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A EM Algorithm for Dynamic Factor Model with Missing Observations and
Restrictions

This appendix provides the details of the expectation-maximization (EM) algorithm used to estimate the model. The
description follows Shumway and Stoffer (1982) and Bańbura and Modugno (2014).

Let yt = [y1,t, y2,t, . . . , yn,t]
′, t = 1, . . . , T , denote a stationary vector process of n observed variables standardized

to mean 0 and unit variance. We will derive the EM algorithm for the case when only a subset of Y = {y1, . . . , yT },
denoted by ΩT ⊆ Y is observed. We assume that yt admits a dynamic factor model (DFM) representation in terms
of r normally distributed unobserved common factors collected in the vector ft and normally distributed idiosyncratic
components collected in the vector et = [e1,t, e2,t, . . . , en,t]

′. The measurement equation of the DFM is given by

yt = Λft + et, ei,t ∼ N(0, σ2
i ), (1)

where Λ is an n× r matrix of factor loadings. The dynamics of the common factors are assumed to follow a stationary
vector auto-regressive (VAR) process with 1 lag:

ft = Aft−1 + ut, ut ∼ N(0, Q), (2)

where A is an r × r matrix of auto-regressive coefficients and Q denotes the r × r variance-covariance matrix of the
shocks to the common factors. The common and idiosyncratic shocks are assumed to be uncorrelated at all leads and
lags. The common shocks may be cross-sectionally correlated, but the idiosyncratic shocks are assumed to be cross-
sectionally uncorrelated. In addition, the idiosyncratic shocks are assumed to be serially uncorrelated. We further
assume that f0 ∼ N(µ,Σ).

The EM algorithm (Dempster et al., 1977) is a method for maximizing a likelihood function for problems with in-
complete or latent data. This algorithm was adapted to estimate general dynamic linear models with unobserved
components by Shumway and Stoffer (1982) and small DFMs by Watson and Engle (1983). It was extended to large
DFMs by Doz et al. (2011) based on earlier work by Giannone et al. (2005) and Giannone et al. (2008). Bańbura and
Modugno (2014) modified the algorithm to estimate the parameters of a DFM with an arbitrary pattern of missing data,
e.g., due to mixed data frequencies.1 They also show how to adapt the algorithm for the case of a serially correlated
idiosyncratic component, and for cases with restrictions on the parameters of the model, as in Bork (2009) and Bork
et al. (2009).

In our application, we will be interested in restrictions on Λ and A of the form

Λ =

[
Λ11 0
Λ21 Λ22

]
, A =

[
A11 0
A21 A22

]
, (3)

where Λ11 (A11) is an n1×n1 (r1× r1) matrix, Λ21 (A21) is an n2×n1 (r2× r1) matrix and Λ22 (A22) is an n2×n2

(r2 × r2) matrix, with n1 + n2 = n (r1 + r2 = r). The vectors of observed variables and unobserved factors are
partitioned accordingly:

yt =

[
y1
t

y2
t

]
, ft =

[
f1
t

f2
t

]
,

where y1
t and y2

t (f1
t and f2

t ) are n1 × 1 and n2 × 1 (r1 × 1 and r2 × 1) vectors, respectively.

The algorithm consists of two steps that are iterated to convergence: an expectation and a maximization step. In the
expectation step (E-step), the missing observations are estimated conditional on the observed data and guess values of
the parameters. In the maximization step (M-step), the maximum likelihood estimates of the parameters are calculated
by maximizing the conditional expectation of the likelihood derived in the first step.

A.1 Expectation Step
Let lY,F (θ) denote the joint log-likelihood of the observed data and the latent factors, where F = {f0, f1, . . . , fT },
and where θ collects the parameters of the model. In the E-step, the expectation of the log-likelihood conditional on

1An alternative method to estimate high-dimensional DFMs, based on a time-varying state-space representation, has been proposed by Jung-
backer et al. (2011).
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the observed data is calculated using the estimates from the previous iteration, θ(j):

L(θ, θ(j)) = Eθ(j) [lY,F (θ)|Y ] .

To describe this step, we cast the model in state-space form:

yt = Λft + et, et ∼ N(0, R), (4)
ft = Aft−1 + ut, ut ∼ N(0, Q), (5)

with

R =


σ2

1 0 · · · 0

0 σ2
2

. . .
...

...
. . . . . . 0

0 · · · 0 σ2
n


and f0 ∼ N(µ,Σ). Then, the parameters of the model are θ = {µ,Σ,Λ, R,A,Q}. Based on (4) and (5), Kalman
filtering and smoothing techniques can be used to calculate lY,F (θ) and to obtain the required moments of the la-

tent factors. In particular, we will need ft|T = Eθ(j) (ft|ΩT ), Pt|T = Eθ(j)

[(
ft − ft|T

) (
ft − ft|T

)′ |ΩT ] and

Pt,t−1|T = Eθ(j)

[(
ft − ft|T

) (
ft−1 − ft−1|T

)′ |ΩT ], where Eθ(j) (·|ΩT ) denotes the expectation operator condi-
tional on the available data ΩT and the parameters θ(j).

Under the Gaussian assumption, the prediction error decomposition of the joint density function yields the following
sequence of conditional density functions representing the joint log-likelihood:

lY,F (θ) = constant− 1

2
log |Σ| − 1

2
(f0 − µ)

′
Σ−1 (f0 − µ)− T

2
log |Q|

−1

2

T∑
t=1

(ft −Aft−1)
′
Q−1 (ft −Aft−1)− T

2
log |R| − 1

2

T∑
t=1

(yt − Λft)
′
R−1 (yt − Λft)

= constant− 1

2
log |Σ| − 1

2
tr
[
Σ−1 (f0 − µ) (f0 − µ)

′]− T

2
log |Q|

−1

2
tr

[
Q−1

T∑
t=1

(ft −Aft−1) (ft −Aft−1)
′

]
− T

2
log |R| − 1

2
tr

[
R−1

T∑
t=1

(yt − Λft) (yt − Λft)
′

]
,

where the second equality uses the cyclic property of the trace operator applied to the respective quadratic forms (i.e.,
tr(x′Zx) =tr(Zxx′)). Taking expectations conditional on the observed data ΩT and the parameters θ(j), the previous
expression can be re-written as follows:

L(θ, θ(j)) = constant− 1

2
log |Σ| − 1

2
tr
[
Σ−1

(
Eθ(j) (f0f

′
0|ΩT )− µf ′0|T − f0|Tµ

′ + µµ′
)]

−T
2

log |Q| − 1

2
tr

[
Q−1

T∑
t=1

(
Eθ(j) (ftf

′
t |ΩT )− Eθ(j)

(
ftf
′
t−1|ΩT

)
A′

−AEθ(j) (ft−1f
′
t |ΩT ) +AEθ(j)

(
ft−1f

′
t−1|ΩT

)
A′

)]

−T
2

log |R| − 1

2
tr

[
R−1

T∑
t=1

Eθ(j)
[
(yt − Λft) (yt − Λft)

′ |ΩT
]]
.

Using the decomposition ft = ft|T +
(
ft − ft|T

)
for t = 0, . . . , T , as well as the fact that Eθ(j)

(
ft − ft|T |ΩT

)
= 0

yields

L(θ, θ(j)) = constant− 1

2
log |Σ| − 1

2
tr
{

Σ−1
[(
f0|T − µ

) (
f0|T − µ

)′
+ P0|T

]}
−T

2
log |Q| − 1

2
tr
[
Q−1 (M1 −M2A

′ −AM ′2 +AM3A
′)
]

−T
2

log |R| − 1

2
tr

{
R−1

T∑
t=1

Eθ(j)
[
(yt − Λft) (yt − Λft)

′ |ΩT
]}

, (6)
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where

M1 =

T∑
t=1

(
ft|T f

′
t|T + Pt|T

)
, (7)

M2 =

T∑
t=1

(
ft|T f

′
t−1|T + Pt,t−1|T

)
, (8)

M3 =

T∑
t=1

(
ft−1|T f

′
t−1|T + Pt−1|T

)
. (9)

Now consider the expectationEθ(j)
[
(yt − Λft) (yt − Λft)

′ |ΩT
]
. To characterize this expectation, following Bańbura

and Modugno (2014), let
yt = Wtyt + (In −Wt) yt = y

(1)
t + y

(2)
t ,

where Wt is an n × n diagonal matrix with ones corresponding to the non-missing entries in yt and 0 otherwise, and
where the n× 1 vector y(1)

t (y(2)
t ) contains the non-missing (missing) observations at time t with 0 in place of missing

(non-missing) observations. We have

(yt − Λft) (yt − Λft)
′

= [Wt (yt − Λft) + (In −Wt) (yt − Λft)] [Wt (yt − Λft) + (In −Wt) (yt − Λft)]
′

= Wt (yt − Λft) (yt − Λft)
′
Wt + (In −Wt) (yt − Λft) (yt − Λft)

′
(In −Wt)

+Wt (yt − Λft) (yt − Λft)
′
(In −Wt) + (In −Wt) (yt − Λft) (yt − Λft)

′
Wt. (10)

By the law of iterated expectations (i.e., E(X|Y ) = E [E(X|Z, Y )|Y ])),

Eθ(j)
[
(yt − Λft) (yt − Λft)

′ |ΩT
]

= Eθ(j)
[
Eθ(j)

[
(yt − Λft) (yt − Λft)

′ |F,ΩT
]
|ΩT

]
.

Then, defining e(2)
t = (In −Wt) (yt − Λft), we have

Eθ(j)
[
Wt (yt − Λft) (yt − Λft)

′
(In −Wt) |F,ΩT

]
=

(
y

(1)
t −WtΛft

)
Eθ(j)

(
e

(2)′
t |F,ΩT

)
= 0, (11)

Eθ(j)
[
(In −Wt) (yt − Λft) (yt − Λft)

′
Wt|F,ΩT

]
= Eθ(j)

(
e

(2)
t |F,ΩT

)(
y

(1)
t − f ′tΛ′Wt

)
= 0, (12)

and
Eθ(j)

[
(In −Wt) (yt − Λft) (yt − Λft)

′
(In −Wt) |F,ΩT

]
= (In −Wt)R(j) (In −Wt) . (13)

In addition, we have

Eθ(j)
[
Wt (yt − Λft) (yt − Λft)

′
Wt|ΩT

]
= y

(1)
t y

(1)′
t −WtΛEθ(j) (ft|ΩT ) y

(1)′
t − y(1)

t Eθ(j) (f ′t |ΩT ) Λ′Wt

+WtΛEθ(j) (ftf
′
t |ΩT ) Λ′Wt. (14)

Taking the conditional expectation of (10) and using (11) through (14) yields

Eθ(j)
[
(yt − Λft) (yt − Λft)

′ |ΩT
]

= y
(1)
t y

(1)′
t −WtΛEθ(j) (ft|ΩT ) y

(1)′
t − y(1)

t Eθ(j) (f ′t |ΩT ) Λ′Wt

+WtΛEθ(j) (ftf
′
t |ΩT ) Λ′Wt + (In −Wt)R(j) (In −Wt)

= y
(1)
t y

(1)′
t −WtΛft|T y

(1)′
t − y(1)

t f ′t|TΛ′Wt +WtΛ
(
ft|T f

′
t|T + Pt|T

)
Λ′Wt

+ (In −Wt)R(j) (In −Wt) . (15)

Inserting (15) into (6) yields

L(θ, θ(j)) = constant− 1

2
log |Σ| − 1

2
tr
{

Σ−1
[(
f0|T − µ

) (
f0|T − µ

)′
+ P0|T

]}
−T

2
log |Q| − 1

2
tr
[
Q−1 (M1 −M2A

′ −AM ′2 +AM3A
′)
]

−T
2

log |R| − 1

2
tr

R−1
T∑
t=1

 y
(1)
t y

(1)′
t −WtΛft|T y

(1)′
t − y(1)

t f ′t|TΛ′Wt

+WtΛ
(
ft|T f

′
t|T + Pt|T

)
Λ′Wt

+ (In −Wt)R(j) (In −Wt)


 .
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We further have (which will be useful for maximization with respect to the parameters Λ and A):

L(θ, θ(j)) = constant− 1

2
log |Σ| − 1

2
tr
{

Σ−1
[(
f0|T − µ

) (
f0|T − µ

)′
+ P0|T

]}
−T

2
log |Q| − 1

2

[
tr
(
Q−1M1

)
− tr

(
A′Q−1M2

)
− tr

(
M ′2Q

−1A
)

+ tr
(
Q−1AM3A

′)]
−T

2
log |R| − 1

2


tr
(
R−1y

(1)
t y

(1)′
t

)
− tr

(
ft|T y

(1)′
t R−1Λ

)
− tr

(
Λ′R−1y

(1)
t f ′t|T

)
+tr
[
R−1WtΛ

(
ft|T f

′
t|T + Pt|T

)
Λ′
]

+tr
[
R−1 (In −Wt)R(j) (In −Wt)

]


= constant− 1

2
log |Σ| − 1

2
tr
{

Σ−1
[(
f0|T − µ

) (
f0|T − µ

)′
+ P0|T

]}
−T

2
log |Q| − 1

2

[
tr
(
Q−1M1

)
− vec (A)

′
(M ′2 ⊗ Ir) vec

(
Q−1

)
−vec (M2)

′ (
I ⊗Q−1

)
vec (A) + vec (A)

′ (
M3 ⊗Q−1

)
vec (A)

]

−T
2

log |R| − 1

2

T∑
t=1


tr
(
R−1y

(1)
t y

(1)′
t

)
− vec

(
y

(1)
t f ′t|T

)′ (
Ir ⊗R−1

)
vec (Λ)

−vec (Λ)
′ (
Ir ⊗R−1

)
vec
(
y

(1)
t f ′t|T

)
+vec (Λ)

′
[(
ft|T f

′
t|T + Pt|T

)
⊗R−1Wt

]
vec (Λ)

+tr
[
R−1 (In −Wt)R(j) (In −Wt)

]


,

where the first equality uses a cyclic property of the trace operator, i.e., tr(ABCD) =tr(BCDA) =tr(CDAB) =tr(CABC)
and the fact thatWtR

−1Wt = R−1Wt = WtR
−1, while the second equality uses the properties tr(AB) =vec(A′)

′vec(B),
tr(ABC) =vec(A′)

′
(C ′ ⊗ I)vec(B) =vec(A′)

′
(I ⊗B)vec(C) and tr(ABCD) =vec(D′)

′
(C ′ ⊗A)vec(B), as well

as the fact that M1, M3 and Pt|T are symmetric matrices.

The required conditional moments of the latent factors are obtained from the Kalman filtering and smoothing recur-
sions. These recursions are easily adapted for missing observations (see Durbin and Koopman, 2012, Section 4.10), by
re-writing the observation equation as follows:

y∗t = Λ∗ft + e∗t , e∗t ∼ N(0, R∗),

where y∗t = Htyt, Λ∗ = HtΛ, e∗t = Htet and R∗ = HtRH
′
t, where Ht is a matrix whose rows correspond to the

rows of Wt that are also rows of In (i.e., the rows of Ht are a subset of the rows of In). Starting at f0|0 and P0|0, the
Kalman filter gives

ft|t−1 = Aft−1|t−1, (16)
Pt|t−1 = APt−1|t−1A

′ +Q, (17)
Σt = Λ∗Pt|t−1Λ∗′ +R∗, (18)

Kt = Pt|t−1Λ∗′Σ−1
t , (19)

εt = y∗t − Λ∗ft|t−1, (20)
ft|t = ft|t−1 +Ktεt, (21)
Pt|t = (I −KtΛ

∗)Pt|t−1, (22)

for t = 1, . . . , T . Starting at fT |T and PT |T , the Kalman smoother gives

Jt−1 = Pt−1|t−1A
′P−1
t|t−1, (23)

ft−1|T = ft−t|t−1 + Jt−1

(
ft|T − ft|t−1

)
, (24)

Pt−1|T = Pt−1|t−1 + Jt−1

(
Pt|T − Pt|t−1

)
J ′t−1, (25)

for t = T, T − 1 . . . , 1. The following backward recursions give the covariance Pt,t−1|T for t = T, T − 1 . . . , 2 (see
Shumway and Stoffer, 1982):

Pt−1,t−2|T = Pt−1|t−1J
′
t−2 + Jt−1

(
Pt,t−1|T −APt−1|t−1

)
J ′t−2, (26)
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where
PT,T−1|T = (I −KTΛ∗)APT−1|T−1. (27)

The Kalman filter also gives the value of the log-likelihood of the observed data:

lΩT (θ) = constant− 1

2

T∑
t=1

log |Σt (θ)| − 1

2

T∑
t=1

εt (θ)
′
Σt (θ)

−1
εt (θ) , (28)

where we have emphasized the dependence of the innovations and their conditional variance on the parameters.

A.2 Maximization Step
In the M-step, the parameters are re-estimated by maximizing the expected log-likelihood over θ:

θ(j) = arg max
θ
L(θ, θ(j)),

possibly subject to linear restrictions on a subset of ηθ ≥ 0 elements of θ, in the form

Hθvec(θ) = κθ,

where κθ is an ηθ×1 vector that collects the restrictions andHθ is an ηθ×length(θ) matrix. This maximization problem
can be written in Lagrangian form:

L (θ, θ(j), λθ) = L(θ, θ(j))− λ′θ (κθ −Hθvec(θ)) ,

where λθ is an ηθ×1 vector of Lagrangian multipliers. In our application, the restrictions on Λ and A given in (3) may
be written in the form HΛvec(Λ) = κΛ and HAvec(A) = κA, where κΛ is an ηΛ × 1 vector, κA is an κA × 1 vector,
HΛ is an ηΛ × nr matrix, and HA is an ηA × r2 matrix. The associated Lagrangian multipliers λΛ and λA are of size
ηΛ × 1 and κA × 1, respectively.

Consider first the derivative of L (θ, θ(j), λθ) with respect to vec(Λ):

∂L(θ, θ(j))

∂vec (Λ)

∣∣∣∣
Λ=Λ(j+1)

=
1

2

T∑
t=1

∂


vec
(
y

(1)
t f ′t|T

)′ (
Ir ⊗R (j)

−1
)

vec (Λ)

+vec (Λ)
′
(
Ir ⊗R (j)

−1
)

vec
(
y

(1)
t f ′t|T

)
−vec (Λ)

′
[(
ft|T f

′
t|T + Pt|T

)
⊗R (j)

−1
Wt

]
vec (Λ)


∂vec (Λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Λ=Λ(j+1)

+ λ′ΛHΛ

=

T∑
t=1

 vec
(
y

(1)
t f ′t|T

)′ (
Ir ⊗R (j)

−1
)

−vec (Λ (j + 1))
′
[(
ft|T f

′
t|T + Pt|T

)
⊗WtR (j)

−1
]
+ λ′ΛHΛ,

where we have used the identities ∂ (Ax) /∂x = A, ∂ (x′A) /∂x = A′, ∂ (x′Ax) /∂x = 2x′A, and (A⊗B)
′

=
A′ ⊗ B′. Setting the last expression to zero and using the property (A⊗B) (C ⊗D) = AC ⊗ BD (if the products
AC and BD exist) yields

λ′ΛHΛ =

T∑
t=1

{
vec (Λ (j + 1))

′
[(
ft|T f

′
t|T + Pt|T

)
⊗WtR (j)

−1
]
− vec

(
y

(1)
t f ′t|T

)′ (
Ir ⊗R (j)

−1
)}

=

T∑
t=1

{
vec (Λ (j + 1))

′
[(
ft|T f

′
t|T + Pt|T

)
⊗Wt

]
− vec

(
y

(1)
t f ′t|T

)′}(
Ir ⊗R (j)

−1
)
. (29)

5



Solving (29) for H ′ΛλΛ yields

H ′ΛλΛ =
(
Ir ⊗R (j)

−1
)

[M5vec (Λ (j + 1))− vec (M4)]

=
(
Ir ⊗R (j)

−1
)
M5

[
vec (Λ (j + 1))−M−1

5 vec (M4)
]

=
(
Ir ⊗R (j)

−1
)
M5 [vec (Λ (j + 1))− vec (Λu (j + 1))] , (30)

where

M4 =

T∑
t=1

y
(1)
t f ′t|T , (31)

M5 =

T∑
t=1

[(
ft|T f

′
t|T + Pt|T

)
⊗Wt

]
, (32)

and where Λu (j + 1) denotes the unrestricted estimate satisfying

vec (Λu (j + 1)) = M−1
5 vec (M4) . (33)

Pre-multiplying (30) by
[(
Ir ⊗R (j)

−1
)
M5

]−1

yields

M−1
5 (Ir ⊗R (j))H ′ΛλΛ = vec (Λ (j + 1))− vec (Λu (j + 1)) . (34)

where we have used the properties (AB)
−1

= B−1A−1 (if A and B are square matrices) and (A⊗B)
−1

= A−1 ⊗
B−1. Pre-multiplying (34) by HΛ, plugging in the constraint HΛvec(Λ (j + 1)) = κΛ and (33), and solving for λΛ

yields:
λΛ =

[
HΛM

−1
5 (Ir ⊗R (j))H ′Λ

]−1
[κΛ −HΛvec (Λu (j + 1))] .

Replacing the solution for λΛ in (29) and solving for vec(Λ (j + 1)) yields

vec (Λ (j + 1)) = vec (Λu (j + 1))

+M−1
5 (Ir ⊗R (j))H ′Λ

[
HΛM

−1
5 (Ir ⊗R (j))H ′Λ

]−1
[κΛ −HΛvec (Λu (j + 1))] . (35)

Now consider the derivative of L (θ, θ(j), λθ) with respect to vec(A):

∂L(θ, θ(j))

∂vec (A)

∣∣∣∣
A=A(j+1)

=
1

2

∂tr


vec (A)

′
(M ′2 ⊗ Ir) vec

(
Q (j)

−1
)

+vec (M2)
′
(
Ir ⊗Q (j)

−1
)

vec (A)

−vec (A)
′
(
M3 ⊗Q (j)

−1
)

vec (A)


∂vec (A)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
A=A(j+1)

+ λ′AHA

= vec
(
Q (j)

−1
)′

(M2 ⊗ Ir)− vec (A(j + 1))
′
(
M3 ⊗Q (j)

−1
)

+ λ′AHA.

Setting the last expression to zero and solving for H ′AλA yields

H ′AλA =
(
M3 ⊗Q (j)

−1
)

vec (A(j + 1))− (M ′2 ⊗ Ir) vec
(
Q (j)

−1
)
, (36)
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Pre-multiplying both sides of (36) by
(
M3 ⊗Q (j)

−1
)−1

yields

(
M−1

3 ⊗Q (j)
)
H ′AλA =

(
M−1

3 ⊗Q (j)
) (
M3 ⊗Q (j)

−1
)

vec (A(j + 1))−
(
M−1

3 ⊗Q (j)
)

(M ′2 ⊗ Ir) vec
(
Q (j)

−1
)

= (Ir ⊗ Ir) vec (A(j + 1))−
(
M−1

3 ⊗Q (j)
) (
Ir ⊗Q (j)

−1
)

vec(M2)

= Ir2vec (A(j + 1))−
(
M−1

3 ⊗ Ir
)

vec(M2)

= vec (A(j + 1))− vec
(
M2M

−1
3

)
= vec (A(j + 1))− vec (Au(j + 1)) , (37)

where
vec (Au(j + 1))) = vec

(
M2M

−1
3

)
. (38)

Pre-multiplying (37) by HA, plugging in the constraint HAvec(A (j + 1)) = κA and (38), and solving for λA yields

λA =
[
HA

(
M−1

3 ⊗Q (j)
)
H ′A
]−1

[κA −HAvec (Au(j + 1))] .

Replacing the solution for λA in (36) and solving for vec(A (j + 1)) yields

vec (A(j + 1)) = vec (Au(j + 1))

+
(
M−1

3 ⊗Q (j)
)
H ′A

[
HA

(
M−1

3 ⊗Q (j)
)
H ′A
]−1

[κA −HAvec (Au(j + 1))] . (39)

As L(θ, θ(j)) does not have to be maximized simultaneously with respect to all parameters (see, e.g., McLachlan and
Krishnan, 2008), the following expressions are obtained by differentiatingL(θ̆, θ(j)), where θ̆ = {µ,Σ,Λ(j + 1), R,A(j + 1), Q}.
The derivative of L(θ̆, θ(j)) with respect to Q is given by

∂L(θ̆, θ(j))

∂Q

∣∣∣∣∣
Q=Q(j+1)

= −T
2

∂ log |Q|
∂Q

∣∣∣∣
Q=Q(j+1)

− 1

2

∂tr
[
Q−1

(
M1 −M2A (j + 1)

′ −A (j + 1)M ′2
+A (j + 1)M3A (j + 1)

′

)]
∂Q

∣∣∣∣∣∣∣∣
Q=Q(j+1)

= −T
2
Q(j + 1)−1 +

1

2

[
Q(j + 1)−1

(
M1 −M2A (j + 1)

′ −A (j + 1)M ′2
+A (j + 1)M3A (j + 1)

′

)
Q(j + 1)−1

]
,

where we have used the identities ∂ log |X| /∂X = X−1 and ∂tr
(
X−1A

)
/∂X = −X−1AX−1, and the fact that M1

and M3 are symmetric matrices. Setting the last expression to zero and solving for Q(j + 1) yields

Q(j + 1) =
1

T

(
M1 −M2A (j + 1)

′ −A (j + 1)M ′2 +A (j + 1)M3A (j + 1)
′)
. (40)

The derivative of L(θ̆, θ(j)) with respect to the i-th element on the diagonal of R is given by

∂L(θ, θ(j))

∂σ2
i

∣∣∣∣
σ2
i =σ2

i (j+1)

= −T
2

∂ log |R|
∂σ2

i

∣∣∣∣
σ2
i =σ2

i (j+1)

−1

2
tr


∂R−1

∂σ2
i

∣∣∣∣
σ2
i =σ2

i (j+1)

T∑
t=1


(
y

(1)
t −WtΛ(j + 1)ft|T

)
(
y

(1)
t −WtΛ(j + 1)ft|T

)′
+WtΛ(j + 1)Pt|TΛ(j + 1)′Wt

+ (In −Wt)R(j) (In −Wt)




= −T
2
σ2
i (j + 1)−1

+
1

2
σ2
i (j + 1)−2

T∑
t=1


(
y

(1)
i,t −

(
WtΛ(j + 1)ft|T

)
ii

)2

+
(
WtΛ(j + 1)Pt|TΛ(j + 1)′Wt

)
ii

+ ((In −Wt)R(j) (In −Wt))ii

 ,
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where Xii denotes the i-the element on the diagonal of matrix X . Setting the last expression to zero and solving for
σ2
i (j + 1) yields

σ2
i (j + 1) =

1

T

T∑
t=1

[ (
y

(1)
i,t −

(
WtΛ(j + 1)ft|T

)
ii

)2

+
(
WtΛ(j + 1)Pt|TΛ(j + 1)′Wt

)
ii

+ ((In −Wt)R(j) (In −Wt))ii

]
.

Then, the updated estimate of R is

R(j + 1) = diag

{
1

T

T∑
t=1

[ (
y

(1)
t −WtΛ(j + 1)ft|T

)(
y

(1)
t −WtΛ(j + 1)ft|T

)′
+WtΛ(j + 1)Pt|TΛ(j + 1)′Wt + (In −Wt)R(j) (In −Wt)

]}

= diag
{

1

T
[M6 −M7 −M ′7 +M8 +M9]

}
, (41)

where

M6 =

T∑
t=1

y
(1)
t y

(1)′
t , (42)

M7 =

T∑
t=1

y
(1)
t f ′t|TΛ(j + 1)′Wt, (43)

M8 =

T∑
t=1

WtΛ(j + 1)
(
ft|T f

′
t|T + Pt|T

)
Λ(j + 1)′Wt, (44)

M9 =

T∑
t=1

(In −Wt)R(j) (In −Wt) . (45)

The derivative of L(θ, θ(j)) with respect to µ is

∂L(θ, θ(j))

∂µ

∣∣∣∣
µ=µ(j+1)

= −1

2

∂tr
{

Σ−1
(
f0|T − µ

) (
f0|T − µ

)′}
∂µ

∣∣∣∣∣∣
µ=µ(j+1)

=
(
f ′0|T − µ(j + 1)′

)
Σ−1,

such that the update for the initial mean is
µ(j + 1) = f0|T . (46)

Defining θ̌ = {µ(j + 1),Σ,Λ, R,A,Q}, the derivative of L(θ̌, θ(j)) with respect to Σ is

∂L(θ̌, θ(j))

∂Σ

∣∣∣∣
Σ=Σ(j+1)

= −1

2

log |Σ|
∂Σ

∣∣∣∣
Σ=Σ(j+1)

−1

2

∂tr
{

Σ−1
[(
f0|T − µ(j + 1)

) (
f0|T − µ(j + 1)

)′
+ P0|T

]}
∂Σ

∣∣∣∣∣∣
Σ=Σ(j+1)

= −1

2
Σ(j + 1)−1 +

1

2
Σ(j + 1)−1P0|TΣ(j + 1)−1,

such that the update for the initial variance-covariance matrix is

Σ(j + 1) = P0|T . (47)
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A.3 Initial Parameters
To initialize the algorithm, the set of parameters θ(0) is estimated by principal components adapted to consider the
partition of the data and factors in an external and domestic block and the restrictions imposed in the equations (1) and
(2) in the main text.

A.3.1 External block

The estimation of the external factors and their associated loadings relies on the variance-covariance matrix of the
observables. More specifically, this matrix of standardized variables, yE , is estimated as Ĉov(yE) = yE

′
yE/(T − 1).

Then, Λ̂EE is calculated as the eigenvectors of Ĉov(yE), normalized and ordered decreasingly. Once Λ̂EE is obtained,
the factors are estimated as linear combinations of yE , where the weights correspond to the factor loadings: f̂E =
yEΛ̂EE .

A.3.2 Domestic block

Once the external factors and loadings are estimated, it is possible to estimate the domestic block imposing the block
exogeneity restrictions. This is done following the iterative approach proposed by Boivin and Giannoni (2007); see
also Charnavoki and Dolado (2014) and Kamber et al. (2016). The idea behind this approach is that the estimated
external factors can be used to orthogonalize (or “externally correct”) the estimated domestic factors to control for
the effect of foreign factors on domestic block. This guarantees that the estimated domestic factors capture only the
dynamics of domestic variables not captured by the foreign factors. Formally, this is achieved using the following
iterative approach:

1. Estimate {Λ̂EE , f̂Et }Tt=1 and {Λ̂DD(0), f̂
D(0)
t }Tt=1 with principal components independently to obtain KE ex-

ternal and KD domestic factors.

2. For i = 0, regress yDt on f̂Et and f̂D(i)
t using Ordinary Least Squares (OLS) to obtain Λ̂ED(i) (which corresponds

to the OLS coefficients associated with f̂Et ).

3. Compute ŷD(i)
t = yDt − Λ̂ED(i)f̂Et .

4. Estimate {Λ̂DD(i+1), f̂
D(i+1)
t }Tt=1 using the first KD principal components of ŷD(i)

t .

5. Repeat steps 2-4 for i = 1, 2, 3, . . . , until convergence of {f̂D(i+1)
t }Tt=1.

A.3.3 Factor VAR

The block exogeneity restrictions present in the factor VAR are imposed by a reparametrization of the unrestricted
version of the model that contains the desired linear constraints (i.e., exogeneity of the external factors with respect to
the domestic factors). As a consequence of this reparametrization, not all the regressors are shared throughout all the
equations present in the system. Thus, standard equation-by-equation OLS does not yield efficient parameter estimates
Zellner (1962). This issue can be tackled by applying Feasible Generalized Least Squares (FGLS), which yields
asymptotically efficient and consistent parameter estimates by estimating the covariance matrix of the residuals via an
iterative approach. Also, since the VAR under consideration is stationary, standard asymptotic inference continues to
apply. For further details see, e.g., Lütkepohl (2007).

A.4 EM algorithm pseudo-code
The procedure for the EM computations is as follows:

1. Initialize the parameters using the initial estimators θ(0) = {µ(0),Σ(0),Λ(0), A(0), R(0), Q(0)}.

On iteration j (j = 1, 2, . . .):

2. Obtain the smoothed moments of the common factors for t = 1, . . . , T using the Kalman filter conditional on
the estimated parameters, θ(j).
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3. Compute the log-likelihood of the observed data.

4. Obtain the updated estimates, θ(j + 1).

5. Repeat steps 2 through 4 until convergence.

6. Obtain estimates of the shadow rate and other missing data using the measurement equation.

For the convergence criterion, it should be smaller than 1×10−6. We consider the relative change in the log-likelihood
of the observed data, [lY (θ(j + 1))− lY (θ(j))] / |lY (θ(j))| .

B Data
Table B1: Data sources and variable definitions

Variable Transformation Source Id
DOMESTIC BLOCK

Interest Rates
Monetary Policy Rate CBC MPR
Interest Rate Swap 90d (“Promedio Cámara”) CBC 3M
Interest Rate Swap 180d (“Promedio Cámara”) CBC 6M
Interest Rate Swap 1y (“Promedio Cámara”) CBC 1Y
Interest Rate Swap 2y (“Promedio Cámara”) CBC 2Y
Interest Rate Swap 3y (“Promedio Cámara”) CBC 3Y
Interest Rate Swap 5y (“Promedio Cámara”) CBC 5Y
Interest Rate Swap 7y (“Promedio Cámara”) CBC 7Y
Interest Rate Swap 10y (“Promedio Cámara”) CBC 10Y
Bond rate 1y CBC bcp 1Y
Bond rate 2y CBC bcp 2Y
Bond rate 5y CBC bcp 5Y
Bond rate 10y CBC bcp 10Y
Monetary Aggregates
Monetary Base or M0 YoY CBC M0
M1 YoY CBC M1
M2 YoY CBC M2
Balance Sheet: Assets
Net External Position YoY CBC NEP
Internal Credit YoY CBC NEP
Bonds and notes YoY CBC B&N

EXTERNAL BLOCK

Interest Rates
Effective federal fund rate FRED FYFF
Rate of U.S Treasury Bills 3 months FRED FYGM3
Rate of U.S Treasury Bills 6 months FRED FYGM6
Yield of U.S Treasury Bonds 1 year FRED FYGT1
Yield of U.S Treasury Bonds 2 year FRED FYGT2
Yield of U.S Treasury Bonds 5 year FRED FYGT5
Yield of U.S Treasury Bonds 10 year FRED FYGT10
Yield of U.S Treasury Bonds 20 year FRED FYGT20
Overnight indexed swap (OIS) Bloomberg OIS3M
Monetary Aggregates
Monetary Base or M0 YoY CBC FMFBA_rb
M1 YoY FRED FM1
M2 YoY FRED F M2
Balance Sheet: Assets
Total Assets YoY CBC TotAss
Total Fed. Res. Securities held outright YoY CBC TotSec
Percentage of long-term U.S Treasury securities <5 y YoY CBC per 5y
Percentage of long-term U.S Treasury securities <10 y YoY CBC per 10y
Percentage of long-term U.S Treasury securities >10 y YoY CBC per GT10y
Balance Sheet: Liabilities
Total Reserves YoY CBC totRes
Excess of reserves YoY CBC excessRes
Required reserves YoY CBC reqRes

Notes: CBC = Central Bank of Chile and FRED = Federal Reserve Bank of St Louis.

C Selection of the Number of Factors
This appendix describes the details of the methodology and analysis carried out to determine the number of factors.
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The data of this application consist of 39 time series for 218 months (September 2002 to October 2020). For this
dataset, the criteria proposed by Bai and Ng (2002) have tended to overestimate the number of factors. Therefore,
the ABC criterion was implemented following Alessi et al. (2010). This criterion follows the idea of the procedure
and arguments by Hallin and Liska (2007). Briefly, the ABC criterion multiplies the penalty functions of Bai and Ng
(2002) by a constant (that is, c = 1 in Bai & Ng), then through an iterative process the constants are sensitized in an
admissible range. Next, the number of factors r̂c, more robust for each value of the constant is estimated. Finally, the
researcher decides the number of factors provided by the most robust model (Sc = 0). The codes were taken from the
authors’ website.

The ABC criterion is applied to the external and domestic data block and results are presented in Figure B1 on the left
and right panels, respectively. On the vertical axis, the number of factors is presented and on the horizontal axis the
values of the constant (c=1 by default in Bai & Ng). For the external block, it can be seen that stability zones are found
by observing the functions r̂c flat and Sc = 0 for: 2, 4, 5 and 6 factors. Following the selection criteria suggested by
Alessi et al. (2010), the decision is based on the longest flat section r̂c. Note that higher (lower) values of the constant
will tend to select a more (less) parsimonious model. In our case, following the above criteria, we select 4 external
factors because they exhibit the most extensive zone of stability in the intermediate constant values of the range. Using
a similar criterion for the domestic block, 5 domestic factors are considered (Figure B1, right panel).

Figure B1: ABC criterion
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Notes: The solid red line indicates the optimal number of factors for different values of c. The blue dotted line indicates if this number of factors
is stable across different subsamples. The idea is to choose the number of factors so that they are stable for different values of the constant and for
different sample sizes, that is, where the blue dotted line is zero and the red line remains flat. These figures are standard and are generated using
codes available from the authors’ website, for more details see Alessi et al. (2010).

In summary, following the ABC criterior, the baseline models considers 4 external factors and 5 domestic factors. As
shown in the main text, the main results are robust to small changes in the specification of the baseline model.

D Recursive Estimation Around the Global Financial Crisis
This section presents a recursive estimate of the SMPR during the global financial crisis episode. The model specifica-
tion includes four domestic and foreign factors given that, as we illustrate in section 4.2, the fith domestic factor (F9)
is strongly linked to the internal credit stimulus, which is related to the implementation of the FCIC and other special
credit support programs in the context of the Covid-19 pandemic, which was not implemented during the financial
crisis.

11



Figure D1: Recursive estimation
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Notes: The black lines depict the recursive estimates of the SMPRs from August 2009 to May 2010. The thin red line depicts the effective MPR.

This exercise shows that as new data comes in during the crisis, the methodology tends to revise more the SMPR than
in normal times, lending support to the view that around turning points confidence bands could be wider.

E Taylor Rule Estimation for Chile
The Taylor rule is adapted to capture the conduct of monetary policy in Chile. Chile has had an inflation targeting
scheme in place since 1999, where the objective is expected inflation, which means that there is no MPR reaction
to transitory shocks and idiosyncratic inflation surprises. Furthermore, the tradition of a mining country means that
the most appropiate measure of inflationary pressure is the gap measured from non-mining output. The frequency of
publication of GDP is quarterly.

The following rule is estimated:

it − int = c1(it−1 − int−1) + (1− c1)(c2(Etπt+4 − 3%) + c3yt) + εt, (48)

where the variable to be explained is the interest rate gap, measured as the difference between the MPR and the nominal
neutral rate (see Aldunate et al., 2019). The arguments are one lag in the interest rate gap (smoothing), the 11-month
inflation expectations from the Economic Expectations Survey carried out by the CBC, and the non-mining output gap.
Parameters c1 to c3 are estimated with standard econometric methods.
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Table E1: Taylor rule estimates using different interest rates

Notes: Quarterly frequency estimates from 2006Q2 to 2020Q3. When using the MPR, we include dummies to account for the FLAP (coefficients
not reported). Standard errors in parenthesis. The estimation of the Taylor rules assumes a neutral MPR of the order of 4% Aldunate et al. (2019)),
the constant is not reported. *** denotes that estimates are statistically different from zero at 1% levels.
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