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Resumen

Este trabajo explora los desafios de modelar series de tiempo de alta frecuencia, de grandes datos no
financieros. Centrandose en datos diarios, horarios e incluso a nivel de minutos, el estudio investiga la
presencia de diversas estacionalidades (diarias, semanales, mensuales y anuales) y como estos ciclos
pueden interrelacionarse entre si y ser influenciados por patrones climaticos y variaciones del
calendario. Mediante el analisis de estas caracteristicas ciclicas y las respuestas de los datos a factores
externos, el trabajo explora el potencial de los modelos de cambio de régimen, dindmicos y no lineales
para capturar estas complejidades. Ademds, propone el uso de Autometrics -un algoritmo
automatizado para identificar modelos parsimoniosos- para dar cuenta conjuntamente de todas las
peculiaridades de los datos. Los modelos resultantes, mas alla del analisis estructural y la prediccion,
son utiles para construir indicadores lideres macroeconémicos cuantitativos en tiempo real,
planificacion de la demanda y estrategias de precios dindmicos en diversos sectores sensibles a los
factores identificados en el analisis (por ejemplo, de servicios publicos, tiendas minoristas, trafico o
indicadores del mercado laboral). El trabajo incluye una aplicacion a la serie diaria de solicitudes de
cesantia en Chile.

Abstract

This paper explores the challenges of modelling high-frequency, non-financial big data time-series.
Focusing on daily, hourly, and even minute-level data, the study in-vestigates the presence of various
seasonalities (daily, weekly, monthly, and annual) and how these cycles might interrelate between
them and be influenced by weather patterns and calendar variations. By analyzing these cyclical
characteristics and data responses to external factors, the paper explores the potential for regime-
switching, dynamic, and non-linear models to capture these complexities. Furthermore, it proposes the
use of Autometrics —an automated algorithm for identifying parsimonious models— to jointly account
for all the data’s peculiarities. The resulting models, beyond structural anal-ysis and forecasting, are
useful for constructing real-time quantitative macroeconomic leading indicators, demand planning and
dynamic pricing strategies in various sectors that are sensitive to the factors identified in the analysis
(e.g., of utilities, retail stores, traffic, or labor market indicators). The paper includes an application to
the daily series of jobless claims in Chile.

* This paper was initially distributed as Tall big data time series of high frequency: stylized facts and econometric modelling. The views expressed in
this paper are those of the authors and do not necessarily represent those of the Central Bank of Chile of its board members. The application in section
4 of the paper was developed within the scope of the research agenda conducted by the Central Bank of Chile (CBC) in economic and financial affairs
of its competence. The CBC has access to anonymized information from various public and private entities, by virtue of collaboration agreements
signed with these institutions. To secure the privacy of workers and firms, the CBC mandates that the development, extraction and publication of the
results should not allow the identification, directly or indirectly, of natural or legal persons.
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Abstract
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account for all the data’s peculiarities. The resulting models, beyond structural anal-
ysis and forecasting, are useful for constructing real-time quantitative macroeconomic
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traffic, or labor market indicators). The paper includes an application to the daily
series of jobless claims in Chile.
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1 Introduction

Big data has revolutionized our ability to collect and analyze information. It offers a vast
amount of data points, often at much higher frequencies than traditional sources. This infor-
mation, often referring to micro units and available at very high frequency, even in real-time,
can be generated from web activity (Cavallo and Rigobon, 2016), sensor data (like traffic
patterns), or smart meters. However, the very complexity of big data presents a challenge:
transforming this information into usable knowledge requires significant processing (Franke
and et al, 2016). This challenge has given rise to the field of Data Science, where Statistics
and Computer Science play a crucial role.

This paper addresses the specific challenges posed by high-frequency, non-financial time
series data. Adopting the term tall big data from Hendry (2015a), we characterize these
datasets as having relatively few endogenous variables but potentially hundreds of exogenous
variables—to be designed by the analyst—and a large number of observations. Collected at
daily, hourly, or even minute frequencies, these data exhibit rapid fluctuations and intricate
patterns. Unlike traditional monthly or quarterly data, they present distinct complexities
related to seasonality, weather influences, and calendar effects.

Complex Seasonality. Traditional econometric models often account for basic seasonal
patterns, such as monthly or yearly cycles. However, high-frequency data reveals a more
nuanced picture. Daily, weekly, and even specific calendar day effects can become significant.
Imagine, for example, analyzing hourly retail sales data. We might observe not just a
weekly cycle (higher sales on weekends) but also daily fluctuations (higher sales during
lunch hours) and potentially even variations based on the day of the week (higher sales on
payday compared to Mondays). Capturing these intricate seasonal patterns is crucial for
extracting meaningful insights from the data, as emphasized by Hendry (2015a).

The Influence of Weather and Calendar Effects. Beyond seasonality, high-frequency
data can be significantly influenced by external factors like weather and calendar variations.
For instance, daily electricity consumption might soar during heat waves, requiring adjust-
ments in the model. Similarly, a holiday landing on a Monday could disrupt the typical
weekly sales cycle. Understanding and accounting for these external influences is essential
to avoid misleading conclusions from the data, as highlighted in the by Zhou et al. (2017).

Our modelling approach. This paper proposes a methodology for building econo-
metric models that can handle the complexities of high-frequency, non-financial time series
data. Our approach acknowledges the presence of multiple seasonal patterns, weather influ-
ences, calendar effects and outlying observations. We introduce a framework for construct-
ing explanatory variables that capture these intricacies and adopt an estimation strategy
that deals the potentially large number of explanatory variables. The resulting models, be-
yond structural analysis and forecasting, are useful for constructing real-time quantitative
macroeconomic leading indicators, demand planning and dynamic pricing strategies in var-

ious sectors that are sensitive to the factors identified in the analysis (see e.g., Den Boer,
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2015, Dutta and Mitra, 2017, Saharan et al., 2020). By capturing the complex interplay of
factors influencing demand and customer behavior in real-time, these models could inform
pricing decisions that adapt to fluctuations in seasonality, weather, and calendar effects.
For instance, a utility company store might leverage such models to adjust prices based on
real-time weather data, potentially offering lower rates during off-peak hours or periods of
mild weather. Similarly, the widespread adoption of electronic price tags has enabled re-
tail stores to implement dynamic pricing strategies, where weather and calendar effects can
significantly influence pricing decisions.

Additionally, the proposed method provides an opportunity to “de-bug” the data itself.
By identifying and adjusting for complex seasonality and weather effects, we can create a
“cleaned” version of the high-frequency data. This cleaned data can then be used to con-
struct real-time quantitative macroeconomic leading indicators, providing valuable insights
for economic policymakers and businesses alike. Importantly, traditional signal extraction
methods designed for lower-frequency (monthly/quarterly) data are ineffective even when
applied to lower-frequency aggregates of high-frequency data. This is due to two primary
reasons. Firstly, nonlinearities present at high frequencies cannot be accurately captured
at lower frequencies, leading to biased estimates of the signals, as discussed in Section 3.2.
Secondly, outliers are particularly prevalent in high-frequency data. When aggregated to a
lower frequency, such as monthly, many outliers may be obscured or rendered statistically
insignificant. However, these outliers can still influence the values of the lower frequency
aggregated data, even if they do not appear as statistically significant anomalies. Thus,
outlier correction should be performed at the high-frequency level.

While our research addresses similar challenges to Proietti and Pedregal (2023), par-
ticularly regarding complex seasonality and calendar effects, our approach offers two main
advantages. (i) Causal Foundations: We leverage our understanding of the data’s un-
derlying characteristics to build an interpretable model. This ensures all factors included in
the model have clear causal relationships, enhancing user comprehension. (ii) Joint Es-
timation: Unlike the sequential approach employed by Espasa et al. (1996) and Proietti
and Pedregal (2023), where seasonality is estimated first followed by other components, our
approach estimates all factors simultaneously within a general framework.

The remainder of this paper is organized as follows. Section 2 explores the “stylized
facts” often observed in high-frequency data and analyzes their specific characteristics in our
context of interest. Section 3 focuses on the econometric strategy to model those stylized
facts. Section 4 presents an empirical application concerning daily jobless claims in Chile.

Finally, Section 5 concludes the paper.

2 Stylized Facts of High-Frequency Big Data Time Se-
ries

This section outlines the characteristic features of non-financial tall big data time series.



a)

Multiple Seasonal Cycles: These time series often exhibit multiple seasonal patterns
(daily, weekly, monthly, and annual), which can be distorted by interactions among them-
selves and by the influence of weather and calendar effects. Think on the example of the
introduction, about hourly retail sales data. We might observe not just a weekly cycle
(higher sales on weekends) but also daily fluctuations (higher sales during lunch hours)
and potentially even variations based on the day of the week (higher sales on paydays,
which may be not fixed along the week or the month). Additionally, the weekly sales
cycle can fluctuate depending on the season and weather. Weekends may see higher sales
during periods with comfortable temperatures, while sales may to dip during extreme hot

or cold spells.

Weather Dependence: The data may be significantly influenced by weather conditions, in-
cluding precipitation, wind speed, humidity, temperature, luminosity, air pressure, cloudi-
ness, and daylight hours. These relationships can be complex, involving multiple regimes,
varying across different weather value ranges, and exhibiting dynamic, non-linear, and
multiplicative structures. Furthermore, forecast weather data may be more relevant than

historical observations in some cases (Cancelo et al., 2008).

Accurately capturing weather effects requires careful consideration of the specific sector
and geographical area. For broader regions, aggregated weather data is necessary, with

weights assigned based on the variable’s importance in each location.

Temperature is often a primary weather factor. Categorizing temperature into neutral,
cold, and hot ranges can help capture nonlinear effects. These effects can vary by time
of day, day of week, and season, leading to multiple regimes. Additionally, the impact of
weather can be dynamic, with past weather conditions influencing the present relation-

ship. Nonlinear modeling techniques can be employed to capture these complex patterns.

Daily bus ridership, for example, typically rises on rainy days as people opt for the
bus over walking to avoid getting wet. However, this trend might shift on Fridays and

weekends, when rain could lead to an increase in car use instead of public transportation.

Calendar Effects: The annual calendar composition can substantially impact the data.

Key factors include:

e Weekday vs. Weekend: The type of day (weekday or weekend) can interact with
seasons and extreme weather conditions. The public transportation demand example

discussed above illustrates these interactions.

e Long Weekends: Periods preceded or followed by non-working days can also exhibit

interactive effects. For instance, Thanksgiving Thursdays in the US.

e Vacation Periods: Major holiday seasons (Christmas, Easter, summer) can influence
the data. For instance, Christmas period can have a different global effect or different

particular effects depending on the day of the week on which Christmas day falls.
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e Special Days: Holidays falling on weekdays, strikes, elections, and seasonal transi-

tions can have varying impacts depending on their timing.

It must be noted that aggregating the data over time, for instance, from daily to monthly
level, could conceal the effects of the mentioned calendar factors, but not cancel them.
Consequently, estimating these effects using aggregated monthly data can lead to inac-
curate results, as we discuss in Section 3.2. Therefore, to accurately capture and model

calendar effects, it is essential to work with disaggregated data.

Outstanding Observations: Due to the aforementioned factors, the data often contain
unusual values that are not actual outliers but can be explained by econometric models
incorporating weather, calendar effects, and their interactions within different regimes and
structural forms. For instance, a very hot day in a weekend in summertime can generate
different effects than in a weekday or a weekend in wintertime, which may appear as

outliers if not properly modelled.

While genuine outliers should be addressed, many apparent outliers can be attributed
to these underlying factors, providing opportunities for causal explanations. Although
estimating interaction effects with limited data points can be challenging, modeling these

effects is crucial for accurate forecasting and avoiding spurious outlier corrections.

Importance of aggregation level: A critical consideration in analyzing such data is the
level of aggregation. While weather and calendar factors exert significant influence on
overall cyclical patterns, sectoral variations, labor market dynamics, and societal habits
introduce disparities across sectors and geographic regions. Consequently, analyzing data

at an aggregate level can obscure these heterogeneities.

Disaggregating the data can reveal nuanced patterns, enhance model precision, and in-
form targeted policy interventions. However, it also introduces challenges such as in-
creased complexity and the potential for overfitting. The optimal level of aggregation
is contingent on the specific research question, data availability, and computational con-

straints.

Lack of homogeneity: As mentioned above, daily weather patterns significantly influ-
ence our high-frequency data, creating distinct daily cycles that vary across seasons and
weekdays. To accurately capture these complex dynamics when working with frequen-
cies higher than daily (for instance, hourly, half-hourly, and quarter-hourly), we propose
using seasonal daily models (see also Cancelo et al., 2008). These models involve develop-
ing multiple daily models for different moments of the cycle, incorporating weather and

calendar factors to explain the data’s behavior.

Given the complex nature of these data, a thorough and systematic model discovery pro-

cess is essential. By identifying the underlying causal factors and their intricate relationships,

it is possible to explain much of the apparent volatility in the data. The paper proposes



using the automated Autometrics procedure (Doornik, 2009 and Hendry and Doornik, 2018)

to discover parsimonious models that capture the data’s characteristics. Table 1 summarizes
the all the stylized facts described above.

Table 1: Stylized Facts of Tall Big Data Time Series of High Frequency

Stylized Fact

‘ Description

Multiple Seasonal Cycles

Weather Dependence

Calendar Effects

Outstanding Observations

Data Disaggregation

Data Homogeneity

Time series exhibit daily, weekly, monthly, and annual patterns,
potentially influenced by interactions and weather/calendar effects.

Data is sensitive to various weather conditions, with complex
relationships involving multiple regimes, value ranges,
and dynamic/non-linear structures.

Annual calendar components (weekdays, long weekends, holidays,
special days) impact the data, often interacting with other factors.

Data may contain unusual values explained by model specifications
including weather, calendar effects, and their interactions,
rather than being true outliers.

Analyzing data at a disaggregated level (sectoral, geographical)
can reveal hidden patterns and improve model accuracy but increases
complexity and computational demands.

The relationship between data and its past/exogenous variables may
not be constant over time, what may require working with a different
daily model for each moment of the cycle, possibly with cross restrictions

between models and with residual cross-correlations

3 Econometric strategy

Given the complex patterns influenced by calendar and weather factors in tall big data time
series, analysts must consider a vast array of potential alternative exogenous variables from
the outset of model building, including a possible large set of dummy variables to capture
seasonal and calendar effects and their interactions. To address this challenge, we propose
using an automated approach like Autometrics (see Doornik, 2009). This involves specifying
a comprehensive initial model (the so called, general unrestricted model - GUM) formulating
alternative calendar and weather-related schemes, including a possible large set of interaction
terms. Autometrics then employs a general-to-specific strategy, conducting an exhaustive
multi-path tree search —implemented by block segmentation with expansive and contracting
phases— to identify the most parsimonious model while ensuring it encompasses the initial
specification and meets diagnostic tests for adequacy. The algorithm also embeds Indicator
Saturation Estimation (ISE), formulated in Castle et al. (2023), generalizing initial saturation
indicators such as Impulse Indicator Saturation (IIS) and Step Indicator Saturation (SIS). By

saturating the regression with impulses and step indicator variables (and other indicators
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if necessary), these techniques allow the estimation of outliers (impulses) and level shifts
(steps) jointly with the selection of the model (see e.g., Hendry and Doornik, 2018).

A core hyperparameter of the algorithm is the target target size («), which establishes
the threshold for determining the statistical significance of regressors, including impulses
and step indicators. This parameter significantly influences the tree search process. Unlike
backward stepwise methods, Autometrics explores multiple paths, employs encompassing
tests against the GUM, and conducts comprehensive diagnostic checks. Consequently, while
target size balances overfitting and bias, it is not the sole determinant of the final model (see
Doornik, 2009).

Building upon Espasa et al. (1996), we provided a more detailed characterization of
stylized facts (Table 1) commonly observed in these time series. This foundation allows
analysts to construct a comprehensive set of explanatory variables that capture the complex
dynamics, including nonlinearities, regime shifts, and interactions, associated with calendar

and weather factors.

3.1 The algorithm

The objective is to design a methodology to estimate all seasonal, calendar, and weather
effects that may be relevant to the series at hand. This goal presents two main challenges.
First, we need to define a list of potentially relevant effects and their possible interactions.
Second, we need to select those which are relevant, considering that the existence of actual
outliers and measurement errors can distort both, the selection of the relevant effects and
their quantification.

We propose the following algorithm:

1. Based on the stylized facts of Table 1, define a very general structure to capture cycles,
calendar, weather effects and interactions between them. In next section we describe
in detail how we define this structure for the special case of daily jobless claims in

Chile. But in general it will include:

(a) Annual, monthly, and weekly cycles. Time series with a frequency higher than
daily (e.g., hourly or even higher) often exhibit daily cycles with varying patterns
across different cycle phases. In these cases, employing a distinct model for each

phase, such as 24 separate models for hourly data, might be necessary.
(b) Interactions between previous cycles.
(c) Special calendar effects such as non-labor days, Christmas, New Year, Easter, etc.

(d) Other special effects. For example, in the empirial application in next section we
include the social unrest of October 2019, the covid crisis, the regulatory change

admitting claims on the internet, etc.

(e) Weather variables, mainly to consider the effect of rain and temperature on the

variable of interest.



(f) Regular and seasonal lag structure to allow for some flexibility to the deterministic

seasonal effects and to model a non-seasonal cycle.

2. Starting with a big model that includes all possible effects and interactions defined
above (the General Unrestricted Model—GUM), select a final model with Autometrics
including the detection of contamination effects (outliers, location shifts, broken trends,
parameter changes) using ISE. Since the number of potentially relevant regressors could
be rather large, it would be important to use different target sizes for selecting outliers,
deterministic effects, and the lag structure. Hence, we define an estimation procedure

that consists of three steps:

(a) Run Autometrics with ISE including all the N deterministic effects and p lags of
the dependent variable in the GUM using a tight target size («y) to avoid keeping

too many indicators. Store the selected indicators in set Ij.

(b) Repeat step 1 with a larger, but still tight, target size («;) without ISE but
including /; in the GUM. Store the selected deterministic effects in set X™.

(¢) Run Autometrics without ISE, a standard target size (a2), and including in the

GUM the p lags, I, and X*.

Defining ¥, as the the logarithm of the original series, X; as the matrix that contain all
the variables finally selected after step 2.c, and ®(L) as the corresponding autoregressive

polynomial, the final model is:

gy =c+ P(L)y + Xif + €, (1)

so that the series corrected of all the cyclical, calendar, and weather effects—which we

denote as the filtered series—-would be:

c+ Xif €t
T1-0(L) 1-9(L) @)

Yt

3.2 Quantitative macroeconomic leading indicators built from tall
big data adjusted for calendar and weather effects

Several types of tall-big data with millions of observations per month can serve as valu-
able inputs for constructing quantitative macroeconomic leading indicators—typically at a
monthly frequency—that offer near real-time insights. These monthly indicators can often
be more reliable than qualitative indicators based on surveys of economic agents, who may
lack comprehensive information or exhibit herd behavior. Examples of data suitable for con-
structing such indicators include electricity consumption, credit card transactions (Bodas
et al., 2018), traffic data, sales, and Google’s data (Choi and Varian, 2012).

It’s crucial to note that economic agents’ responses to calendar and weather factors

may differ significantly between these high-frequency variables and broader macroeconomic



indicators like GDP. To effectively use these high-frequency variables as leading indicators,
it’s essential to remove the influence of calendar and weather effects.

A common—but incorrect—approach involves including monthly aggregates of weather
and calendar indicators as regressors in a monthly model for the potential leading indicator
(say, y;*) and then removing the estimated effects from ;. This method fails to account for
nonlinearities between these factors and the underlying daily data —say, y?— used to construct
i

Consider, for example, electricity consumption as a leading economic indicator. As high-
lighted in previous section, its relationship with weather, particularly temperature, is non-
linear: consumption rises both with high and low temperatures but decreases in moderate
conditions. For instance, a month with fluctuating temperatures—alternating hot and cold
days—might exhibit high electricity consumption due to weather rather than higher cyclical
demand. However, the month’s average temperature could fall within a moderate range,
masking the weather’s impact when aggregating electricity consumption at the monthly
level. This would erroneously suggest higher underlying economic activity.

The correct procedure entails estimating calendar and weather effects directly from the
daily data (y?) and removing these estimated effects to obtain an adjusted y¢ series. Subse-

quently, aggregating this adjusted daily series yields a monthly hard indicator.

4 Empirical application to Daily Jobless Claims in Chile

4.1 Description of the data

We analyze daily jobless claims in Chile collected by the Chilean Unemployment Fund Man-
agement Company (AFC, standing for Sociedad Administradora de Fondos de Cesantia de
Chile) from January 1, 2015 to November 26, 2021 (1802 observations, excluding weekends),
which exhibit significant seasonal and calendar patterns (Figures 1 and 2). Prior to April 1,
2020, claims were submitted in person, but online filing was introduced due to the COVID-19
pandemic, which began in Chile in late March 2020!.

The agency responsible for managing these claims utilizes the data for short-term opera-
tional planning and as an early labor market indicator. Accurately quantifying the numerous
seasonal and calendar effects is essential for operational planning, as they account for most of
the series’ short-term variability. These effects also obscure the underlying trend, hindering
the use of the series as an early warning indicator.

Visual inspection and simple averages reveal pronounced seasonal and calendar patterns
in the jobless claims data (Figures 3 and 4). A typical month exhibits a 50% decline in claims
from the first to the last working day (Figure 4a), while a typical week shows a 30% decrease
from Monday to Friday (Figure 4b). Annually, claims fall by approximately 25% from March

to December. These patterns suggest a strong beginning-of-month and end-of-month effect

!These data is publicly available only at a monthly frequency. The Central Bank of Chile has access to
aggregated daily information, by virtue of collaboration agreements signed with the AFC.



Figure 1: Original series (number of claims)
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Figure 2: Original series (number of claims)—year 2018
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within the monthly cycle.

While these are the most apparent seasonal patterns, additional factors may influence
jobless claims. For example, it is important to consider whether the first working day of a
month falls on a Friday or Monday, account for non-working days, holidays like Christmas
and New Year, and explore interactions among these factors. Furthermore, the October
2019 social unrest and the COVID-19 crisis, along with the subsequent shift to online claim
filing, may have significant impacts. Weather variables, with both linear and nonlinear
effects, could also interact with other factors. To comprehensively model the data, we must

incorporate all these potential regressors.

Figure 3: Original series (number of claims), leaving out days with no claims- year 2018
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Figure 4: Monthly, weekly, and annual averages of the original series
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4.2 Implementation details

We begin with a comprehensive set of 461 potential regressors (detailed in Table 2) and
incorporate a lag structure of 15 regular and seasonal lags of the dependent variable (specif-
ically, lags 1 to 6, 9 to 11, 14 to 16, 19 to 21, 24 to 26, and 29 to 31). We employ the
algorithm outlined in previous section, using target sizes ag, aq, and ay of 0.1%, 0.5%, and
1% respectively.

For including weather effects, we first construct a country-average temperature (rain)
series as the average of the daily average temperature (rain) of 20 weather stations located
along the country, weighted by the regional GDP corresponding to the area of influence of
each station. We use a specific type of non-linear effect of temperature by partitioning the
original country average into three series: one that takes the country average value when it
is lower than or equal to 20 degrees and zero otherwise, another one that takes the country
average value when it is higher than 20 and lower than or equal to 24 degrees and zero
otherwise, and a third one for the case when the average temperature is above 24 degrees.
This strategy would allow different effects of cold, mid, and hot temperatures on the number
of claims. For the rain, we just include the country average.

To account for the COVID-19 pandemic, we employ the Oxford Stringency Index, mea-
suring the intensity of mobility restrictions imposed by local authorities. This index is
divided into three phases: growth (March 14, 2020 to August 6, 2020), stability (August 7,
2020 to July 17, 2021), and decline (July 19, 2021 to November 28, 2021).

The onset of the pandemic coincided with a regulatory change enabling online claim filing.
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This change, combined with altered pandemic-related behavior, appears to have induced a
structural shift in the seasonal pattern. To address this, we introduce a broken seasonal
pattern for the COVID period by multiplying variables in lines 1 to 5 of Table 2 by an
indicator equaling 1 during the COVID period and 0 otherwise. Additionally, the availability
of online filing may have influenced the relevance of weather variables. Consequently, we
multiply variables in line 15 of Table 2 by the COVID period indicator as well. This expansion
results in a total of 840 potential regressors in the GUM, compared to the initial 461.

Table 2: Cyclical, calendar, and weather regressors included in the GUM

¥ of Variables in B of Varlables in Total num of

the GUM active in | the GUM sctive in | variables in the ::'::T:::::

Deterministic and weather effects the whole sample | the covid period GUM 1
Annual cycle 11 11 2 &
Manthly eycle, which differences the fiest and last 10 labsr days of the month 20 20 40 15(3)
Weekly cycle 4 4 8 4(2)
Interactions between the annual oycle and the monthly opde 240 240 480 34 (24)
Interactions between the weekly cycle and the monthly oyce 100 100 200 | a(3)
Hon-labor days with 2 lags and 1 kead 4 4 2
Interactions betareen non-laber days (ncluding the lead and lag) and the weekly cycle 0 20 [
Interactions betaeen non-labor days (ncluding the lead and lag) and the annual eycle 48 48

Tha laat lsbar-day of the vear
Controls for the social unrest of October 2019
Controls for the special national holpdays around September de 18"

B

B

1 1

2

1

Control for December the 24" 1
1

[ R

2
2
1
Control for Decembaer the 31 1

Controls for the Cowid-19 period; the oxford stringency index broken-down into three
periods (grewth, stability, and dedine) plus an indicator variable taking the value 1 in 3 3 a
2020,03/23 (when restrictions started) and -1 in 2021/11/04 (when main restrictions ended)

Weather variables: three temperature variables and one rain varlable 4 4 8 a

Total 461 i B40 93

Numbers in parenthesis indicate the number of variables corresponding to the covid period.

4.3 Results

Table 4 presents detailed results for the final model. From the initial 840 regressors in the
GUM, Autometrics selects 93, along with 63 outlier corrections. Comparing the models
with and without broken seasonal patterns, two key differences emerge: first, the number of
outliers during the COVID period decreases substantially (from 76 to 43) when the broken
pattern are considered. Second, the distribution of outliers within the COVID period is no
longer concentrated around seasonal peaks (see Figures A.1 to A.4 in the appendix).

Figures 5 and 6 display the filtered series (equation 2) and estimated seasonal and cal-
endar effects. Comparing the filtered and original series (first three panels of Figure 5)
underscores the critical role of seasonal and calendar effects in explaining the time series’
variance. Notably, even after meticulously modeling these effects, several outliers persist
(last panel of Figure 5), highlighting the importance of employing our algorithm with ICE.

Additionally, Table 2 and Figure 6 demonstrate the significance of not only linear seasonal
and calendar effects but also their interactions. The annual cycle (variables seasM in Table
3 and the second panel of Figure 6) exhibits the expected seasonal peaks from March to May
and a decline in November, as observed in Figure 4.

The monthly cycle is characterized by a pronounced beginning-of-month effect (vari-
ables firstDayLab in Table 3, and the third panel of Figure 6) and an end-of-month effect
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(variables LastDayLab in Table 3, and the third panel of Figure 6). The positive beginning-
of-month effect spans the first seven weekdays, with the most pronounced impact occurring
within the first three days, leading to daily jobless claim variations of nearly 50%. The
negative end-of-month effect extends over five weekdays and is approximately one-fourth the
magnitude of the beginning-of-month effect. Notably, the beginning-of-month effect dimin-
ishes by roughly 30% from March 2020 onward, coinciding with the onset of the pandemic
and the introduction of online claim filing.

The weekly cycle (variables seasD in Table 3 and the first panel of Figure 6) exhibits
pronounced peaks at the beginning of the week. However, the magnitude of these weekly
effects is somewhat attenuated post-March 2020. The Monday seasonal effect, for instance,
decreases from nearly 15% in the pre-COVID period to approximately 11% after March 2020,
a statistically significant decline.

Beyond these linear effects, significant interaction effects exist among the seasonal cycles.
Notably, the monthly cycle interacts with both the annual cycle (variables ProdMonth_x_LastD _x
and ProdMonth_x_FirstD_x in Table 3, and the fifth panel of Figure 6) and the weekly cy-
cle (variables ProdWeek_x_LastD _x, and ProdWeek_x_FirstD_x in Table 3, and the sixth
panel of Figure 6). These interactions, particularly those between the monthly and annual cy-
cles, are pronounced throughout the sample period but become more influential post-March
2020. While these interactions previously induced daily variations of approximately +-9%,
they now contribute to fluctuations of around +-22% on average, with specific combinations
reaching +-50%.

Interactions between the monthly and weekly cycles induce average daily variations of
approximately +-7% in the pre-COVID period, increasing to +-50% after March 2020.

Non-labor days induce substantial daily variations not only on the non-labor day itself
but also on the preceding and following days. These effects vary across different months
(variables LagFer, and FerLag_x_Month_x in Table 3 and the seventh panel of Figure 6).

Additionally, specific events like the October 2019 social unrest (variables SemCrisis_180ct
and Lunes21_Oct in Table 3), the Chilean Independence Day holiday in September (variable
Sept_17_L_J in Table 3), and the effects of December 24th and 31st significantly impact the
series.

Regarding weather variables, neither temperature nor rainfall emerged as significant re-
gressors in the model. While this is plausible for the post-April 2020 period with online
claim filing, we anticipated some influence during earlier periods. It’s possible that weather
effects are indeed negligible or that our modeling approach was insufficiently nuanced. For
instance, extreme weather conditions or interactions with seasonal peaks might yield relevant
patterns. These questions warrant further investigation.

All in all, our findings underscore the critical importance of accurately modeling com-
plex seasonal, calendar, and deterministic effects, along with their interactions and outliers.
Without such meticulous treatment, analysis would be based on the highly volatile original

series (red line in the first panel of Figure 5) rather than the stabilized filtered series (blue
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line), leading to misleading conclusions.

Figure 5: Original and filtered series
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Figure 6: Seasonal effects period 2019-2021
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Table 3: The final model (outliers not reported)

Coefficient Std.Error t-value t-prob

dl_sol_1 -0.364074 0.01578 -23.1 0
dl_sol_2 -0.174983 0.01474 -11.9 0
dl_sol_31 -0.0019004 0.000866 -2.19 0.028
LagFer_0 -8.55081 0.01483 -577 0
LagFer_1 -3.02398  0.1335 -22.7 0
seasM_3 0.256908 0.02498 10.3 0
seasM_4 0.245613  0.02904 8.46 0
seasM_5 0.165667 0.02511 6.6 0
seasM_8 -0.0666882 0.02205 -3.02 0.003
seasM_10 -0.20885 0.03166 -6.6 0
seasM_11 -0.230909 0.02846 -8.11 0
seasD_1 0.148562 0.004455 33.3 0
seasD_2 0.0954595 0.003987 23.9 0
seasD_3 0.0199969 0.004371 4.58 0
seasD_4 -0.0944193 0.003293 -28.7 0
Ferlag_0_Day_1 -0.112775 0.01794 -6.29 0
Ferlag_2 Day_1 -1.4675 0.1255 -11.7 0
Ferlag_-1_Day 2 -0.0599717 0.02219  -2.7 0.007
Ferlag_2_Day 2 -1.45953  0.1235 -11.8 0
Ferlag 2 Day 3 -1.43471  0.1266 -11.3 0
Ferlag_0_Day 4 0.0971613 0.02168  4.48 0
Ferlag_2_Day 4 -1.38025 0.1265 -10.9 0
Ferlag_2_Day_5 -1.52108  0.1255 -12.1 0
Ferlag_0_Month_1 -0.325183  0.04067 -8 0
Ferlag_1_Month_4 -0.0905445 0.02735 -3.31 0.001
Ferlag_1_Month_6 0.0739739 0.02704  2.74 0.006
Ferlag_-1_Month_9 -0.0906634 0.02623 -3.46 6E-04
FerLag_0_Month_3 0.0870984 0.02745 3.17 0.002
Ferlag_0_Month_10 0.0943003 0.02436 3.87 1E-04
Ferlag_0_Month_11 0.101028 0.03493 2.89 0.004
FerLag_0_Month_12 0.150775 0.02472 6.1 0
firstDaylLabl 0.465177 0.01618 28.7 0
firstDaylLab2 0.477657 0.01721 27.8 0
firstDaylLab3 0.395885 0.01876 21.1 0
firstDaylLab4 0.258904 0.01562 16.6 0
firstDayLab5 0.178416  0.0142 12.6 0
firstDayLab6 0.0937816 0.01177 7.97 0
firstDaylLab7 0.0308346 0.009153 3.37 8E-04
LastDaylabl -0.116371 0.01381 -8.42 0
LastDaylab2 -0.160917 0.01401 -11.5 0
LastDaylLab3 -0.0855029 0.01246 -6.86 0
LastDaylLab4 -0.0446913 0.01109 -4.03 1E-04
LastDaylLab5 -0.0300476 0.008632 -3.48 SE-04

LastDaylLab_Year
ProdMonth_9_LastD_0
ProdMonth_2_LastD_1
ProdMonth_6_LastD_1
ProdMonth_9_LastD_1
ProdMonth_10_LastD_6
ProdMonth_9_LastD_8
ProdMonth_1_FirstD_0
ProdMonth_9_FirstD_1
ProdMonth_8_FirstD_3
ProdMonth_5_FirstD_4
ProdWeek_5_LastD_9
ProdWeek_1_FirstD_0
ProdWeek_5_FirstD_2
ProdWeek_1_FirstD_4
ProdWeek_5_FirstD_7
Lunes21_Oct
SemCrisis_180ct

Sept_ 17 L J

Dec24_Lab

Dec31_Lab

seasDCovid_1

seasDCovid_4
firstDayLabCovidl
firstDayLabCovid2
firstDayLabCovid3
ProdMonth_9_LastD_Covid_0
ProdMonth_5_LastD_Covid_1
ProdMonth_7_LastD_Covid_1
ProdMonth_8_LastD_Covid_1
ProdMonth_2_LastD_Covid_3
ProdMonth_1_LastD_Covid_4
ProdMonth_3_LastD_Covid_6
ProdMonth_4_LastD_Covid_6
ProdMonth_5_LastD_Covid_6
ProdMonth_3_LastD_Covid_7
ProdMonth_9_LastD_Covid_8
ProdMonth_2_FirstD_Covid_0
ProdMonth_3_FirstD_Covid_3
ProdMonth_3_FirstD_Covid_4
ProdMonth_4_FirstD_Covid_4

ProdMonth_12_FirstD_Covid_4

ProdMonth_4_FirstD_Covid_5

ProdMonth_12_FirstD_Covid_5

ProdMonth_4_FirstD_Covid_6
ProdMonth_4_FirstD_Covid_7

ProdMonth_12_FirstD_Covid_7

ProdMonth_9_FirstD_Covid_8
ProdMonth_3_FirstD_Covid_9
ProdMonth_8_FirstD_Covid_9
ProdWeek_3_LastD_Covid_0
ProdWeek_3_FirstD_Covid_3
ProdWeek_1_FirstD_Covid_6
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-0.222226
-0.21309
0.0630956
0.110602
-0.0818583
-0.0781186
-0.0873942
-0.164161
0.0497501
-0.101347
0.054519
-0.0704004
-0.0470708
0.0684154
-0.059566
0.0758822
-2.03281
-0.295831
-0.132755
-0.365105
-0.186659
-0.0411202
0.0350613
-0.301026
-0.197139
-0.116716
0.157014
0.132348
0.0860275
0.109042
0.131972
-0.456598
-0.130973
-0.197764
0.119561
-0.413593
0.0992232
-0.386797
0.264845
0.312208
0.160307
-0.136617
0.28319
-0.141848
0.539222
0.202431
0.327222
0.127779
0.362693
0.110984
-0.137297
0.452589
-0.92635

0.04563
0.03815
0.02279
0.02324
0.02871
0.02235
0.02918
0.0323
0.02259
0.02253
0.02252
0.01626
0.01413
0.01925
0.01859
0.01824
0.1139
0.08065
0.0382
0.03323
0.05142
0.00605
0.005959
0.01954
0.02236
0.01965
0.06029
0.04689
0.04737
0.04164
0.05701
0.05737
0.05067
0.04623
0.04087
0.06255
0.0535
0.0591
0.06694
0.06643
0.05404
0.06009
0.06034
0.05911
0.06527
0.04686
0.06008
0.04664
0.05701
0.04063
0.04046
0.05191
0.0842

-4.87
-5.59
2.77
4.76
-2.85
-3.49

-5.08
2.2
-4.5
242
-4.33
-3.33
3.55
-3.2
4.16
-17.8
-3.67
-3.48

-3.63
-6.8
5.88
-15.4
-8.82
-5.94
2.6
2.82
1.82
2.62
231
-7.96
-2.58
-4.28
2.93
-6.61
1.85
-6.54
3.96
4.7
2.97
-2.27
4.69
-2.4
8.26
4.32
5.45
2.74
6.36
2.73
-3.39
8.72

0

0.006

0.004

SE-04

0.003

0.028

0.016

9E-04

4E-04
0.001

3E-04
5E-04

3E-04

(=]

o O O o

0.005

0.07

0.009

0.021

0.01

0.004

0.064

1E-04

0.003
0.023

0.017

0.006

0.006
7E-04



5 Conclusions

This paper explores the characteristics of non-financial, high-frequency tall big data time
series. We extend Hendry (2015b) concept of “tall” big data to encompass time series with
numerous observations, few endogenous variables, and potentially hundreds of exogenous
ones requiring careful formulation and identification.

These high-frequency time series often exhibit complex and changing seasonal and high-
frequency patterns, which can lead to misleading outlier identification. To address this, we
propose a set of stylized facts to characterize these data and guide model formulation, con-
sidering regime-switching, nonlinearities, and multiplicative effects. The search for optimal
model structures can be efficiently conducted using Autometrics.

Another important consideration lies in the need for weather variables and calendar-
related dummy variables when modeling high-frequency data. These factors, including week-
days, weekends, holidays, special days, and tehir interactions between eachother and with
weather variables can significantly influence the data. Accurate modeling of these effects is
crucial for policy-making and can help differentiate genuine outliers from data anomalies.

To build appropriate models, we advocate for a two-step approach: defining relevant ex-
ogenous variables and employing Autometrics for model selection. Compared to alternative
methods, our approach offers the advantages of enabling causal interpretations of influen-
tial factors and simultaneously estimating all seasonal components, rather than relying on
sequential procedures.

Our application to daily jobless claims in Chile demonstrates the importance of a compre-
hensive initial model (GUM) that includes numerous dummy variables to capture complex
effects of seasonality, calendar and other deterministic effects, the interactions between them,
and outlying observations. The initial model includes 841 regressors and after a general-to-
specific modelling process the final model keeps 93 regressors not counting outliers (plus
63 outliers), many of them referring to interactive effects. These results emphasize the im-
portance of capturing interactions between different seasonal cycles and calendar factors.

Neglecting these interactions can lead to misleading conclusions.
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Figure A.1: Distribution of outliers along the year. Comparison of the Covid period vs. the
rest of the sample
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Figure A.2: Distribution of outliers along the month. Comparison of the Covid period vs.
the rest of the sample
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Figure A.3: Distribution of outliers along the week. Comparison of the Covid period vs. the
rest of the sample
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Figure A.4: Distribution of outliers in the Covid period after allowing broken seasonal effects.
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