both physical and economic value terms, consistent with SNA (land, water, energy, emissions)
- Integrated approach enables identification of synergies and trade-offs.
- A portfolio approach to investment could be desirable given negative NPV of investment in water and sanitation.

OVERVIEW OF APPLYING IEEM

COURSE MATERIALS

IEEM Access materials temporarily at:

https://sites.google. com/view/ieemchile/trainingmaterial

	IEEM C	hile	×	+
←	\rightarrow	G	sites.google.com/	/view/ieem-chile/training-materia

RMGEO COTHER CHILE

IEEM Chile

GAMS License

× +

TRAINING MATERIAL

🖬 🗶 📜 🗒 🕑 🗲 💴 🔣 🔢 🕓 💞 📽 🚛 🛄 Q 🔕 🖪 🤹

D

Show all 5:58 AM

5/3/2023

COURSE MATERIAL

IEEM Chile: Introduction and Overview

- IEEM (Integrated Economic-Environmental Modelling) and CGE Modeling. A Primer (PDF)
- IEEM: Mathematical Statement (PDF)
- Building a SAM for Chile 2016 (PDF)
- Dataset for IEEM Chile (PDF)
- IEEM Chile: The Pre-Programmed Reference Scenario 2016-2050 (PDF)
- Modelo IEEM para ISIM (IMM Modelo ISIM)
- Base de Datos Chile 2016 Curso para IEEM (ZIP)

Simulaciones con IEEM Chile

- Shocks de Términos del Intercambio (PDF)
- Inversión en Infraestructura; Mecanismos de Financiamiento (PDF)
- <u>Nationally Determined Contributions</u> (PDF)

Q Search

Auxiliary File with Information Required to Define Scenarios

Ez IM-2021-07-20-Off....zip

i

31°C Partly sunn

APPLYING IEEM

- The IEEM model is coded in GAMS as a "standard" model applicable to any country, with a separation between model theory and data used in calibration.
- Excel files contain country data and parameters used to define scenarios.
- Technical Guides; full online training in IEEM at OPEN IEEM. Check it out!

Dvna-CLUE

- A user-friendly interface to enable analysts to focus on policy questions and interpretation; no GAMS programming knowledge required.
- Step 1. Install ISIM. Select a model (IEEM) and database; this is a new version of IEEM therefore only Chile2016bc will appear.

Step 2. Baseline projection setup. Define period. Set-up parameters: elasticities, closures/rules, growth rates. Run baseline set-up!

Auto	Save	Off					COS	ta rica ex	AMPLE 👻			✓ Sea	rch										Onil Bai	nerjee 🏟	ন	- 0	×
File	Н	lome	Insert	Page L	ayout l	Formulas	Data	Review	View I	Help ISI	IM														🖻 Share	Com	ments
New Ý	TE Ve	EST (Cor ersion: 🌺 Char	staRica201 Core nge Profile	5) Period: From: 2 To: 2	016 ~ 030 ~	Setup Parameters	Run s 🗸 Setup	Scenario Manager	Sim Parameters	Run Sim	Navigati Tree	on Files	Reports	Dataset Manager M	Model Profiles 1anager	Config	g uration	i Interface User Guide	Model Documentat	? About							
Applicati	on			Setup (IEEM-	-2020-06-29)	Elas	ticities	>	Simulations	;		View		E	Expert	Set	ttings		Help								^
A1		-	: ×	$\checkmark f_x$	facclo	: 🔑 Clos	sure and Rules	s >																			~
A	F	B	С	D	E	† Pov	erty Module	> н	1	J	К	L	М	N	0	Р	Q	R	S	т	U	V	W	х	Y	Z	AA 🔺
1 <u>fa</u>	cclos0	<u>)(</u> f)			<u>closure ru</u>	Gro	wth	> feren	<u>ce</u>																		
2	f f lob		value				with	ĺ.																			
3 X	f-lab-	-n	4			~ Oth	ers	>																			
5 X	f-lab-	-h	4																								
6 <mark>X</mark>	f-cap	,	2																								
7 X	f-lanc	d	2																								
8 X	f-for		2																								
9 X	f-tsh		2																								
11	Resto	ore de	ے faults																								
12																											
13																											
14 go	vclos	<u>0</u>			<u>closure ru</u>	ile governi	ment in refe	erence																			
15	v	value																									
16	Roste		faulte																								
10	nesto	<u>Jie uei</u>	auns																								

• Step 3A. Set-up simulation. Start with a narrative, operationalize in IEEM. For Chile's NDCs, there is some Excel work required to calculate/organize shocks. We will go through this step-by-step.

File Home Insert Page Layout Formulas Data Review View Help ISIN TEST (CostaRica2016) Version: Core From: 2016 To: 2016 Setup Parameters Setup Parameters Setup	– 0 X
TEST (CostaRica2016) Period: Version: Core Version: Core Setup Setup Parameters Sim Namager Sim Sim Namager Namager Namager <td>re 🖓 Comments</td>	re 🖓 Comments
Application Setup (IEEM-2020-06-29) Is P Closure and Rules > View Expert Settings Help A7 Image: I	
A7 \cdot : $\times \checkmark f_x$ fprdbsim(sim,f,t) * Shocks \rightarrow Exports and Domestic Sales \rightarrow	^
	~
A B C D E F G H I J K Factor Productivity > Factor and Activity-Specific Productivity S T U V W X Y	Z AA 🗖
7 [prdbsim(sim,f,t)] constant in definition of productivity of factor f	
8 sim f 2016 2017 2018 2019 2020 2021 2022 Praction Supply / Fractor-Specific Productivity	
9 X Foreign Financig > TFP Growth	
10 Add row	
11 Investment >	
13 tfpexogsim(sim,a,t) tfpexog in simulation	
14 sim a 2016 2017 2018 2019 2020 2021 2022 Price Regulation > 26 2027 2028 2029 2030	
15 X Takes and Subsidies (1)	
16 Add row	
17 Foreign Tourism >	
19 Iransters / Ira	
20 World Prices >	
21	

- Step 3B. Define shocks. Crop Total Factor Productivity.
- Run simulation!

	А	В	С		D	E	F	G	Н	I	J	К	L	М
3	<u>tfp</u>	<u>exogsim(</u> sim	i,a,t)			tfpexog in sin	nulation							
4	s	sim	а	_	2016	2017	2018	2019	2020	2021	2022	2023	2024	2
5	Хy	yield	a-arroz	-	1	1.0445711	1.08702151	1.12593439	1.16173424	1.19478025	1.22537841	1.25379099	1.28024408	1.30493
6	Хy	yield	a-arroz	^	1	1.00559854	1.01085341	1.01567038	1.02010199	1.02419271	1.02798041	1.03149756	1.03477215	1.03782
7	Хy	yield	a-otragr a-banano		1	1.03836585	1.07363334	1.10596188	1.13570413	1.16315852	1.18857924	1.21218421	1.23416124	1.25467
8	<u> </u>	Add row	a-pinia											
9			a-cafeenfruta											
0			a-pesca											
1			a-min	×										
	1													

 Step 4. Interpret results. Adjust. Rerun. Engage in elevated discourse with government and write beautiful paper.

Name	 macgrowthyy															PivotTable Field I	List
ype here to search	real macro indi	catores year	ly growth ra	ate from first to la	st year of	simulataio	n									Select Dimensio	ns to Report
ebtgdpyy	Drop Filter Field	da Hara														✓ t	
lovgdp	Diop inter riek	ustiere														🗹 maccol	
ovgdpyy	Value			t 🍸 🔺 👘												✓ sim	
ovnom	sim 🔽 🛦	maccol	T.	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	20 ^	✓ Value	
ovnomdol	T base	Absor	ntion	31054 17	3 38	2 65	2 91	2 80	3 01	3 11	3 3 3	3 5 3	3 5 3	3 54	2		
ovnomyy	Dase			10074.04	2.20	2.05	2.07	2.00	2.00	2.00	2.22	2.55	2.55	2.54	-		
ovnomyydol		PrvCol	n	19974.84	3.32	2.61	2.87	2.77	2.98	3.09	3.32	3.52	3.53	3.54	3		
acexpreal		GovCo	on	5357.30	3.57	2.81	3.05	2.91	3.09	3.17	3.37	3.55	3.52	3.50	3		
acexprealdol		FixInv		5678.94	3.37	2.65	2.91	2.80	3.01	3.12	3.34	3.55	3.55	3.55	3		
acexprealyy		PrvFix	Inv	4915.96	3.37	2.64	2.91	2.80	3.01	3.11	3.34	3.55	3.55	3.55	3		
nacexprealyydol		GovEix	dov	762.98	2 20	2.66	2 92	2.82	3.02	3 1 2	2 25	3 5 5	3 5 5	3 5 5	2	Drag and Drop E	Between Boxes
hacgdp			~!	102.50	5.55	2.00	2.52	2.02	3.02	2.12	5.55	0.00	5.55	5.55	-	T Report Filte	ei 🛄 Column l
асдаруу		Stock	hange	43.09	3.40	2.67	2.93	2.82	3.02	3.12	3.34	3.54	3.54	3.54	đ		t
acgrowth		Export	:S	9831.70	3.29	2.59	2.83	2.73	2.92	3.02	3.23	3.42	3.43	3.43	3		
		Impor	ts	9749.66	3.26	2.56	2.81	2.71	2.91	3.01	3.23	3.43	3.44	3.44	3		
nacgrowthy		GDPM	P	31136.21	3.38	2.66	2.91	2.81	3.01	3.11	3.33	3.53	3.53	3.53	3	Row Label	Σ Values
acreal		NetInc	dTax	3457.46	3.28	2.58	2.84	2.74	2.94	3.05	3.27	3.47	3.48	3.49	3	sim ×	Value
acrealdol		GDPEC		27678 75	3 /0	2.67	2 93	2.82	3.02	3 1 2	3 3/	3 5/	3 5/	3 5/	2	maccol ×	
acrealdoldd		DEVD		21010.15	0.40	2.07	2.55	2.02	0.02	0.02	0.00	0.04	5.54	5.54	~		
acrealxp		REXR		1.00	0.10	0.09	0.07	0.06	0.05	0.03	0.02	0.01	0.00	0.00	-(
acrealxpTT		Wage		1.00	1.62	1.10	1.37	1.34	1.57	1.71	1.95	2.18	2.24	2.30	2		
acrealxpTTdol		CapRe	t	1.00	3.62	2.67	2.78	2.50	2.55	2.49	2.56	2.59	2.41	2.25	2		
acrealyy	4														÷		

Developing IEEM Modeling Infrastructure and Capacity Around the World.

Onil Banerjee, PhD.

RMGEO Consultants Inc.

obanerjee@gmail.com

IEEM+ESM AND CHILE'S NATIONALLY DETERMINED CONTRIBUTIONS

ECONOMIC-ENVIRONMENT INTERACTIONS IN IEEM

OVERVIEW

- Chile is committed to contributing to limit global temperature rise to 1.5° C.
- Update to its NDCs was developed in parallel to the country's Climate Change Framework Bill to align international commitments with national guidelines and instruments.
- Unconditional goal of reducing emissions to 95MtCO₂ by 2030 (a 30% reduction in the GHG balance as per 2016 figures) and a greenhouse gas emissions budget of 1,100MtCO₂ for the period 2020 to 2030.
- Chile aims to achieve carbon neutrality by 2050 (Government of Chile, 2020).
- We focus on Forestry and Other Land Use component of NDC targets.

SCENARIO DESIGN

- BASE: Business-as-usual scenario (GDP and population projection from Chile Central Bank). Deforestation from Global Forest Watch 2001-2013; assumed 50% of deforested area is converted to agriculture.
- **REDEFOR**: Reduction in deforestation.
- **AFFOR**: Afforestation of 200,000 ha.
- **RESTORE**: Restoring 200,000 ha of land.
- COMBI: REDEFOR + AFFOR + RESTORE + increase in total factor productivity due to changes in erosion mitigation and crop pollination ES.
- **COMBI***: Same as combi wihout ES.

REDEFOR KEY ELEMENTS

- 25% reduction in deforestation by 2030 with respect to the average rate of deforestation registered between 2001 and 2013 (Global Forest Watch data).
- The deforestation rate is reduced linearly beginning in 2023 until reaching a 25% reduction by 2030 which is maintained until 2050.
- The cost of reducing deforestation is distributed equally from 2023 to 2050; cost estimated for Brazil of USD538.70 per hectare/year.
- 90% recurrent government expenditure and 10% government investment.
- 50% financed by non-reimbursable grants and 50% through international development loans with standard repayment terms.

AFFOR SCENARIO KEY ELEMENTS

- 200,000 ha of forests planted on areas designated as shrub and herbaceous vegetation areas in the LULC map; these areas do not currently generate economic value.
- The afforestation will commence in 2023 with planting of 15% of the total area followed by 25%, 35% and 25% in 2024, 2025 and 2026, respectively.
- Trees mature at 25 years, no additional carbon stored; 50% managed for forest products, generating value after 10 years.
- The cost of afforestation was estimated in 2015 CLP986,251.
- 100% government investment.
- 50% financed by non-reimbursable grants and 50% through international development loans with standard repayment terms.

RESTORE SCENARIO KEY ELEMENTS

- 200,000 ha restored to native forest conditions by 2030.
- The restoration will also take place in areas designated as shrub and herbaceous vegetation areas in the LULC map and currently do not generate economic value.
- The restoration will start in 2023, restoring 12.5% per year and concluding in 2030.
- Trees mature at 30 years, no additional carbon stored; 100% managed for forest products, generating value after 10 years.
- The cost of restoration was estimated at 50% of the cost of afforestation

COMBI AND COMBI* SCENARIOS KEY ELEMENTS

- COMBI: REDEFOR+AFFOR+RESTORE+ES.
- COMBI*: REDEFOR+AFFOR+RESTORE.

LULC CHANGE AND ES MODELING

- Demand for land determined exogenously, therefore iterate only LULC and ES models.
- Run LULC change model for BASE and COMBI projection to 2050; 5-year time steps.
- Run Sediment Delivery ratio (erosion) and crop pollination ES models in 5-year time steps.

 $\equiv \Box$

ES MODELING DATAPACKETS

 Available at OPEN IEEM for Carbon, Sediment Delivery Ratio, Nutrient Delivery Ratio and Water Yield models.

PRESENTATION	× ESM DATAPACKET	× +		- 0 ×
🕀 New 🗸	[□ [ῗ @] @ 🗊 🕄 Sort	~ 🗮 View ~ …		
\leftarrow \rightarrow \checkmark \uparrow	« LULC+E » ESM DATAPACKET »	Search ESM DATAPACKET		م
A Home	Name	Date modified	Туре	Size
✓ ● OneDrive - Personal	administrative_boundaries	4/25/2023 4:41 AM	File folder	
> 📜 Application Data	annual_precipitation	4/17/2023 6:04 AM	File folder	
> 📒 Desktop	depth_to_root_restricting_layer	4/17/2023 6:04 AM	File folder	
> 📑 Documents	elevation	4/17/2023 6:03 AM	File folder	
📜 InstallAnywhere	FROM OPEN IEEM	4/14/2023 12:04 AM	File folder	
> 📜 MY DOCUMENTS	K_factor_soil_erodibility	4/17/2023 6:04 AM	File folder	
	LOOKUP TABLES	4/18/2023 11:22 PM	File folder	
🛓 Downloads	plant_available_water_content	4/17/2023 6:04 AM	File folder	
📒 Desktop	✤ R_factor_rainfall_erosivity	4/17/2023 6:04 AM	File folder	
MY DOCUMENTS	reference_evapotranspiration	4/17/2023 6:04 AM	File folder	
TODAY	✤ soil_carbon_storage	4/17/2023 6:04 AM	File folder	
🛏 Windows (C:)	★ watersheds	4/18/2023 5:45 AM	File folder	
💼 Data (D:)	*			

CALCULATING THE EROSION SHOCK

- Erosion affects agricultural productivity (linkage).
- Run BASE and scenarios (COMBI) in LULC change model and erosion model.
- Based on USLE result, calculate difference of number of pixels above/below 11 tons/ha threshold for severe erosion (national or regional).
 Increasing or decreasing?

Edit View Window About	Codiment Delivery Patients	
tup >	Workspace	₀ .obane\OneDrive\Desktop\IEEM-CHL\LULC+ESM\ES_RESULTS\EROSION ✔
g >	File Suffix (optional)	BASE2020
we as ser's Guide requently Asked Questions	Digital Elevation Model	⑧ EEM-CHL\LULC+ESM\ESM DATAPACKET\elevation\chl_elevation.tif ✔
	Erosivity	I:_rainfall_erosivity\chl_R_factor_rainfall_erosivity_CRS.tif
	Soil Erodibility	[K_factor_soil_erodibility\chl_K_factor_soil_erodibility.tif ✓ [□
	Land Use/Land Cover	• .IDB\IEEM-CHL\LULC+ESM\ES RESULTS\LULC RESULTS\COMBI2050.tif
	Biophysical Table	I-CHL\LULC+ESM\ESM DATAPACKET\LOOKUP TABLES\sediment_chl.csv
	Watersheds) B\IEEM-CHL\LULC+ESM\ESM DATAPACKET\watersheds\watershed.shp
	Drainages (optional)	• raster V
	Threshold Flow Accumulation (number of pixels)	 0 75 ✓
	Borselli K Parameter	0 2
Run	Maximum SDR Value	0.8

BASE20	BASE25 BASE30		0	BASE35		5		BASE4	0		BASE4	45		B	ASE50				
11	>11	<11	>11	<11	>11		<11	>1	.1	<11	>	>11	<11	2	>11	<	11	>1	1
43,812,657	28,212,16	4347173	7 28553085	5 431	L26155 2	8898667	427	32396	29292426	423	326532	29698	<mark>290</mark> 41	902659	3012	22163	4150	06488	305183
COMB	125	СОМ	BI30		COMBI35		(COMBI40)		COMBI4	45		COMBI	50		F	GRI LAN	ID
<11	>11	<11	>11		<11	>11	<11		>11		<11		1	<11		11	C	ROPS	
435	66849 28	457973 43	322355 28	702467	4302792	0 289	96902	42702	570 293	22252	4238	30523	29644299	4207	79167	29945	5655	4213	750

CALCULATING THE EROSION SHOCK

• Calculate agricultural productivity shock:

•
$$LPL_{rg} = \frac{SER_{rg}}{TAA_{rg}} \cdot 0.08$$

- Where:
- LPL_{rg} is the land productivity loss by subscript rg region of Chile;
- SER_{rg} is the agricultural land area (hectares) subject to erosion >11t/ha/year in each region;
- TAA_{rg} is the total agricultural area, both crop and livestock, by region and;
- 0.08 is the agricultural productivity shock based on extensive literature review.

CALCULATING THE EROSION SHOCK

- 5-year time steps.
- Interpolate between years.
- Erosion mitigation ES increasing as a result of COMBI.

CALCULATING THE POLLINATION SHOCK

FAOSTAT • Map crop output data to Klein et (2007)which a associates crops to their dependence.

PROCEEDINGS **OF THE ROYAL SOCIETY B**

BIOLOGICAL SCIENCES

You have access View PDF

🔧 Tools 🛛 < Share

Cite this article V

Section

Importance of pollinators in changing landscapes for world crops Alexandra-Maria Klein 🖾, Bernard E Vaissière, James H Cane, Ingolf Steffan-Dewenter, Saul A Cunningham, Claire Kremen and Teja Tscharntke

Published: 27 October 2006 https://doi.org/10.1098/rspb.2006.3721

Abstract

Abstract The extent of our reliance on animal pollination for world crop production for human food has not previously been evaluated and the previous estimates for countries or 1. Introduction continents have seldom used primary data. In this review, we expand the previous 2. Material and methods estimates using novel primary data from 200 countries and found that fruit, vegetable or 3. Results and discussion seed production from 87 of the leading global food crops is dependent upon animal pollination, while 28 crops do not rely upon animal pollination. However, global 4. Management production volumes give a contrasting perspective, since 60% of global production conclusions and future directions comes from crops that do not depend on animal pollination, 35% from crops that depend on pollinators, and 5% are unevaluated. Using all crops traded on the world market and Footnotes setting aside crops that are solely passively self-pollinated, wind-pollinated or parthenocarpic, we then evaluated the level of dependence on animal-mediated Supplemental Material pollination for crops that are directly consumed by humans. We found that pollinators are essential for 13 crops, production is highly pollinator dependent for 30, moderately for

IEEM	Verv hiah	Hiah	Medium	Low	000s of USD	FAO CROP NAME
REDUCTION IN YIELD	-0.18	-0.125	-0.05	-0.01		
VERY HIGH						
Cantaloupe, melon	-0.18				22,411	Cantaloupes and other melons
Kiwi	-0.18				119,834	Kiwi fruit
Pumpkin, squash, gourd, marrow,	-0.18				61,404	Pumpkins, squash and gourds
TOTAL VERY HIGH					203,649	
HIGH						
Apple		-0.125			942,133	Apples
Apricot		-0.125			5,813	Apricots
Avocado		-0.125			374,257	Avocados
Peach, nectarine		-0.125			357,880	Peaches and nectarines
Pear		-0.125			156,062	Pears
Plum, greengage, mirabelle, sloe		-0.125			263,462	Plums and sloes
Raspberry, blackberry, other berrie	es	-0.125			70,414	Raspberries
Sweet cherry		-0.125			611,051	Cherries
TOTAL HIGH					2,781,072	
MEDIUM						
Broad bean, faba bean, field bean	, horse bea	n	-0.05		19,629	Beans, dry
Fig			-0.05		253	Figs
Rapeseed, oilseed rape			-0.05		58,674	Rape or colza seed
Strawberry			-0.05		46,759	Strawberries
Sunflower			-0.05		1,400	Sunflower seed
TOTAL MEDIUM					126,715	
LOW						
						Chillies and peppers, green (Capsicum
Chile pepper, red pepper, bell pep	oper, green	pepper	. <u> </u>	-0.01	86,094	spp. and Pimenta spp.)
Citrus (Bergamot, citron grapefruit	, lemon, lim	ie, orang	ge, pomelo	-0.01	156,661	Lemons and limes
					79,104	Oranges
					895	Pomelos and grapetruits
TOTAL OFFICE					169,314	l angérines, mandarins, clementines
				0.04	405,974	
Papaya				-0.01	3,365	Papayas
				-0.01	699	Persimmons
				-0.01	540,134	I omatoes
					1,036,266	

CALCULATING THE POLLINATION SHOCK

- Calculate crop yield impact by crop type (figure right).
- Adjustment factor accounts for starting point in terms of abundance.
- For Chile, assumed that 20% of productivity potential was possible (India 40% based on literature).
- Pollinator decline due to both habitat loss, reduced sources of food and application of chemicals in the landscape.

TOTAL CROPS POLLINATOR DEPENDENT	4,147,702
TOTAL CROPS NOT DEPENDENT	5,697,202
TOTAL CROP OUTPUT	9,844,904
SHARE OF CROPS POLLINATOR DEPDENDENT	0.42

CALCULATING THE POLLINATION SHOCK

- Run pollination model to calculate BASE and scenario-driven changes in pollinator abundance.
- Pollinators increasing or decreasing (BASE vs. COMBI)?

n invest-workbench																					-	٥	×
	ſ	Crop Pollination	×																				\$
Setup	>	Workspace					Ð	ine\()neDri	.ve\D	eskt	op\I	EEM-O	CHL\I	JULC+	ESM\	es ri	ESULT	S\PO	LLIN	ATION	/ [5
Log	>	File Suffix (opt	ional)				• • • • • • • • • • • • • • • • • • •	BASE	2035														 Image: A start of the start of
Save as																					0.115		
Frequently Asked Questions		Land Use/Lan	d Cover)\IDH	BAIEEN	1-CHL	/LUL	C+ES	M\ES	RESU	JLTS	LULC	RES	ULTS\	COMB	1205	0.tif		
		Biophysical Ta	ble					,esm	DATAI	AUKE	1/10	OKUP	TABI	res /k	0111	nati	on_b	robuà	sica	1_ch	L.CSV		
		Guild Table						C+ES	M\ESN	1 DAT.	APAC	KET\	LOOKI	JP TA	ABLES	\pol	lina	tion_	guil	d_ch	l.csv .		ב
		Farms Map (o)	otional)				Ð	vect	or													/ [ב
Run																							
E 28°C Haze	Q Searc	١		2		0	2	N	*	0	0	•	× 4			0	•	In	^	ENG	奈 d)) 🍅	9:31 PN 5/2/202	1 3 0
SF35 BASF40 BASF45	BAS	50 CON	1BI25	5 CO	MB	130	CC	OMF	3135	CO	MB	140	CO	MB	145	CO	MB	150					

Zonal statistics sum	BASE20	BASE25	BASE30	BASE35	BASE40	BASE45	BASE50	COMBI25	COMBI30	COMBI35	COMBI40	COMBI45	COMBI50
NATIONAL	53491	52704	51907	51090	50324	49560	48859	53332	53048	52396	51743	51130	50581
Change in abundance wrt BASE		-0.0147	-0.0296	-0.0449	-0.0592	-0.0735	-0.0866	0.0119	0.0220	0.0256	0.0282	0.0317	0.0352

CALCULATING THE POLLINATION SHOCK

 Shock applied to IEEM 'crops' category, thus must be weighted.

Greater

disaggregation

- is possible if
- there is a reason for it.

$$CPC_{r} = D_{r} \cdot \left(A_{r} \cdot Y_{r,vh} \cdot V_{r,vh} \cdot W_{r,vh} + A_{r} \cdot Y_{r,h} \cdot V_{r,h} \cdot W_{r,h} + A_{r} \cdot Y_{r,m} \cdot V_{r,m} \cdot W_{r,m} + A_{r} \cdot Y_{r,l} \cdot V_{rl} \cdot W_{r,l}\right)$$

Where:

- CPC_r is the crop productivity impact for subscript region *r* of Chile;
- D_r is a pollinator adjustment factor representing current pollinator abundance relative to full potential abundance.
- A_r is pollinator abundance in subscript region *r* of Chile;
- Y_{r,vh} is the yield impact in region r for very highly pollinator dependent crops (subscript vh);
- V_{r,vh} is the value of crop output in region r for very highly pollinator dependent crops (subscript vh);
- $W_{r,vh}$ is the weight of the value of very highly pollinator dependent crops (subscript vh) in Chile's total crop output value and;
- Subscripts *h*, *m* and *l* refer to high, medium and low dependent pollinator crops.

ECONOMIC IMPACTS

In millions of USD as difference from BASE in final year (or cumulative as indicated). COMBI* is without ES.

	REDEFOR	AFFOR R	ESTORE	COMBI	COMBI*
GDP	-239	171	288	504	204
Cumulative GDP	-2,250	1,980	2,982	5,878	2,552
Wealth	-5	174	315	499	385
Cumulative wealth	202	1,922	3,221	5,502	4,324
Private consumption	-270	116	194	240	27
Private investment	-141	78	133	178	61
Exports	-413	80	140	-43	-202
Imports	-222	71	123	99	-37

Regulating ES contribution to cumulative GDP and wealth.

ECONOMIC IMPACTS

Trajectory of GDP (left) and wealth (right) impacts.

POVERTY IMPACTS

Poverty impact in 2050 (left) and trajectory (right).

ECONOMIC IMPACTS

 Cumulative wealth impact (left) and Net Present Value (right) with 10% discount rate, millions of USD..

ES IMPACTS: CLIMATE CHANGE MITIGATION

- CO₂ emissions from combustion of fossil fuels.
- Changes in carbon storage are also calculated in IEEM; coming soon (ISIM).
- Change in LULC for class X multiplied by carbon coefficient for that class.

ES IMPACTS: ALL SERVICES

• Millions of USD

ES Section	ES Class	ç	Scenario	Code	Code		
		REDEFOR	AFFOR	RESTORE	COMBI	CICES	IPBES
Provision ec	osystem services						
	Food (plant-based)	-5,775	96	163	-3,248	1.1.1.1	12
	Meat (excluding fish)	13	2	2	14	1.1.3.1	12
	Fish	22	1	0	17	1.1.4.1	12
	Timber and non-timber	16	164	299	455	1.1.1.2, 1.1.5.1, 1.1.5.2	12, 13, 14
	Abiotic subsurface minerals	624	17	-12	391	4.3.1.3	
	Abiotic subsuface non-mineral energy	-4	5	8	18	4.3.2.2	
Cultural and	recreational ecosystem services						
	Culture, recreation and tourism	-64	34	48	16	3.1.1.1	6, 16
Regulating e	ecosystem services						
Crop pollination					958	2.2.2.1	2
	Erosion mitigation				2,436	2.2.1.1, <mark>2.2.1.2</mark>	9

ES IMPACTS: ALL ES

Millions of USD/

ES IMPACTS

- ES model runs based on Dyna-CLUE generated maps.
- Summary results at regional level as COMBI percent difference from BASE.
- Modeled carbon storage, erosion mitigation, crop pollination, water regulation and water purification with InVEST and IEEM+ESM Datapackets.
- Both carbon and erosion can be reported in tons per pixel.

ES IMPACTS

- COMBI percent difference from BASE.
- Other reporting formats:
- -Crop pollination reported in index of abundance.
- -Water purification reported in units of kg/pixel and water regulation in units of mm per pixel.

CONCLUDING REMARKS

- Reducing deforestation restricts land supply; critical assumption is what proportion of deforested land is used for agriculture or other 'productive' purposes.
- Afforestation and restoration contribute positively to economy with increase in forest sector output and enhanced ES provision.
- ES flows increase across the landscape the concentrated in central section of Chile.
- Implications of area-based targets vs. CO₂ targets; timing matters with the latter.
- ES results and IEEM+ESM tools can be used for spatial targeting of policies.

Developing IEEM Modeling Infrastructure and Capacity Around the World.

Onil Banerjee, PhD.

RMGEO Consultants Inc.

obanerjee@gmail.com