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Introduction and motivation

One important lesson of the 2008-09 global �nancial crisis is that
higher cross-correlation among �nancial institutions can be a source
of systemic risk.

Tandem behavior among banks increases the exposure to common risks.
Even if individual risk exposures are limited, the whole �nancial system
is relatively more sensitive to changes in the macro-�nancial conditions,
increasing systemic risk (Borio et al., 2001).
In fact, a high degree of co-movement across �nancial institutions (i.e
tandem behavior) can be a good predictor of �nancial distress
(Kritzman et al., 2011).
Therefore, understanding the degree in which banks act in tandem is
fundamental for systemic risk analysis.
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Introduction and motivation

The degree in which �nancial institutions move in tandem (i.e the
degree in which they are exposed to common risks), change over time:

At the international level, globalization of the banking system increased
the linkages across �nancial institutions, making them more vulnerable
to changes in market conditions outside national boundaries.
At the local level, banking system consolidation - e.g Chile during the
�90s and early 2000s - increased market concentration, resulting in a
more bonded banking system.
In addition, changes in the macro-�nancial environment may favor the
decision taken by banks in order to act in tandem, by increasing, for
example, their lending to speci�c markets such as the retail sector.
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Introduction and motivation

In this paper, we study the extent to which the Chilean banking
system has behaved in tandem over the past 20 years.

More speci�cally, we apply principal component analysis (PCA) and a
set of measures based on it (the absorption ratio and the centrality
score), in order to determine the degree to which banks are exposed to
common risks and their contribution to systemic risk.
Since there are no market prices for a signi�cant number of banks in
Chile, we focus on the existing correlation across banks�performance
(interest rate margin and total return on assets).
We interpret the increase in the co-movement of bank´s performance
as a sign of higher exposure to common risks.
Common risks may arise through at least two channels: (1) a direct
exposure to speci�c markets (conditional on the macro-�nancial
context), and (2) indirect exposure to systemic banks (conditional on
the degree of interconnectedness).
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Introduction and motivation
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A brief characterization of the Chilean banking system

The Chilean banking system, resembling other emerging market
economies, has experienced a strong consolidation process over the
past 20 years characterized by:

Decreasing number of banks
Increasing market participation of foreign banks
Increasing market concentration
Universality of the banking system (less reliance on niche banks)

In addition, the macroeconomic stability experienced by the Chilean
economy and �nancial system reforms undertaken in the past, have
contributed to diversify the assets and liabilities of banks:

Higher importance of the retail sector (e.g. household lending)
Increasing importance of non-traditional sources of funding (e.g. bond
issuing)
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Chilean Banking Consolidation
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How correlated are Chilean banks�performances?

On average, pair-wise cross-correlation of banks�performance is high
and positive across several banks:

In particular, but not exclusively, among banks of similar size.
Lower correlation, and even negative correlation, occurs across some
medium size banks

Over time, average cross-correlation is not constant, re�ecting
changes in the degree of common exposures across banks:

High cross-correlation periods precede periods of �nancial distress
After periods of distress, average cross-correlation drops (almost) to
zero.
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IRM correlations across banks (average 1990-2012)
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IRM: correlations across banks
(rolling window, min, max, mean and median)
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A PCA approach to common exposures

PCA is a (non-parametric) technique that reduces the dimensionality
of a dataset by decomposing aggregate variance-covariance (or
correlation) matrix in such a way that:

Few PCs contain most of the information (i.e explain most of the
aggregate variance)
Each PC represents a linear combination of the original data.
PCs are ordered according to their relative importance.

Therefore, applying PCA to banks�performance is a way to
understand common exposures:

A tighten behavior across banks re�ects in fewer PCs are needed to
explained most of the variance. On the contrary, when banks are acting
in a more �uncoupled�way, more PCs are needed to represent the
same amount of variability.
PCs can be interpreted as an underlying common factor associated, for
example, to macro-�nancial conditions, or to systemic banks.
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PCA application to banks�performance

In particular, we would like to address the following questions:

How uni�ed or tighten has been the behavior of the Chilean banking
system over the past 20 years?
During which periods banks have experienced a greater increase in their
tandem behavior?
Which banks have contributed the most to this commonality in banks�
behavior?

Data limitations

Desirable data: stock returns of the banks ! Not available
Available data: bank�s accounting information ! take some variables
or indicators for a set of banks for a given timespan
Data issues:

Data dimensionality ! ROA, IRM
Databases ! full sample, mergers sample
Special weighting ! Total Assets
Time series persistence ! Exponentially Weighted Moving Average
Covariance Matrix (EWMA Covar)
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PCA application to banks�performance

Absorption ratio (AR)

Equals the fraction of total variance of a set of assets returns explained
or �absorbed�by a �xed number of eigenvectors.
Captures the extent to which markets are uni�ed or tightly coupled.

Standardized Shift of the AR (SAR)

Determines when changes in AR are big enough to worry about
systemic risk.
Can be understood as a leading indicator of �nancial distress
(Kritzman et al., 2011).

Centrality Score (CS)

Look for those banks that explain a higher portion of aggregate
variance
Rank banks according to their contribution to systemic risk during
periods of high systemic risk
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The Absorption Ratio (AR)

Formally:

The Absorption Ratio is given by:

AR =
∑ni=1 σ2Ei

∑Nj=1 σ2Aj

where n is the number of eigenvectors used in calculating the AR, N is
total number of assets or banks, σ2Ei is the variance of eigenvector i ,

and σ2aj is the variance of asset j .

What do we �nd?

PC1-PC3 explain most of the aggregate variance (~80%)
However, the degree of tightening changes over time
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IRM: Absorption ratio time series for all banks
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Standardized Shift of the AR (SAR)

Formally:

Given our data availability, the ∆AR is given by:

∆AR =
AR12�Month � AR5�Year

σAR5�Year

where ∆AR is the standardized AR shift, AR12�Month is the 12-month
moving average of AR, AR5�Year is the 5-year moving average of AR,
and σAR5�Year is the standard deviation of the 1-year AR.

What do we �nd?

∆AR at least points out the distress periods.
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IRM: Standardized Shift of the AR and distress periods

IRM - Full database IRM - Mergers database
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Centrality Score (CS)

Formally,

CSi =
∑n
j=1 AR

j � jEV ji j
∑N
k=1jEV jk j

∑n
j=1 AR j

where CSi is the asset centrality score, AR j is the absorption ratio of
the j th eigenvector, EV ji is the absolute value of the exposure of the
i th asset within the j th eigenvector, n is the number of eigenvectors in
the numerator of the absorption ratio, and N is the total number of
assets or banks.

What do we �nd?

Heterogeneity: weights are not constant, ranking changes over time
A few banks top the most of the times
Ranks associated to size, but not always
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Ranking banks�contributions to systemic risk using the CS
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Conclusions

Using PCA approach to banks�performance allows to:

describe the dynamics of common exposure.
identify periods when banks�behavior becomes tighter.
rank banks according to their contributions to systemic risk.

Periods of tighter behavior may be associated to systemic risk.

Bank�s size does not necessarily relate to centrality score measures of
contribution to systemic risk.

Application of PCA and related metrics can be used as a surveillance
methodology to address systemic risk.
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