Small and large price changes and the propagation of monetary shocks

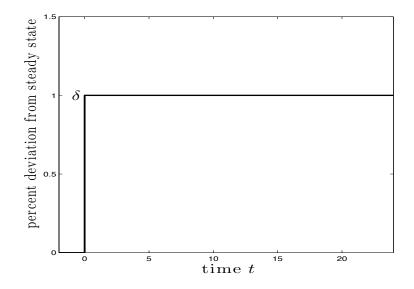
Fernando Alvarez , Hervé Le Bihan , Francesco Lippi

University of Chicago & NBER , Banque de France , EIEF & University of Sassari

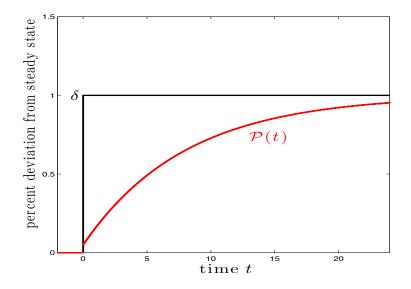
Banco Central Chile - August 2014

Once and for all monetary shock at t = 0.

Intro



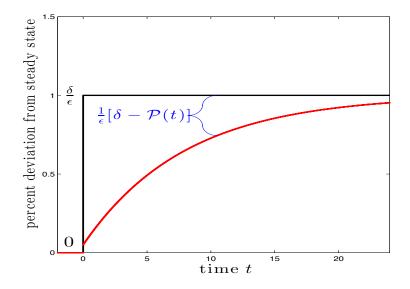
Impulse response of Price Level



Intro

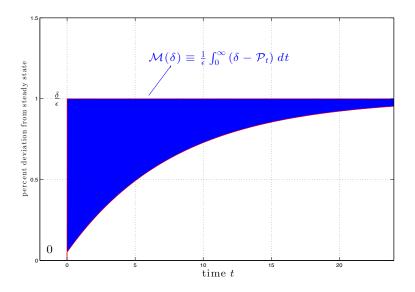
Impulse response of output $d \log c_t = rac{1}{\epsilon} d \log(M_t/P_t)$

Intro



Area under impulse response of output: \mathcal{M}

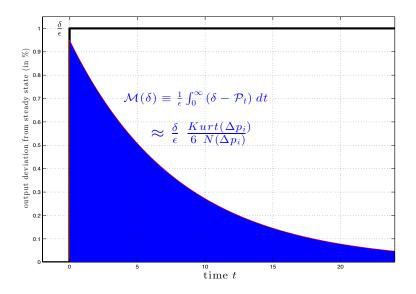
Intro



back

Area under impulse response of output: \mathcal{M}

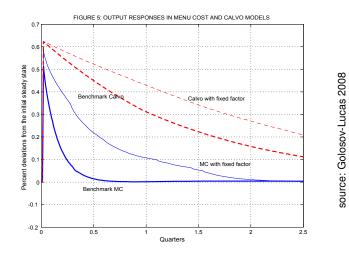
Intro



 ψ / B fixed cost, n # products

Range of effects: $\mathcal{M}_{\mathit{Calvo}}$ / $\mathcal{M}_{\mathit{GL}}$ pprox 6

Intro



More Models: Reis / Taylor 1980, Nakamura-Steinsson 2010, Midrigan 2011

All models same $N(\Delta p_i)$; differences due to "selection" effects (Kurtosis)

 ψ / B fixed cost, n # products

 λ pr. free adjustment, σ cost volatility

Our contribution

• Class of stylized menu-cost models:

(random) menu cost, multi-product, rational inattentiveness.

Intro

• $\mathcal{M}(\delta) \equiv$ cumulative IRF of output to a (small) monetary shock δ

 $\mathcal{M}(\delta) \approx \frac{\delta}{\epsilon} \frac{Kurt(\Delta p_i)}{6 N(\Delta p_i)}$

- Frequency of price changes $N(\Delta p_i)$ has a first order effect,
- Kurtosis price changes $Kurt(\Delta p_i)$ has a first order effect.
- Result in the spirit of "Sufficient Statistic Approach" (useful to macro)
- Gather and evaluate empirical measures of $Kurt(\Delta p_i) \approx 4.5$
- Evaluate magnitude of implied adjustment/menu cost.

Micro evidence: overview

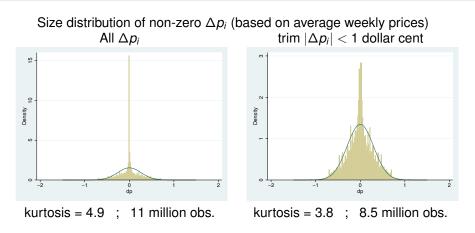
We explore several datasets

CPI (French, US, Norway), scanner price (US), Internet scraped data

- Excess Kurtosis due to small <u>and</u> large $\Delta p_{i,j,t}$ (Kashyap, 1995)
- Excess Kurtosis attenuated but still positive after correcting for:
 - (1) heterogeneity \rightarrow standardize price changes: $\frac{\Delta \rho_{i,j,t} m_{i,j}}{\sigma_{i,j}}$ standardization at the good-*i* × store-*j* level
 - (2) measurement error \rightarrow compare datasets and trimming CPI vs scanner data , or trim $\Delta p_i < 1 \ ct$

The evidence

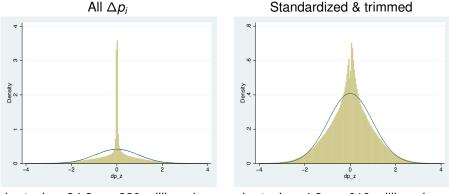
Same scanner data as Eichenbaum et al (2011)



- Based upon: Average Weekly prices.
- Lots of price changes smaller than 1 cent! (left panel)

The evidence

US: IRI-Symphony scanner data



kurtosis = 34.3; 820 million obs.

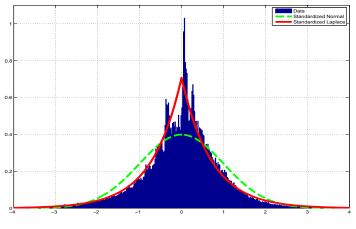
kurtosis = 4.3; 610 million obs.

- Large data set: 3,000 stores x 40,000 products x 10 years
- Average weekly prices

The evidence

French CPI data 2003-2011

size distribution; Standardized and trimmed; 1.5 million obs.



 $Std(\Delta p_i) = 16\%$; kurtosis = 8.9

Measurement error: CPI vs Scraped Data (France)

• CPI very broad, but subject to measurement error:

Eichenbaum et all: spurios small price changes in CPI and scanner data.

- Our approach:
 - Compare "error free" data for selected products with CPI.
 - Use internet scrapped data for France.
 - Match type of goods/outlet with CPI.
 - Use simple measurement error model to extrapolate to whole CPI.
- Conclusion: kurtosis is about half.

Summary of evidence

Once x-section heterogeneity removed, the data show

 evidence of measurement error ("spurious" Δp_i) overestimate Kurtosis on CPI data

 distribution of Δp_i peaked in both the US and France between Normal (kurt ≈ 4 in US) and Laplace (kurt ≈ 5 in FR)

no big differences between sales vs no-sales size distribution

Sales-vs-nonsales

US-vs-France

CPI-vs-scraped data

► CPI-vs-scanner data

The model economy

Lifetime Utility :
$$\int_{0}^{\infty} e^{-rt} \left(\frac{c(t)^{1-\epsilon}-1}{1-\epsilon} - \alpha \ell(t) + \log \frac{M(t)}{P(t)} \right) dt$$

CES aggregate :
$$c(t) = \left(\int_{0}^{1} \sum_{i=1}^{n} (Z_{ki}(t) c_{ki}(t))^{1-\frac{1}{\eta}} dk \right)^{\frac{\eta}{\eta-1}}$$

• Intratemporal η (= for firms k & products i).

- Linear technology $c_{ki}(t) = \ell_{ki}(t) / Z_{ki}(t)$ and $Z_{ki}(t) = \exp(\sigma W_{ki}(t))$.
- Household problem:
 - demand for monopolist competitive firms, idiosyncratic pref. shocks $Z_{ki}(t)$
 - money demand: determination of interest rate (forward looking)
 - Inter-temporal and labor supply elasticity = $1/\epsilon$
- Firm's adjustment cost: if ψ_{ℓ} units of labor paid, *n* prices can be changed. Random menu cost: w/pr. λdt adjust without paying ψ_{ℓ} (Poisson).

 ψ/B fixed cost, n # products

- Equilibrium: constant nominal interest rate & wages $W(t) \propto M(t)$. Simplify firm's problem: nominal cost are known.
- Discounted nominal profit of product i as function of (log) price gap p_i:

$$\Pi(p_i, c(t)) \propto W(0) e^{-rt} c(t)^{1-\eta\epsilon} e^{-\eta p_i} \left[e^{p_i} \frac{\eta}{\eta-1} - 1 \right]$$
$$0 = \frac{\partial \Pi(0, c(t))}{\partial p_i} = \frac{\partial^2 \Pi(0, c(t))}{\partial p_i \partial c(t)}$$

- Same reason why consumption and nominal interest rates do not "enter into" the simple NK Phillips curve.
- This means we can consider simple steady state problem for the firm

The firm's problem

Model has 4 primitive parameters $\frac{\psi}{B}$, λ , σ^2 and *n*

- multi-product: simultaneous adjustment of *n* products sold by firm.
- random menu cost:

adjust *n* prices paying =
$$\begin{cases} \psi & \text{with probability } 1 - \lambda \, dt \, or \\ 0 & \text{with probability } \lambda \, dt. \end{cases}$$

where menu cost ψ is measured relative to steady state profits.

- production cost each product: $W_{ki}(t)$ random walk w/volatility $\sigma^2 dt$.
- *p_i(t)* (log) percentage deviation from static optimal markup over cost.
- 2nd order approx. to period profit gives: $-\sum_{i=1}^{n} B[p_i(t)]^2$

 $B = (1/2) \eta (\eta - 1)$ where η elasticity of demand.

• Firm maximizes expected net discounted (at rate *r*) profits.

 ψ/B fixed cost, n # products

Simplest case when n = 1 and $\lambda \ge 0$

Bellman equation

$$r V(p) = B p^2 + \lambda (V(0) - V(p)) + \frac{\sigma^2}{2} V''(p), \text{ for } p \in (-\bar{p}, \bar{p}),$$

value matching and smooth pasting conditions are:

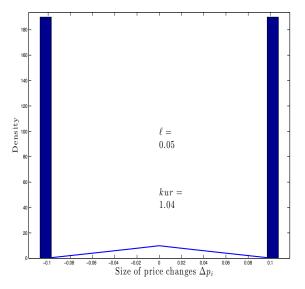
$$V(\bar{p}) = V(0) + \psi \ , \ V'(\bar{p}) = 0 \ , \ \bar{p} \approx \begin{cases} \left(\frac{6\psi\sigma^2}{B}\right)^{\frac{1}{4}} & \text{if } \frac{\psi}{B}\sigma^2(r+\lambda)^2 \text{ is small} \\ \\ \frac{\psi}{B}(r+\lambda) & \text{if } \frac{\psi}{B}\sigma^2(r+\lambda)^2 \text{ is large} \end{cases}$$

Threshold rule \bar{p} yields cross-sectional model predictions

Frequency of adjustment: $N(\Delta p_i)$ or $\ell = \lambda/N$

Shape of size-distribution of price changes $w(\Delta p_i)$ depends only on ℓ .

for n = 1 , $\ell = \lambda / N = 0.05$

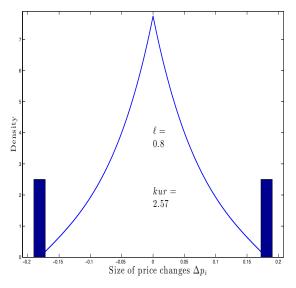


Size distribution $w(\Delta p_i)$ for n = 1 model ; shape depends ONLY on ℓ

 ψ / B fixed cost, n # products

 λ pr. free adjustment, σ cost volatility

for n = 1 , $\ell = \lambda/N = 0.80$

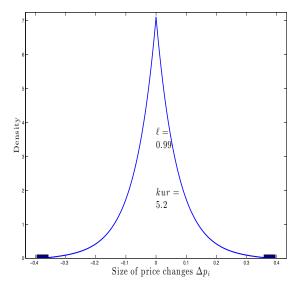


Size distribution $w(\Delta p_i)$ for n = 1 model ; shape depends ONLY on ℓ

 ψ / B fixed cost, n # products

 λ pr. free adjustment, σ cost volatility

for n = 1 , $\ell = \lambda/N = 0.99$



Size distribution $w(\Delta p_i)$ for n = 1 model ; shape depends ONLY on ℓ

 ψ / B fixed cost, n # products

 λ pr. free adjustment, σ cost volatility

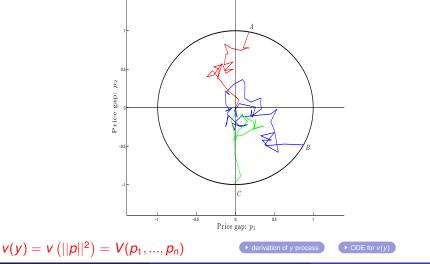
ℓ fraction free-adjustments 21 / 32

The firm's problem

Key for n > 1: summarize state by scalar $y \equiv ||p||^2$

 $y \equiv ||p||^2$ square of a **Bessel** process: : $dy = n \sigma^2 dt + 2 \sigma \sqrt{y} dW$

Inaction region = sphere: $\mathcal{I} = \{ \boldsymbol{p} : ||\boldsymbol{p}||^2 \leq \bar{\boldsymbol{y}} \}.$



ψ / B fixed cost, n # products

 λ pr. free adjustment, σ cost volatility

Cross section predictions for n > 1

All prices change if $||p(\tau)||^2$ hits \bar{y} or when free-chance arrives.

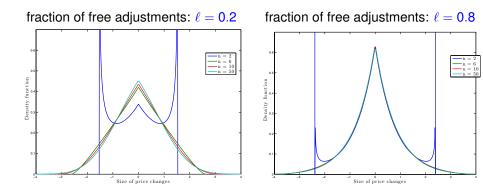
• At such times price changes are $\Delta p_i(\tau) = -p_i(\tau)$, i.e. reset gaps to zero.

Use properties of $||p(\tau)||^2 \in [0, \bar{y})$ and statistical tools to characterize:

- scale and frequency of Δp_i : $Std(\Delta p_i)$, $N(\Delta p_i) \implies \ell \equiv \frac{\lambda}{N(\Delta p_i)}$
- size-distribution of Δp_i : $w(\Delta p_i)$: shape depends ONLY on *n* and ℓ
- one-to-one mapping $(n, \lambda, \psi/B, \sigma^2)$ and $(n, \ell, Std(\Delta p_i), N(\Delta p_i))$.

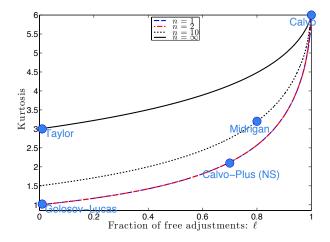
Cross-section predictions

Density of price changes $w(\Delta p_i)$, for n > 1



- $\ell > 0$ and large *n*: avoid mass points (or high density) for large $|\Delta p_i|$.
- The shape of the distributions only depends on n, ℓ .

Kurtosis $Kur(\Delta p_i)$ function only of (n, ℓ)



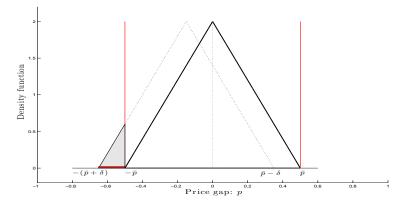
 $Kur(\Delta p_i) \in [1, 6]$, an increasing function of (n, ℓ)

Cumulative Output Response to a Monetary Shock

- Unexpected permanent increase in money of size δ starting at steady st.
- Start at steady state with distribution of price gaps across firms.

- Keep decision rules (\bar{y}) at steady state (as Caballero-Engel)
 - Numerically small GE feedback effects (Golosov-Lucas)
 - Alvarez-Lippi (2014) prove GE effects are second-order on \bar{y} for small δ

Example: canonical menu cost example $n = 1, \ell = 0$



Start from Steady State distribution of desired price adjustments (p. gaps)

27/32

- size of shock matters
- selection effect: in size and time

Two useful, general, simplifying results:

• No need to characterize whole evolution of *p* distribution after the shock

Only compute the firms' effect on CPI until first time they adjust prices,

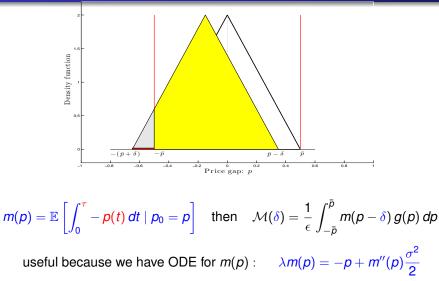
Result due to symmetry after adjustment.

• The decision rule in the transition \bar{y} is the same one as in the st. st. No GE effect due to multiplicative profit function: $\Pi(p, c) = \hat{\Pi}(p) c$,

Interest rates and wages solved independently of prices.

Gol-Lucas figure

Key idea to solve the problem analytically (n = 1)



with boundary conditions $m(0) = m(\bar{p}) = 0$ and known g(p)

Example: two famous models (n = 1)

From the definition
$$\mathcal{M}(\delta) = \frac{1}{\epsilon} \int_{-\bar{p}}^{\bar{p}} m(p - \delta) g(p) dp$$

Using the approximation $\mathcal{M}(\delta) \cong \delta \mathcal{M}'(0) = -\frac{\delta}{\epsilon} \int_{-\bar{p}}^{\bar{p}} m'(p) g(p) dp$

30/32

Example: two famous models (n = 1)

From the definition
$$\mathcal{M}(\delta) = \frac{1}{\epsilon} \int_{-\bar{p}}^{\bar{p}} m(p - \delta) g(p) dp$$

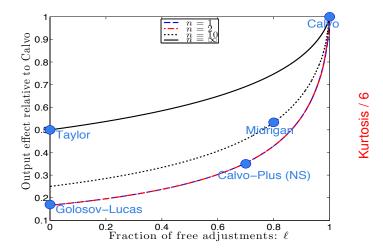
Using the approximation $\mathcal{M}(\delta) \cong \delta \mathcal{M}'(0) = -\frac{\delta}{\epsilon} \int_{-\bar{p}}^{\bar{p}} m'(p) g(p) dp$

and the closed form expressions for m(p) and g(p) we get

$$\delta \mathcal{M}'(0) = \begin{cases} \frac{\delta}{\epsilon} \frac{1}{6N(\Delta p_i)} = \frac{\delta}{\epsilon} \frac{kur(\Delta p_i, \ell)}{6N(\Delta p_i)} & \text{if } \ell = 0 \quad \text{(Gol-Luc} \\ \\ \frac{\delta}{\epsilon} \frac{6}{6N(\Delta p_i)} = \frac{\delta}{\epsilon} \frac{kur(\Delta p_i, \ell)}{6N(\Delta p_i)} & \text{if } \ell \to 1 \quad \text{(Calvo)} \end{cases}$$

More analysis shows this generalizes to any $n \ge 1$ and $\ell \in [0, 1]$

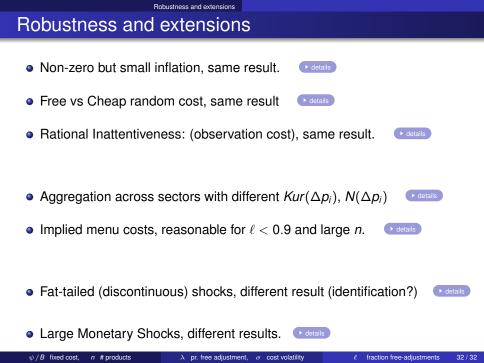
Cumulated output effect relative to Calvo • details



• One curve for each *n*, no other parameters; infinite slope at $\ell = 1$

Differences are due to selection on "time" and "size" of adjustments.

 ψ/B fixed cost, n # products



Inflation sensitivity

Lack of sensitivity to Inflation μ

- Inflation has only second order effect around $\mu = 0$ on
 - entire hazard rate h and frequency of price changes $N(\Delta p_i)$,
 - marginal distribution of absolute value of price changes $w(|\Delta p_i|)$,
 - all centered *even moments* of marginal price changes (e.g. $Kurt(\Delta p_i)$).
 - area under output IRF small monetary shock: $\mathcal{M}'(0)$
 - results on $\mathcal{M}'(0)$ due to symmetry of μ around zero & of (μ, δ) around (0,0).
- Thus expression for holds for *small* inflation rates:

 $\mathcal{M}(\delta;\mu) \approx \frac{\delta}{\epsilon} \frac{Kurt(\Delta p_i;\mu)}{N(\Delta p_i;\mu) \ 6}$

Lack of sensitivity to Inflation μ

- Static "target" prices have drift μ , all price gaps drift down $p_i(t) = -\mu t + \sigma W_i(t) + \sum_{i:\tau_i < t} \Delta p_i(\tau_i)$ all $t \ge 0, i = 1, ..., n$.
- Optimal decision rule are different (no closed form)
 - State is entire vector p, not just $y = ||p||^2$.
 - Prices are not reset to static target at adjustment.
 - Inaction set \mathcal{I} is *not* a hyper-sphere.
 - GE model: nominal rate $r + \mu$, wages grow at μ .

back

Cheap cost

Cheap vs free adjustment cost: Nakumura-Steinsson

- Take the case of n = 1 product.
- cheap random menu cost:

adjust the price paying = $\begin{cases} \psi & \text{with probability } 1 - \lambda \, dt \, or \\ \frac{b}{\psi} & \text{with probability } \lambda \, dt. \end{cases}$

- Cheap adjustment fraction $b \in [0, 1)$ of normal cost ψ .
- Optimal policy: two thresholds 0 , adjust price if

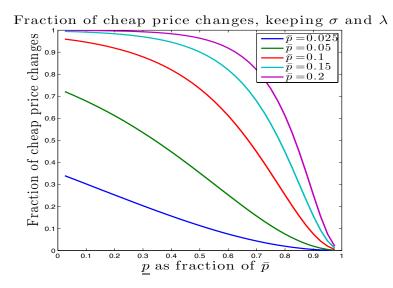
abs. value price gap = $|p(t)| \ge \begin{cases} \bar{p} & \text{and cost } \psi \\ \underline{p} & \text{and cost } b \psi \end{cases}$

• Eliminates price changes smaller than p, & hence decreases $Kurt(\Delta p_i)$.

• Result $\mathcal{M} \approx \frac{\delta}{\epsilon} \frac{Kurt(\Delta p_i)}{6 N(\Delta p_i)}$ still holds.

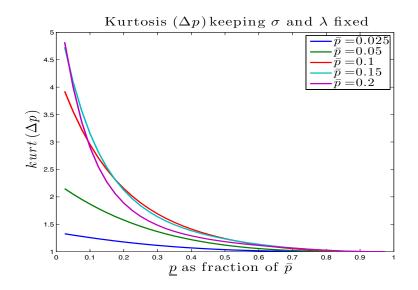
Cheap cost

Fraction of cheap price changes for several \bar{p} and p



Cheap cost

Kurtosis for several \bar{p} and p



Oservation cost model

Rational Inattentiveness (no menu cost):

- Caballero, Reis, Carvalho-Schwartzman, Alvarez-Lippi-Paciello.
- Firms observe price gap only if they pay a random observation costs.
- Optimal decision rules:
 - set times τ until next review = and price adjustment
 - decision cannot depend on (unobserved) current price gaps.
- Randomness of expected observation cost implies random times τ.
- Models with $n = \infty$ have similar formal properties.

Rational Inattentiveness (no menu cost):

- Caballero, Reis, Carvalho-Schwartzman, Alvarez-Lippi-Paciello.
- Firms observe price gap only if they pay a random observation costs.
- Optimal decision rules:
 - set times τ until next review = and price adjustment
 - decision cannot depend on (unobserved) current price gaps.
- Randomness of expected observation cost implies random times τ.
- Models with $n = \infty$ have similar formal properties.
- Monetary shock δ learned only at times when firms observe their cost.
- Allows for any value of $Kurt(\Delta p_i)$, even larger than 6.
- Result $\mathcal{M} \approx \frac{\delta}{\epsilon} \frac{Kurt(\Delta p_i)}{6 N(\Delta p_i)}$ still holds.

Implied menu costs (for $r \downarrow 0$)

• Fixing *n* and $\ell \in (0, 1)$, the menu cost $\psi \ge 0$:

Menu cost per product =
$$\frac{\psi}{n} = B \frac{Var(\Delta p_i)}{N(\Delta p_i)} \Psi(n, \ell)$$

• $\Psi(n, \ell)$ is only a function of (n, ℓ) .

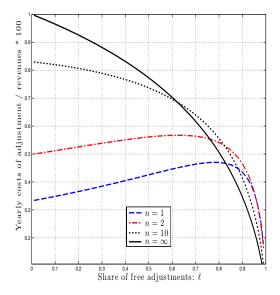
• Total cost: $B = \eta(\eta - 1)/2$ or markup $\mathfrak{m} \equiv 1/(\eta - 1)$ then

 $\frac{\text{Yearly costs of price adjustment}}{\text{Yearly revenues}} = \frac{1}{2} \frac{Var(\Delta p_i)}{\mathfrak{m}} (1 - \ell) \Psi(n, \ell)$

back

Implied menu costs

The cost of price adjustment



Levy et al (QJE, 1997) avg. cost per year around 0.7% of revenues. • Levy et al (QJE, 1997) avg. cost per year around 0.7% of revenues.

Heterogenous sectors

Aggregation across heterogeneous sectors

- Let *e*(*s*) the expenditure share of sector *s* with different parameters.
- Allow different, N(s), Std(s) and Kurt(s) by sector s
- For small δ shocks aggregation across sectors yields:

$$\mathcal{M}(\delta) \approx \frac{1}{6} \frac{\delta}{\epsilon} \sum_{s \in S} \frac{e(s)}{N(s)} Kurt(s)$$

- If Kurt(s) the same across sectors: the model aggregates using expenditure weighted by duration.
- If Kurt(s) varies across sectors: needs to consider its covariation. In French data we found about 15% higher effect due to this effect.

Model with fat tailed shocks

• Process for cost: BM W + Poisson counter N w/ intensity λ

 $dp_i(t) = \sigma dW_i(t) + \xi_i(t) dN(t)$ for i = 1, ..., n

• distribution of fat-tailed shock:

 $0 < \xi \equiv \inf ||\xi||$ with Γ probability = 1

- Results:
 - If the ξ large enough, then threshold \overline{y} is the same as in baseline model.
 - Pat tails contributes to kurtosis by mostly adding large price changes.
 - **(2)** "Lack of identification". (almost) anything goes if Γ unrestricted and ψ small .

large shocks

Effect depends on size of the monetary shock δ

- $\underline{\delta}$ smallest once-and-for-all monetary shock that gives full price flexibility.
- Depends on $Std(\Delta p_i)$ and ℓ :

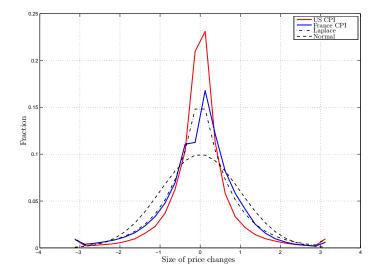
$$\underline{\delta} = 2 \sqrt{\frac{\overline{y}}{n}} = 2 \operatorname{Std}(\Delta p_i) \sqrt{\frac{\mathcal{L}^{-1}(\ell; n)}{\ell}},$$

where $\mathcal{L}(\cdot; n)$.

• Fixing any $n \ge 1$, the ratio

$$\frac{\underline{\delta}}{2 \operatorname{Std}(\Delta p_i))}$$
 is a strictly increasing function of ℓ

ranges from 1 to ∞ as ℓ goes from 0 to 1.



Pooled Standardized Δp : US (Klenow Krystov) vs France CPI

▶ back

Measurement error: CPI vs Scraped Data (France)

• CPI very broad, but subject to measurement error:

Eichenbaum et all: spurios small price changes in CPI and scanner data.

- Our approach:
 - Compare "error free" data for selected products with CPI.
 - Use internet scrapped data for France.
 - Match type of goods/outlet with CPI.
 - Use simple measurement error model to extrapolate to whole CPI.
- Conclusion: kurtosis is about half.

more-micro-evidence

Measurement error: CPI vs Scraped Data (France)

Table : Matching CPI vs. the BPP by store x products

Statistic	BPP	BPP	CPI	BPP	CPI	
	retailer 1	retailer 5	Hypermarkets	retailer 4	Large ret. electr.	
duration	8.58	8.06	4.82	6.44	7.24	
	Statistics for standardized price changes: z					
mean $ z $	0.71	0.70	0.65	0.78	0.70	
% below 0.5 mean $ z $	37.85	40.93	45.48	29.17	41.69	
% below 0.25 mean $ z $	17.46	25.26	26.19	15.33	23.10	
kurtosis of z	5.50	4.30	10.15	2.82	6.33	

more-micro-evidence

Measurement error: CPI vs Scanner data

		France	US (se	,		
	CPI	Cavallo-Rigobon BPP	EJR Safe-way	IRI	Midrigan Nielsen	
	Statistics for standardized price changes: z					
mean of $ z $	0.65	0.70	0.78	0.73	-	
% below 0.50 mean $ z $	45	39	33	39	29	
% below 0.25 mean $ z $	24	21	23	25	13	
kurtosis of <i>z</i> :	10	5	3.0	4.3	3.5	

Measurement error model: measured changes = true (u) + error (ϵ)

true u w/ pr θ and std σ_u , error ϵ w/ pr 1 – θ and std σ_e : $\lim_{\sigma_e \downarrow 0} kurt = \frac{kurt_u}{\theta}$

bottom-line: comparison of BPP vs CPI suggests $\theta \cong 1/2$ and kurt $\in (3, 5)$

French CPI data 2003-2011 for Δp_i

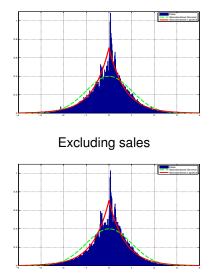
	CPI Data		Benchmarks	
	all records	exc.sales	Normal	Laplace
Frequency of price changes	17.09	14.70		
Moments of standardized price changes: z				
Kurtosis	8.89	10.40	3	6
Moments for the absolute value of standardized price changes: $ z $				
Average: $\mathbb{E}(z)$	0.70	0.69	0.80	0.70
Fraction of observations $< 0.25 \cdot \mathbb{E}(z)$	22.2	20.7	16	22
Fraction of observations $> 2 \cdot \mathbb{E}(z)$	12.9	12.5	11	13
Number of obs. with $\Delta p \neq 0$	1,544,829	1,080,183		

cross-section heterogeneity \rightarrow standardized price changes

$$z_{i,j,t} = rac{\Delta p_{i,j,t} - m_{ij}}{\sigma_{ij}}$$

i-good category (270), *j*-outlet type (11), *t*-time (120 months)

bottom-line: distribution of the standardized Δp closer to Laplace than Normal



Standardized Price Adjustments: French CPI 2003-2011 Dack

Table : Fraction of small price changes: US and French CPI

Moments for the abs	Moments for the absolute value of price changes: $ \Delta p $					
	France	US	Normal	Laplace		
				•		
	0.0	14.0	I			
Average $ \Delta p $	9.2	14.0				
Fraction of $ \Delta p $ below 1%	11.8	12.5				
Fraction of $ \Delta p $ below 2.5%	32.5	24.0				
Fraction of $ \Delta p $ below 5%	57.1	40.6				
Fraction of $ \Delta p $ below $(1/14) \cdot \mathbb{E}(\Delta p)$	2.4	12.5	4.5	6.9		
Fraction of $ \Delta p $ below $(2.5/14) \cdot \mathbb{E}(\Delta p)$	13.5	24.0	11.3	16.4		
Fraction of $ \Delta p $ below $(5/14) \cdot \mathbb{E}(\Delta p)$	28.7	40.6	22.4	30.0		
Number of obs	1,542,586	1,047,547				

Data is NOT standardized

Useful simplifying assumptions for our problem

Simplification on firm problem

 $\bullet\,$ unit root shocks (no mean reversion): $\rightarrow\,$ state summarized by gaps

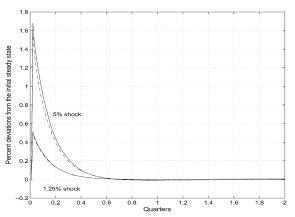
Simplification on eq. structure

• Linear leisure + log(M/P) + one-time shock \rightarrow wages proport. to money

back to firm-problem

Golosov-Lucas

VELUCAS + back to IRF + back to MENU COSTS AND PHILLIPS CURVES



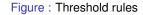
back to 2 useful results

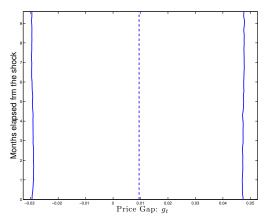
FIG. 7.—Approximate (dashed lines) and exact (solid lines) impulse-response functions: responses of output to a one-time increase (impulse) in the level of money. Initial levels are normalized to one.

Solid line: fixed point on path of aggregate consumption.Dashed line: keeps aggregate consumption at steady state.

more-micro-evidence

Policy rules in non-linear GE model ($n = 1, \mu = 0.02$)





Source: Alvarez-Lippi-Paciello (2012)

back to IRF > back to 2 useful results

Selection on size and time

Compare the average price change of firms that adjust *t* periods after shock

- Golosov-Lucas: early on almost all adjustments upwards.
- Selection on size decreases with ℓ and n.
 - Calvo: adjustments are independent of price gaps.
 - Taylor: adjustments are independent of each price gaps.
 - Any case with $n = \infty$ avg. price change δ every horizon *t*
 - Difference due to distribution of times to adjust {τ}.
 In general, when there is no selection in size,

$$\mathcal{M}(\delta) = rac{\delta}{\epsilon} \left[rac{1 + \mathcal{CV}(\tau)}{2 N(\Delta p_i)}
ight]$$

• So higher variability of times to adjustments $\{\tau\}$ increases area under IRF.

Interpretation as menu cost

- Firms observes profit from *n* products, which are proportional to $||p||^2$.
- Firms don't know profits of each product line separately.
- If they pay ψ disentangle profits from each product, and can change prices accordingly.
- In this case ψ covers other activities than setting new prices.

Results for Impulse Responses : scaling

 $\mathcal{P}_{n,\ell}(\delta, t)$: aggregate price level *t* periods after the monetary shock δ

• Scaling and Stretching:

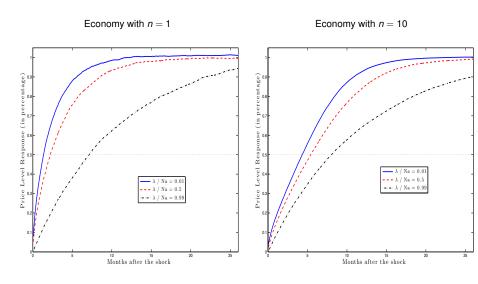
IRF \mathcal{P} of economy with $(Std[\Delta p], N(\Delta p_i))$ at (δ, t) is

a scaled version of one for $\delta/Std[\Delta p]$ and stretched horizon $N(\Delta p_i)$ t:

$$\mathcal{P}_{n,\ell}\left(\delta, t; N\left(\Delta p_{i}\right), Std[\Delta p]\right) \\ = Std[\Delta p] \mathcal{P}_{n,\ell}\left(\frac{\delta}{Std[\Delta p]}, N\left(\Delta p_{i}\right) t; 1, 1\right)$$

more-micro-evidence

$\mathcal{P}_{n,\ell}(\delta, t)$: Response of CPI to shock $\delta = 1\%$



Scales depend on $N(\Delta p_i) = 2$, $Std(\Delta p) = 0.15$; Shape on n, ℓ