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I Introduction

Modeling and forecasting volatility is a crucial activity for financial decision-making.

Most of the methodologies harnessing the dynamic of volatilities in financial markets are

based on the use of historical returns (backward-looking information). In recent years

different studies have shown that option-implied volatilities (forward-looking information)

have a higher information content than volatility estimates obtained from historical data

and can improve the accuracy of volatility forecasting models (Jiang & Tian, 2005; Wayne,

Lui, & Wang, 2010; Schindelhauer & Zhou, 2018; Slim, Dahmene, & Boughrara, 2019)

since financial options seem to harness the market expectations about the price of the

underlying assets (Poon & Granger, 2003; Vanden, 2006; Christoffersen et al., 2013).

Option-implied volatilities arise from the Black & Scholes (1973) model, which al-

lows the theoretical value of an option to be determined from the historical volatility of

the underlying asset. By inverting their formula, we can determine the underlying asset

volatility from the financial option market price. This result is known as the implied

volatility of the asset underlying the option. Intuitively, one might expect an option’s

premium to increase as implied volatility increases. This is true for an individual stock,

but not necessarily true for an index option. This is because the implied volatility of

an index option is made up of the implied volatility of the index plus the covariance of

its components. In other words, the value of an option on a set of shares depends on

expectations about the volatility of the index and expectations about the covariance ma-

trix of its components. It is for this reason that the implied covariance matrix is used in

making financial decisions, such as asset pricing (Bakshi, Cao, & Chen, 1997), volatility

forecasting (Bollerslev, Tauchen, & Zhou, 2009), portfolio management (Pan & Potesh-

man, 2006), financial hedging strategies (Bakshi & Kapadia, 2003) and as an indicator of

market risk (Bernales & Valenzuela, 2016). However, these approaches has two common

drawbacks. First, estimating multivariate volatilities becomes more and more complex

with the increasing number of dimensions. Second, option-implied multivariate volatili-

ties are not directly observable, and therefore, they must be estimated. For this reason,

this paper contributes to the recent literature in financial econometric by introducing an

econometric approach that can be easily extended to high-dimensional volatility models.

In addition, we demonstrate the predictive capacity of the option-implied approach in
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the context of market risk forecasting.

Due to the above, the use of implied covariances or correlations (IC) has had less

attention. This fact comes from the complexity of identifying the implied covariance

matrix is due to its stochastic nature (Driessen, Maenhout, & Vilkov, 2009), the number

of variables that must be identified in the correlation matrix and because these grow

exponentially with the number of returns. One possible solution to this problem is to

impose equi-implied correlations as Skintzi & Refenes (2005) and Driessen, Maenhout,

& Vilkov (2013). This assumption is too restrictive though, because this correlations

are different for each pair of returns in fact. For this reason, Buss & Vilkov (2012)

allow the parameters to be different by estimating a explicit parametric form for the IC,

although this method is only valid when the IV are above the current return’s volatility,

assumption that holds most of the time. Finally, Numpacharoen & Numpacharoen (2013)

propose a modification to this method in order to ensure that the IC matrix will always

be positive-semidefinite.

In this paper we address two problems. First, we identify the implied covariance

matrix based on the methodologies of Buss & Vilkov (2012) and Numpacharoen &

Numpacharoen (2013) using daily data of DAX index. Then, we model both the dy-

namics of the implied convariance matrix and the covariance matrix of the returns based

on the Gorgi, Hansen, Janus, & Koopman (2018) methodology. Finally, we evaluate the

predictive capacity of the model on the return covariance matrix by backtesting against

common alternatives such as the EWMA and DCC models. We evaluate the models in

prediction of the Value-at-Risk (VaR) of the returns.

Our results show that the model correctly fits the dynamics of the implied covariance

matrix and the covariance matrix of the returns. These results are supported by the

fact that the parameters obtained behave according to expectations and their statistical

significance. Regarding the out-of-sample results, the backtest shows that the model

outperforms to the EWMA model and obtain results at least as good as the DCC model.

However, the proposed model considerably reduces the number of estimated parameters,

which is why we consider it superior to the benchmark. These results suggest new lines of

research in the development of multivariate models that allow the inclusion of information

involved in financial options for the development of forecasting models.

We present our method in Section II. In Section III we describe the data, the bench-

2



marks and the backtest exercise. We also show our main results. The Section IV con-

cludes.

II Method

In this section we summarize the method we use to identify each element of the implied

covariance matrix (in addition to the diagonal, which comes directly from option implied-

volatilities data) and the estimation method. We also describe how we use the implied

covariance matrix to model the covariances of the returns.

II.1 Implied Correlation Matrix

In order to identify the IC matrix, we use the methodology1 employed by Numpacharoen

& Numpacharoen (2013) to ensure the positive semidefiniteness of the IC matrix in every

period. To do this, we need to establish the following definition.

Definition 1: A valid n× n correlation matrix must hold the following conditions:

1. The matrix must by symmetric, ρij = ρji for i 6= j.

2. The elements in the diagonal should be equals to 1 (i.e. ρii = 1).

3. The elements off the diagonal must be real numbers in the closed interval [−1, 1].

4. The matrix must be positive semidefinite (i.e. its eigenvalues must be greater or equal

to zero).

We can use definition 1 to fully identify the IC matrix. To show this, we define the

positive semidefinites k × k matrices A and B and define κ ∈ [0, 1]. By doing this, we

can say that the matrix C = (1 − κ)A + κB is also positive definite. In the same way,

we define the following relationship between the implied correlation matrix and realized

correlation matrix, that we call RQ
t := {ρQij,t} and RP

t := {ρPij,t} respectively 2.

RQ
t = RP

t + κt(I −RP
t ) (1)

1We recognize this method was first developed by Buss & Vilkov (2012) and also used by Buss et al.
(2016), but their method do not ensure the covariance to be positive semidefinite for all periods.

2The superscripts Q and P indicates risk-free and physical measures. Meucci (2011) realize a detailed
description of this metrics and their use in quantitative finance
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Now we need to identify the elements of the matrix RQ
t . For this purpose we assume

that the implied correlations are consistent with the correlation formula such that the im-

plied correlation of a market index (I superscript) is composed by the implied correlations

and volatilities of the market as we show below.

(σQ,It )2 =
N∑
i=1

w2
i,t(σ

Q
i,t)

2 +
N∑
i=1

N∑
j=1

wi,twj,tσ
Q
i,tσ

Q
j,tρ

Q
ij,t, i 6= j (2)

where σQi and σQj are the implied volatilities of i and j; wi y wj are the weights of i

and j in the index I; and ρQij is the implied correlation between i y j.

Note that all the components in (2) are identified by data except by ρQij. But by using

(1) and the fact that ρQij,t = ρPij,t +κt(1−ρPij,t), we can fully identify RQ, being κt the only

missing parameter we need. With the purpose of showing this explicitly we combine (1)

and (2) and show the resulting equation for κt.

κt =
(σI,Qt )2 −

∑N
i=1

∑N
j=1witwjtσ

Q
i,tσ

Q
j,tρ

P
ij,t∑N

i=1

∑N
j=1wi,twj,tσ

Q
i,tσ

Q
j,t(1− ρPij,t)

, i 6= j (3)

From which every element can be identified by data. Once we obtain κt replacing

data, we can identify RQ
t using (1) again. For the purpose of our empirical application

we define ρPi,t as a 75 days rolling-window correlation and wi,t as

wit =
pitsit∑N
i=1 pitsit

(4)

Where pit and sit are the price and the quantity of the share i in circulation on the

day t.

Finally, we can recover the IC matrix, V Q
t , from the RQ

t by doing the transformation:

V Q
t = diag{V Q

t }1/2R
Q
t diag{V Q

t }1/2 (5)

Where diag{V Q
t }1/2 are the implied volatilities that we obtain from data.

II.2 Model assumptions

Intending to use the IC matrix to model the historical variances, we base this part of the

methodology in the work of Gorgi et al. (2018) which allows us to estimate jointly both
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covariance matrices.

Let rt be a k× 1 vector of daily log-returns. Let Ft−1 the σ-algebra generated by the

past values of rt and let V Q
t the IC matrix. Assume the following conditional densities:

rt|Ft−1 ∼ Nk(0,Σt) (6)

V Q
t |Ft−1 ∼ Wk(Σ

Q
t , ν) (7)

Where Σt is the covariance matrix of the multivariate normal distribution and ΣQ
t is

the mean of the Wishart distribution with ν ≥ k degrees of freedom. The assumptions

(6) and (7) implied the following distribution for the squared returns:

rtr
′
t|Ft−1 ∼ Wk(Σt, 1) (8)

The measurement equations are defined as follows:

rt = Σ
1/2
t εt, εt ∼ Nk(0, Ik) (9)

ΣQ
t = (V Q

t )1/2Ωt(V
Q
t )1/2, Ωt ∼ Wk(ν,

Ik
ν

) (10)

Where εt and Ωt are a random vector and a random matrix respectively. By assump-

tion we establish that the relation between the conditional mean of the squared returns

and the conditional mean of the IC is proportional as follows:

Σt = Λ1/2ΣQ
t Λ1/2 (11)

Here Λ = diag{λ1, λ2, ..., λk} is a k × k diagonal matrix that does not vary in time

and shows the proportional relationship between these two matrices.

II.3 Score-driven dynamics

To incorporate the score-driven dynamics, we define the vector ft, which contains the

time-varying parameters of the model. In our case, this vector contain the covariance
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matrices, so we define ft as the following:

ft = vech(V Q
t ) (12)

Where the operator vech(A) stack the information in A in a vector. The V Q
t dynamics

is modeled such as the vector ft is updated by the score function of the conditional density

function. In this way, the dynamics of ft is given by:

ft+1 = (1− β)ω + βft + αst (13)

Where ω is a vector containing the unconditional mean of ft, β is the autoregressive

factor of the covariance dynamics and α is the contribution of the score, st, to the

dynamics. The vector st is a martingale sequence withe zero mean a finite variance

defined as:

st = St∇t (14)

∇t =
∂log pN(rt|ft,Ft−1; θ)

∂ft
+
∂log pW (ΣQ

t |ft,Ft−1; θ)
∂ft

(15)

St = I−1/2t , It = Et−1 [∇t∇′t] (16)

Here θ is a vector of static parameters —including α, β and ω—. ∇t is the score vector

of the likelihood function, defined as the sum of score vector of both return and covariance

distributions. The function St accounts for the curvature of the likelihood function with

respect to the parameter ft, and pN and pW are the multivariate normal and Wishart

distributions respectively. It should be noted that there is no single way to define St

(Creal et al., 2013). However, here the scale function based on the Fisher information

matrix, It, is used for its intuitive interpretation based on Fisher’s scoring-algorithm.

An important feature of this model is that the recursion presented in (13) is analogous

to a GARCH process. The main difference is due to the fact that the dynamics of the

covariance matrix in a GARCH process is driven by the square of the returns, while the

score dynamics uses all the information of the probability density, instead of the first

moments of distribution. On the other hand, the likelihood function is available in closed

form and can be decomposed as the sum of the likelihood functions. In this way, the
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likelihood function Lt(θ) can be expressed as:

Lt(θ) = log pN(rt|ft,Ft−1; θ) + log pW (ΣQ
t |ft,Ft−1; θ) (17)

This property is due to the assumption of independence between the innovations of

both innovations, that is, due to E[εtΩt] = 0. Asymptotic properties of the model are

reviewed in greater detail in the work of Gorgi et al. (2018).

Finally, we exploit equations (11) and (8) to recover the time-variant covariance matrix

of returns, Σt, from the process in (13) and model its dynamics. Due to the inclusion

of option-implied covariances and the Wishart distribution to model its innovations, this

model will hereinafter be referred to as Implied-Covariance Wishart or ICW.

III Empirical application

In this section we describe the data we used and show the results of the estimation.

Finally we describe the benchmark and backtesting exercises and show the results of

forecasting univariate series and portfolios of different sizes.

III.1 Data

The data is made up of 25 daily series returns and their respective implied volatilities.

The series correspond to components of the DAX index plus the index. The volatilities

correspond to implied volatilities in 30-day European options, which is why they were

transformed to daily volatility considering 25 trading days per month. The implied

volatilities in the database correspond to the average implied volatilities in put and call-

options for each share in the DAX. The components are shown in Table 1.

The sample data is between May 19, 2006 and June 23, 2019, which correspond to

3,343 market days. The data was partitioned in such a way that the data was left from

January 2, 2017 (645 trading days) onwards to test the fit of the models outside the

sample. The series are shown in Figure 1.
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Table 1. Returns series in the database

Ticker Firm Industry

SAP SAP Software
ALV Allianz Insurance
DTE Deutsche Telekom Communications
BAYN Bayer Pharmacy and chemicals
BAS BASF Chemestry
DAI Daimler Manufacture
BMW BMW Manufacture
ADS Adidas Textile
DPW Deutsche Post Logistic
MUV2 Munich Re Insurance
CON Continental Manufacture
DBK Deutsche Bank Banking
BEI Beiersdorf Consumer goods and chemicals
IFX Infineon Technologies Semiconductors
DB1 Deutsche Borse Shares
EOAN E.ON Energy
FME Fresenius Medical Care Medical services
FRE Fresenius Medical services
LHA Deutsche Lufthansa Air transport
MRK Merck Pharmaceutical
RWE RWE Energy
TKA ThyssenKrupp Industry and manufacture
HEN3 Henkel Consumer goods and chemicals
VOW3 Volkswagen Group Manufacture

The data was obtained from the Thomson Reuters datastream Eikon platform.
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Figure 1. Option-implied volatilities in the database
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III.2 Estimates

Table 2 shows the results of the maximum likelihood (ML) estimate of the ICW model for

the 2698 trading days of the in-sample partition. The model was estimated for a selection

of k ∈ {6, 12, 24} series randomly selected from the sample. For the case of k = 24 the

model is estimated for all DAX components. The first three columns of Table 2 show

three estimates with k = 6. The next three columns show three estimates with k = 12,

while the last column corresponds to the model estimate with k = 24.

Results in Table 2 show that the estimate of the parameter ν increases as k increases.

This parameter corresponds to the degrees of freedom of the Wishart distribution, so it

must increase as the dimensions of the covariance matrix increase for the matrix to be

non-singular. It can be observed that this parameter is significant for all the estimates

made with different values of k, indicating that the model maintains its properties at

different sample sizes.

Regarding the parameter β, we obtained estimates close to one, which shows the high

persistence of the covariance matrix over time for all estimates. On the other hand,

the parameter α indicates the relevance of the score function in the dynamics of the

covariance matrix. Finally, significant parameters λi were obtained and greater than one

in all cases, which indicates that the transformation Σt = Λ1/2ΣQ
t Λ1/2 correctly captures

the relationship between the implied covariance matrix and the covariance matrix of the

returns.

Finally, the results indicate that the estimates of the ICW model parameters re-

main relatively constant between estimates at different dimensions. Additionally, all the

model parameters were significant for all estimates. This is due to the importance of

co-movements between the different components of the DAX in its dynamics. This result

suggests that it is possible to set a single autoregressive parameter, β, for the entire set of

returns, which we do in order to reduce the parameters to estimate as much as possible.

In the following subsections, the backtesting of the ICW model is performed with the

parameters shown in the last column of Table 2, where k = 24.
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Table 2. ML Estimates a

Parameter ML Estimator

k=6 k=6 k=6 k=12 k=12 k=12 k=24
ν 90.155 91.472 98733 145.492 143.222 149.021 248.497

(0.529) (0.536) (0.580) (0.441) (0.434) (0.452) (0.382)

β 0.967 0.971 0.986 0.987 0.991 0.979 0.991
(0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)

α 0.540 0.518 0.521 0.521 0.507 0.525 0.543
(0.005) (0.004) (0.004) (0.002) (0.002) (0.002) (0.001)

λ1 0.347 0.354 0.351 0.364 0.406 0.373 0.395
(0.004) (0.004) (0.004) (0.004) (0.005) (0.004) (0.004)

λ2 0.348 0.347 0.346 0.715 0.378 0.397 0.396
(0.004) (0.004) (0.004) (0.014) (0.004) (0.004) (0.003)

λ3 0.362 0.364 0.360 0.419 0.400 0.387 0.396
(0.004) (0.004) (0.004) (0.005) (0.005) (0.005) (0.004)

λ4 0.345 0.343 0.355 0.380 0.378 0.374 0.382
(0.004) (0.004) (0.004) (0.004) (0.005) (0.004) (0.003)

λ5 0.327 0.343 0.344 0.451 0.368 0.353 0.384
(0.004) (0.004) (0.004) (0.007) (0.004) (0.004) (0.004)

λ6 0.345 0.352 0.351 0.418 0.390 0.384 0.420
(0.004) (0.004) (0.004) (0.005) (0.004) (0.004) (0.004)

λ7 - - - 0.433 0.528 0.407 0.423
(0.005) (0.008) (0.005) (0.004)

λ8 - - - 0.475 0.374 0.389 0.454
(0.007) (0.004) (0.004) (0.005)

λ9 - - - 0.393 0.385 0.352 0.396
(0.005) (0.004) (0.004) (0.004)

λ10 - - - 0.548 0.375 0.393 0.398
(0.008) (0.004) (0.004) (0.004)

λ11 - - - 0.373 0.377 0.677 0.381
(0.004) (0.005) (0.001) (0.004)

λ12 - - - 0.371 0.391 0.983 0.467
(0.004) (0.004) (0.015) (0.006)

λ13 - - - - - - 0.403
(0.004)

λ14 - - - - - - 0.368
(0.003)

λ15 - - - - - - 0.383
(0.004)

λ16 - - - - - - 0.388
(0.005)

λ17 - - - - - - 0.403
(0.005)

λ18 - - - - - - 0.423
(0.005)

λ19 - - - - - - 0.423
(0.005)

λ20 - - - - - - 0.412
(0.005)

λ21 - - - - - - 0.386
(0.004)

λ22 - - - - - - 0.402
(0.005)

λ23 - - - - - - 0.481
(0.006)

λ24 - - - - - - 0.396
(0.004)

log L −141194 −147853 −148416 −425460 −433402 −375929 −1001419

a Standar errors are shown in parenthesis.
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III.3 Benchmarking

Out-of-sample model fit is assessed by making a Value-at-Risk 1-step-ahead o forecast of

univariate returns and bivariate portfolios of randomly selected series. A comparison is

made between the proposed model and the models commonly used to model the dynamics

of multivariate volatility series. These models are the EWMA and DCC (Engle, 2002)

under the detailed specifications below.

The first benchmark is the EWMA model, which assumes that the dynamics of the

covariance matrix follows the following process:

Σt+1 = cΣt + (1− c)rtr′t

Where the dynamics of the conditional variance, Σt, is driven by the square of the

returns, rtr
′
t, and c is a parameter typically set at c = 0.96. The second benchmark is the

DCC model, which is built from the covariance matrix of the returns adjusted for their

standard deviations. The specification of this benchmark is as follows:

Σt = DtRtDt

Σt = diag(Qt)
−1/2Qtdiag(Qt)

−1/2

Qt = (1− θ1 − θ2)Q̄+ θ1εt−1ε
′
t−1 + θ2Qt−1

Where Rt is the correlation matrix of the returns, Dt is a diagonal matrix of standard

deviations, εit = rit/
√
σit y Qt follows the dynamics described by Engle (2002). To

estimate this model, it is necessary to estimate k univariate GARCH models for the k

series of returns, since it is necessary to estimate the matrix Dt in the first instance. This

is done by estimating a GARCH (1,1) for each series.

Finally, it should be noted that both benchmarks use backward-looking information,

while the model with option-implied covariances uses forward-looking information. For

this reason, it is more appropriate to make the comparison of the models in their perfor-

mance to predict volatility of the returns outside the sample, since it could be expected

that the implied volatilities contain additional information to the historical volatilities

that may be useful to perform forecasting. We evaluate this capacity by estimating the
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VaR, which is defined below.

Definition 2: For a confidence level α ∈ (0, 1) and a given time horizon, the VaR

of a portfolio is defined as the minimum loss l such that the probability that the loss L

exceeds the value l is not greater than (1− α). Formally this is:

V aRα = inf{l ∈ R : P (L > l) ≤ 1− α} = inf{l ∈ R : FL(l) ≥}

That is, the VaR is the quantile of the loss distribution, L. Additionally, the VaR

series for a portfolio composed of two shares is defined as follows:

V aRαt =
√
w2
itV aR

2
αit + w2

jtV aR
2
αjt + 2ρijtwitwjtV aRαitV aRαjt

Where the parameters wit and wjt are weights that indicate the weight of the stock

in the portfolio. Here we use wit = wjt. In this way we can compare the proposed model

against the benchmark considering all the elements of the correlation matrix and not only

the elements of the main diagonal.

To perform the backtesting, the DQhit and DQV aR tests of Engle & Manganelli (2004)

are presented, which are based on a quantile regression to test the independence of the

excess series, Hitt := 1{V aRt<rt}, with its own lags, and the independence between Hitt

and the V aRt series respectively. On the other hand, the MC tests (Ziggel, Berens,

Weiß, & Wied, 2014), based on Monte Carlo simulations, are used to test unconditional

coverage, MCuc; error independence, MCiid; and conditional coverage, MCcc. Finally a

ratio defined as the quotient between excess obtained and excess expected is shown.

The following subsections present the results for α ∈ {95%, 99%, 99.9%} for a set of

randomly composed individual return series and bivariate portfolios.

III.4 VaR forecast: Univariate return series

Table 3 shows the backtest of the VaR forecast for randomly selected individual returns

from the data during the 3-year out-of-sample period. Table 3 shows the p-values obtained

by the models for each series — BAYN, BMW, SAP and ALV — and for each test. Panels

A, B and C show the results obtained for the VaR series with α = 95%, α = 99% and

α = 99.9% respectively.
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The results obtained for these series show that the EWMA model is the one with the

worst performance in global terms, with the highest number of failures. On the other

hand, the test results worsen in the 3 models while the most extreme quantile is analyzed,

although the ICW model shows better results than the benchmark in the most extreme

quantiles (Panel B and Panel C).

Table 3. VaR forecasting: Univariate return seriesa b c

EWMA DCC ICW

Backtest BAYN BMW SAP ALV BAYN BMW SAP ALV BAYN BMW SAP ALV

Panel A: α=95%

DQhit 0.2599 0.0012 0.3009 0.7463 0.9612 0.8458 0.8458 0.7176 0.9612 0.3793 0.0956 0.2467

DQV aR 0.1662 0.0031 0.3241 0.5167 0.4880 0.9658 0.8978 0.7114 0.7728 0.3611 0.2490 0.4933

MCuc 0.8310 0.0732 0.9416 0.9524 0.2178 0.0888 0.0942 0.0392 0.2244 0.0012 0.7064 0.0422

MCiid 0.5105 0.1782 0.1073 0.1533 0.9399 0.2619 0.1303 0.3494 0.8844 0.5953 0.4285 0.4736

MCcc 0.9804 0.3322 0.2218 0.3122 0.1232 0.4972 0.2616 0.6856 0.2350 0.7986 0.8456 0.9534

Ratio 0.0481 0.0651 0.0496 0.0496 0.0403 0.0357 0.0357 0.0326 0.0403 0.0248 0.0465 0.0326

Panel B : α=99%

DQhit 0.1411 0.3051 0.3693 0.3693 0.0831 0.6966 0.4668 0.4668 0.6556 0.7809 0.5387 0.5387

DQV aR 0.0491 0.5793 0.6444 0.6444 0.0250 0.1970 0.7665 0.7665 0.8587 0.7314 0.8204 0.8204

MCuc 0.1924 0.0046 0.0020 0.0000 0.5090 0.7254 0.0224 0.0240 0.5624 0.5326 0.1044 0.1028

MCiid 0.9853 0.7445 0.4446 0.4463 0.8950 0.3673 0.4454 0.4491 0.9152 0.6260 0.7687 0.7724

MCcc 0.0332 0.5220 0.9098 0.9304 0.2148 0.7220 0.8906 0.9008 0.1728 0.7606 0.4530 0.4710

Ratio 0.0155 0.0217 0.0248 0.0202 0.0124 0.0109 0.0202 0.0124 0.0124 0.0078 0.0171 0.0109

Panel C : α=99.9%

DQhit 0.7799 0.6952 0.6139 0.6139 0.8671 0.8233 0.8233 0.8233 0.8233 0.8671 0.7799 0.7799

DQV aR 0.8025 0.8021 0.6394 0.6394 0.9136 0.7222 0.8833 0.8833 0.8357 0.7658 0.7863 0.7863

MCuc 0.0000 0.0000 0.0000 0.0000 0.0328 0.0016 0.0058 0.0026 0.0064 0.0506 0.0000 0.0000

MCiid 0.9673 0.8487 0.5292 0.5321 0.2509 0.5321 0.0993 0.1031 0.7828 0.5976 0.2634 0.2683

MCcc 0.07080 0.2966 0.9466 0.9436 0.5010 0.9336 0.1894 0.1970 0.4570 0.8150 0.5478 0.5292

Ratio 0.0078 0.0109 0.0140 0.0078 0.0047 0.0062 0.0062 0.0031 0.0062 0.0047 0.0078 0.0047

a The out-of-sample period corresponds to the period between January 2, 2017 and June 23,

2019.

b For each test the corresponding p-value of the test statistic is presented.

c Failed tests are shown in lightgray highlighted text.

Figure 2 and Figure 3 graphically show the results for the VaR series for the univariate

returns and for bivariate portfolios. The topleft panel of Figure 2 shows the results
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obtained by the models with α = 95% for the TKA series, while the topright, bottomleft

and bottom-right sections show the results with α equal to 97% for FRE series, 99% for

BEI series and 99.9% for EOAN series respectively.

It is observed that the ICW model is much more flexible than the benchmark, re-

turning to its unconditional mean significantly faster than the DCC and EWMA models.

Additionally, we can observe that the ICW model adapts better to the volatility of the

returns, unlike the benchmark.

Figure 2. VaR forecast: Univariate returns
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Figure 3. VaR forecast: Bivariate portfolios
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III.5 Portfolio simulations

To study the robustness of the results to the size of the portfolios, simulations of portfolios

are carried out at different sizes n = {6, 12, 18, 24} and at different weights, wit , which

determine the weight of each share within the portfolio. In each simulation, the size of the

portfolio is previously determined and then the portfolio components with their respective

weights are randomly obtained. 5000 simulations are run for each portfolio size, obtaining

20,000 series of portfolio returns with different amounts of components. Once these series

of returns have been obtained, the tests estimated in the previous sections are carried

out at the confidence levels α = {95%, 99%, 99.9%}. Table 4 shows the percentage of

occasions in which a certain model passes a certain backtest.

Table 4 shows the results of the backtesting. It is observed that the 3 models obtain

a similar amount of tests passed in the DQ hit and DQ VaR tests, close to or greater

than 90% of successes, although the ICW model obtains a number slightly higher than

16



successful tests in the DQ hit test, and slightly lower in the DQ VaR test. This indicates

that the surplus series, Hitt, exhibits autocorrelation less often in the ICW model than

in the benchmark, while the textit Hitt series tends to show more correlation with the

VaR series in the ICW model. These results are consistent across different portfolio sizes

and hold at different percentiles analyzed.

On the other hand, in the Monte Carlo tests, the ICW model shows a greater number

of successes in at least some of the benchmarks (with the exception of the MCcc test in

Panel B). Additionally, at lower quantiles (Panel A), the unconditional coverage tests,

MCuc, show the worst results in the 3 models, with the EWMA model obtaining the worst

results, while the DCC and ICW models reach about a 55% of successes. On the other

hand, at more extreme percentiles (Panel C), the test in which the models perform the

worst is the error independence test, MCiid. In this test, the DCC model performs better,

followed by the ICW model and finally the EWMA model. Finally, in the conditional

coverage test, the models obtain similar results and higher than 90% of successes in all

cases, with the ICW model obtaining slightly higher results in the percentiles 95% and

99.9%, and slightly worst in the 99% percentile.
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Table 4. Backtesting: Portfolio simulationsa b

n=6 n=12 n=18 n=24

Backtest ICW EWMA DCC ICW EWMA DCC ICW EWMA DCC ICW EWMA DCC

Panel A: α=95%

DQhit 0.9990 0.9402 0.9704 0.9992 0.9382 0.9632 0.9992 0.9382 0.9710 0.9990 0.9450 0.9628

DQV aR 0.8964 0.9286 0.9566 0.9180 0.9502 0.9662 0.9322 0.9596 0.9716 0.9334 0.9724 0.9630

MCuc 0.5524 0.1648 0.7062 0.5634 0.0922 0.7348 0.5936 0.0800 0.7652 0.5952 0.0672 0.7684

MCiid 0.9818 0.9862 0.9022 0.9846 0.9906 0.8808 0.9874 0.9928 0.8634 0.9878 0.9940 0.8618

MCcc 0.9564 0.9706 0.9498 0.9638 0.9690 0.9424 0.9718 0.9686 0.9416 0.9670 0.9618 0.9432

Panel B : α=99%

DQhit 0.9902 0.9852 0.9772 0.9910 0.9896 0.9648 0.9940 0.9958 0.9664 0.9938 0.9934 0.9628

DQV aR 0.9600 0.9796 0.9788 0.9508 0.9858 0.9822 0.9290 0.9896 0.9862 0.9276 0.9888 0.9904

MCuc 0.9166 0.7630 0.9062 0.9178 0.6916 0.9364 0.9232 0.6932 0.9468 0.9342 0.7138 0.9574

MCiid 0.9876 0.9226 0.9906 0.9906 0.7892 0.9934 0.9904 0.6842 0.9962 0.9910 0.6178 0.9956

MCcc 0.9350 0.9420 0.9498 0.9396 0.9522 0.9554 0.9412 0.9600 0.9472 0.9482 0.9666 0.9544

Panel C : α=99.9%

DQhit 0.9980 0.9970 0.9692 0.9980 0.9988 0.9746 0.9996 0.9990 0.9750 0.9994 0.9992 0.9804

DQV aR 0.9790 0.9902 0.9898 0.9818 0.9958 0.9874 0.9838 0.9954 0.9880 0.9858 0.9984 0.9884

MCuc 0.7852 0.8266 0.6868 0.8466 0.8898 0.7644 0.8752 0.9090 0.8030 0.8978 0.9268 0.8394

MCiid 0.6450 0.5134 0.7230 0.5216 0.3424 0.6306 0.4562 0.2804 0.5634 0.3906 0.2442 0.5184

MCcc 0.9594 0.9716 0.9400 0.9694 0.9818 0.9558 0.9774 0.9844 0.9558 0.9802 0.9874 0.9600

a The table shows the percentage of successful tests for each model.

b The tests in which the ICW model obtained results equal to or better than any of the bench-

marks are shown in lightgray highlighted text. In bold and highlighted the tests that the ICW

model outperforms both benchmarks.

It should be noted that the ICW model performs better than the EWMA and at

least as good as the DCC model. These results are not penalizing for the number of

parameters estimated in each model, which in the case of k = 24 reach 74 parameters

–3 for each GARCH(1,1) and plus 2 for the DCC– in the DCC model, unlike the 27

parameters estimated in the ICW model.
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IV Conclusions

The objective of this paper is to document the predictive capacity of the option-implied

volatilities and option-implied correlations on the returns volatility. Our results show that

the model correctly captures the relationship between the implied covariances and the

covariances of the returns. It is also observed that the factor associated with the score-

driven dynamics is significant at different dimensions, indicating that the model manages

to capture the dynamics of the covariance matrix. On the other hand, the backtest shows

that the model outperforms the EWMA model and obtains results at least as good to the

DCC model, although the DCC model needs a greater number of parameters to estimate

and we do not penalize for this fact.

The ICW model obtains results comparable to the benchmark in all the tests carried

out. However, its advantage is that it considerably reduces the number of parameters that

must be estimated, particularly compared to standard models such as DCC and BEKK.

On the other hand, the novelty of this methodology is that it allows the inclusion of

the option-implied covariance matrix in the estimation of the covariances of the returns.

The results obtained are related to results previously observed in the literature on the

predictive capacity of implied volatilities on the volatility of returns (Driessen et al., 2013)

and on its ability to estimate Value-at-Risk (Slim et al., 2019; Schindelhauer & Zhou,

2018).

We conclude that our results justify a line of research in order to adapt multivariate

volatility models with option-implied correlations according to different requirements,

such as heavy-tailed distributions, similar to the work of Opschoor et al. (2018), increase

the amount of autoregressive parameters, try to capture long memory effects, as in the

work of Vassallo et al. (2018), test the robustness at different option expiration periods,

test the performance of the model in portfolio optimization and build other benchmarks

more suitable than allow comparing models with forward-looking information. These

issues are raised as future research.
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