Carry Trade Reconsidered

A. Craig Burnside (Duke, NBER & Glasgow)

Seventeenth Annual Conference

Banco Central de Chile, November 2013

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Carry Trade, UIP and Risk Premia

- Uncovered interest parity implies that the average payoffs to carry trades ought to be 0.
- Uncovered interest parity implies that conditional and unconditional risk premia are 0.
- UIP is a well-documented failure in industrialized economies
- Carry trades are profitable
- Currency risk premia are nonzero
- But how closely linked are these phenomena, and do they extend to emerging market currencies?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Carry Trade, UIP and Risk Premia

- Uncovered interest parity implies that the average payoffs to carry trades ought to be 0.
- Uncovered interest parity implies that conditional and unconditional risk premia are 0.
- UIP is a well-documented failure in industrialized economies
- Carry trades are profitable
- Currency risk premia are nonzero
- But how closely linked are these phenomena, and do they extend to emerging market currencies?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Carry Trade, UIP and Risk Premia

- Uncovered interest parity implies that the average payoffs to carry trades ought to be 0.
- Uncovered interest parity implies that conditional and unconditional risk premia are 0.
- UIP is a well-documented failure in industrialized economies
- Carry trades are profitable
- Currency risk premia are nonzero
- But how closely linked are these phenomena, and do they extend to emerging market currencies?

- S: spot exchange rate in USD per foreign currency unit (FCU)
- F: one-month forward exchange rate in USD per FCU
- *i*: US one-month risk-free rate:
- *i**: foreign one-month risk-free rate
- UIP: $\mathbb{E}_t S_{t+1}/S_t = (1+i_t)/(1+i_t^*)$
- CIP: $F_t/S_t = (1+i_t)/(1+i_t^*)$
 - currencies at a forward premium have low interest rates

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Excess return to a long position in foreign currency:

$$z_{t+1}^{L} = (1+i_{t}^{*})\frac{S_{t+1}}{S_{t}} - (1+i_{t}) = \left(\frac{S_{t+1}-F_{t}}{F_{t}}\right)(1+i_{t})$$

• The conditional risk premium

$$p_t \equiv \mathbb{E}_t z_{t+1}^L$$

• Uncovered interest parity

$$p_t = \mathbb{E}_t z_{t+1}^L = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Standard UIP regression with H_0 : $a \approx 0$, $b \approx 1$:

$$\Delta \ln S_{t+1} = a + b(i_t - i_t^*) + \varepsilon_{t+1}$$

• "Equivalent" regression with H_0 : $\alpha = 0 \approx a$, $\beta = 0 \approx b - 1$:

$$x_{t+1}^{L} = \alpha + \beta \frac{F_t - S_t}{F_t} (1 + i_t) + \varepsilon_{t+1}$$

• Classic result: b
eq 1 in fact b < 0 equivalent to eta
eq 0 in fact eta < -1

Results from UIP Regressions

Varying Sample Sizes, 1976–2013

- Industrialized country currencies (G18):
 - \blacktriangleright UIP is rejected at the 5% level for 10 , 10% level for 3, & all remaining currencies except SEK
 - $\hat{eta} < -1$ in 12 cases
- Emerging market currencies (E26):
 - ▶ UIP is rejected at the 5% level for 8, 10% level for 1 more
 - Several rejections are for "crisis" or high inflation countries
 - $\hat{eta} < -1$ in 6 cases
- First impression is that emerging markets are different but can't reject random walk for 13 of G18 and 19 of E26

Chile: can't reject UIP or RW

Results from UIP Regressions

Varying Sample Sizes, 1976–2013

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Do High Interest Rate Currencies Appreciate?

No, most of the them depreciate (but not as much as they "should")! (Hassan and Mano, 2013)

900

э

Profits of the Carry Trade

$$x_{jt+1}^{\text{STD}} = \operatorname{sign}(i_{jt}^* - i_t) x_{jt+1}^L = \operatorname{sign}(S_{jt} - F_{jt}) x_{jt+1}^L.$$

- On a currency-by-currency basis
 - Carry trades were profitable in every G18 currency
 - ★ Significant at the 5% level in 9, at 10% level in 2 more
 - Carry trades were profitable in 24 of the E26 currencies (not Chile)
 - ★ Significant at the 5% level in 6, at 10% level in 4 more
 - * Biggest profits are in currencies with a history of crises or high inflation
- Equally-weighted portfolios of currencies were also highly profitable and have Sharpe ratios that outperform the stock market

Profits of the Carry Trade

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

	Mean	SD	SR	Skew	Kurt
G18 currencies	0.045	0.052	0.87	-0.55	3.84
	(0.009)	(0.004)	(0.19)	(0.35)	(1.37)
All currencies	0.044	0.048	0.92	-0.65	4.16
	(0.009)	(0.004)	(0.21)	(0.33)	(1.13)
US stock market	0.069	0.155	0.45	-0.73	2.28
	(0.026)	(0.009)	(0.18)	(0.17)	(1.16)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Profits of the Carry Trade

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

	Mean	SD	SR	Skew	Kurt
G18 currencies	0.037	0.054	0.68	-0.22	0.88
	(0.013)	(0.004)	(0.26)	(0.19)	(0.35)
E26 currencies	0.038	0.067	0.57	-0.34	3.26
	(0.018)	(0.008)	(0.31)	(0.34)	(1.07)
US stock market	0.056	0.165	0.34	-0.65	0.76
	(0.045)	(0.013)	(0.29)	(0.20)	(0.58)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Profits of the Carry Trade vs CLP

One-Month Interest Differential and Moving Averages of Payoffs

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Profits of the Carry Trade vs CLP

Cumulative Returns

▲ロト ▲舂 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

$$p_{jt} = p_j + p_t + v_{jt}$$
 $E(p_{jt}) = p_j$ $E(p_t) = E(v_{jt}) = 0$

• What components of the risk premium do UIP regressions reflect?

- Obviously the slope coefficient, β , reflects the covariance of the time varying component with the interest differential
- ► The constant is $\alpha \approx p_j + \beta(i^* i)$ and depends on the size of the country-specific mean
- What aspects of the risk premium do the average payoffs to the carry trade reflect?
 - If carry trades are always in one direction they are just long positions, so they could only reflect the country-specific mean (story is disconnected from β)
 - But if carry trades switch sign the time-varying component matters for average payoffs.

$$x_{jt+1}^{\text{STATIC}} = \text{sign}[E(i_{jt}^* - i_t)]x_{jt+1}^L = \text{sign}\,E[(S_{jt} - F_{jt})]x_{jt+1}^L.$$

• If risk premia are constant and the same sign as the forward discount this kind of trade should outperform standard carry trade

$$E(x_j^{\text{STATIC}}) = \operatorname{sign}[E(S_{jt} - F_{jt})]p_j.$$

$$E(x_j^{\text{STD.}}) = [2 \Pr(S_{jt} - F_{jt} > 0) - 1]p_j.$$

- It doesn't, in fact an equally weighted portfolio of standard carry trades outperforms one of static carry trades by a wide margin.
 - This largely reflects the behavior of G18 currencies

Static vs. Standard Carry Trade

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ()~

Conclusion

- Emerging markets are different
 - Departures from UIP seem smaller
 - Overall profits to carry trades are similar to G18 currencies but are concentrated in crisis currencies
- Time variation in risk premia plays a role in both UIP regressions and the returns to the carry trade
 - If you really want to see how time varying premia play a role have to look at conditional means of carry trade payoffs
- Chile
 - UIP is a reasonable approximation, but so is the random walk
 - Carry trading on the CLP was unprofitable in my historical sample (1998–2013)