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Abstract
We study the network origins of business cycle asymmetries using cross-country and administrative firm-
level data. At the country level, we document that countries with a larger number of non-zero 
intersectoral linkages (denser networks) display a more negatively skewed cyclical component of output. At the 
firm level, we find that firms with a larger number of suppliers and customers (degrees) display a more 
negatively-skewed distribution of their output growth. To rationalize these findings, we construct a 
multisector model with input-output linkages and show that the relationship between output skewness and 
network density naturally arises once we consider non-linearities in production. In an economy with low 
production flexibility (inputs are gross complements), denser production structures imply that relying on 
more inputs becomes a risk that further amplifies the effects of negative productivity shocks. The opposite 
holds if firms display high production flexibility (inputs are gross substitutes): having more inputs to 
choose from becomes an opportunity to diversify the effects of negative productivity shocks. We 
calibrate the model using our rich firm-to-firm network Chilean data and show that more connected firms 
experience larger declines in output in response to a COVID-19 shock, consistent with the data. We also show 
that, as in the data, the cross-sectional distribution of output growth in the model displays a fatter left tail 
during downturns. The previous result is shaped by the interplay between production complementarities and 
network interconnectedness, rather than by the asymmetry of the shocks. The size of the shock determines 
the strength of the relationship between degrees and output decline, which highlights the importance of 
non-linearities and the limitations of local approximations.
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Resumen
Estudiamos los orígenes de las asimetrías del ciclo económico desde un punto de vista de redes productivas, 
utilizando datos administrativos a nivel de empresas y datos entre países. A nivel de país, documentamos que 
los países con un mayor número de conexiones intersectoriales positivas (redes más densas) muestran un 
componente cíclico del PIB real con una skewness más negativa. A nivel de empresa, encontramos que las 
empresas con un mayor número de proveedores y clientes (grados) muestran una distribución del crecimiento 
de su producción que tiene una skewness más negativa. Para racionalizar estos hallazgos, construimos un 
modelo multisectorial con redes de producción y mostramos que la relación entre la asimetría del PIB real y la 
densidad de la red surge naturalmente una vez que consideramos las no linealidades en la producción. En una 
economía con baja flexibilidad productiva (los insumos son complementos brutos), las estructuras productivas 
más densas implican que depender de más insumos se convierte en un riesgo que amplifica aún más los efectos 
de los shocks negativos de productividad. Ocurre lo contrario si las empresas muestran una alta flexibilidad de 
producción (los insumos son sustitutos brutos): tener más insumos para elegir se convierte en una oportunidad 
para diversificar los efectos de los choques negativos de productividad. Calibramos el modelo utilizando 
microdatos chilenos conexiones entre empresas y mostramos que las empresas más conectadas experimentan 
mayores caídas en la producción en respuesta a un shock de COVID-19, de acuerdo con los datos.  Además, 
mostramos que, como en la data, la distribución del crecimiento de la producción entre firmas en el modelo 
tiene una cola izquierda más ancha durante recesiones. Este resultado se debe a la interacción entre 
complementariedades en la producción y las redes de producción, y no a la asimetría de los choques. El tamaño 
del shock determina la fuerza de la relación entre la cantidad de conexiones de la empresa y la caída de su 
producto, lo que destaca la importancia de las no linealidades y las limitaciones de las aproximaciones locales 

para resolver  modelos.



1. Introduction

It is a general fact that recessions are shorter and more severe than ex-
pansions, i.e. they are “sharper”. This asymmetry leads to a negatively-skewed
distribution of real GDP growth as documented in, for example, Ordonez (2013).
Figure 1 shows this asymmetry for the cyclical component of real GDP for a
sample of 46 countries during 1985-2019. Out of the 46 countries, 43 display
negatively-skewed business cycles. The primary explanation for this fact in the
literature is the existence of financial constraints (Ordonez, 2013; Jensen et al.,
2020). In this paper, we offer a different explanation for the asymmetry based
on the empirical importance of sectoral shocks and the structure of input-output
connections.

We use sectoral input-output data for 46 countries and firm-to-firm network
data for the Chilean economy to study the role of production networks in shap-
ing the magnitude of macroeconomic downturns. In the cross-country data,
we document strong correlations between the skewness of the cyclical compo-
nent of real GDP — our measure of the downturn’s severity—and input-output
structure (density of the network). We then use the firm-level network data to
investigate to which extent production linkages at the firm level relate to firm-
level output growth skewness and firm-level output declines during COVID-19.

⋆Prepared for the Carnegie-Rochester-NYU Conference on Public Policy 2022. The views
expressed in this paper are those of the authors and do not represent the views of the Central
Bank of Chile, the Federal Reserve Bank of Cleveland, or the Federal Reserve System. Officials
of the Central Bank of Chile processed the disaggregated data from the Chilean tax authority
(Servicio de Impuestos Internos, SII). We thank Saki Bigio (discussant), Federico Huneeus,
Oscar Landerretche, and seminar participants at the Carnegie-Rochester-NYU Conference in
Public Policy, the Central Bank of Chile, and the University of Chile for useful comments and
discussions. We also thank Alvaro Castillo for outstanding research assistance.

Email addresses: jmirandap@bcentral.cl (Jorge Miranda-Pinto), asilvub@umd.edu
(Alvaro Silva), ey2d@virginia.edu (Eric R. Young)
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Figure 1. Skewness of Cyclical Component of Real GDP (1985 – 2019)
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Note: This figure plots the skewness of countries’ annual cyclical component of real GDP
for the period 1985-2019. We compute the cyclical component following Hamilton (2018) and
estimate it as the residual (εt) from a regression of the form yt = β0 + β1yt−2 + β2yt−3 + εt
country-by-country, where yt is log real GDP at time t.

Using OECD domestic input-output data, we show that — controlling for
other important cross-country characteristics — countries in which more input-
output connections are active (denser networks) display more negatively-skewed
business cycles, as expressed by a more negative skewness of the cyclical com-
ponent of real GDP for the period 1985-2019. Our estimates imply that if a
country with a network density of 0.69 (the average in the sample) were to
increase its active links by 10 percentage points (to 0.79), the skewness of the
cyclical component of real GDP would decrease from −0.68 to −0.98. To put
the numbers into perspective, a country with a skewness of −0.68 (e.g., Italy)
experiences an average percent decline in real GDP of −2.3 percent, while a
country with a skewness of −0.98 (e.g., Portugal) displays an average downturn
of −3.5 percent.

We then use administrative data on Chilean firm-to-firm transactions to in-
vestigate the relationship between firm-level interconnectedness, as described
by the total degrees of the firm—defined as the total number of suppliers and
customers the firm has—and firm-level resilience to negative shocks. In par-
ticular, we measure firm-level output (sales and employment) growth skewness
and show that, controlling for covariates, firms with a larger number of suppliers
and customers display a more negatively skewed distribution of output growth.1

1Our baseline specification uses the sum of buyers and suppliers as our preferred measure

3



This relationship hides an important asymmetry as the negative relationship is
mainly driven by the firms with negative skewness. The group of firms with pos-
itive skewness instead displays a positive, albeit smaller, relationship between
degrees and output skewness. We then study the performance of more intercon-
nected firms during COVID-19. We show that, controlling for other firm-level
covariates, firms with more connections during COVID-19 experienced larger
declines in sales and employment in 2020q2. We also find that during the re-
covery period, more connected firms were able to grow slightly faster than less
connected firms.

We explain our evidence and quantify the role of networks in a production
network model with N firms connected through intermediate input purchases.
Our approach follows Baqaee and Farhi (2019) closely, in which non-linearities
in production can generate asymmetric business cycles out of symmetric id-
iosyncratic technology shocks. We start by extending the analysis in Baqaee
and Farhi (2019) and show the role of network density—the number of active
input-output links—in amplifying or mitigating negative productivity shocks.2

To do so, we study two networks that only differ in the number of positive
input-output links and show that more connections amplify the adverse effects
of negative productivity shocks, creating a more negative skewness of output if
inputs are gross complements; the opposite holds if firms have a higher flexi-
bility in substituting their inputs. The intuition behind our results lies in the
strength of sectoral/firm-level price and quantity adjustments. In our model,
price adjustments depend only on the network structure to a first order. Quan-
tity adjustments, also to a first order, depend on the network structure and on
the flexibility in substituting inputs. If inputs are gross complements, a nega-
tive productivity shock in the dense network generates a Baumol-cost disease
mechanism in which the sector hit by the negative shock becomes larger in the
economy relative to a more sparse network.

We then perform two quantitative exercises to understand the drivers of
macroeconomic skewness and firm-level responses to negative productivity shocks.
First, we calibrate our model economy to match the production network of the
46 countries in our sample. The model-implied skewness of log real GDP is
negative in all countries and displays significant cross-country heterogeneity3.
Moreover, we show that the model delivers a relationship between network den-
sity and skewness that is qualitatively similar to that in the data, although not
quantitatively.

Our second quantitative exercise uses the firm-to-firm network structure of

of firms’ interconnectedness. We also studied the relationship between output skewness and
the number of suppliers (indegree) or buyers (outdegree) separately. Our results are robust
to use the sum of these measures or each one separately. See Section 3.3 for more details.

2In our model, as in Carvalho et al. (2020), productivity shocks propagate upstream and
downstream in the network. Therefore, indegrees and outdegrees both determine the exposure
of firms to shocks.

3Note that 41 out of 46 countries in our sample features negative skewness of the cyclical
component of real GDP.
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the Chilean economy before COVID-19. We investigate the ability of the model
to deliver the non-linear relationship between firm-level (in and out) degrees
(the number of customers and suppliers) and output growth before, during, and
after COVID-19. We calibrate the decline in firm-level productivity using the
annual percent change in revenue labor productivity. The model can deliver a
relationship between degrees and output growth that is very similar to that in
the data. We show that the magnitude of the shock is crucial for delivering
these facts and that conditional on the size of the shock, the relationship be-
tween degrees and output growth is stronger for negative productivity shocks
than for positive ones. Therefore, the model’s internal propagation is strong
enough to deliver a procyclical cross-sectional skewness of output growth, even
if productivity shocks are symmetric. Finally, the concavity of aggregate out-
put in this economy reconciles two seemingly contradictory facts: at the firm
level, about half of the firms display positive skewness of output growth and
half negative, while at the aggregate level, the economy has negatively-skewed
output growth.

Contribution to the literature. The results in our paper highlight the
risks of production interconnectedness when the economy is hit by large shocks.
Our paper contributes to the literature that underlines the role of financial
frictions in generating asymmetric business cycles (e.g., Ordonez (2013) and
Jensen et al. (2020)). We instead propose a mechanism that relies on production
non-linearities and the structure of the production network.4

Our paper also contributes to the literature that studies the role of produc-
tion network density in determining the level of GDP (Herskovic, 2018), GDP
growth (Acemoglu and Azar, 2020), and the volatility of GDP (Miranda-Pinto,
2021). Unlike the previous papers, we focus on the non-linear effects of large
negative shocks to productivity and the role of firm-to-firm networks. Our pa-
per is more closely related to Baqaee and Farhi (2019) and Dew-Becker (2022).
Similar to Dew-Becker (2022), we complement Baqaee and Farhi (2019) by fo-
cusing on a particular network statistic (network density) and on higher-order
moments of GDP. Compared to these papers, our contribution is twofold. First,
we provide empirical evidence both at the country level and at the firm level that
highlights the role of production networks in driving business cycle asymmetries.
Second, our firm-to-firm network data allow us to test the model’s predictions in
the cross-section at a more granular level during COVID-19. We show that the
size of the shock is crucial to deliver the observed relationship between firm-level
degrees and economic resilience during COVID-19, as measured by the firm-level
decline in output. Therefore, we highlight the importance of non-linearities and
the need for global methods (or higher-order approximations) to solve models
of intersectoral linkages and CES production technologies.

4Our mechanism is likely to be amplified by the presence of financial frictions. In an
environment like the one developed by Bigio and La’O (2020), Miranda-Pinto and Zhang
(2020) show that trade credit linkages can generate asymmetric effects of financial shocks
along the supply chain.
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Our paper also connects to Salgado et al. (2019), who investigate the sources
of the asymmetry in the cross-sectional distribution of firm-level output growth.
We see our work as complementary to theirs. While they argue that shocks
to the skewness of firm-level TFP shocks are important in recessions, we in-
stead emphasize the non-linear role of firm-level network structures in amplify-
ing (large) negative productivity shocks.

2. Cross-country evidence

In this section, we analyze the cross-sectional relationship between countries’
cyclical component of real GDP asymmetry, as measured in Figure 1, and coun-
tries’ input-output structure. We collect data on real GDP (domestic currency)
for the period 1985-2019 and real GDP per capita (at chained PPPs in 2017
US dollars) in 1985 from the Penn World Tables version 9.0. To measure the
details of the production network structure across countries, we use the OECD
input-output database. This dataset contains input-output data for about 60
countries at a level of disaggregation of 45 sectors for the period 1995-2018.
Our final sample has 46 countries, of which about half are developed and half
are emerging countries. We use the input-output data from 1995, which is the
earliest available in the OECD database.

Figure 2 depicts the input-output network for Chile. In this figure, an arrow
from sector j to sector i represents intermediate inputs flowing from j to i.
The size of the nodes is determined by the size of the sector, in terms of gross
output. The figure highlights the network features we focus on in this paper: the
significant heterogeneity in sectoral degrees (number of suppliers and clients)
and the level of production interconnectedness in the economy. We measure
interconnectedness using network density as in, for example, Miranda-Pinto
(2021). In particular, our measure of density is

Density =

∑N
i=1

∑N
i=j 1(ωij > 0)−N

N(N − 1)
;

where the numerator counts the number of non-zero off-diagonal input-output
links in the economy, and the denominator sums all the possible off-diagonal
input-output connections in the economy. Thus, density measures the fraction
of feasible connections that are active in an economy. As an example, the
Chilean production network displays a density of 69%.5

Our focus in this section is the cross-country correlation between produc-
tion network density and the skewness of the cyclical component of real GDP.
We measure the cyclical component of real GDP following Hamilton (2018),
which hereafter we will call the Hamilton filter. We run the following regression

5We use a very small threshold to define a non-zero input-output link. In particular, we
use a value of 0.1% for the ratio between a specific intermediate input expenditure and total
intermediate input expenditure by each sectoral pair.
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Figure 2. Input-Output Structure: Chile in 1995

Note: This figure shows the structure of inter-sectoral linkages for the Chilean economy in
1995 using the 45 sectors classification in the OECD input-output data revision 4. A node is
a sector and the size of the node depends on the sectoral gross output.

country-by-country:

yt = β0 + β1yt−2 + β2yt−3 + εt,

where yt is the log of real GDP at time t and εt is our measure of the cyclical
component. As discussed in Appendix A, we chose the Hamilton filter over linear
detrending or the Hodrick-Prescott filter because it better captures downturns
in the data, a must for our exercise.

To measure the cross-country correlation between density and skewness, we
control for other possible network moments such as the mean, standard devia-
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tion, and skewness of the weighted outdegrees and indegrees.6 In addition, we
control for other development measures such as the GDP per capita in 1985 and
the volatility of the cyclical component during the period.

Figure 3 shows a scatter plot of the residual skewness of the cyclical com-
ponent of real GDP and network density after removing any variation coming
from our controls. As is apparent from this figure, the cross-country correla-
tion between the cyclical component’s skewness and density is strongly negative,
meaning that countries with more connections feature on average lower skew-
ness of their cyclical component of real GDP. Since, on average, countries exhibit
negative skewness of their cyclical component, this result means that countries
with more interconnected production networks tend to exhibit more negatively
skewed business cycles.

Figure 3. Cross-Country Production Network Density and Skewness
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Note: This figure plots the residualized skewness of the cyclical component of real GDP
between 1985 – 2019 and the residualized network density in 1995. These are residualized
using the following controls: GDP per capita in 1985, the volatility of the cyclical component
of real GDP, skewness of the weighted outdegree, and the weighted indegree distribution
in 1995. See Table B1 in the Appendix for magnitudes of the correlation between the two
variables.

6The weighted outdegree of a sector i is the sum of the shares of sector i sales to sector j
as a fraction of sector j’s total output, for all j. The weighted in-degree of a sector i is the
sum of the shares of sector i’s purchases of intermediate inputs from sector j as a fraction of
sector i’s total output, for all j.
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3. Firm-level evidence

In this section, we present evidence that relates firm-level output (sales and
employment) growth asymmetry to firm-level network structures. We start
by describing our data and then perform two empirical exercises. First, we
study the relationship between firm-level networks and firm-level output growth
skewness. Second, we investigate the relationship between firm-level networks
and output growth during COVID-19.

3.1. Data Description and Sample construction

We combine four different administrative datasets collected by the Chilean
tax authority (Servicio de Impuestos Internos, SII) that provide detailed firm-
level information based on firms’ tax ID numbers anonymized for research pur-
poses.7 8 We use data on firms’ total sales from the monthly and annual tax
declarations for the period 2005-2020. In particular, the F29 form keeps track
of monthly sales, while the F22 form has final information on annual sales for
the tax payments. We also use firm-level information on employment from the
form DJ1887. Finally, we use data at the firm-to-firm transaction level from the
electronic transaction system implemented since 2014.9 These data cover the
universe of formal firms in Chile, and reporting is mandatory for all firms since
mid 2018.

We combine the monthly sales data in F29 with the annual sales data in F22
because the high-frequency data in F29 is more likely to suffer from misreporting
problems. For example, firms could misreport sales in May but report sales
in June as sales from May and June. On the other hand, the F22 annual
form, which is the official data for tax purposes, should be less susceptible to
misreporting, both because it is also an official document and because it is at
a lower frequency. Therefore, we use the high-frequency sales data only for
firms whose sales reported in the F29 represent between 90 − 110 percent of
the sales reported in the F22. In addition, we drop the bottom and top 1
percent of the observations in terms of sales growth. For this group of firms, we
also obtain their total employment data from the DJ1887 tax declaration form,
which requires firms to report their wage bill and the number of employees. We
then aggregate these monthly data to quarterly for the period 2005q1-2020q4.
For firms’ sales, we simply add sales across months in a given quarter. For

7This study was developed within the scope of the research agenda conducted by the
Central Bank of Chile (CBC) in the economic and financial affairs of its competence. The
CBC has access to anonymized information from various public and private entities by virtue
of collaboration agreements signed with these institutions.

8The information contained in the databases of the Chilean IRS is of a tax nature origi-
nating in self-declarations of taxpayers presented to the Service; therefore, the veracity of the
data is not the responsibility of the Service.

9To secure the privacy of workers and firms, the CBC mandates that the development,
extraction, and publication of the results should not allow the identification, directly or indi-
rectly, of natural or legal persons. All the analysis was implemented by the authors and did
not involve nor compromise the IRS.
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Figure 4. Chilean Firm-to-Firm Network: Random Sample of 2000 firms

Note: This figure plots the firm-to-firm network in 2019q4, for a random sample of 2000
Chilean firms. A dot represents a firm, and each edge is an intermediate input sale that
represents at least 10% of the client’s total intermediate input purchases.

employment, we aggregate it by taking the simple average across months in a
given quarter. For the firm-to-firm transaction data, we add up all sales for a
given pair of firms (i, j) across all months in a given quarter. As a final filter,
we keep firms with five or more employees that are present at least 20 quarters
for the period 2005q1-2020q4. To visualize how detailed our firm-to-firm data
is, Figure 4 plots a random sample of 2000 firms in 2019q4. For visualization
purposes, we plot the links representing at least 10% of firms’ total intermediate
input purchases.

From the firm-to-firm transaction data used to construct Figure 4 we mea-
sure the unweighted indegree of firm i as the number of firms that supply a
positive amount of goods or services to firm i, while we measure the unweighted
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outdegree of firm i as the number of firms that buy a positive amount of the
output produced by firm i. We calculate the total degrees as the sum of inde-
grees and outdegrees at the firm level. This total degree is our preferred measure
for assessing how many connections each firm has throughout the paper, and
henceforth, we will call it degree. Although there are compelling reasons for
using either the indegree or outdegree as the correct measure of connectedness
for a given firm, it turns out that both play a role in shaping the firm-level
responses we focus on — sales and employment — as we discuss in the Section
4.

We also consider different moments of the distribution of firms’ weighted
indegrees and outdegrees, which we use as controls in our regressions and to
calibrate our quantitative exercises below. In particular, we obtain the average
indegree as the ratio between firm i’s total expenditure on other firms’ output

and firm i’s total sales ΩiM =
∑N

j=1 PjMij

PiQi
. We then obtain the input-output

shares as Ωij =
PjMij

PiQi
.10

Table 1 presents the main descriptive statistics. We report average sales,
the average number of employees, degrees, volatility, and skewness of output
growth. Two main facts stand out. First, network degrees display significant
heterogeneity. Second, about half of the firms in our sample display a negatively
skewed distribution of output growth.

Table 1. Descriptive statistics

Mean SD p25 p50 p75 Obs.

Sales 1st period (millions) 314.290 4,770.680 12.186 34.507 96.921 68,885
Average employees 40.330 189.481 6.486 11.400 24.564 68,885
Degree 1st period 40.654 64.748 10.000 20.000 41.000 68,885
Standard deviation sales growth 0.500 0.282 0.278 0.438 0.676 68,885
Standard deviation employment growth 0.405 0.308 0.192 0.313 0.521 68,875
Skewness sales growth -0.103 0.966 -0.489 -0.046 0.374 68,885
Skewness employment growth 0.048 1.230 -0.487 0.066 0.629 68,855

Note: This table presents basic descriptive statistics on output, network, volatility of output
growth, and skewness of output growth. Sales first period and degree first period correspond
to the sales and degrees that firms display either at the beginning of the period in 2005q1 or
whenever the firm enters the sample (as long as it meets the requirement of 20 quarters in the
sample).

10We also follow an alternative approach to measure firm-level linkages. In particular,
instead of using firm-to-firm linkages, we use disaggregated industry classifications (170 in-
dustries) to measure degrees at the firm-to-industry level. The advantage of this approach is
that it can better describe different intermediate inputs in the production process (e.g., metal
vs glass) rather than different varieties of the same intermediate input (e.g., glass type A and
glass type B that differ little and are simply sold by competitor firms). The results are very
similar, which is why we prefer to use firm-to-firm linkages throughout the paper.
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3.2. Firm-level networks

Here, we provide more information on the distribution of firm-level degrees.
Figure 5, panel a, shows that degrees have a thick right tail. A relatively small
number of firms are very well connected. Indeed, the average degree is twice as
large as the median degree. Similar results hold when we consider the average
degree over the period.

Figure 5. Network degrees distribution
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Note: This figure presents the kernel distribution of firm-level degrees the first time these
firms report data on linkages. Panel (a) plots the distribution of the raw data, while panel
(b) reports the firm degree subtracting the industry average (170 industries classification).

Our firm-level network data allows us to study the heterogeneity in linkages
within narrowly-defined industries. Panel (b) of Figure 5 shows that there is
substantial heterogeneity in degrees across firms, even after removing industry-
fixed effects. Consider the following two examples: bakery products and hotels.
There are 1, 509 companies in the bakery products industry with an average
first-period degree of 26.9 links, a standard deviation of 32.8, and a skewness of
7.2. In comparison, in the hotels industry there are 1, 376 companies with an
average first-period degree of 43.9 links, a standard deviation, and a skewness
of 58.7 and 3.7, respectively.

We now study the relationship between firm size and linkages in the cross-
section. To do so, we run the following regression

logDegreei = α+ αI + βs log Salesi + γ′Xi + εi, (1)

where logDegreei is the average number of degrees (number of customers and
suppliers) that a given firm i has during our analyzed period. α is a constant
term, αI is an industry fixed-effect, and Xi contains firm-level controls such as
the average intermediate input and export share (as a share of total sales). εi is
an error term. The parameter of interest is βs, which is the elasticity of degrees
with respect to changes in sales.

Unsurprisingly, in Table 2 we find that larger firms have more connections. In
the cross-section, the elasticity of indegree with respect to sales is 0.30, meaning
that moving up 1 percent in the distribution of firm size is associated with a 0.3
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Table 2. Size and Interconnectedness

Dep. Var : logDegree

(1) (2) (3)

log Sales 0.333*** 0.338*** 0.301***
(0.003) (0.003) (0.003)

Observations 64,642 64,642 64,642
R-squared 0.250 0.251 0.386
Controls No Yes Yes
Sector FE No No Yes

Note: This table reports the OLS coefficient of a regres-
sion in which the dependent variable is log degrees and the
independent variable is log sales. Controls include average
intermediate input share and the average export share (as
a share of sales). Robust standard errors in parentheses.
*** p<0.01, ** p<0.05, * p<0.1.

percent increase in the degree. The R2 of the regression is 0.25, and once we
control for other firm-level characteristics and sector fixed effects the R2 of the
regression only increases to 0.38. The positive relationship between degrees and
size is consistent with the implications of multisector models with intersectoral
linkages, as in Acemoglu et al. (2012). However, there is a significant portion of
the variation in degrees (62 percent) that is not accounted for the cross-sectional
variation in firm-level observables that we use. This result leads us to believe
that the structure of firm-level linkages provides valuable information beyond
the firm size and industry fixed-effects that we analyze in the next sections.

3.3. Firm-level output asymmetry and networks

In this subsection, we investigate the connection between firm-level asym-
metry and network structure.

Figure 6 provides a first glance at the unconditional relationship between
degrees and output growth skewness, measured using either sales (panel (a)) and
employment (panel (b)). We observe a clear negative one: more interconnected
firms display larger declines in output than less connected firms.

We now study the relationship between firm-level networks and firms’ asym-
metry in output growth in more detail. To do so, we take advantage of the
cross-sectional heterogeneity in firm-level output growth skewness for the whole
sample and the average number of linkages (indegree, outdegree, and the sum
of both). In particular, we estimate the following equation:

Yi = α+ αI + βd logDegreei + γ′Xi + εi, (2)

where Yi may represent either sales growth skewness or employment growth
skewness during the period for a given firm i. Our parameter of interest is βd
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Figure 6. Output asymmetry and firm level networks

(a) Sales Growth Skewness
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(b) Employment Growth Skewness
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Note: These figures plot the binscatter plots, using 50 bins, for log degrees in the x-axis and
the skewness of firm-level sales growth (panel a) the skewness of employment growth (panel
b).

which provides the relationship between log degree and the two skewness mea-
sures. We measure the degree of a firm using the average number of connections
a firm has during the period, including both buyer and seller relationships.11

The parameter αI represents industry fixed effects that we include to account
for the fact that some industries might be naturally exposed to more skewed
shocks. The Xi represents firm-level characteristics and include size (in terms
of sales), export share, and intermediate input share. Finally, εi is an error
term.

In Tables 3 and 4 we report the results of estimating Equation 2 for both
sales growth skewness and employment growth skewness, respectively. Also, we
partition the number of firms into those that exhibit either negative or positive
skewness and run the regressions for those subsamples. The results show that
the negative relationship between degrees and skewness only holds for the group
of firms with negative skewness. Columns (1) to (3) in Table 3 show that
more interconnected firms display a more negative skewness of output (sales
and employment) growth, even after controlling for firm-level characteristics
and industry-fixed effects. In columns (4) to (6), we observe that the opposite
holds for the group of positively skewed firms.

11We also studied the relationship between output skewness and the number of suppliers
(indegree) or buyers (outdegree) for each firm separately. The results indicate that each degree
displays a negative and statistically significant relationship with output skewness. Since they
do not add information separately, we used the total degree to measure network interconnect-
edness. As we will see later, the model we present indeed displays a similar role for both the
indegree and the outdegree, which is why the total degree provides enough information.
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Table 3. Sales Growth Skewness and Network Degrees

Dep. Var: Sales Growth Skewness

Negative Skewness Positive Skewness

(1) (2) (3) (4) (5) (6)

Log degree 1st -0.091*** -0.056*** -0.048*** 0.040*** 0.040*** 0.044***
(0.004) (0.005) (0.005) (0.003) (0.004) (0.004)

Observations 36,534 34,216 34,209 32,309 29,841 29,834
R-squared 0.016 0.031 0.129 0.005 0.043 0.072
Controls No Yes Yes No Yes Yes
Sector FE No No Yes No No Yes

Note: This table reports the OLS coefficient of a regression in which the dependent variable is the skew-
ness of sales growth and the independent variable is log degree. Controls include log sales, intermediate
input share, and export share. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Table 4. Employment Growth Skewness and Network Degrees

Dep. Var: Employment Growth Skewness

Negative Skewness Positive Skewness

(1) (2) (3) (4) (5) (6)

Log degree 1st -0.073*** -0.070*** -0.050*** 0.035*** 0.069*** 0.070***
(0.005) (0.006) (0.006) (0.004) (0.005) (0.005)

Observations 31,992 30,329 30,324 36,859 33,709 33,705
R-squared 0.007 0.032 0.094 0.002 0.014 0.036
Controls No Yes Yes No Yes Yes
Sector FE No No Yes No No Yes

Note: This table reports the OLS coefficient of a regression in which the dependent variable is the
skewness of employment growth and the independent variable is log degree. Controls include log sales,
intermediate input share, and export share. Robust standard errors in parentheses. *** p<0.01, **
p<0.05, * p<0.1.

3.4. Firm-level resilience and networks during downturns

In this subsection, we follow Salgado et al. (2019) and study the asymmetry
in the cross-sectional distribution of output growth and show how the firm-
level network structure could provide insights into this asymmetry. Figure 7
shows that during macroeconomic downturns the distribution of firm-level out-
put growth displays a fatter left tail, consistent with Salgado et al. (2019).12

We now zoom into the COVID-19 crisis. COVID-19 is the only recession

12Similar results hold for the size-weighted distribution of output growth.
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Figure 7. Output growth distribution recessions and expansions
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Note: This figure presents the kernel density of sales growth during expansions and recessions.
Recessions are defined as the firm-quarter observations in 2009 (GFC) and 2020 (COVID-19),
while expansions are all the other firm-quarter observations.

for which we have firm-to-firm network data and COVID-19 represents an ideal
event study for at least three reasons. First, COVID-19 is a very large shock,
which is therefore more likely to activate non-linear effects. Second, COVID-19
is a sectoral productivity shock that had heterogeneous effects across industries
(contact services vs non-contact goods and services) and firms (small vs large
firms).13 Third, during COVID-19 in Chile, financial conditions actually im-
proved due to the implementation of several policies aimed at supporting the
most-affected firms (see, Albagli et al., 2021, for detailed evidence). Hence,
COVID-19 represents a situation where the complementary hypothesis of finan-
cial frictions driving business cycle asymmetries may be relatively muted. As we
highlight in Section 5.2, we propose that the large negative productivity shocks
induced by COVID-19 were amplified via production interconnectedness.

We show that, consistent with Figure 7, firm-level output growth skewness
declined significantly during COVID-19: a significantly larger number of firms
experienced declines in sales and employment. In particular, Figure 8 shows a
large increase in the mass of firms in the left tail of the distribution of sales
growth during 2020q2, compared to 2019q2. But who exactly were these firms?
To answer this question, we run the following cross-sectional regression at each
quarter t:

∆ log yi (t) = α (t) + β (t) log degree2017q4i + Γ (t) · controls (t) + ϵi (t) , (3)

13There is an important demand component to the COVID-19 shock as well, due to lock-
downs and other restrictions on business operations.
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Figure 8. Output growth distribution during COVID-19
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Note: This figure presents the kernel density of sales and employment growth before (2019q2)
and during COVID-19 (2020q2).

where β (t) measures the importance of firm-level degrees in determining per-
formance at time t compared to other firms. We include controls for industry
fixed effects, sales, intermediate input shares, and export shares.

In Figure 9 we plot the OLS-estimated coefficient β(t) in Equation 3 at
different quarters in 2019 and 2020. We can see that the structure of firm-
level networks was a relevant predictor of firm performance during COVID-19,
even after controlling for intermediate input share, export share, sales, weighted
degree measures, and industry fixed effects. A firm with a degree 10% larger (4
extra links compared to the average in Table 1) displayed a decline in output
growth that was 0.55 percentage points larger. Interestingly, the coefficient
of log sales is positive and equal to 0.04, indicating that a firm with sales 10%
larger had 0.4 percentage points of larger (or less negative) sales growth. Hence,
larger firms were more resilient to COVID-19, and, conditional on size, those
that were more connected were less resilient. In the next section, we construct
a production network model that helps us understand the cross-country and
firm-level facts we document on the relationship between output skewness and
network structure.

4. Theory

We consider a general equilibrium closed economy environment with a repre-
sentative consumer, N producers, and F factors of production based on Baqaee
and Farhi (2019). This economy features no distortions or frictions. We describe
each block in turn.

Notation.. Throughout, we use bold to denote vectors and matrices. For any
vector/matrix X, we use XT for its transpose.
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Figure 9. Coefficient of regressing output growth against log degrees
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Note: This figure plots the OLS estimated β(t) from Equation 3.

4.1. Representative Consumer

The representative consumer has preferences over the N different goods ac-
cording to the utility function

U (C1, C2, ..., CN ) (4)

where Ci represents consumption of good i. We assume U (·) is homothetic.
The representative consumer owns all F factors of production and supplies

them inelastically to producers. Denoting the price of factor f as Wf , the
representative consumer budget constraint is then

N∑
i=1

PiCi ≤
F∑

f=1

WfLf +

N∑
i=1

Πi (5)

where Πi is firm i’s profit.

Consumer’s problem.. Taking as given good and factor prices (P ,W ), and fac-
tor supplies L̄ the representative consumer chooses a sequenceC of consumption
demands to maximize (4) subject to (5). The solution to this problem delivers
Marshallian demands for each good i as a function of prices and factor supplies
i.e. Ci = Ci

(
P ,W , L̄

)
for all i = 1, 2, ..., N . We denote the optimal vector by

C∗ and let Y = U (C∗) to be the maximum utility.

4.2. Producers

There are N producers indexed by i = 1, 2, ..., N . Each producer i produces
quantity Qi using factors {Lif}Ff=1 and intermediate inputs from other produc-

ers {Mij}Nj=1. Here Lif represents the demand for factor f by producer i, and
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Mij represents producer’s i demand for good j. Each producer has access to a
producer-specific production function that satisfies

Qi = AiF
i
(
{Lif}Ff=1, {Mij}Nj=1

)
(6)

where Ai is a Hicks-neutral technology level. We assume that the F i (·) is
constant returns to scale.

Given good and factor prices, the total cost of producer i is

TCi =

F∑
f=1

WfLif +

N∑
j=1

PjMij . (7)

Producer’s problem.. Taking as given good and factor prices (P ,W ), each pro-
ducer i minimizes (7) subject to (6). The solution to this problem delivers
conditional demand for all inputs (both factors and intermediate goods), that
are functions of prices, technology and quantities i.e. Lif = Lif (P,W,Qi, Ai)
and Mij = Mij (P,W,Qi, Ai).

One consequence of our assumptions is that total costs can be written as

TCi = TCi (W ,P , Ai, Qi) = MCi (W ,P , Ai)Qi, (8)

so that total costs are linear in the quantity, Qi. This result is a consequence
of the constant returns to scale assumption.

By Shephard’s Lemma, we can write conditional demands as

Lif =
∂TCi

∂Wf
=

∂MCi

∂Wf
Qi for all f = 1, 2, ..., F (9)

Mij =
∂TCi

∂Pj
=

∂MCi

∂Pj
Qi for all j = 1, 2, ..., N (10)

4.3. Equilibrium

To close the model, we need to specify the market clearing conditions for
both good and factor markets.

Qi = Ci +

N∑
j=1

Mji for all i = 1, 2, ..., N (11)

L̄f =

N∑
i=1

Lif for all f = 1, 2, ..., F (12)

Equation 11 are the goods market clearing conditions, while Equation 12 are
the factor market clearing conditions.
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4.4. Useful Definitions.

We now define some objects that are going to be key for our analysis.
We let Ω to be the input-output matrix of this economy, with typical element

Ω = {Ωij} =
PjMij

PiQi
for all i, j = 1, ..., N

Typical element Ωij measures how much producer i spends on good j, PjMij ,
as a fraction of i’s sales, PiQi. Here Pi is the price of good i, Qi is the quantity
sold of good i, and Mij is how much producer i buys of the quantity of good j.
In other words, it is a measure of the importance of producer j (column, seller)
as a supplier to producer i (row, buyer).

With some abuse of notation, we also define the producer’s i expenditure on
factor f as a fraction of its sales

Ωif =
WfLif

PiQi
.

We define Ψ as the Leontief-Inverse matrix, of dimension N ×N , as

Ψ = (I −Ω)−1 =

∞∑
s=0

Ωs with typical element {Ψij}. (13)

Ψij denotes how important is producer j as a direct and indirect supplier to
producer i.

On the consumption side, we define the vector of consumption shares, b, as

b = {bi} =
PiCi

GDP
,

where Ci represents the consumption of good i.
Since there are F factors of production, we define their shares of Nominal

Gross Domestic Product (GDP) as

Λf =
Wf L̄f

GDP
;

F∑
f=1

Λf = 1;

F∑
f=1

Wf L̄f = GDP,

where Wf is the price of factor f , L̄f is the equilibrium factor f quantity, which
in this model coincides with the factor supply endowment, L̄f . The second result
is a restatement of the first result and follows from the fact that everything in
this economy is produced out of factors. Therefore, the total value added (GDP)
should equal factor payments.

We let λi denote the Domar weight of producer i in total value added:

λi =
PiQi

GDP
.

In the presence of intermediate goods in production, the Domar weight is the
relevant size statistic for each producer’s contribution to total value added (Do-
mar, 1961; Hulten, 1978).
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4.5. Aggregate Impact of Sectoral Technology Shocks

We now focus on how the production network structure can affect aggregate
output skewness. The following is a re-statement of a previous result in Baqaee
and Farhi (2019):

Proposition 1 (Macroeconomic Impact of Sectoral Technology Shocks).
To a second-order approximation, around an equilibrium defined by output Ȳ and
a Domar weights vector λ̄ of size N × 1, the macroeconomic effect of sectoral
technology shocks on real GDP, Yt, is given by

log Yt = log Ȳ +

N∑
i=1

λ̄i(logAit − log Āi)

(
1 +

1

2

d log λ̄i

d logAit
(logAit − log Āi)

)
,

(14)

where we assume that sectoral technological changes are uncorrelated.

The above proposition highlights that sectoral technology shocks can have
meaningful second-order effects on real GDP provided that the Domar weight
λ̄i reacts to changes in productivity logAi. How much λ̄i reacts to the pro-
ductivity shock depends on two key concepts: the elasticity of substitution of
each producer and the production network structure. On the one hand, the
elasticity of substitution is key for determining the sign of dλ̄i (the direction
of the response). The production network structure, on the other hand, pro-
vides the quantitative bite that makes the direction, given by the elasticity of
substitution, stronger or weaker.

To better get the intuition for this result, consider a model with only two
sectors and one factor of production that we call labor. We assume labor is the
numeraire. Define the Allen-Uzawa elasticity of substitution between any pair
of inputs (k, h) by a given producer j (θjkh), as

θjkh =

∂ logMjk

∂ logPh

Ωjh
. (15)

This elasticity of substitution is a share-weighted demand elasticity since
∂ logMjk

∂ logPh

is the constant-output response of demand of producer j for good k when we
change the price of good h.

Consider now a technology shock to a producer n such that d logAn > 0.
The change in the Domar weight of a producer i change in response to this
shock is given by

dλi

d logAn
=

2∑
j=1

λjΦj

(
Ψ(i),Ψ(n)

)
Φj

(
Ψ(i),Ψ(n)

)
= −

2∑
k=1

2∑
h=1

Ωjk

(
δkh +

(
θjkh − 1

)
Ωjh

)
ΨkiΨhn

δkh = 1 if k = h and 0 otherwise
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where we use Ψ(i) to denote the ith column of the Leontief-inverse matrix Ψ.

Φj

(
Ψ(i),Ψ(n)

)
is what Baqaee and Farhi (2019) call the input-output substitu-

tion operator. This operator is important because it records how each producer
j redirects expenditures towards sector i after a change in sector productivity
n. To fix ideas, take a given producer j. In the presence of intermediate input
linkages, an increase in the technology of sector n translates into a price change
of good h of -Ψhn. Following this decrease in the price of good h, sector j
may reallocate its expenditure from other goods k towards good h. How much

it does so is measured by Ωjk

(
δkh +

(
θjkh − 1

)
Ωjh

)
that provides the partial

equilibrium change in expenditure share of producer j on good k when we vary
the price of good h i.e.,

∂Ωjk

∂ logPh
. This effect is then transmitted upstream in

the production network (from the buyer to the seller) from producer k, the one
that producer j was redirecting expenditure towards/from, to producer i by the
element Ψki that records how important is producer i as a seller to producer k.
This chain of reasoning holds for all producers j that potentially demand good
i. The final effect of producer j on producer i is weighted by the size of sector
j, i.e λjΦj(Ψ(i),Ψ(n)).

As a final remark, we highlight that the previous simple example suggests
that Domar weight responses depend both on the supply side and the demand
side of the economy. This result means that both the roles of each firm as a
supplier (outdegree) and buyer (indegree) matter for sales responses and thus
shape its cross-sectional distribution. This dependence provides a rationale
for using outdegrees and indegrees to explain the cross-sectional outcomes we
studied in the firm-level empirical evidence.

Simple Quantitative Example. We now conduct a simple quantitative
exercise to illustrate how this measure affects aggregate output skewness. Imag-
ine a two-sector world where

Ωsparse =

[
0 (1− a)

(1− a) 0

]
(16)

Ωdense =

[
(1− a)/2 (1− a)/2
(1− a)/2 (1− a)/2

]
. (17)

Figure 10 shows the aggregate output response to a technology shock in
sector 2, for two different elasticities of substitution σ = 0.2 and σ = 1.8, and the
two different network structures detailed in Equations (16) and (17) assuming
a = 0.5. We construct this exercise by changing expenditure distribution on
intermediate inputs while keeping the aggregate expenditure on intermediates,
the consumption shares, and the Domar weights equal in both cases. If inputs
are gross complements, as shown by Baqaee and Farhi (2019), aggregate output
is a concave function of productivity, implying that negative shocks are amplified
and positive shocks are attenuated. Our contribution here is to demonstrate that
the dense network displays a stronger concavity of aggregate output compared to
the sparse network. In panel (b), we observe that the opposite holds when inputs
are substitutes in production. In that case, negative shocks are mitigated, while
positive shocks are amplified. Both effects are stronger in the dense network.
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Figure 10. Aggregate Output Response to a Technology Shock in Sector 2

(a) σ = 0.2 (b) σ = 1.8

Note: This figure plots aggregate output responses to a technology shock in sector 2 for
different elasticities of substitution and different network structures. The blue line shows
the aggregate output responses with a dense network structure, while the red line shows the
aggregate output responses with a sparse network structure.

Figure 11 explains the intuition behind the results in Figure 10. When
inputs are gross complements, positive productivity shocks to sector 2 shrink
the sector’s size. The decline in the Domar weight of sector 2 is larger in the
dense network compared to the sparse, which explains the stronger concavity in
production observed for the more interconnected network. Exactly the opposite
holds when the elasticity σ > 1. This result is akin to Baumol’s cost disease.
Under complementarities, the sector in which productivity declines becomes
larger in the economy, which further amplifies the negative effect of the initial
shock.

Finally, in Figure 12, we show the implications for the skewness of log real
GDP in both networks. As we observe, the smaller the elasticity, the more
negative the skewness of output in the dense network compared to the sparse
one.

5. Quantitative Exercises

In this section, we calibrate a production network model with non-unitary
elasticities of substitution between inputs and constant returns to scale in pro-
duction, as in Baqaee and Farhi (2019), Miranda-Pinto (2021), and Carvalho
et al. (2021). We perform two quantitative exercises. First, we use the OECD
industry-to-industry production network for the 46 countries in our sample from
section 2. Our goal is to show how the model can generate the observed rela-
tionship between macroeconomic skewness and network density. In our second
exercise, we use the firm-to-firm network data for the Chilean economy from
Section 3 to study the ability of our model to generate the cross-sectional pat-
terns that relate firm-level networks to firm-level output asymmetry. Here, we
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Figure 11. Changes in Domar Weight of Sector 2 after a positive technology shock

Note: This figure shows dλ2/d logA2 for different values of the elasticity of substitution σ.

Figure 12. Simulated Skewness as a Function of the Elasticity
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Note: This figure shows the simulated skewness of log real GDP in the dense and sparse
networks, and the value of the elasticity of substitution σ in the x-axis. Productivity shocks
follow a normal distribution with a mean of 1.5 and a standard deviation of 0.25. The skewness
reported is the skewness of 20,000 simulations. This corresponds to the global solution of the
model.

also use the firm-to-firm calibration to evaluate the ability of our model to gen-
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erate a negatively skewed distribution of real GDP.14 A key parameter in our
quantitative exercises is the elasticity of substitution between inputs. We use
an elasticity of substitution between inputs σ of 0.55 from Fujiy et al. (2022)
for both calibrations.15

5.1. Intersectoral linkages and skewness across countries

We use the OECD input-output data for the 46 countries in our sample for
the year 1995 to calibrate the model input-output shares Ωij , labor shares Ωif ,
and consumption shares bi. We follow Baqaee and Farhi (2019) and assume that
sectoral productivity Ai follows a log-normal distribution with mean −Σii/2
and standard deviation Σii. For simplicity, we assume Σii = 12% for all i. We
obtain the model-implied skewness of log real GDP using the global solution
of the model and simulating 5,000 draws of productivity. Figure 13 depicts
the skewness of log real GDP across countries implied by the model. Two
observations are consistent with the empirical evidence in Section 2.

First, the model can deliver a negative skewness for almost all countries, and
the implied skewness shows significant heterogeneity. However, the model falls
short of replicating the level of skewness. This shortfall is not surprising given
that we are not targetting the level and that our calibration assumes common
volatility of productivity shocks across sectors and countries. Hence, we are not
leveraging the potential heterogeneity in cross-country sectoral productivity and
sectoral elasticities. Indeed, Chile’s skewness in this calibration is -0.023, while
the firm-to-firm network calibration in the next section can generate a skewness
of -0.3, which is more in line with the observed value in Figure 1.

Second, as we observe in Figure 14, the model is able to deliver the observed
negative relationship between log real GDP skewness and production network
density we document in section 2, Figure 3.

5.2. Firm-to-firm network in Chile

We construct our firm-to-firm production network (Ω) using the detailed
transaction data from Chile used in section 4. We also calculate value-added
input shares a (capital and labor). Our calibration assumes that the input-
output shares and value-added input shares in 2019q2 describe the steady state
of the economy. Hence, an element Ωij is the ratio between intermediate inputs
that firm i spends on firm j’s output as a fraction of firm i’s total sales. The
vector of value-added input shares is one minus the share of intermediate inputs
in gross output. The vector of consumption shares b is assumed to be symmetric

14Note that real GDP in this model is stationary by construction and thus is the model
counterpart of the cyclical component we analyze in the empirical section.

15The authors’ estimate for the elasticity between inputs in India during COVID-19 lies
within the range of the estimates from Boehm et al. (2019) and Atalay (2017). Although
Miranda-Pinto (2021) and Miranda-Pinto and Young (2022) find substantial sectoral hetero-
geneity in production elasticities, to focus on the role of networks and complementarities, we
assume homogeneous elasticities.
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Figure 13. Skewness of real GDP (model)
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Note: This figure plots the model implied skewness of countries’ log real GDP using 5,000
draws from the model. Shocks to sectoral productivity are iid log-normal with a standard
deviation of 12%.

Figure 14. Model Implied Relationship Production Network Density and Skewness
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Note: This figure plots the residualized skewness of log real GDP simulated from the model
using 5,000 draws and the residualized network density in 1995. These are residualized us-
ing the following controls: the skewness of the weighted outdegree and the skewness of the
weighted indegree.

for all sectors 1/N . We make this decision due to data limitations and to focus
on the role of the production network.

Our sample of firms is substantially smaller than the sample of firms we
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had in previous sections. To be consistent with our model (no entry/exit and
exogenous linkages), we choose the network of firms that display active linkages
and positive sales throughout 2019q2-2020q2. We also keep firms with labor
productivity data for at least eight quarters. Our final sample includes N =
16, 255 firms.

We calibrate firm-level productivity using data on firm-level revenue labor
productivity LPit = PitQit

Eit
, where PitQit and Eit are, respectively, total sales

and total employment of firm i at time t. We compute changes in productivity
relative to the previous year’s quarter. For example, the percent change in labor
productivity during COVID-19 is ∆ logAi,2020q2 = logLPi,2020q2−logLPi,2019q2.
Therefore, we map our model to the data through the evolution of firm-level
productivity. Our first goal is to investigate whether the model can generate the
procyclical skewness of output growth we observe in the data. Figure 15 plots
the model-implied cross-sectional distribution of output growth pre-COVID-
19 (2020q1) and during COVID-19 (2020q2). The cross-sectional distribution
of output growth becomes substantially more asymmetric during COVID-19.
While output growth skewness in 2020q1 was 0.04, it declined to -0.77 during
2020q2. This result is not driven by the skewness of the shock to productivity
but entirely due to the mechanism we highlight in the paper: large negative
shocks are further amplified by complementarities in production and the network
structure. Indeed, as observed in Table B2 in the Appendix, during 2020q2, the
average percent change in productivity is -0.04 (compared to 0.05 in 2020q1),
and the skewness of cross-sectional productivity growth is -0.10 (compared to
-0.09 in 2020q1).

Figure 15. Model implied distribution of output growth distribution
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Note: This figure plots the kernel density of output growth from the model calibrated to
2020q1 (pre-COVID-19) and 2020q2 (COVID-19). Each quarter in the model corresponds to
a different level of firm-level productivity, calibrated from the data.
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We now investigate the role of firm-to-firm linkages in amplifying the decline
in output growth during COVID-19. To do so, we study the ability of the
model to generate the empirical pattern between log degrees and output growth
previously documented in Figure 9 from estimating Equation 3. Figure 16 plots
the model implied coefficient β(t) in Equation 3 for different quarters in 2019 and
2020. We also plot in the same figure the coefficients and confidence intervals of
the empirical estimates of β(t). Our results show a pattern similar to that in the
data. More interconnected firms saw larger declines in output during COVID-19
and also recovered faster. During other quarters, when the size of the shocks
is smaller, the relationship between output growth and degrees vanishes, which
emphasizes the role of non-linearities in the model.

Figure 16. Coefficient of regressing output growth against log degrees
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Note: This figure plots the OLS estimated β(t) from d log qi(t) = α + β(t) log degreei +
γ(t) log salesi+ ϵi(t), using the model implied d log qi. Each quarter in the model corresponds
to a different level of firm-level productivity, calibrated from the data.

Finally, we study the ability of the model to generate aggregate skewness.
To do so, we use the time series of firm-level productivity to measure firm-
level volatility of shocks. We follow Baqaee and Farhi (2019) and assume that
firm-level productivity is iid and log-normally distributed, with mean −ςi/2
and standard deviation ςi. We measure the skewness of log real GDP from
S = 10 simulations of T = 100 periods each.16 The average skewness over the
simulations is −0.31, which is significantly larger than the one implied by the
industry-to-industry calibration (-0.047) for Chile and much closer to that in
Figure 1.

16The solution of the model entails inverting a square matrix of dimension N ≈ 17, 000,
implying that each simulation takes a considerable amount of time.
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6. Conclusion

We showed that denser networks are related to business cycle asymmetries
in the data – across countries, sectors, or firms, entities with more connec-
tions experience more negatively-skewed distributions of economic output. In
our model, this correlation is driven by the concavity of aggregate output with
respect to productivity, which complements existing results on the sources of
skewed business cycles (such as financial constraints) and highlights the impor-
tance of solving models globally.

While our model is efficient, our results have policy implications that we
intend to explore in future work. For example, frictions at the sectoral level can
amplify sectoral shocks inefficiently, as in Bigio and La’O (2020) and Miranda-
Pinto and Young (2022). The gains of industrial policies in such environments
that reallocate inputs across sectors will hinge on how connected the network
is (Liu, 2019), and therefore also whether that network structure amplifies or
dampens negative shocks. Since negative skewness imposes larger costs of fluc-
tuations on households, understanding its source is important for assessing the
welfare costs of cycles as well.
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Online Appendix

Appendix A. Cross-Country Evidence: Real GDP Detrending

Here, we compare the performance of the Hamilton filter against two com-
monly used detrending procedures: Hodrick-Prescott Filter and linear detrend-
ing. We use a smoothing parameter equal to 100 for the Hodrick-Prescott filter.

Figure Appendix A.1 shows the cyclical component for the Chilean real
GDP under the three different scenarios. We note that the Hamilton filter
performs better than the other two procedures for our purposes as it better
captures crises. For example, the Hamilton filter (pink line) captures the decline
in economic activity around 1998 due to the Asian Financial Crisis that badly
hit the Chilean economy, among other emerging markets economies, while the
other two detrending procedures view the crisis as merely a decline towards the
mean.

The fact that the Hamilton filter better captures crises is not particular
to the Chilean economic data but holds more broadly in the cross-section. In
Figure Appendix A.2, we plot an analog to Figure ?? — where we used the
Hamilton filter — but using the other two methods. As it is clear from the
figure, both methods produce inconsistent results, generating negative skewness
of the cyclical component of real GDP only on around half of the countries in
our sample. In contrast, the Hamilton filter captures the skewed business cycles
characteristic of real GDP.
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Figure Appendix A.1. Chilean Real GDP Cyclical Components under different detrend-
ing procedures
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Note: The figures shows the cyclical component of real GDP for Chile between 1985 – 2019
using three different sets of detrending procedures. The solid blue line uses a Hodrick-Prescott
filter with a smooth parameter equal to 100. The orange dashed line shows the cyclical
component when using linear detrending. Finally, the dot-solid pink line shows the cyclical
component using the Hamilton filter.

Figure Appendix A.2. Cross-Country Skewness of Real GDP Cyclical Components
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(a) Hodrick-Prescott Filter
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(b) Linear Detrending

Note: Panel (a) shows the skewness of the cyclical component of (log) real GDP when using the
Hodrick-Prescott filter with a smooth parameter equal to 100. Panel (b) shows the skewness
of (log) real GDP using a linear detrending procedure.

Appendix B. Additional Tables
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Table Appendix B.1. Cross-Country Relationship between Real GDP Cyclical Compo-
nent Skewness and Network Density

(1) (2)

Density 1995 -2.766∗∗∗ -2.977∗∗∗

(0.912) (1.074)

Obs. 46 46
R2 0.220 0.260
Controls No Yes

Note: This table reports the OLS coefficient of running a regression between real GDP cyclical
component skewness as the dependent variable. Column 1 uses network density in 1995 as
an independent variable. Column 2 uses the following controls: GDP per capita in 1985,
the volatility of the cyclical component of real GDP, and the skewness of the outdegree and
indegree distribution in 1995.

Table Appendix B.2. Annual labor productivity growth

2019q2 2019q3 2019q4 2020q1 2020q2 2020q3 2020q4

Mean 0.01 0.04 0.02 0.05 -0.04 0.07 0.11
Median 0.02 0.04 0.02 0.05 -0.03 0.07 0.11
St. Dev 0.27 0.27 0.27 0.28 0.35 0.35 0.32
Skewness -0.04 -0.09 -0.06 -0.09 -0.10 -0.18 -0.15

Observations 16,938 16,938 16,938 16,938 16,938 16,938 16,938

Note: This table presents the descriptive statistics of annual labor revenue labor productivity
growth at different quarters. The sample of firms corresponds to that used in Section 3 for
our firm-to-firm network calibration.
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