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Abstract
We provide a complete analysis of previously undocumented sunspot equilibria in a canonical 
dynamic economy with imperfect risk sharing. Methodologically, we employ stochastic stability 
theory to establish existence of this broad class of sunspot equilibria. Economically, self-fulfilling 
fluctuations are characterized by uncertainty shocks: changing beliefs about volatility trigger asset 
trades, which impacts productive efficiency and justifies the degree of uncertainty. We show how 
rational sentiment helps resolve two puzzles in the macro-finance literature: (i) financial crises 
emerge suddenly, featuring (quantitatively) hard-to-explain volatility spikes and asset-price declines; 
(ii) asset-price booms, with below-average risk premia, predict busts and financial crises

Resumen
Presentamos un análisis comprehensivo de equilibrios sunspot para una economía canónica con 
mercados financieros imperfectos. Metodológicamente, empleamos la teoría de estabilidad estocástica 
para establecer la existencia de esta amplia clase de equilibrios sunspot. Económicamente, las 
fluctuaciones autocumplidas pueden ser entendidas como shocks de incertidumbre: cambios en la 
percepción de la volatilidad de los activos desencadenan el comercio de los mismos, lo cual afecta la 
eficiencia productiva y justifica el cambio en las creencias acerca de la volatilidad. Ilustramos cómo 
nuestra noción de rational sentiments ayuda a resolver dos acertijos en la literatura macro-financiera: 
(i) las crisis financieras surgen de forma repentina, presentando importantes picos de volatilidad y
caídas en el precio de los activos; (ii) auges en el precio de los activos, con primas por riesgo por
debajo del promedio, predicen crisis financieras.
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It has by now become commonplace, especially after the 2008 global financial crisis,
for macroeconomic models to prominently feature banks, limited participation, imper-
fect risk-sharing, and other such “financial frictions.” Incorporating these features allows
macroeconomists to speak meaningfully about financial crises and desirable policy re-
sponses. Despite the dramatic growth in this literature, there remain two major sources
of disconnect between these models and actual data. For one, standard models have dif-
ficulty reproducing the observed severity and suddenness of economic downturns and
asset-price dislocations. Secondly, standard models struggle to generate booms that are
inherently fragile and prone to bust. To address these shortcomings, some recent contri-
butions add large and sudden bank runs1 while others deviate from rational expectations
to model booms as episodes of over-optimism.2

We embrace rational sentiment as a complementary approach. This paper makes two
main contributions. First, we uncover a wide variety of novel sentiment-driven sunspot
equilibria supported by standard financial friction models. The fluctuations in these
equilibria are self-fulfilling: they only occur because agents expect them and coordinate
on them. Second, we demonstrate how sentiment fluctuations alleviate some of the
empirical shortcomings for this class of models. Rational sentiment can generate both
(i) large and sudden fluctuations, similar to bank runs (footnote 1), and (ii) booms that
breed fragility, similar to the “behavioral sentiment” adopted by some recent papers
(footnote 2).

Model and mechanism. We study a simple stripped-down model with financial fric-
tions, similar to Kiyotaki and Moore (1997), Brunnermeier and Sannikov (2014), and
many others.3 There are two types of agents (“experts” and “households”) with identical
preferences but different levels of productivity when managing capital. Heterogeneous
productivity means the identity of capital holders matters for aggregate output. But
incomplete markets prevent agents from sharing risks associated to their capital hold-

1For example, Gertler and Kiyotaki (2015) and Gertler et al. (2020) attempt to integrate bank runs into
a conventional financial accelerator model, in order to capture additional amplification and non-linearity.
These runs are assumed to be large aggregate phenomena in the sense that the entire banking system
suddenly collapses. Without runs or panic-like behavior, financial accelerator models have a difficult time
inducing the financial intermediary leverage and risk concentration needed to generate large amounts of
amplification. This shortcoming can be seen in Di Tella (2017), where the retirement rate of bankers is
calibrated to 115% per year, or in Khorrami (2018), where the implied entry costs needed to match asset
price dynamics are on the order of 90% of wealth.

2For example, Krishnamurthy and Li (2020) and Maxted (2020) build an extrapolative sentiment process
on top of a relatively standard financial accelerator model. Agents’ excessive optimism in booms lowers
risk premia, erodes bank balance sheets, and creates fragility.

3We work in continuous time, contributing to a burgeoning literature (He and Krishnamurthy, 2012,
2013, 2019; Moreira and Savov, 2017; Klimenko et al., 2017; Caballero and Simsek, 2020).
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ings, so optimal capital holdings depend to some degree on these risks and not only
on productivities. There are no other features: no borrowing/collateral constraints, no
default externalities, and no irrational beliefs. And yet, this basic model can feature a
tremendous amount of multiplicity that has been overlooked in the literature.

The following story clarifies the mechanism. Suppose there is a sudden rise in fear,
purely as a sunspot phenomenon (i.e., no change in preferences or technology). Fear
manifests as higher perceived asset-price volatility, which results in a fire sale: first-best
capital users (experts) sell to less-efficient users (households). The reason is that, with
financial frictions, both risk-sharing and productive-efficiency considerations matter for
the capital distribution, and elevated risk propels risk-sharing considerations to the fore-
front. Because productive efficiency falls, asset prices fall as well. Thus, the new alloca-
tion features a less efficient capital allocation, lower asset prices, and higher volatility.

This allocation will only be an equilibrium if it does not lead to explosive paths.
While this may seem technical, it is a real concern: with higher volatility in the new
equilibrium, any subsequent fear shocks would have a larger direct impact, further raise
volatility, and so on, ad infinitum. Rational forward-looking agents would rule this out
at the beginning and suppress their fear.

In this class of models, explosions are easily prevented because of an indeterminacy
in the dynamic equilibrium. The key observation is that optimal capital holdings are
a function of the risk premium. Consequently, only the risk premium is pinned down
by equilibrium; risky expected returns and riskless rates are not separately determined.
This indeterminacy in expected returns, hence expected capital gains, provides a tool
with which sunspot equilibria can be engineered.

As long as agents expect asset prices to “bounce back” from “extreme values,” short-
run fear can be consistent with non-explosive long-run equilibrium. Nothing rules out
such bounce-back beliefs in this class of models. In our continuous-time setup, bounce-
back beliefs are boundary conditions on expected returns at the extreme states. Such
boundary restrictions are both analytically-convenient and mild; nearly arbitrary dy-
namics are possible away from extreme states.

In summary, a sunspot rise in fear creates a self-fulfilled decline in asset prices,
through coordinated fire sales. Conversely, sunspot bravery (decline in fear) raises asset
prices, through coordinated purchases.

Overview of paper. While explaining our mechanism above, we abstracted from the
wealth distribution between experts and households. Typically in the financial frictions
literature, this wealth distribution is the key state variable modulating the dynamics.
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The first results of our paper (Section 2) demonstrate how restricting attention to these
type of equilibria—equilibria which are Markovian solely in the wealth distribution—
precludes essentially all interesting self-fulfilling dynamics.

Our main results pertain to a richer class of self-fulfilling equilibria (Section 3).
Mathematically, we dispense with the assumption that equilibria must be Markovian
in the wealth distribution, which can be understood as removing an ad-hoc restriction
on agents’ beliefs. This generalization considerably complicates the analysis, and our
contribution here is to provide an explicit construction and characterization of a broad
class of such equilibria.

This richer class of equilibria engender several new insights, related to the shortcom-
ings discussed earlier (Section 4). First, whereas fundamentals-based recessions, which
are primarily about bank balance sheet impairment in our model, feature small volatility
increases and very slow recoveries, sentiment-driven crises feature far larger volatility
spikes and fast recoveries. In fact, we prove that arbitrarily large capital price volatility
and arbitrary recovery speeds can be justified by sunspot equilibria. Second, whereas
fundamentals-based booms always reduce the prospect of crisis, sentiment-driven booms
can actually increase crisis probabilities. Relatedly, in the years before large busts, an
economy with sentiment tends to feature asset-price and output booms, low volatility,
and below-average risk premia. We argue all of these properties of sentiment-driven
fluctuations better resemble real-world financial cycles.

Related literature. The theoretical focus on financial frictions and sunspots is not new
to this paper. Several studies show how multiplicity emerges through the interaction
between asset valuations and borrowing constraints.4 Relative to these papers, we study
different and more primitive financial frictions (equity-issuance constraints) that do not
feature any mechanical link between prices and constraints.5

Bank runs, financial panics, and sudden stops are related to, but distinct from, our
self-fulfilled fluctuations.6 All of these phenomena rely on financial frictions, are out-
comes of coordination, and produce large fluctuations relative to fundamentals. How-

4For instance, bubbles can relax credit constraints, allowing greater investment and thus justifying the
existence of the bubble (Scheinkman and Weiss, 1986; Kocherlakota, 1992; Farhi and Tirole, 2012; Miao
and Wang, 2018; Liu and Wang, 2014). Self-fulfilling credit dynamics can also arise with unsecured lending
as opposed to collateralized (Gu et al., 2013; Azariadis et al., 2016).

5We call equity-issuance constraints “more primitive” because they are present (either explicitly or
implicitly) even in models with borrowing constraints. With unlimited outside equity, perfect risk-sharing
could always be achieved and the effects of borrowing constraints circumvented.

6In a setup close to ours, Mendo (2020) studies self-fulfilled panics that induce collapse of the financial
sector, an extreme example of the fluctuations we analyze. Gertler and Kiyotaki (2015) and Gertler et al.
(2020) study bank runs in a similar class of models.
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ever, whereas bank runs and its cousins are liability-side phenomena, self-fulfilled fire
sales are pure asset-side phenomena.7 Furthermore, unlike runs, our mechanism does
not require asset-market illiquidity or maturity mismatch. Finally, whereas runs are
almost exclusively about large downside risk, our sentiment fluctuations also generate
interesting boom-bust cycles.

Given our results hold even without borrowing constraints or runs, we illustrate that
a much broader class of financial crisis models are subject to sunspots. We also do
not rely on the more traditional multiplicity-inducing assumptions, such as overlapping
generations, non-convexities or externalities in technology,8 asymmetry of information,9

or multiple assets.10

Finally, our equilibrium construction differs deeply from the literature. Sunspot equi-
libria are often constructed by essentially randomizing over a multiplicity of determinis-
tic transition paths to a stable steady state. By contrast, the deterministic version of our
model features an unstable steady state; critically, the introduction of volatility flips the
stability properties of equilibrium. This distinction is likely why our sunspot equilibria
have gone unnoticed despite the framework being so widespread. Methodologically,
we prove our existence results with tools from the “stochastic stability” literature (the
stochastic differential equation analog of Lyapunov stability for ODE systems). As one
might expect from deterministic models, the existence of sunspot equilibria is tied di-
rectly to stability properties. Stochastic stability tools are ideally suited for this issue.

1 Model

Information Structure. Time t ≥ 0 is continuous. There are two types of uncertainty
in the economy, modeled as two independent Brownian motions Z := (Z(1), Z(2)). All
random processes will be adapted to Z.11 As will be clear below, the first shock Z(1)

7When selling assets, investors simultaneously deleverage, which clarifies our mechanism as a “funding
demand” decline rather than the “funding supply” decline that characterizes a run. It is not that investors
cannot obtain financing, just that they do not want to.

8For example, see Azariadis and Drazen (1990) for multiplicity under threshold investment behavior.
See Farmer and Benhabib (1994) for a multiplicity under increasing returns to scale.

9In a macro context, Piketty (1997) and Azariadis and Smith (1998) for self-fulfilling dynamics in the
presence of screened/rationed credit. In a finance context, Benhabib and Wang (2015) and Benhabib et al.
(2016, 2019) generate sunspot fluctuations in dispersed information models.

10Hugonnier (2012), Gârleanu and Panageas (2021), and Khorrami and Zentefis (2020) all build “redis-
tributive” sunspots that shift valuations among multiple positive-net-supply assets.

11In the background, the Brownian motion Z exists on a filtered probability space (Ω,F , (Ft)t≥0, P),
equipped with all the “usual conditions.” All equalities and inequalities involving random variables are
understood to hold almost-everywhere and/or almost-surely.
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represents a fundamental shock in the sense that it directly impacts production possibil-
ities, whereas the second shock Z(2) is a sunspot shock that is extrinsic to any economic
primitives but nevertheless may impact endogenous objects. At the end of the paper, we
will also consider extrinsic Poisson jumps as part of the information structure.

Technology, Markets. There are two goods, a non-durable good (the numéraire, “con-
sumption”) and a durable good (“capital”) that produces the consumption good. The
aggregate supply of capital grows exogenously as

dKt = Kt[gdt + σdZ(1)
t ],

where g and σ are exogenous constants. The capital-quality shock σdZ(1) is a standard
way to introduce fundamental randomness in technology. Individual capital holdings
evolve identically.

There are two types of agents, experts and households, who differ in their production
technologies. Experts produce ae units of the consumption good per unit of capital,
whereas households’ productivity is ah ∈ (0, ae).

Capital is freely tradable, with its relative price denoted by qt, determined in equilib-
rium. Conjecture the following form for capital price dynamics:

dqt = qt[µq,tdt + σq,t · dZt]. (1)

There are two potential avenues for random fluctuations. The standard term σq ·
(

1
0
)

represents amplification (or dampening) of fundamental shocks, as in Brunnermeier and
Sannikov (2014) and others. By contrast, σq ·

(
0
1

)
measures sunspot volatility that only

exists because agents believe in it.
Financial markets consist solely of an instantaneously-maturing, risk-free bond that

pays interest rate rt is in zero net supply. The key financial friction: agents cannot issue
equity when managing capital. It is inconsequential that the constraint be this extreme.
Partial equity issuance, as long as there is some limit, will generate identical results on
sunspot volatility.12

Preferences and Optimization. Given the stated assumptions, we can write the dynamic

12In particular, a partial equity-issuance constraint simply scales the mapping between expert wealth
and asset prices. As is well-known, the equilibrium of economies in the class we consider will live in
the region where the equity constraint is always-binding. Equity-issuance restrictions, sometimes called
“skin-in-the-game” constraints, often arise as the optimal contract in a moral hazard problem, though this
micro-foundation is not important for our purposes here.
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budget constraint of an agent of type j (expert or household) as

dnj,t =
[
(nj,t − qtk j,t)rt − cj,t + ajk j,t

]
dt + d(qtk j,t), (2)

where nj is the agent’s net worth, cj is consumption, and k j is capital holdings. The term
d(qk) represents the capital and price appreciation that accrues while holding capital.

Experts and households have time-separable logarithmic utility, with discount rates
ρe and ρh ≤ ρe, respectively. All agents have rational expectations and solve

sup
cj≥0, kj≥0, nj≥0

E
[ ∫ ∞

0
e−ρjt log(cj,t)dt

]
(3)

subject to (2). The constraint nj,t ≥ 0 is the standard solvency constraint. Everything in
this optimization problem is homogeneous in (c, k, n), so we can think of the expert and
household as representative agents within their class.

Finally, to guarantee a stationary wealth distribution, we also allow an overlapping
generation structure: agents perish idiosyncratically at rate δ; perishing agents are re-
placed by newborns, who inherit an equal share of perishing wealth; a fraction ν ∈ [0, 1]
of newborns are exogenously designated experts, and 1− ν are households; there are
no annuity markets to trade death risk. As the death rate δ affects an agent’s lifetime
utility, the subjective discount rates ρe, ρh are assumed inclusive of δ. To acknowledge
the fact that OLG creates intertemporal transfers across agent types, which do not affect
alive agents’ individual net worth evolution, let Ne and Nh denote aggregate expert and
household net worth. The dynamic evolutions of Ne and Nh will mirror (2), with addi-
tional terms capturing OLG-related transfers.13 We reiterate that OLG is unnecessary for
our sunspot results and only serves to obtain stationarity in case we set ρe = ρh.

Equilibrium. The definition of competitive equilibrium is standard: (i) taking prices
as given, and given exogenous time-0 allocations of capital and riskless bonds, experts
and households solve (3) subject to (2); (ii) consumption and capital markets clear at all
dates:

ce,t + ch,t = aeke,t + ahkh,t (4)

ke,t + kh,t = Kt. (5)

The riskless bond market clears automatically by Walras’ Law.

13I.e., dNe = Ne
dne
ne
− δNedt + δν(Ne + Nh)dt and dNh = Nh

dnh
nh
− δNhdt + δ(1− ν)(Ne + Nh)dt.
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To benchmark this environment, note that frictionless equity issuance allows perfect
risk-sharing and efficient production (kh = 0). In this frictionless world, there can be
no sunspot volatility nor amplification (σq = 0). As is well known, limited equity is-
suance begets imperfect risk-sharing and inefficient production, opening the door for
amplification; our contribution is to show sunspot volatility can also emerge.

Characterization of Equilibrium. We present a useful equilibrium characterization that
aids all future analysis. Given log utility and the scale-invariance of agents’ budget sets,
individual optimization problems are readily solvable. Optimal consumption satisfies
the standard formula cj = ρjnj. Optimal capital holding by experts and households
implies

ae

q
+ g + µq + σσq ·

(
1
0
)
− r =

qke

ne
|σR|2 (6)

ah
q
+ g + µq + σσq ·

(
1
0
)
− r ≤ qkh

nh
|σR|2 (with equality if kh > 0), (7)

where

σR,t := σ
(

1
0
)
+ σq,t (8)

denotes the shock exposure of capital returns.
Next, we aggregate. Due to financial frictions and productivity heterogeneity, both

the distribution of wealth and capital holdings will matter in equilibrium. However,
because all experts (and households) make the same scaled consumption cj/nj and port-
folio choices k j/nj, the wealth and capital distributions may be summarized by experts’
wealth share η := Ne/(Ne + Nh) = Ne/qK and experts’ capital share κ := ke/K. Sub-
stitute optimal consumption into goods market clearing (4), and use the definitions of η

and κ, to obtain

qρ̄ = κae + (1− κ)ah, (PO)

where ρ̄(η) := ηρe + (1− η)ρh is the wealth-weighted average discount rate. Equation
(PO) connects asset price q to output efficiency κ, which we call a price-output relation
for short.

Differencing the optimal portfolio conditions (6)-(7), we obtain the risk balance condi-
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tion

0 = min
[
1− κ,

ae − ah
q
− κ − η

η(1− η)
|σR|2

]
. (RB)

Either experts manage the entire capital stock (κ = 1) or the excess return experts obtain
over households, (ae − ah)/q, represents fair compensation for differential risk expo-
sure, κ−η

η(1−η)
|σR|2. On the other hand, summing agents’ portfolio optimality conditions

(weighted by κ and 1− κ) yields an equation for the riskless rate:

r =
κae + (1− κ)ah

q
+ g + µq + σσq ·

(
1
0
)
−
(κ2

η
+

(1− κ)2

1− η

)
|σR|2. (9)

Finally, by time-differentiating the definition of experts’ wealth share η = Ne/(Ne +

Nh), and using agents’ net worth dynamics (2) along with contributions from OLG,
wealth share dynamics are given by

dηt = µη,tdt + ση,t · dZt, given η0, (10)

where

µη = η(1− η)(ρh − ρe) + (κ − 2ηκ + η2)
κ − η

η(1− η)
|σR|2 + δ(ν− η) (11)

ση = (κ − η)σR. (12)

The preceding equations are the only ones imposed by equilibrium. We thus simplify
our search for equilibria by looking for processes that satisfy them.

Definition 1. Given η0 ∈ (0, 1), an equilibrium consists of processes (ηt, qt, κt, rt)t≥0 such
that equations (PO), (RB), (9), and (11)-(12) hold for all t ≥ 0.

Remark 1 (Transversality and No-Ponzi). By additionally imposing a “No-Ponzi condition”
on individual agents, we require the conditions14

lim
T→∞

e−ρeT κT

ηT
= 0 and lim

T→∞
e−ρhT 1− κT

1− ηT
= 0. (13)

14Here is the proof that (13) is required. Let (Mj,t)t≥0 denote the state-price density process for type-
j agents, j ∈ {e, h}. Optimality implies Mj,t = e−ρjt/cj,t = e−ρjt/(ρjnj,t). Thus, limT→∞ Mj,Tnj,T = 0
(note also that the individual transversality condition limT→∞ Et[Mj,Tnj,T ] = 0 is automatically satisfied).
Letting bj,t := qtk j,t − nj,t be the debt position, the No-Ponzi condition states limT→∞ Mj,Tbj,T ≤ 0, and
the inequality “≤” is replaced by an equality “=” under optimality. Combining these results, we have the
requirement limT→∞ Mj,TqTk j,T = 0, which becomes (13) after substituting Mj,t, qtke,t/ne,t = κt/ηt, and
qtkh,t/nh,t = (1− κt)/(1− ηt).
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In all of our equilibria, we will show that (ηt)t≥0 possesses a stationary distribution on (0, 1),
with no mass at the boundaries, so condition (13) will always be satisfied.

Finally, we categorize our equilibria into two types: fundamental and sunspot. Fun-
damental equilibria have two properties: (i) the sunspot shock Z(2) plays no role; and
(ii) only a minimal set of state variables affects observables. Because of financial frictions
and productivity heterogeneity, the expert wealth share η is a necessary state variable to
summarize economic conditions. Other objects (e.g., q, r, κ) are either prices or control
variables, so there is a sense in which η is the minimal state variable needed in this
class of models. In other words, a fundamental equilibrium should only depend on η.
Sunspot equilibria constitute all other equilibria, which we further categorize into two
types depending on whether or not they are Markov in η.

Definition 2. A Fundamental Equilibrium (FE) is an equilibrium that is Markov in η and
in which σq ·

(
0
1

)
≡ 0. Any other equilibrium is a Brownian Sunspot Equilibrium (BSE). A

BSE that is Markov in η is called a Wealth-driven BSE (W-BSE). A BSE that is non-Markov
in η is called a Sentiment-driven BSE (S-BSE).

Mark
ov

in
⌘
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<latexit sha1_base64="1/h4GVlxCWRQq6eFkVribXalLvE=">AAACD3icbVC7TsMwFHXKq5RXgZHFogKVoVVSBhgrEBJjEfQhNVHlOLetVceJbKdSFfUPWPgVFgYQYmVl429wHwO0HMny0Tn32vceP+ZMadv+tjIrq2vrG9nN3Nb2zu5efv+goaJEUqjTiEey5RMFnAmoa6Y5tGIJJPQ5NP3B9cRvDkEqFokHPYrBC0lPsC6jRBupkz91RcREAELjJhCu+6VAsiEI7Lq5q/sbXGyWzHXWyRfssj0FXibOnBTQHLVO/ssNIpqE5mHKiVJtx461lxKpGeUwzrmJgpjQAelB21BBQlBeOt1njE+MEuBuJM0xg03V3x0pCZUahb6pDInuq0VvIv7ntRPdvfRSJuJEg6Czj7oJxzrCk3BwwCRQzUeGECqZmRXTPpGEahNhzoTgLK68TBqVsnNertxVCtXqPI4sOkLHqIgcdIGq6BbVUB1R9Iie0St6s56sF+vd+piVZqx5zyH6A+vzB/nsmqc=</latexit>

Fundamental
Equilibrium (FE)

<latexit sha1_base64="17hTzeGz7x4ehIXX4b3mxiwB+Vg=">AAACEnicbVC7SgNBFJ31GeNr1dJmMAhJE3ZjoWVAEiwjmAdkQ5idnU2GzM6s8xDCkm+w8VdsLBSxtbLzb5w8Ck08MHA45965954wZVRpz/t21tY3Nre2czv53b39g0P36LilhJGYNLFgQnZCpAijnDQ11Yx0UklQEjLSDkfXU7/9QKSigt/pcUp6CRpwGlOMtJX6binggvKIcA3rhkcosQwxGAT52r2hjIaSmgQW67VS3y14ZW8GuEr8BSmABRp99yuIBDbTHzFDSnV9L9W9DElNMSOTfGAUSREeoQHpWsrtbNXLZidN4LlVIhgLaZ/dbab+7shQotQ4CW1lgvRQLXtT8T+va3R81csoT40mHM8HxYZBLeA0HxhRSbBmY0sQltTuCvEQSYS1TTFvQ/CXT14lrUrZvyhXbiuFanURRw6cgjNQBD64BFVwAxqgCTB4BM/gFbw5T86L8+58zEvXnEXPCfgD5/MH74ic9Q==</latexit>

Sentiment-driven
BSE (S-BSE)

<latexit sha1_base64="IFNhJ9I6ryce8ufJGfAaeazDJ7c=">AAACEnicbVA9T8MwEHXKVwlfAUYWiwqpHVolZYCxAiExFpWWSk1UOY7bWnWcyHYqVVF/Awt/hYUBhFiZ2Pg3OG0GaHmSz0/v7uy758eMSmXb30ZhbX1jc6u4be7s7u0fWIdHHRklApM2jlgkuj6ShFFO2ooqRrqxICj0GXnwx9dZ/mFChKQRv1fTmHghGnI6oBgpLfWtissjygPCFWzpQEMdqoGgE8Kh65pXrRtYblX1VelbJbtmzwFXiZOTEsjR7FtfbhDhJHsRMyRlz7Fj5aVIKIoZmZluIkmM8BgNSU9TjkIivXS+0gyeaSWAg0joo2ebq787UhRKOQ19XRkiNZLLuUz8L9dL1ODSSymPE0U4Xnw0SBhUEcz8gQEVBCs21QRhQfWsEI+QQFhpF01tgrO88irp1GvOea1+Vy81GrkdRXACTkEZOOACNMAtaII2wOARPINX8GY8GS/Gu/GxKC0Yec8x+APj8weVZ5wT</latexit>

Figure 1: Types of equilibria.

Figure 1 displays the equilibrium taxonomy. We proceed as follows. Section 2 studies
W-BSEs, while Sections 3-4 concern S-BSEs.

2 A class of uninteresting equilibria

Universally, papers studying this class of models restrict attention to Markov equilibria
in which η is the only state variable. This section illustrates how these equilibria, even if
sunspot shocks can matter, are too restrictive for our purposes. We first present a W-BSE
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(Section 2.1) and then argue is is inherently uninteresting (Sections 2.2-2.3). Alternatively,
readers can skip directly to Section 3 with no difficulty.

2.1 W-BSE: existence and properties

In this section, we study the version of the model without fundamental shocks, i.e.,
σ = 0. Hence, both shocks represent extrinsic uncertainty, and we dispense with Z(1)

to simplify the exposition.15 Without any intrinsic uncertainty, there always exists a
deterministic Fundamental Equilibrium (FE).

Lemma 1 (Fundamental Equilibrium). If σ = 0, there exists an equilibrium in which experts
manage all capital, κ = 1, and its price qt = ae/ρ̄(ηt) evolves deterministically.

But there is also another equilibrium, a Wealth-driven Brownian Sunspot Equilibrium
(W-BSE), which is Markov in η and has volatility. In this W-BSE, the capital price will
depend only on η, i.e., qt = q(ηt) for some function q. By Itô’s formula, we then have
σq = q′

q ση. On the other hand, equations (8) and (12) with σ = 0 imply ση = (κ − η)σq.
Solving this two-way feedback between σq and ση,

[
1− (κ − η)

q′

q

]
σq = 0. (14)

There are two possibilities: either (i) σq = 0, which corresponds to the FE of Lemma 1;
or (ii) 1 = (κ − η) q′

q , in which case σq can be non-zero. We pursue the latter.
Substituting κ < 1 from (PO), we obtain a first-order ODE for q:

q′ =
(ae − ah)q

qρ̄− ηae − (1− η)ah
, if κ < 1. (15)

Consider boundary condition κ(0) = 0, which translates via (PO) to q(0) = ah/ρh. The
appendix justifies this choice of boundary condition, which says that experts fully de-
lever as their wealth shrinks.16 Then, ODE (15) is solved on the endogenous region

15This also allows us to maintain consistency with Definition 2, which says that a W-BSE should have
non-zero loading on the second shock.

16We use the boundary condition κ(0) = 0 in accordance with the literature. In Online Appendix D.1,
we show that this is not necessary in principle. There are actually a continuum of W-BSEs indexed by
κ0 = κ(0) ∈ [0, 1], which one can think of as agents’ “disaster belief”, i.e., what happens in the worst-case
scenario. Nevertheless, there are good reasons to select κ0 = 0. First, as we show in Online Appendix D.2,
if managing capital involves any amount of idiosyncratic risk, even if vanishingly-small, any equilibrium
must feature κ → 0 as η → 0. Second, Online Appendix D.3 shows how adding any amount of limited
commitment frictions, even if vanishingly-small, automatically restricts equilibrium to feature κ → 0 as
η → 0. Despite this discussion, several numerical examples in the paper use κ0 slightly above zero, to

10



(0, η∗) where households manage some capital, i.e., η∗ := inf{η : κ(η) = 1}.17 Given a
solution for (q, κ), the risk balance equation (RB) yields capital price variance as

σ2
q =

η(1− η)

κ − η

ae − ah
q

, if κ < 1. (16)

Since σq 6= 0 in (16), a W-BSE exists as long as a solution exists to ODE (15).

Proposition 1 (W-BSE). If σ = 0, there exists a W-BSE with κ(0) = 0, in which σq(η) 6= 0 on
(0, η∗) and σq(η) = 0 on (η∗, 1).

Figure 2 displays a numerical example with the capital price q and volatility σq as
functions of the expert wealth share. Notice that the equilibrium is stationary (the right
panel of Figure 2 plots the stationary CDF of η).18
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Figure 2: Capital price q, volatility σq, and stationary CDF of η. Parameters: ρe = ρh = 0.05, ae = 0.11,
ah = 0.03. OLG parameters (for the CDF): ν = 0.1 and δ = 0.04.

The intuition communicated by the W-BSE equations above is as follows. If agents
believe the sunspot shock can affect asset prices, then the actual arrival of such a shock
triggers trading of capital between experts and households. Since experts are more

aid numerical stability. This approximation is not problematic, given we show in Proposition D.1 that
equilibria are continuous in κ0, even at κ0 = 0.

17When ρh = ρe, there is a closed form solution for capital price

q(η) =
1
ρ

[
(ae − ah)η + ah +

√
((ae − ah)η + ah)2 − a2

h

]
, for η < η∗ =

1
2

ae − ah
ae

.

18This economy possesses a stationary distribution on (0, η∗] under mild parameter restrictions, for
example if experts are more impatient than households (ρe > ρh) or the economy has an OLG structure
with sufficiently few experts (δ > 0 and ν < η∗). Note that ηt = η∗ about 55% of the time in the numerical
example of Figure 2, i.e., there is a mass point at η∗.
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productive than households, capital transfers have real effects and move asset prices.
But it does not end there: asset-price fluctuations feed back into the wealth distribution,
which initiates another round of capital transfers, and so on. The question “does there
exist an initial belief about asset prices that can be self-justified by this process?” is
tantamount to solving the ODE (15).

2.2 W-BSEs are inconsistent with fundamental shocks

The previous section shows how a W-BSE can arise without fundamental shocks (σ = 0).
But with fundamental shocks (σ 6= 0), we obtain the stark result that, in an equilibrium
that is Markov in η, capital prices must be completely insensitive to the sunspot shock
Z(2). In this sense, W-BSEs are not robust to the inclusion of fundamental uncertainty.

To see this, solve for the shock loadings ση and σq. Following the same analysis
leading to equation (14), we obtain an equation for σq:

[
1− (κ − η)

q′

q

]
σq =

(
1
0
)
(κ − η)σ

q′

q
. (17)

Equation (17) is really two equations stacked. Given σ 6= 0, the first equation can only
hold if (κ − η) q′

q 6= 1. This is inconsistent with the second equation, unless σq · ( 0
1 ) = 0.

Thus, we have proved

Lemma 2. If σ 6= 0, any Markov equilibrium in η is insensitive to sunspot shocks.

2.3 The W-BSE is approximately a fundamental equilibrium

Lemma 2 shows that, in the presence of fundamental shocks, a Markovian equilibrium
in η must be a Fundamental Equilibrium (FE). These FE are studied extensively in the lit-
erature, with the defining feature that fundamental shocks are amplified by endogenous
wealth dynamics (Brunnermeier and Sannikov, 2014). We analyze and discuss these FE
in Online Appendix E.19

To briefly recap these FE, rearrange equation (17) to obtain

σq =
(κ − η)q′/q

1− (κ − η)q′/q
σ. (18)

19As a new but tangential result, this online appendix also demonstrates the multiplicity of FEs along
two dimensions, κ0 and sgn(σR), neither of which have been documented in the literature.
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Equation (18) is often interpreted as amplification, because (κ−η)q′/q
1−(κ−η)q′/q takes the form of

a convergent geometric series. In words, a negative fundamental shock reduces experts’
wealth share η directly through (κ − η)σ, which reduces asset prices through q′/q. This
explains the numerator of (18). But the reduction in asset prices has an indirect effect: a
one percent drop in capital prices reduces experts’ wealth share by (κ − η), which feeds
back into a (κ − η)q′/q percent further reduction capital prices, which then triggers the
loop again. The second-round impact is [(κ − η)q′/q]2, and so on. This infinite series
is convergent if (κ − η)q′/q < 1, such that incremental amplification is reduced in each
successive round of the feedback loop.

In the W-BSE, recall that (κ− η)q′/q = 1 (equation (14)). This BSE has no dampening
in successive rounds of the feedback loop, leading to infinite amplification!

Despite this contrast, it turns out that the W-BSE is “close” to these FE. As σ shrinks,
amplification rises because falling exogenous volatility incentivizes expert leverage, which
raises endogenous volatility. As σ vanishes, amplification rises explosively and equilibria
become sunspot-like.20

Lemma 3. Suppose a Markov equilibrium in η exists for each σ > 0 small enough, with κ(0) =
0. As σ→ 0, the equilibrium converges to the W-BSE.

Thus, even if fundamentals are truly deterministic, our W-BSE “looks similar” to the
FEs that have been studied in the literature. This approximate observational equivalence
implies the W-BSE cannot possibly generate the type of novel dynamics promised in the
introduction.

3 Beyond wealth: sentiment-driven equilibria

Section 2 says that Markov equilibria in experts’ wealth share η are either (a) pure FE
(Lemma 2); or (b) look very much like pure FE (Lemma 3). To address this critique, we
endeavor here to analyze a richer class of BSEs that are not Markov in η. Below, we
establish some sufficient conditions for existence of such equilibria, and then we provide
detailed characterization of these equilibria.

Because the capital price q is the critical endogenous object (one may think of q as the
“co-state” variable), equilibria which are not Markov in η share the defining characteris-
tic that a variety of different asset prices can prevail for a given wealth distribution. Since

20Brunnermeier and Sannikov (2014) provide a related limiting result, arguing that asset-price volatility
does not vanish as σ → 0, also known as the “volatility paradox.” Related results can be found in
Manuelli and Peck (1992) and Bacchetta et al. (2012), in which sunspot equilibria could be seen as limits
of fundamental equilibria when fundamental uncertainty vanishes.
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η captures all fundamental information in this economy, one can think of “sentiment”
as responsible for generating the multiplicity of asset prices corresponding to the same
η. This is why Definition 2 refers to this class of equilibria as Sentiment-driven BSEs,
which we restate here for convenience.

Definition 3. A Sentiment-driven BSE (S-BSE) is a BSE that is not Markov in η.

Remark 2 (Stability and multiplicity: connection to literature). Stability is the critical prop-
erty enabling sunspots in deterministic dynamical systems. For example, recall the neoclassical
growth model, in which capital and consumption are the state and co-state variables, respectively,
and only one value of initial consumption is consistent with a non-explosive equilibrium. By
contrast, OLG versions of the growth model can feature a stable steady state, to which many al-
ternative values of initial consumption would converge (Azariadis, 1981; Cass and Shell, 1983).
This literature generates stochastic sunspot equilibria by basically randomizing over the multi-
plicity of transition paths.

S-BSEs will also feature a type of stability, whereby for a fixed initial wealth distribution
η0, many initial values of the co-state q0 can be consistent with non-explosive behavior. But
the analogy to deterministic models breaks down in an important sense: Online Appendix D.2
shows that the deterministic steady state of our class of models is only saddle-path stable, so we
cannot obtain volatility by randomizing over a multiplicity of deterministic transition paths. For
the same reason, we cannot hard-wire arbitrary amounts of volatility for any combination (η, q).
Rather, as will soon be clear, our model uniquely determines return volatility |σR| for each (η, q),
reminiscent of the endogenously-determined sentiment distribution in Benhabib et al. (2015).

We make some mild parameter restrictions and then present the main results.

Assumption 1. Parameters satisfy (i) 0 < ah
ρh

< ae
ρe

< +∞; (ii) σ2 < ρe(1− ah/ae); and (iii)
either 0 < δν < δ, or σ2 < ρe − ρh.

Assumption 1 part (i), only for convenience, makes the very modest assumption
that the capital price is higher if experts control 100% of wealth than if households
control 100% of wealth. Part (ii), meant to make the problem interesting, ensures experts
sometimes hold all capital (i.e., κ = 1) and sometimes do not (κ < 1). Part (iii) guarantees
experts do not asymptotically hold all wealth.

Theorem 1 (Existence of S-BSEs). Let Assumption 1 hold. Then, there exists an S-BSE in
which (ηt, qt)t≥0 remains in D := {(η, q) : 0 < η < 1 and ηae + (1− η)ah < qρ̄(η) ≤ ae}
almost-surely and possesses a non-degenerate stationary distribution.
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Theorem 1 is proved in Appendix B.1 with an explicit S-BSE construction. To un-
derstand its properties and the challenges in the construction, we first explain the static
mechanism that allows sunspot volatility and then the dynamic mechanism that prevents
sunspot volatility from becoming explosive.

Static indeterminacy mechanism. Given a wealth distribution η and a level of return
volatility |σR|, the capital market is equilibrated at each time via the risk-balance condi-
tion (RB) and the price-output relation (PO), restated here for convenience:

0 = min
[
1− κ,

ae − ah
q
− κ − η

η(1− η)
|σR|2

]
(RB)

qρ̄ = κae + (1− κ)ah. (PO)

The left panel of Figure 3 shows how the intersection of these two curves determines the
capital allocation κ and the capital price q. The downward-sloping risk-balance (RB) can
be thought of as experts’ relative capital demand: for a fixed level of wealth η and return
volatility |σR|, experts will only hold more capital if it is cheaper, thereby offering a
higher expected return. The upward-sloping price-output (PO) is a capital supply curve:
experts’ capital provision raises allocative efficiency and capital valuations.

Figure 3: Static sunspot mechanism. Both panels plot the risk-balance condition (RB) and price-output
relation (PO) for a fixed level of η = 0.2. The horizontal lines labeled q̄ and q refer to maximal and minimal
possible values of the capital price, respectively, corresponding to an efficient capital allocation (κ = 1) and
an infinite-volatility allocation (κ = η). Left panel: equilibrium with |σR| = 0.13. Right panel: equilibrium
after a shift to |σR| = 0.20. Other parameters: ρe = ρh = 0.05, ae = 0.11, ah = 0.03, and σ = 0.10.

But whereas η is a state variable that can be rightly treated as fixed in this static sense,
return volatility |σR| is not. The right panel of Figure 3 shows what changes if there is
a sudden rise in fear, manifested as higher perceived volatility |σR|. Experts, being risk-
averse, are less willing to hold capital when volatility is high. This is illustrated as
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a leftward shift in the risk-balance curve from the solid to the dashed line. The new
allocation, after this “fire sale,” features a less efficient capital allocation, lower asset
prices, and higher volatility.

So far, nothing rules out this arbitrary rise in fear, and |σR| appears indeterminate.
The indeterminacy in |σR| translates into an indeterminacy in q, which can be seen by
combining (RB) and (PO) to obtain the negative price-variance association:

|σR|2 =
η(1− η)(ae − ah)

2

qρ̄(η)− ηae − (1− η)ah

1
q

, when κ < 1. (19)

Therefore, static restrictions are consistent with many solutions for q0, given any η0, as
required for an S-BSE. Each q0 corresponds to a different σR, by (19).

Remark 3 (Price-output). Our multiplicity rests upon a link between asset prices and output
efficiency. Without a price-output link, capital ownership cannot affect prices (e.g., if ae = ah = a,
then q = a/ρ̄ independently of κ).21 The role of financial frictions is only to create a non-trivial
price-output link: with complete markets, risk-sharing decouples from capital ownership, and
experts always manage all capital. This centrality of the price-output link is clarified further in
Khorrami and Mendo (2021), which presents a complete-markets New Keynesian economy that
supports self-fulfilling fluctuations because a link between asset prices and output efficiency arises
at the zero lower bound.

Dynamic stability mechanism. The set of prices q0 supported by the static indetermi-
nacy above will only be an equilibrium if it does not lead to explosive paths. This is
a real concern here: with higher volatility in the new candidate equilibrium, any sub-
sequent fear shocks would have a larger direct impact, further raise volatility, and so
on, ad infinitum. Formally, as κ → η, we have |σR| → +∞. Intuitively, volatility must
be explosive because agents with heterogeneous productivities but identical preferences
will take identical portfolio positions only if risk is so enormous that it swamps other
considerations.

With unbounded volatility, there is an imminent violation of the equilibrium condi-
tions. For example, κ would fall below η, and (RB) could not hold. Rational forward-
looking agents would rule this out at the beginning, decide to suppress their fear, and

21Our model, like Bacchetta et al. (2012), always possesses a negative relationship between asset prices
and volatility—see equation (19). Nevertheless, general equilibrium imposes strong discipline: from (PO),
asset prices are given by ae/ρ̄ in the cases ah = −∞ or ae = ah. This discipline occurs through endogenous
adjustments by the interest rate. Benhabib et al. (2020) show that “self-fulfilling risk panics” of Bacchetta
et al. (2012) require asset prices to have a direct impact on the stochastic discount factor, which is exactly
what happens with a price-output link. (In Benhabib et al. (2020), the price-SDF link can arise either due
to OLG or collateral constraints.)
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there would be no indeterminacy. Thus, the static indeterminacy mechanism is incom-
plete without some force that also prevents this type of explosion. That force is the drift
µq, which is indeterminate and can be judiciously chosen to keep the dynamical system
(ηt, qt)t≥0 stable.

The key observation is that optimal capital holdings are a function of the risk premium.
This is clearly visible in the optimal portfolio FOCs (6)-(7), where only the spread µq −
r appears. Consequently, only the spread µq − r is pinned down in equilibrium, as
equation (9) shows; µq and r are not separately determined.

Making a judicious choice for µq is straightforward. Because (ηt, qt)t≥0 evolves in a
diffusive fashion, stability criteria conveniently boil down to boundary behavior of the
dynamical system. Thus, by imposing certain boundary conditions on µq, we prevent ex-
plosive volatility and ensure a stochastically stable system. For example, we can impose
that µq → +∞ if q falls too low, and µq → −∞ if q rises too high.

Such a choice of µq represents a belief that the economy will “bounce back” from
extreme states. A priori, it is hard to say whether such a belief is reasonable or not,
although it is required for our self-fulfilling mechanism. What we can say is that such
beliefs are a relatively minimal requirement, given the vanishingly small probability of
approaching these extreme states.

With these bounce-back beliefs, an entire fear-driven sequence of asset price drops
can be justified. Intuitively, agents understand that future capital price dynamics will
keep things stationary and prevent explosive behavior, so current prices q0 can take
essentially arbitrary values.

Corollary 1 (Price and volatility indeterminacy). Given initial wealth share η0 ∈ (0, 1), let
Q(η0) denote the set of possible S-BSE values of q0, and let V(η0) denote the associated set of
possible S-BSE values of return variance |σR(η0, q0)|2. Then,

Q(η) =





(
ηae+(1−η)ah

ρ̄(η)
, ae

ρ̄(η)

)
, if η < η∗ := ρh

ρe

(1−ah/ae
σ2 ρe − 1 + ρh

ρe

)−1;
(

ηae+(1−η)ah
ρ̄(η)

, ae
ρ̄(η)

]
, if η ≥ η∗,

and
V(η) =

(
min

[
ηρ̄(η)

ae − ah
ae

, σ2(ρ̄(η)/ρe)
2], +∞

)
.

In particular, if fundamental volatility σ = 0, then return variance spans any value between 0
and +∞, regardless of the wealth distribution η. Finally, an S-BSE can be constructed such that,
in the stationary distribution, positive probability is placed on all elements of Q(η) and V(η).

Figure 4 plots the admissible set of η and q, along with return volatility |σR| (indicated
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by shading) at each point in the space. For reference, we also place the W-BSE (which
has σ = 0) and a Fundamental Equilibrium (with σ = 0.1). These equilibria attain only
10-20% volatility, a tiny amount of what S-BSEs can do.

Figure 4: Colormap of volatility |σR| as a function of (η, q), in the region D := {(η, q) : η ∈ (0, 1) and ηae +
(1− η)ah < qρ̄(η) ≤ ae}. Volatility is truncated for aesthetic purposes (because |σR| → ∞ as κ → η). For
reference, also included are the W-BSE with σ = 0 and the Fundamental Equilibrium (FE) with σ = 0.1.
Parameters: ρe = 0.07, ρh = 0.05, ae = 0.11, ah = 0.03.

Two important indeterminacies in S-BSEs. Besides the vast amount of multiplicity in
q0, S-BSEs also allow: (1) arbitrary decoupling of volatility from fundamentals; and (2)
almost any degree of persistence or transience. We formalize these statements, which
follow directly from the construction in Theorem 1, and then discuss intuition.

Corollary 2 (Decoupling). The economy can be arbitrarily coupled or decoupled from funda-
mentals in the following sense. Let γ(η, q) ∈ [0, 1] be any C1 function. An equilibrium exists
such that when κ < 1, a fraction γ(η, q) of return variance |σR|2 is due to the fundamental shock.

S-BSEs do not pin down the fraction of volatility stemming from the fundamental
and sunspot shocks, Z(1) and Z(2), respectively. The reason: when trading, agents only
care about total return variance, not its source. Mathematically, the price-variance asso-
ciation (19) is a single equation relating q and |σR|, but σR itself has two components that
can make indeterminate contributions to equilibrium. Consequently, asset prices and
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economic activity can be either closely linked to fundamentals, or completely decoupled
from them, and this decoupling can be time-varying in arbitrary ways. Nevertheless, the
next section presents perhaps the most natural example of an S-BSE, in which volatility
and fundamentals must decouple as total volatility rises.22

Corollary 3 (Drift indeterminacy). The economy can feature any degree of persistence or tran-
sience in the following sense. Let m(η, q) be any C1 function. An equilibrium exists with
P[µq,t = m(ηt, qt) | κt < 1] arbitrarily close to one. Furthermore, the inefficiency probability
P[κt < 1] can take any value between zero and one.

As suggested earlier, the proof of Theorem 1 only imposes certain boundary condi-
tions on µq, which allows almost any behavior in the interior of the state space. For
example, asset prices could almost always behave like a random walk (corresponding
to µq ≈ 0 in the interior), with just enough mean-reversion in extreme states to keep
things stationary; in such a design, extreme states become arbitrarily close to reflecting
boundaries. Alternatively, fluctuations could be much more transitory in nature. In the
next section, we harness the indeterminacy in µq to address predictability of busts and
speed of recovery.

4 Resolving puzzles with sentiment

We have just demonstrated that sunspot equilibria, which are endemic to this class of
models, in principle can support rich dynamics. Now, we solve some concrete examples
to illustrate several substantive results along these lines.

4.1 Explicit construction with a sentiment state variable

In contrast to the previous subsection’s non-Markovian setting (where q acted as the co-
state variable), here we implement our sunspot equilibria with an explicit state variable.
These equilibria are essentially special cases of the S-BSEs in Section 3, but being explicit
about a sentiment state variable is useful for several reasons. First, the Markov equi-
librium construction will be pedagogically more familiar to the literature on sunspots.
Second, adding a sentiment state variable brings some clarity, as the sentiment state
dynamics can be modeled as locally uncorrelated with fundamental shocks. Third, this

22We implement the example next section with a sentiment state variable st whose innovations depend
only on the sunspot shock Z(2), which we think of as a natural case. More generally, letting φ be the
(fixed) correlation between ds and dZ(1), one can show that as volatility rises (|σR| → ∞), the fraction of
return variance attributable to the fundamental shock approaches φ2.
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setting happens to facilitate building sunspot equilibria in which experts fully de-lever
as their wealth shrinks, i.e., κ → 0 as η → 0, for which there are natural justifications.

Let s be a pure sunspot that is irrelevant to economic fundamentals and loads on
only the second shock (recall Z(1) affects capital and Z(2) does not):23

dst = µs,tdt + σs,t
(

0
1

)
· dZt, st ∈ S . (20)

The time-varying drift and diffusion of s capture cleanly the non-iid nature of sentiment
shocks. By contrast, Section 2 did not include additional state variables governing sen-
timent dynamics, effectively restricting sentiment shocks to be iid. This is one way to
view the core distinction between the W-BSEs of Section 2 from the S-BSEs of Section 3.

We will also find some use in introducing auxiliary state variables that can (only)
affect the drift µs,t. This is possible to do in a very flexible way, due to the drift inde-
terminacy result of Corollary 3. Let xt ∈ X be an arbitrary bounded diffusion (perhaps
allowing reflections at the boundaries of the state space X ),

dxt = µx(xt)dt + σx(xt) · dZt,

which affects the sentiment drift, through µs,t = µs(ηt, st, xt).

Definition 4. A Markov S-BSE in states (η, s, x) ∈ (0, 1) × S × X consists of functions
(q, κ, r, ση, µη, σs) : (0, 1)×S 7→ R, and µs : (0, 1)×S ×X 7→ R, all C2 almost-everywhere,
such that the process (ηt, q(ηt, st), κ(ηt, st), r(ηt, st))t≥0 is an S-BSE.

Remark 4 (Endogenous sentiment dynamics). Note that the statement of Definition 4 allows
(σs, µs) to be endogenous, in the sense that they could depend on the wealth distribution η. Our
examples in this section purposefully entertain this endogeneity, partly because we think of this
as the more interesting and realistic situation. Why? As shown in Section 3, dynamics depend
explicitly on q in an S-BSE. Thus, it is completely sensible for agents in our S-BSEs to use asset
prices directly in forecasting; in particular, sentiment dynamics (σs, µs)—which are nothing but
belief dynamics—themselves should condition on q. But q will depend on both s and η, implying
sentiment dynamics (σs, µs) depend on η too, through q. That said, Online Appendix D.6 verifies
that similar types of sunspot equilibria can be constructed with exogenous sentiment dynamics,
i.e., (σs, µs) are only functions of s, not η.24

23This is a natural choice that also brings clarity. We have also solved examples with sentiment correlated
to fundamentals, i.e., with ds = µsdt + σ

(1)
s dZ(1) + σ

(2)
s dZ(2). An additional feature that emerges relative

to what we show here is that σ
(1)
s can work to reduce asset price volatility at times, unlike σ

(2)
s . See Online

Appendix D.5 for details.
24Because it may be more natural to think that agents coordinate on variables that have direct real ef-
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The equilibrium conditions are derived similarly to previous sections. By applying
Itô’s formula to q(η, s), we obtain the capital price volatility σq in terms of ση. From
equation (12), we also have ση in terms of σq. Solving this two-way feedback, we obtain

σq =
( 1

0 )(κ − η)σ∂η log q + ( 0
1 )σs∂s log q

1− (κ − η)∂η log q
. (21)

Using (21) in (RB), we obtain the following equation linking capital prices, the capital
distribution, and sentiment volatility:

0 = min
[
1− κ,

ae − ah
q
− κ − η

η(1− η)

( σ2 + (σs∂s log q)2

(1− (κ − η)∂η log q)2

)]
. (22)

Our strategy to find a Markov S-BSE is to guess a capital price function q(η, s) and then
use equation (22) to “back out” the sunspot volatility σs that justifies it. We purposefully
perform this construction such that sunspots only increase volatility, to highlight their
potential for resolving puzzles.

More specifically, suppose a fundamental equilibrium, where sunspots do not mat-
ter, exists with equilibrium capital price qFE (see Online Appendix E for details on the
fundamental equilibria). We will think of qFE as the “best-case” capital price, because
despite featuring amplification, qFE inherits no sunspot volatility. Conversely, think of
the capital price q∞ associated to an infinite-volatility equilibrium as the “worst-case”
capital price (substitute |σR| → ∞ into (19) to find q∞ := ηae+(1−η)ah

ρ̄ ).
Our strategy is essentially to treat the sentiment variable s as a device to shift contin-

uously between the best-case qFE and the worst-case q∞. Mathematically, we conjecture
a capital price that is approximately a weighted average of qFE and q∞, with weights s
and 1− s.25 The novelty of our approach here is to then use equation (22) to solve for
sunspot volatility σs, which will generically depend on experts’ wealth share η. In terms
of Figure 4, the economy will live in the sub-region bounded by the solid FE line and

fects, Online Appendix D.6 also entertains the situation that s impacts fundamental volatility σ. In this
environment, we illustrate two main results. First, depending on coordination on s, equilibrium can either
behave more “intuitively” or less. Intuition usually says that prices move inversely to fundamental volatil-
ity, but coordination can easily reverse this relationship. Second, as the contribution of s to fundamental
volatility becomes small, equilibrium can converge to one where s still matters, i.e., a sunspot equilibrium.
Thus, sunspot equilibria are limits of fundamental equilibria, with a vanishingly-small real contribution
of s.

25In this particular equilibrium, capital prices can never literally achieve the “worst-case” capital price
q∞, for two technical reasons, both of which ensure that sunspot volatility stays σs bounded: (i) to ensure
κ(0, s) = 0, we need q(η, s) to behave like the fundamental solution qFE(η) for η close enough to zero, and
all s; (ii) we need q(η, s) > q∞(η), so that κ(η, s) > η for all (η, s). Thus, in the proof of Proposition 2, we
actually construct q∞ as a close approximation to the worst-case price, such that (i) and (ii) are satisfied.
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the κ = η border (and notice this implies that the full-deleveraging condition κ → 0 as
η → 0 thus holds). In the proposition below, we verify that such a construction is indeed
an equilibrium.

Proposition 2. Let Assumption 1 hold, and assume a fundamental equilibrium exists for each
σ ≥ 0 small enough. Then, for all σ ≥ 0 small enough, there exists a Markov S-BSE with capital
prices arbitrarily close to sqFE(η)+ (1− s)q∞(η). In this equilibrium, µs is indeterminate except
near the boundaries of (0, 1)×X × S .

We construct a numerical example closely following Proposition 2, which we will use
in subsequent sections. The left panel of Figure 5 shows the capital price function. Posi-
tive sunspot shocks reduce the capital price, independently of wealth share η (although
η will also endogenously respond to s-shocks).

The middle panel of Figure 5 displays capital return volatility, which can be substan-
tially greater than in the fundamental equilibrium. Implied by capital return volatility is
an underlying sunspot shock size σs, which is displayed in the right panel of Figure 5.
Sunspot dynamics become more volatile both as experts become poor (η shrinks) and as
the economy approaches the worst-case equilibrium (s rises). The dependence of σs on
η is the notion of endogenous beliefs that can occur in S-BSEs.

Figure 5: Capital price q, volatility of capital returns |σR|, and sunspot shock volatility σs. Parameters:
ρe = ρh = 0.05, ae = 0.11, ah = 0.03, σ = 0.025.

4.2 Non-fundamental crises and large amplification

We now show hour our model with sentiment shocks naturally resolves some empirical
issues related to financial crises and recoveries.
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First, Figure 6 compares impulse responses to a large negative balance-sheet shock
(i.e., decline in η) versus a sunspot (i.e., increase in s). The shock sizes are chosen so
that the initial drop in capital price q0 − q0− is roughly the same. “Balance-sheet reces-
sions” (decline in η) feature a modest increase in volatility followed by relatively slow
recoveries, as experts can only rebuild their balance sheets by earning profits over time.
By contrast, “self-fulfilled crises” (increase in s) feature large temporary volatility spikes
and can have accelerated recoveries (depending on the choice of µs). The dynamics af-
ter a sentiment shock—both the rise in volatility and speed of recovery—are closer to
empirical evidence.26 Our results on recovery speeds are related to Maxted (2020), who
shows how extrapolative beliefs can help this class of models match such evidence, but
with our rational sentiment in place of his behavioral sentiment.

Figure 6: Bust IRFs of capital price q and return volatility |σR|. The IRFs labeled “η shock” are responses
to a decrease in η from η0− = 0.5 to η0 = 0.2, holding s0 fixed at 0.1. The IRFs labeled “s shock” are
responses to an increase in s from s0− = 0.1 to s0 = 0.9, holding η0 fixed at 0.5. These shock sizes are
chosen such that the initial response of q are approximately equal. Note that η0 would respond to an
“s shock,” since ση has a non-zero second element, but we keep it fixed here. IRFs are computed as
averages across 500 simulations at daily frequency. Parameters: ρe = ρh = 0.05, ae = 0.11, ah = 0.03,
σ = 0.025. OLG parameters: ν = 0.1 and δ = 0.04. In this example, we set the sunspot drift µs =
0.0002s−1.5− 0.0002(smax− s)−1.5, where smax = 0.95. This choice ensures st ∈ (0, smax) with probability 1.

To establish some more confidence in these results, we present the following two
propositions which together show that amplification can be arbitrarily high (Proposition
3) as long as sentiment shocks are the source (Proposition 4). Given the literature’s strug-
gle to identify a “smoking gun” (e.g., TFP shocks, capital efficiency shocks) for financial

26During the 2008 financial crisis and 2020 COVID-19 episode in the US, implied volatility from option
markets spiked by magnitudes on the order of 60%. For a rough idea of what the data says about crisis
recoveries, see Jordà et al. (2013) and Reinhart and Rogoff (2014) for output, and see Muir (2017) and
Krishnamurthy and Muir (2017) for credit spreads and stock prices. Across these many measures, and
using broad-based international panels, crisis recovery times tend to range from 4-6 years on average.

Of course, note that η responds to s-shocks, i.e., ση has a non-zero second component. Thus, a true
sentiment-driven crisis features dynamics that are a blend of the two IRFs in Figure 6. Figure 6 shows a
pure shock to s, without the endogenous co-movement in η, for theoretical clarity.
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crises, we view this set of results as a helpful insight. The importance of sentiment s,
relative to experts’ wealth share η, also echoes the empirical results suggesting financial
crises are not associated with pre-crisis levels of bank capital (Jordà et al., 2021).

Proposition 3 (Arbitrary volatility). Given a target variance Σ∗ > 0 and any parameters
satisfying the assumptions of Proposition 2, there exists a Markov S-BSE with stationary average
return variance exceeding the target, i.e., E[|σR|2] > Σ∗.

Proposition 4 (Volatility decoupling). In the Markov S-BSEs of Proposition 2, both the frac-
tion of return volatility due to sentiments |( 0

1 ) · σR|/|σR| and total return volatility |σR| increase
with s.

4.3 Booms predict crises

We now use the same framework to cast light on empirical findings suggesting that
financial crises are predictable, in particular by large credit and asset price booms (Rein-
hart and Rogoff, 2009; Jordà et al., 2011, 2013, 2015a,b; Mian et al., 2017) that feature
below-average credit spreads (Krishnamurthy and Muir, 2017; López-Salido et al., 2017;
Baron and Xiong, 2017).

To do this, we make use of the auxiliary variable x that can affect the sentiment drift.
Following some models of extrapolative beliefs (Barberis et al., 2015; Maxted, 2020),
define an exponentially-declining weighted average of sentiment shocks:

xt := x0 + σx

∫ t

0
e−βx(t−u)dZ(2)

u . (23)

Assume the drift of s depends on x via

µs,t = bxxt + µ̂s(st) with bx ≤ 0.

Similar to Section 4.2, the term µ̂s will be designed to prevent non-stationarity in st.
The new term bxx induces the following dynamics: after a series of good sentiment
shocks (dZ(2)

t < 0), st and xt will be low, but this buoys µs,t and shifts conditional
distributions of st+h to the right. If the constant bx is large enough, the shift can generate
dynamics reminiscent of “overshooting,” in which a sentiment-driven boom raises bust
probabilities. Differently from the extrapolative belief literature, the beliefs implied by
these sentiment dynamics are completely rational.

Figure 7 displays IRFs consistent with this overshooting logic. A positive sentiment
shock raises asset prices and lowers volatility for 2-3 years, but predicts mildly lower
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prices and higher volatility afterward. The right panel shows a tail risk measure, namely
the probability that volatility exceeds 0.25 in the future, which emphasizes the overshoot-
ing logic is particularly salient for the extreme adverse outcomes. This is the sense in
which a sentiment-driven boom has predictive power for a future bust and particularly
a future crisis. By contrast, a boom driven by expert wealth counterfactually predicts
high prices, lower volatility, and lower fragility at all horizons.

Figure 7: Boom IRFs of capital price q, return volatility |σR|, and the probability that |σR| > 0.25 at some
point over future years. The IRFs labeled “η shock” are responses to an increase in η from η0− = 0.5
to η0 = 0.7, holding s0 fixed at 0.4. The IRFs labeled “s shock” are responses to a decrease in s from
s0− = 0.4 to s0 = 0.1, holding η0 fixed at 0.5. These shock sizes are chosen such that the initial response
of q are approximately equal. Note that η0 would respond to an “s shock,” since ση has a non-zero
second element, but we keep it fixed here. IRFs are computed as averages across 1000 simulations at daily
frequency. Parameters: ρe = ρh = 0.05, ae = 0.11, ah = 0.03, σ = 0.025. OLG parameters: ν = 0.1 and
δ = 0.04. In this example, we set the sunspot drift µs = bxx + 0.0002s−1.5 − 0.0002(smax − s)−1.5, where
smax = 0.95, bx = −10, βx = 0.1, and σx = 0.025. The parameters (βx, σx) are approximately the values
used for the mean-reversion and volatility of the diagnostic belief process in Maxted (2020).

To connect more directly to the empirical literature, we conduct a financial crisis event
study in Figure 8. We simulate our model (which thus features contributions from both
fundamental and sunspot shocks), identify crises in the simulated data, and plot average
outcomes in the several years before and after crisis. Crises are identified using the worst
3rd percentile of monthly output drops, but any other tail outcome will produce similar
graphs. We see that conditions are improving up to 2 years before the crisis, with risk
premia below average and declining. The crisis emerges suddenly and features spikes in
all variables. Although we do not report it here, such dynamics cannot be produced in
the non-sunspot equilibria of the model.

4.4 Sentiment-based jumps

In our final exercise, we show how similar substantive results—large and sudden crises
that are preceded by booms featuring low volatility and risk premia—also hold in alter-
native equilibria with sentiment-based jumps. There are three reasons why jump-type
fluctuations are an interesting avenue to explore vis á vis the puzzles in this literature.
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Figure 8: Event studies around financial crises. Crises are defined as the bottom 3rd percentile of month-to-
month log output declines. Data is generated via a 10,000 year simulation at the daily frequency, with the
outcomes above then averaged to the monthly level. The solid blue line is the mean path, and the dotted
blue lines represent the 25th and 75th percentiles. The thin horizontal line represents the unconditional
average. Parameters: ρe = ρh = 0.05, ae = 0.11, ah = 0.03, σ = 0.025. OLG parameters: ν = 0.1 and
δ = 0.04. In this example, we set the sunspot drift µs = bxx + 0.0002s−1.5 − 0.0002(smax − s)−1.5, where
smax = 0.95, bx = −1, βx = 0.1, and σx = 0.025. The parameters (βx, σx) are approximately the values
used for the mean-reversion and volatility of the diagnostic belief process in Maxted (2020).

First, jumps are large and sudden by definition, helping resolve the trouble with lim-
ited amplification. Second, the larger jumps that characterize a financial crisis can only
happen from a moderate or good state that characterizes a boom. Third, introducing
jumps reveals an additional indeterminacy that can be useful in exacerbating the previ-
ous point, namely the jump probability can be rigged so that it is more likely in good
times.

Consider a broader class of solutions for the baseline model where capital price can
also respond to an extrinsic jump shock, i.e.,

dqt

qt−
= µq,t−dt + σq,t− · dZt − `q,t−dJt,

where J is a Poisson process with intensity λ. For simplicity, we restrict attention to
equilibria where the jump size `q is pre-determined, in particular a function of (η, q),
and we focus on adverse jumps with `q ≥ 0.

We sketch the solution of a jumpy equilibrium (with more details in Online Appendix
C.3). The risk-balance condition (RB) is modified to read

0 = min
[
1− κ,

ae − ah
q
− κ − η

η(1− η)

(
|σR|2 +

λ`2
q(

1− κ
η `q
)(

1− 1−κ
1−η `q

)
)]

. (RBJ)

The additional terms involving `q arise because there is a jump risk premium. The
price-output relation remains (PO).

By adding a new source of risk, we have an additional degree of freedom. The risk-
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balance condition disciplines overall risk—the term in parentheses of (RBJ) is pinned
down given (η, q)—but the split between the Brownian and Poisson shocks is indetermi-
nate. We have tremendous flexibility in our choice of `q.

It is easy to avoid stability concerns: just set `q = 0 near the boundaries of the
equilibrium region (i.e., the triangle in the (η, q) space in Figure 4). Doing this, the
stability analysis remains unchanged from Theorem 1, since near the boundaries the
economy behaves as if only hit by Brownian shocks.

Figure 9: Event studies around financial crises in the jump-diffusion model. Crises are defined as the
bottom 3rd percentile of month-to-month log output declines. Data is generated via a 100,000 year sim-
ulation at monthly frequency. The solid blue line is the mean, and dotted blue lines represent 25th and
75th percentiles. The horizontal black line is the unconditional mean. Parameters: ρe = ρh = 0.05,
ae = 0.11, ah = 0.03, σ = 0.025. OLG parameters: ν = 0.1 and δ = 0.04. We reflect (η, q) near boundaries
of D := {(η, q) : 0 < η < 1 and ηae + (1 − η)ah < qρ̄(η) ≤ ae}. Away from the boundaries, we set
µq = 0.1(qmid(η)− q), where qmid corresponds to κ(qmid, η) = 0.8.

Figure 9 shows a financial crisis event study from simulated data of the jump model.
The solution and simulation method is described in detail in Online Appendix C.3. We
make the following choice for jump sizes

`q =





0.95`max
q , if κ > 0.9 and 0.9`max

q > 0.2

0, otherwise,

where `max
q is the maximum allowable jump consistent with equilibrium (derived in the

appendix). Thus, we focus attention on an economy with large jumps (greater than 20%)
that are additionally only realized from efficient high-κ states.27

Because we focus on large jumps and only allow them in high-κ states, crises tend
to arrive after a sequence of positive fundamental Brownian shocks. Accordingly, in
the years before the crisis, asset prices are high, and both volatility and risk premia are

27In unreported results, we also solved an example without the κ > 0.9 restriction, i.e., where we set
`q = 0.95`max

q 1{0.9`max
q >0.2}. The results are similar to Figure 9—because large jumps still tend to happen

from good states—but slightly muted.
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below their usual level. Similar to Figure 8, volatility and risk premia tend to decline in
the years prior to crisis. Crises arrive suddenly—with only a few months “warning” in
terms of rising volatility and risk premia—and generate large movements in observables,
because simulated crises often coincide with realizations of a jump.

5 Conclusion

We have shown that macroeconomic models with financial frictions may inherently per-
mit sunspot volatility. The types of models we study are extremely common in macroe-
conomics, so this phenomenon cannot be ignored.

On the bright side, our paper demonstrates how a fully-rational notion of “senti-
ments” can be a powerful input into macro-finance dynamics. Unbounded amplification,
sharp volatility spikes, and sentiment-driven boom-bust cycles are among the many in-
teresting possibilities raised by our framework.

On the hazier side, our results suggest a modicum of caution. Many researchers
employ numerical techniques to solve and analyze DSGE models that are built upon
the core assumptions in our paper—these procedures implicitly select an equilibrium,
without any explicit justification. A deeper analysis of refinements, perhaps leveraging
global-games approaches or adaptive learning, still remains to be done.

What about policy?28 Caveated by the need for further study on refinements, we can
offer some initial thoughts. Some traditional policies become less effective in sunspot
equilibria. For example, deposit insurance has less bite because run-like behavior can
occur solely due to fire-sale coordination, i.e., on the asset side rather than the liabil-
ity side. Sunspot equilibria also decouple financial crises from bank balance sheets and
wealth, which defangs capital requirements, bailouts, and the like. Given the frame-
work we study relies on fire sales, quantitative easing (e.g., asset purchases) could be
interesting to analyze, perhaps even as an equilibrium refinement. Even speeches and
commitments to future asset purchases might matter, by modifying beliefs about prices
in extreme states and thus “calming the market.”

28Many studies in the recent literature have moved toward policy analysis (Phelan, 2016; Dávila and
Korinek, 2018; Drechsler et al., 2018; Di Tella, 2019; Silva, 2017; Elenev et al., 2021; Begenau, 2020; Begenau
and Landvoigt, 2021; Klimenko et al., 2016).
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A Proofs for Section 2

Proof of Lemma 1. Suppose κ = 1, q = ae/ρ̄, and σq = 0. Set µη and ση by (11)-(12),
and set r by (9). By inspection, both (PO) and (RB) are satisfied. Furthermore, the Itô
condition σq =

q′
q ση is trivially satisfied. Thus, Definition 1 is satisfied.

Proof of Proposition 1. Consequence of Proposition D.1 (take κ0 → 0).

Proof of Lemma 2. In the text leading up to the statement of the lemma.

Proof of Lemma 3. Note that the other equations characterizing equilibrium, beyond
(18), are (PO) and (RB), the latter repeated here for convenience:

0 = min
[
1− κ,

ae − ah
q
− κ − η

η(1− η)
(σ + σq)

2
]
. (A.1)

Denote the equilibrium solution for σ > 0 by (q(σ), κ(σ)). Define q(0) := limσ→0 q(σ) and
κ(0) := limσ→0 κ(σ). Combine equations (18) and (A.1) and rearrange terms to get

(
1− (κ(σ) − η)

(q(σ))′

q(σ)

)2
=

(κ(σ) − η)q(σ)

η(1− η)(ae − ah)
σ, if κ(σ) < 1. (A.2)

Note that this implies κ(σ) > η. Furthermore, continuity of κ(σ)(η) and κ0 = κ(σ)(0+) <

1 imply κ(σ)(η) < 1 for all η close enough to 0. Using these facts, and writing (A.2)
instead as an integral equation, we obtain

q(σ)(η2)

q(σ)(η1)
= exp

{ ∫ η2

η1

1
κ(σ)(x)− x

[
1±

√
(κ(σ)(x)− x)q(σ)(x)

x(1− x)(ae − ah)
σ

]
dx

}
, 0 < η1 < η2,
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where η2 is chosen small enough. Because the right-hand-side is continuous in both q(σ)

and κ(σ), and both are bounded, taking the limit as σ→ 0 implies

q(0)(η2)

q(0)(η1)
= exp

{ ∫ η2

η1

1
κ(0)(x)− x

dx

}
.

Differentiate this equation with respect to η2 to obtain

d
dη

log q(0) =
1

κ(0) − η
,

for all η small enough. Rearranging this equation delivers the ODE characterizing the
W-BSE, i.e., selecting the solution (κ − η)q′/q = 1 in equation (14). Since κ(σ)(0+) = κ0

is fixed for all σ > 0, we also have the desired boundary condition κ(0)(0+) = κ0, for
any κ0 ∈ [0, 1). Finally, all the other equations of the W-BSE can be verified by simply
taking limits as σ→ 0.

B Proofs for Section 3

B.1 Proof of Theorem 1

Step 0: Reduce the system. We will start by eliminating (r, κ, ση, µη) from the system of
endogenous objects, given (η, q, σq, µq). First, price-output relation (PO) determines κ as
a function of (η, q) and nothing else, given by

κ(η, q) :=
qρ̄(η)− ah

ae − ah
. (B.1)

Second, substituting this result for κ, equation (9) fully determines r, given knowledge of
(η, q, σq, µq). Third, equations (11)-(12), after plugging in the result for κ, fully determine
(ση, µη), given knowledge of (η, q, σq). Thus, given (η, q), it suffices to determine (σq, µq)

from the remaining conditions, namely (RB).

Step 1: Define perturbed domain. To facilitate analysis, it will be convenient to analyze a
slightly modified system instead of (η, q), and on a perturbed domain.

First, define the following auxiliary functions. Fix ε ∈ (0, ae−ah
ρh

). Let β(·) be a
strictly increasing, continuously differentiable function such that β(1) = −β(0) = ε,
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and β(η∗β) = 0, where η∗β ∈ (η∗, 1) and

η∗ :=
ρh
ρe

(1− ah/ae

σ2 ρe − 1 +
ρh
ρe

)−1
. (B.2)

Note that η∗ < 1 by Assumption 1, part (ii). Let α(·) be an increasing, continuously
differentiable function such that α(0) = 0, α′(0) ∈ (0, ∞), and α(1) = ε/2.

Next, define the following functions,

qH(η) := ae/ρ̄(η)

qL(η) := ā(η)/ρ̄(η),

where ā(η) := ηρe +(1− η)ρh. Using (B.1), one notices that qH corresponds to the capital
price when κ = 1, whereas qL corresponds to the capital price when κ = η. Put

qH
β (η) := qH(η) + β(η)

qL
α(η) := qL(η) + α(η).

Using these functions, define the perturbed domain (which is an open set)

X :=
{
(η, x) : η ∈ (0, 1) and qL

α(η) < x < qH
β (η)

}
.

Note that, boundaries aside, X will coincide with D as ε → 0. For reference, the per-
turbed domain X is displayed in Figure B.1.

Figure B.1: The perturbed domain X
is shown as the region surrounded by
solid black lines. The original do-
main D is the region defined by the
dashed lines. The perturbation func-
tions α and β are chosen to be lin-
ear functions, with ε = 0.2. Parame-
ters: ρe = 0.07, ρh = 0.05, ae = 0.11,
ah = 0.03, σ = 0.1.

We will define a stochastic process xt such that the capital price q coincides with x
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when it lies below qH, i.e.,

qt = min
[

xt, qH(ηt)
]
. (B.3)

By (B.3), we may analyze the dynamical system (ηt, xt)t≥0 rather than (ηt, qt)t≥0. Fur-
thermore, to prove the claim that (ηt, qt)t≥0 remains in D almost-surely, it suffices to
prove (ηt, xt)t≥0 remains in X almost-surely (Step 4 below).

Step 2: Construct σq so that (RB) is satisfied. First consider {x < qH(η)} so that q = x. Note
that this case corresponds to κ < 1. Let γ(η, x) : X 7→ (0, 1) be any C1 function. Put

σq =




√
γ

η(1−η)
κ−η

ae−ah
q − σ

√
(1− γ) η(1−η)

κ−η
ae−ah

q


 , if x < qH(η). (B.4)

Substituting (B.4), one can verify that the second term of condition (RB) is zero. Im-
portantly, the definitions of qL

α and qH
β imply that σq is bounded on X ∩ {x < qH(η)}.

Indeed, because of α′(0) > 0, the slowest possible rate that κ → 0 as η → 0 is lower-
bounded away from 1, i.e., lim infη→0,(η,x)∈X κ/η > 1. And because α(1) > 0, we have
κ = 1 for all η near enough to 1; thus η is bounded away from 1 on {x < qH(η)}.

Next consider {x ≥ qH(η)} so that q = qH(η). Note that this case corresponds to
κ = 1. Since q is an explicit function of η, we use Itô’s formula to compute ( 1

0 ) · σq =

−ση ρ̄′/ρ̄, which after substituting equation (12) for ση delivers

σq =



− (1−η)(ρe−ρh)/ρ̄

1+(1−η)(ρe−ρh)/ρ̄
σ

0


 , if x ≥ qH(η). (B.5)

Note that (B.5) will be consistent with (RB) as long as (ηt, xt)t≥0 remains in X almost-
surely, which will be verified in Step 4.29

Note finally that σq defined in (B.4)-(B.5) is solely a function of (η, x), so sometimes
we will write σq(η, x). Similarly, with σq in hand, we now have µη and ση as functions of
(η, x) alone.

Step 3: Construct µq. Similar to σq, separately consider {x < qH(η)} and {x ≥ qH(η)}.
29Plugging q = ae/ρ̄ into the second term of equation (RB), we require |σR|2 ≤ ηρ̄(η)(1 − ah/ae).

Substituting (B.5), we obtain |σR|2 = σ2(ρ̄/ρe)2. Combining these, we require. η ≥ η∗ when x ≥ qH(η),
where η∗ is defined in (B.2). Therefore, for all η < η∗, we insist x < qH(η). As long as (η, x) ∈ X , this will
hold, because qH

β (η) < qH(η) for all η < η∗, and x < qH
β (η) for all η.
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On {x ≥ qH(η)}, since q = qH(η) is an explicit function of η, we set µq via Itô’s formula.
On {x < qH(η)}, we have no equilibrium considerations restricting µq. Thus, we will put
µq = mq, where mq is a function in classM, defined as follows. A function m : X 7→ R

is a member ofM if m is C1 and possesses the following boundary conditions:

inf
η∈(0,1)

lim
x↘qL

α (η)

(
x− qL

α(η)
)

m(η, x) = +∞ (B.6)

sup
η∈(0,1)

lim
x↗qH

β (η)

(
qH

β (η)− x
)

m(η, x) = −∞ (B.7)

for any x ∈ (qL
α(0), qH

β (0)), lim
η↘0
|m(η, x)| < +∞ (B.8)

for any x ∈ (qL
α(1), qH

β (1)), lim
η↗1
|m(η, x)| < +∞. (B.9)

Collecting these results

µq(η, x) =





mq(η, x), if x < qH(η);
ρe−ρh
ρ̄(η)2 [−ρ̄(η)µη(η, x) + |ση(η, x)|2], if x ≥ qH(η).

(B.10)

Step 4: Verify stationarity. We demonstrate the time-paths (ηt, xt)t≥0 remain in X almost-
surely and admit a stationary distribution.

The dynamics of xt are specified as follows. Denote its diffusion and drift coefficients
by (xσx, xµx), where σx and µx are functions of (η, x) to be specified shortly. By (B.3),
when qL

α(η) < x < qH(η), we must put σx = σq and µx = µq. Outside of this region, we
put σx and µx to preserve stationarity.

To this end, let σ̃x : X 7→ R+ be any positive, bounded, C1 function.30 Put

σx(η, x) =





σq(η, x), if x < qH(η);

σ̃x(η, x), if x ≥ qH(η).

Note that σx is bounded (recall σq is bounded, and σ̃x is assumed bounded).
Similarly, for the drift, let mx : X 7→ R be any function in class M defined above

30Note that σ̃x need not vanish at the boundary of X , but if it does some of the boundary conditions on
mx, to follow, can be relaxed.
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(note: mx need not coincide with mq above). Put

µx(η, x) =





µq(η, x), if x < qH(η);

mx(η, x), if x ≥ qH(η).

Thus, µx satisfies boundary conditions (B.6)-(B.9) on all boundaries of X .
Corresponding to the SDEs induced by (ση, σx, µη, µx), define the infinitesimal gener-

ator L , where for any C2 function f ,

L f = µη∂η f + (xµx)∂x f +
1
2
|ση|2∂ηη f +

1
2
|xσx|2∂xx f + xσx · ση∂ηx f .

Let {Xn}n≥1 be an increasing sequence of open sets, whose closures are contained in
X , such that ∪n≥1Xn = X . Note that (ση, σx, µη, µx) are bounded on Xn for each n. Con-
sequently, despite the (potential) discontinuity in (ση, σx, µη, µx) at the one-dimensional
subset {x = qH(η)}, there exists a unique weak solution (η̃n

t , x̃n
t )0≤t≤τn , up to first exit

time τn := inf{t : (ηt, xt) 6∈ Xn}, to the SDEs defined by the infinitesimal generator L .
See Krylov (1969, 2004) for weak existence and uniqueness in the presence of drift and
diffusion discontinuities.

Letting τ := limn→∞ τn, we thus define (ηt, xt)0≤t≤τ by piecing (η̃n
t , x̃n

t )0≤t≤τn together
for successive n. In other words, (ηt, xt) = (η̃n

t , x̃n
t ) for 0 ≤ t ≤ τn, each n. Our goal is

to show (a) τ = +∞ a.s.; and (b) the resulting stochastic process (ηt, xt)t≥0 possesses a
non-degenerate stationary distribution on X . These will be proved if we can obtain a
function v satisfying Lemma B.1 below.

Define the positive function v by

v(η, x) :=
1

η1/2 +
1

1− η
+

1
x− qL

α(η)
+

1
qH

β,λ(η)− x
.

Note that v diverges to +∞ at the boundaries of X , so assumption (i) of Lemma B.1 is
proved. Next, if assumption (iii) of Lemma B.1 holds (which we will prove below), then
there exists N such that L v < 0 on X\Xn for all n > N. Furthermore, for each given n,
L v is bounded on Xn. Consequently, we can find a constant c large enough such that
L v ≤ cv on all of X , which verifies part (ii) of Lemma B.1.

It remains to prove assumption (iii) of Lemma B.1, namely that L v→ −∞ as (η, x)→
∂X . We will examine the boundaries of X one-by-one. In the following, we use the
notation g(x) = o( f (x)) if g(x)/ f (x) → 0 as x → 0, and the notation g(x) = O( f (x)) if
g(x)/ f (x)→ C as x → 0, where C is a finite constant.
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As η → 0 (and x bounded away from qL
α(0) and qH

β (0), such that κ is bounded away
from 0 and 1, the latter due to the definition of qH

β ), we have

µη = δν +
ae − ah

x
κ + η[ρh − ρe − δ] + o(η) and |ση|2 = η(κ − η)

ae − ah
x

+ o(η)

µx = O(1) and |σx|2 = O(1).

We used condition (B.8) to obtain µx bounded. Thus,

L v = − 1
2η3/2 [δν +

1
4

ae − ah
x

κ] + o(η−3/2)→ −∞,

irrespective of δν > 0 or δν = 0.
As η → 1 (and x bounded away from qL

α(1) and qH
β (1); note that κ = 1 at this

boundary), we have

µη = −δ(1− ν)− (ρe − ρh)(1− η) + o(1− η) and |ση|2 = (1− η)2σ2

µx = O(1) and |σx|2 = O(1).

We used condition (B.9) to obtain µx bounded. Thus,

L v = −(1− η)−2δ(1− ν)− (1− η)−1[ρe − ρh − σ2] + o((1− η)−1)→ −∞,

irrespective of δ(1− ν), due to Assumption 1 part (iii).
We separately calculate the limit x → qL

α(η) (with η bounded away from 0) in the
two cases {x < qH(η)} and {x ≥ qH(η)}, since κ < 1 in the first case, and κ = 1 in the
second case. Still, we find that in both cases,

µη = O(1) and |ση|2 = O(1)

µx = o((x− qL
α)
−1) and |σx|2 = O(1).

We used condition (B.6) to obtain the order of µx. Thus,

L v = −(x− qL
α)
−2xµx + O((x− qL

α)
−3)→ −∞.

Similarly, we separately calculate the limit x → qH
β (η) (with η bounded away from 0)
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in the two cases {x < qH(η)} and {x ≥ qH(η)}. Again, we find that in both cases,

µη = O(1) and |ση|2 = O(1)

µx = (−1)× o((qH
β − x)−1) and |σx|2 = O(1).

We used condition (B.7) to obtain the order of µx. Thus,

L v = (qH
β − x)−2xµx + O((qH

β − x)−3)→ −∞.

Finally, all the corners of X can be analyzed in a straightforward way by combining
the cases above, with the exception of (η, x) = (0, qL

α(0)) = (0, ah/ρh). Approaching
this corner, we must take a particular path of x → ah/ρh as η → 0. Denote this path
by x̂(η) and denote the asymptotic slope by x̂′(0) ∈ ( d

dη qL
α(0),+∞), where d

dη qL
α(0) =

[ ae
ah
− ρe

ρh
] ah

ρh
+ α′(0) > 0, by Assumption 1, part (i), and the fact that α′(0) > 0. Denote

the associated path of κ by κ̂(η) and the corresponding asymptotic slope by κ̂′(0) =
1

ae−ah
[x̂′(0)ρh + (ρe − ρh)ah/ρh]. Substituting in, we find κ̂′(0) ∈ (1 + α′(0)

ae−ah
,+∞). When

computing L v, we will take the supremum over all possible paths, meaning over x̂′(0)
and κ̂′(0). Using similar calculations from the initial η → 0 case, but using these paths,
we obtain

µη = δν + η[
ae − ah

x̂
κ̂′ + ρh − ρe − δ] + o(η) and |ση|2 = η2[κ̂′ − 1]

ae − ah
x̂

+ o(η)

µx = o((x̂− qL
α)
−1) and |σx|2 = O(1)

and σx · ση = η[
ae − ah

x̂
− σ(γ(κ̂′ − 1)

ae − ah
x̂

)1/2] + o(η).

Since x̂ ≥ O(η) and κ̂ ≥ O(η) (in the sense that both could be +∞), we may treat
terms like (x̂ − qL

α)
−1 as smaller than η−1. This identifies the dominant terms as those

associated to µη, |ση|2, and µx. Thus,

L v = − 1
2η3/2 δν +

1
2η1/2 [ρe − ρh + δ− ae − ah

x̂
− ae − ah

x̂
(κ̂′ − 1)/4] + o(η−3/2)

− (x̂− qL
α)
−2xµx + O((x̂− qL

α)
−3)→ −∞,

irrespective of δν, because ρe− ρh− ae−ah
ah/ρh

= ρh[ρe/ρh− ae/ah] < 0 by Assumption 1, part
(i), and because inf{κ̂′(0)} > 1.

This completes the verification that L v→ −∞ as (η, x)→ ∂X , which proves station-
arity by Lemma B.1 below. This completes the proof. �
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B.2 Stochastic stability: a useful lemma

To prove the stationarity claims of Theorem 1 and Proposition 2, we need the following
lemma, which is a slight generalization of Theorems 3.5 and 3.7 of Khasminskii (2011),
in the sense that weaker conditions are imposed on the coefficients α and β. Indeed,
any coefficients (α, β) are permissible as long as they admit existence of a weak solution
to the SDE system. See also Remark 3.5 and Corollary 3.1 in Khasminskii (2011) which
allow the arguments in Rl to generalize to any open domain D.

Lemma B.1. Suppose (Xt)0≤t≤τ is a weak solution to the SDE dXt = β(Xt)dt + α(Xt)dZt

in an open connected domain D ⊂ Rl, where Z is a d-dimensional Brownian motion and τ :=
inf{t : Xt 6∈ D} is the first exit time from D. Define the infinitesimal generator L by (for any
C2 function f )

L f =
n

∑
i=1

βi
∂ f
∂xi

f +
1
2

n

∑
i,j=1

(αi · αj)
∂2 f

∂xi∂xj
.

Suppose there is a non-negative C2 function v : D 7→ R+ such that (i) lim infx→∂D v(x) = +∞;
(ii) L v ≤ cv for some constant c ≥ 0; and (iii) lim supx→∂DL v(x) = −∞. Then,

(a) τ = +∞ almost-surely;

(b) the distribution of X0 can be chosen such that (Xt)t≥0 is stationary.

Proof of Lemma B.1. Let {Dn}n≥1 be an increasing sequence of open sets, whose clo-
sures are contained in D, such that ∪n≥1Dn = D. Let τn := inf{t : Xt 6∈ Dn}, and
note that τ = limn→∞ τn is the monotone limit of these exit times. Define w(t, x) :=
v(x) exp(−ct), which satisfies L w ≤ 0 by assumption (ii). Using Itô’s formula, we have

E[v(Xτn∧t)e−c(τn∧t) − v(X0)] = E

∫ τn∧t

0
L w(u, Xu)du ≤ 0.

Since (τn ∧ t) ≤ t and v ≥ 0, we obtain

E[v(Xτn∧t)] ≤ ectE[v(X0)].

Because E[v(Xτn∧t)] ≥ P[τn ≤ t] infx∈D\Dn v(x), we thus have

P[τn ≤ t] ≤ ectE[v(X0)]

infx∈D\Dn v(x)
.
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Taking the limit n→ ∞, we obtain

P[τ ≤ t] ≤ ectE[v(X0)]

lim infx→∂D v(x)
= 0.

Thus, taking t→ ∞, we prove (a).
Next, since τ = +∞ a.s., we may consider (Xt)t≥0 that is now defined for all time.

Using Itô’s formula,

E[v(Xτn∧t)− v(X0)] = E

∫ τn∧t

0
L v(Xu)du.

Note that E[v(Xτn∧t)− v(X0)] ≤ b1 for some constant b1. Also note that supx∈DL v(x) ≤
b2 for some constant b2, given assumptions (i)-(iii) and the fact that v is C2. Using these
bounds, plus the following obvious inequality

L v(Xu) ≤ 1{Xu∈D\Dk} sup
x∈D\Dk

L v(x) + sup
x∈D

L v(x),

we get

− sup
x∈D\Dk

L v(x)E
∫ τn∧t

0
1{Xu∈D\Dk}du ≤ tb2 − b1.

Given the proof of (a), we may take the limit n → ∞ (so that τn → +∞), then apply
Fubini’s theorem, and then rearrange to obtain

lim
t→∞

1
t

∫ t

0
P[Xu ∈ D\Dk]du ≤ b2

− supx∈D\Dk
L v(x)

.

Taking k→ ∞ and using assumption (iii), we obtain

lim
k→∞

lim
t→∞

1
t

∫ t

0
P[Xu ∈ D\Dk]du ≤ 0.

Applying Theorem 3.1 of Khasminskii (2011), there exists a stationary initial distribution
for X0. The process (Xt)t≥0 augmented with this initial distribution is clearly stationary
by definition.

B.3 Proofs of Corollaries 1-3

Proof of Corollary 1. Start from the construction of S-BSE in Theorem 1, and note
that we can make ε arbitrarily small such that the boundaries qL

α → ā/ρ̄ and qH
β → ae/ρ̄.
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In addition, the limit can be taken such that η∗β → η∗, its minimal possible level. Hence,
an S-BSE can be constructed such that the set of prices q matches Q(η) arbitrarily closely.
The result on return variance comes from using (B.4) when κ < 1 (i.e., when η < η∗)
and using (B.5) when κ = 1 (i.e., when η ≥ η∗ and q is at its upper bound). Using the
definition of η∗ provides the form of V with the minimum as the lower bound.

To show that an S-BSE can be constructed such that positive probability is placed on
all elements of Q and V , we simply note that a construction exists such that σq 6= 0 on
the entirety of int(D).

Proof of Corollaries 2-3. These follow from the proof of Theorem 1.

C Proofs and analysis for Section 4

C.1 Proof of Proposition 2

We proceed by construction. Without loss of generality, let S = (0, 1) and ignore the
auxiliary states X , so that the domain of the state variables is D = (0, 1)× (0, 1). The
reason we can effectively ignore X is everything below is that only the drift µs depends
on x, and xt is assumed to be a bounded process, thereby introducing no problems of
non-stationarity. Recall that ρ̄ := ηρe +(1− η)ρh. By analogy, define ā := ηae +(1− η)ah.

Step 1: Fundamental equilibrium. Let (q̂0, κ̂0) be the solution to the fundamental equilib-
rium (which exists by assumption), and let η0 := inf{η : q̂0 ≥ ae/ρ̄} = inf{η : κ̂0 ≥ 1}.
By part (v) of Lemma E.1, there exists σ̄A > 0 such that, if σ < σ̄A, then η0 < 1. By part
(iv) of Lemma E.1, there exists σ̄B > 0 such that, if σ < σ̄B, then (q̂0)′ > ae−ah

ρ̄ for η ∈
(0, η0). Only to assist with step 9 below, we also denote σ̄C =

√
ρe − ρh1δ=0 + (+∞)1δ>0.

Assume σ < min(σ̄A, σ̄B, σ̄C). In particular, this implies d
dη [q̂

0 − ā/ρ̄] > 0 for η ∈ (0, η0).

Step 2: Two basis functions. We design two “extremal” functions that will assist our
construction. First, let ϕ be a C2 function with the properties ϕ(η0) = 0 and ϕ′ >
(ā/ρ̄)′ − (ae/ρ̄)′ = ae−ah

ρ̄ [1− (1− η) ρe−ρh
ρ̄ ] for all η. Define

q0(η) :=





q̂0(η), if η < η0;

q̂0(η) + ϕ(η), if η ≥ η0.
(C.1)

Note that q0 is C∞ except at η = η0, due to part (vi) of Lemma E.1.
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To construct the other basis function, fix some ε ∈ (0, η0), let ε̃ ∈ (ε, η0), and define a
C∞ (but necessarily non-analytic) function β : (0, 1) 7→ R+ with the following properties

β(ε) = q0(ε)− ā(ε)/ρ̄(ε)

β(k)(ε) =
dk

dηk [q
0 − ā(η)/ρ̄(η)]|η=ε for each derivative of order k ≥ 1

β′(η) <
d

dη
[q0 − ā(η)/ρ̄(η)] for all η > ε

β(η) = 0 for all η > ε̃.

A particular consequence of σ < σ̄B in step 1 is d
dη [q

0 − ā/ρ̄] > 0 for η ∈ (0, η0). A

consequence of ϕ′ > (ā/ρ̄)′ − (ae/ρ̄)′ is d
dη [q

0 − ā/ρ̄] > 0 for η ∈ (η0, 1). Together, these
properties imply such a function β exists. Then, we put

q1(η) :=





q̂0(η), if η ≤ ε;

ā(η)/ρ̄(η) + β(η), if η > ε.
(C.2)

Note that η1 := inf{η : q1 ≥ ae/ρ̄} = 1. By the properties of β and ϕ, note the following
slope results:

(q0)′ > (q1)′ on η ∈ (ε, 1) (C.3)

(q0)(k)(ε) = (q1)(k)(ε) for all derivatives of order k ≥ 0. (C.4)

Step 3: Useful monotonicity results. Before continuing, we make the following claims:

ā
ρ̄
< q1 = q0 <

ae

ρ̄
, for η ∈ (0, ε); (C.5)

ā
ρ̄
≤ q1 < q0 <

ae

ρ̄
, for η ∈ (ε, η0); (C.6)

ā
ρ̄
= q1 <

ae

ρ̄
< q0, for η ∈ (η0, 1). (C.7)

All inequalities in relationship (C.5), as well as the third inequality in relationship (C.6),
hold by part (ii) of Lemma E.1. The first inequality in relationship (C.6) holds because
β ≥ 0, whereas the first equality in relationship (C.7) holds because β = 0 on that set.
The second inequality in relationship (C.6) holds due to (C.3). The second inequality in
relationship (C.7) holds by the definition of η1 = 1. The second inequality in relationship
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(C.7) holds since q0(η0) = ae/ρ̄(η0) combined with (q0 − ae/ρ̄)′ > (q1 − ae/ρ̄)′ > 0, for
η > η0.

Step 4: Construct candidate (q, κ). We proceed to combine our basis functions according
to the following convex combination, where α ∈ (0, 1) is fixed:

q̃(η, s) := (1− αs)q0(η) + αsq1(η), (η, s) ∈ D = (0, 1)× S . (C.8)

For each s ∈ S , define η∗(s) := inf{η : q̃(η, s) ≥ ae/ρ̄}, which can be shown is strictly
increasing.31 Put

q(η, s) :=





q̃(η, s), if η < η∗(s)

ae/ρ̄(η), if η ≥ η∗(s)
and κ :=

ρ̄q− ah
ae − ah

.

By construction, the pair (q, κ) satisfy equation (PO).

Step 5: Properties of (q, κ). Let D∗ := {(η, s) : η ∈ (ε, η∗(s)), s ∈ S}. On this set, we have
κ > η, or equivalently ρ̄q > ā, by (C.6)-(C.7). In fact, κ is bounded away from η on D∗,
since α < 1 in (C.8). We also have the following derivative conditions on D∗:

∂sq = α(q1 − q0) < 0 (C.9)

∂ηq = (1− αs)(q0)′ + αs(q1)′ > 0 (C.10)

∂ηq < q/(κ − η). (C.11)

Inequality (C.9) holds by (C.6)-(C.7). Inequality (C.10) holds by (C.3) and Assumption
1(ii), which implies (q1)′ > 0. Inequality (C.11) is proven as follows. First, note that the
function f (η, x) = (ae−ah)x

ρ̄(η)x−ā(η) is strictly decreasing in x on x > ā(η)/ρ̄(η). Second, part
(i) of Lemma E.1 implies

(q0)′ <
(ae − ah)q0

ρ̄q0 − ā
= f (·, q0).

31Indeed, note that q̃ is C2 on (η0, η1)× S , which implies η∗ is C1. Then, use the fact that η∗ is C1 to
differentiate q̃(η∗(s), s) = ae/ρ̄(η∗(s)) with respect to s, and use the fact that ∂s q̃ = q1 − q0, and finally
rearrange to obtain

(η∗)′(s)
[
∂η q̃(η∗(s), s) +

ae

ρ̄(η∗(s))
ρe − ρh

ρ̄(η∗(s))

]
= q0(η∗(s))− q1(η∗(s)).

If at any point s, we had (η∗)′(s) = 0, we would necessarily have q0(η∗(s)) = q1(η∗(s)). But this contra-
dicts the fact from (C.6)-(C.7) that q0 > q1 for all η > ε, since η∗(s) ≥ η0 > ε (the fact that η∗(s) ≥ η0

comes from (C.6), which shows that q̃(η, s) < ae/ρ̄(η) on (ε, η0)× S). Thus, (η∗)′(s) 6= 0 for all s. We can
also rule out (η∗)′(s) < 0 by the fact that η∗(0+) = η0 and η∗(s) ≥ η0 for all s. Thus, (η∗)′(s) > 0 for all s.
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Given (C.3), we thus have ∂ηq < f (·, q0) for any value of s. Finally, since f is decreasing
in its second argument, and q < q0 on D∗, we have ∂ηq < f (·, q), which proves the claim.

We remark on one additional smoothness property that holds at η = ε, due to condi-
tion (C.4):

∂
(k)
η q(ε, s) = (q0)(k)(ε) ∀s, for all derivatives of order k ≥ 0. (C.12)

Step 6: Construct candidate σs. Consider solving the following problem.

Problem: for each (η, s) ∈ D∗, solve for y in the equation

y(∂s log q)2 = G, (C.13)

where
G :=

η(1− η)

κ − η

ae − ah
q

(1− (κ − η)∂η log q)2 − σ2.

Note that G is bounded, as κ is bounded away from η (step 5). Checking boundedness
of the solution y thus boils down to checking ∂sq at the boundaries of D∗. By (C.9), as
s → 0 or s → 1, ∂sq 6→ 0, so y remains bounded. To check the result as η → ε, we first
claim that limη↘ε ∂

(k)
η G = 0 for all derivatives of order k ≥ 0. This is a consequence of

parts (i) and (vi) of Lemma E.1, whereby ∂
(k)
η G = 0 for all k ≥ 0 on η < ε, combined with

result (C.12). Since we also have ∂sq → 0, we apply L’Hôpital’s rule twice to compute
limη↘ε G/(∂s log q)2 = 0, noting both times that ∂sη log q = α

q [(q
1)′ − (q0)′] < 0 is non-

zero. Therefore, the solution y = G/(∂s log q)2 is bounded on D∗.
Clearly,

√
y will be a real number if and only if G ≥ 0. To prove G ≥ 0, note that

lims↘0 G = 0, meaning it suffices to prove ∂sG ≥ 0. Differentiating G, we get

∂sG
η(1− η)

= − ae − ah
(κ − η)q

(1− (κ − η)∂η log q)
[
(1− (κ − η)∂η log q)

( ∂sκ

κ − η
+

∂sq
q

)

+ 2
(κ − η)ā
ρ̄q− ā

(∂s log q)(∂η log q) + 2(κ − η)α
(q1)′ − (q0)′

q

]
.

By properties (C.9)-(C.11), and the fact that sgn(∂sκ) = sgn(∂sq), we prove ∂sG > 0 on
D∗. So not only is

√
y real, it is non-zero.
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We set σs as follows:

σs(η, s) :=





√
y(η, s), if (η, s) ∈ D∗;

√
y(ε+, s) = 0, if (η, s) ∈ {(η, s) : η ∈ (0, ε), s ∈ S};

√
y(η∗(s)−, s), if (η, s) ∈ {(η, s) : η > η∗(s), s ∈ S}.

(C.14)

In passing, we note that we have also shown that σs > 0 on a positive-measure set, as
required in a sunspot equilibrium.

Step 7: Verify equation (22) is satisfied. By the construction of σs, equation (22) is satisfied
on D∗. On {(η, s) : η ∈ (0, ε), s ∈ S}, recall ∂sq = 0, so (22) holds by property (i) of
Lemma E.1. On {(η, s) : η > η∗(s), s ∈ S}, recall κ = 1, so (22) is satisfied if and only if
the second term inside the minimum is non-negative. Substituting κ = 1 and q = ae/ρ̄,
hence ∂sq = 0, into this term shows the non-negativity requirement is

σ2 ≤ ηρ̄
ae − ah

ae
(1 + (1− η)∂η log ρ̄)2 for η > η∗(s), s ∈ S . (C.15)

On the other hand, property (v) of Lemma E.1, combined with the fact that η∗(s) is
increasing, imply

η∗(s) ≥ ρh
ρe

(1− ah/ae

σ2 ρe − 1 +
ρh
ρe

)−1
, ∀s ∈ S . (C.16)

Straightforward algebra demonstrates that (C.15) and (C.16) are equivalent, proving (22)
holds.

Step 8: Finish equilibrium construction. Having determined q, κ, and σs, we define µη and
ση by (11)-(12). It remains to determine µs. We will pick µs(η, s) = m(η, s), where m is
a C2 function with the following properties: ∂sm < 0, and for some 0 ≤ s0 < s1 ≤ 1
thresholds,

(if s0 > 0) inf
η∈(0,1)

lim
s↘s0

(s− s0)m(η, s) = +∞ (C.17)

(if s0 = 0) inf
η∈(0,1)

lim
s↘s0

m(η, s) > 0 (C.18)

sup
η∈(0,1)

lim
s↗s1

(s1 − s)m(η, s) = −∞. (C.19)

Step 9: Verify stationarity. Finally, we should demonstrate the time-paths (ηt, st)t≥0 remain
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in D almost-surely and admit a stationary distribution. This step is very similar to
Theorem 1 and is therefore omitted. �.

C.2 Proofs of Propositions 3-4

Proof of Proposition 3. Fix any Σ∗ > 0. The proof is a simple consequence of the fact
that σq must be unbounded as κ approaches η, which is as q approaches the worst-case
price q1. We fill in the technical details below.

We construct a sequence of equilibria—indexed by (α, ε, ζ)—as follows. Recall the
capital price construction in Proposition 2:

q = (1− αs)q0 + αsq1, when κ < 1,

where α < 1 is a parameter, q0 is the fundamental equilibrium price, and

q1 =





q0, if η < ε;

ā/ρ̄ + β, if η ∈ (ε, ε̃);

ā/ρ̄, if η > ε̃.

The function β is a positive mollifier that vanishes uniformly as ε, ε̃ → 0. We set ε̃ =

ε(1 + ε). Based on the discussion in the text, we may choose µs such that equilibrium
concentrates on any particular value of s. Thus, pick µs such that st ≥ ζ almost-surely.
Clearly, the choice of µs depends on α and ε, but such a choice can always be made for
any parameters.

Let plow > 0, phigh > 0 be given with plow + phigh < 1. First, note that there exist
α∗, ζ∗, and ε∗ such that P[ηt ≤ ε̃ ∩ κt < 1] < plow and P[ηt ≥ 1− ε̃ ∩ κt < 1] < phigh

for all α > α∗, ζ > ζ∗, and ε < ε∗. This is a consequence of the fact that in any
stationary distribution, we have limx→0 P[ηt < x] = limx→1 P[ηt > x] = 0 and the fact
that limα→1 lims→1 κ(η, s) < 1 for all η.

At this point, fix such an ε < ε∗. Let a constant M > 0 be given satisfying

M ≤ (1− plow − phigh)
(ae − ah)

2

ae/ρh

ε̃(1− ε̃)

Σ∗
. (C.20)

Note that
lim
α→1

lim
s→1

sup
η∈(ε̃,1−ε̃)

∣∣∣q(η, s)− ā(η)/ρ̄(η)
∣∣∣ = 0.
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Consequently, we may pick α > α∗ close enough to 1 and ζ > ζ∗ close enough to 1 such
that

sup
s∈(ζ,1)

sup
η∈(ε̃,1−ε̃)

∣∣∣q(η, s)− ā(η)/ρ̄(η)
∣∣∣ ≤ M.

Finally, using equation (22) and substituting κ < 1 from (PO), we have |σ( 1
0 ) + σq|2 =

(ae−ah)
2

q
η(1−η)

ρ̄q−ā . Note also that q ≤ ae/ρh is an upper bound. Then,

E[|σ( 1
0 ) + σq,t|2] > (1− plow − phigh)

(ae − ah)
2

ae/ρh

ε̃(1− ε̃)

M
.

Using (C.20), we obtain E[|σ( 1
0 ) + σq,t|2] > Σ∗.

Proof of Proposition 4. First, we prove that |σR| is increasing in s. From (22), we
obtain |σR|2 = (ae−ah)

2

q
η(1−η)

ρ̄q−ā on {κ < 1}. Differentiating with respect to s, we obtain

∂s|σR|2 = −η(1− η)
(ae − ah)

2

q(ρ̄q− ā)

[1
q
+

ρ̄

ρ̄q− ā

]
∂sq > 0,

since ∂sq = α(q1 − q0) < 0 by (C.9).
Next, we show that |( 1

0 ) · σR| is decreasing in s. Revisiting the proof of Proposition 2,
we compute on {κ < 1} and for each η > ε,

∂s[(κ − η)∂η log q] = α
[
(κ − η)

(q1)′ − (q0)′

q
+

ā(q1 − q0)

(ae − ah)q2 ∂ηq
]
< 0.

The inequality uses (C.3) to say (q1)′ − (q0)′ < 0, and (C.6)-(C.7) to say q1 − q0 < 0, and
(C.10) to say ∂ηq > 0. Therefore, (1− (κ − η)∂η log q)−1 is decreasing in s on {κ < 1}
for each η > ε. Since q and κ are independent of s on {η < ε}, this proves (1− (κ −
η)∂η log q)−1 is weakly decreasing in s on {κ < 1}. Using |( 1

0 ) · σR| = σ
1−(κ−η)∂η log q , we

obtain the result.
Using the two claims just proved, we see that |( 0

1 ) · σR| is increasing in s on {κ <

1}, due to the identity |σR|2 = |( 0
1 ) · σR|2 + |( 1

0 ) · σR|2. For the same reason, we have
|( 0

1 ) · σR|/|σR| increasing in s on {κ < 1}.
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C.3 Model with jumps in Section 4.4

Recall that our jumps `q are assumed to occur randomly but have a known size, given
observables. Therefore, optimal portfolio conditions are

ae

q
+ g + µq + σ

(
1
0
)
· σq − r =

κ

η
|σR|2 +

λ`q

1− κ
η `q

ah
q
+ g + µq + σ

(
1
0
)
· σq − r ≤ 1− κ

1− η
|σR|2 +

λ`q

1− 1−κ
1−η `q

.

Combining these two equations, we obtain (RBJ).
We can determine the other equilibrium objects similarly to before. The riskless rate

is given by

r =
κae + (1− κ)ah

q
+ g + µq + σ

(
1
0

)
· σq −

(κ2

η
+

(1− κ)2

1− η

)
|σR|2 − λ`q

( κ

1− κ
η `q

+
1− κ

1− 1−κ
1−η `q

)
.

The dynamics of η are now given by dηt = µη,t−dt + ση,t− · dZt − `η,t−dJt, where

µη = η(1− η)(ρh − ρe) + (κ − 2ηκ + η2)
κ − η

η(1− η)
|σR|2 + δ(ν− η) +

(κ − η)λ`q(
1− κ

η `q
)(

1− 1−κ
1−η `q

)

ση = (κ − η)σR.

The wealth share jump `η is derived by using knowledge of the jump size in q and noting
that agents’ portfolios (capital and bonds) are predetermined:32

`η = (κ − η)
`q

1− `q
.

For a valid equilibrium, jumps cannot be so large as to send experts into bankruptcy, nor
can they induce households’ leverage to exceed experts’ (as this would contradict (RBJ)).
It turns out the no-bankruptcy condition, which says `q < κ/η, is automatically satisfied
given (RBJ) holds; intuitively, experts would never take so much risk that their wealth
is wiped out. The other requirement, that jumps not send the economy into a region in

32The derivation is as follows. Let variables with hats, e.g., “x̂”, denote post-jump variables. Note
N̂e = q̂K̂κ − B and N̂h = q̂K̂(1− κ) + B, where B is expert borrowing (and household lending, by bond
market clearing). Then, η̂ = N̂e/(q̂K̂) = κ − B/(q̂K̂) and by similar logic the pre-jump wealth share is
η = κ− B/qK. Thus, `η = η− η̂ = B[1/(q̂K̂)− 1/(qK)] = qK(κ− η)[1/(q̂K̂)− 1/(qK)]. Using the fact that
K̂ = K and the definition `q := 1− q̂/q, we arrive at `η = (κ− η)[(1− `q)−1 − 1]. This derivation assumes
the presumably risk-free bond price does not jump when capital prices jump. Conceptually, there is no
reason why this needs to be true, but it preserves its risk-free conjecture. If bond prices are allowed to
jump at the same time, we would find different expressions.
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which η ≤ κ, can be stated as

ρ̄(η̂)(1− `q)q > (ae − ah)η̂ + ah, (C.21)

where η̂ := η− (κ− η)
`q

1−`q
is the post-jump expert wealth share. Although it is obvious,

(RBJ) implies another bound on `q that arises because of |σR| ≥ 0, which is

ae − ah
q

≥ κ − η

η(1− η)

[ λ`2
q(

1− κ
η `q
)(

1− 1−κ
1−η `q

)
]
. (C.22)

Condition (C.22) evaluated at equality implies that all risk is jump risk. With these
equations in hand, we describe our simulation procedure.

Step 0. Given (η, q) solve for κ(η, q) from (PO).

Step 1. Solve for the upper bound of `q(η, q) using (C.21)-(C.22).
Note that, fixing (η, q), the RHS of (C.22) is strictly increasing in `q when `q ∈

(
0, η

κ

)

while the LHS is constant. Moreover, the inequality is satisfied for `q = 0 and violated
as `q → η

κ . Hence, this condition defines an upper bound `A
q (η, q), which can be solved

by a bisection procedure.
Next, after some algebra, we can write condition (C.21) as

(1− `q)
2 − (1− `q) +

(ae − ah)(κ − η)

ρ̄(η)q + q(ρe − ρh)(κ − η)︸ ︷︷ ︸
:=ϕ(η,q)

> 0.

It is straightforward to notice that the condition holds for any `q ∈ (0, 1) if ϕ(η, q) ≥ 1/4.
When ϕ(η, q) < 1/4, then the condition holds for `q ∈ (0, `B,low

q ) ∪ (`
B,high
q , 1), where

1− `
B,high
q =

1
2

(
1−

√
1− 4ϕ

)
and 1− `B,low

q =
1
2

(
1 +

√
1− 4ϕ

)
.

Define

`B
q := 1{ϕ≥1/4} + `B,low

q 1{ϕ<1/4}.

Then, an upper bound that ensures all required inequalities are satisfied is

`max
q (η, q) := min{`A

q (η, q), `B
q (η, q)}.
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Step 2. Choose a sub-region within the domain D := {(η, q) : 0 < η < 1 and ηae + (1−
η)ah < qρ̄(η) ≤ ae} that is away from the upper and lower boundaries. For example,
in our numerical exercise, we choose the sub-region D◦ := {(η, q) : κ < 0.98 and κ >

η + 0.02}. On D\D◦, we will set `q = 0 and choose µq to ensure the economy never
escapes D. In fact, we can choose µq in a way that the boundary of D◦ acts arbitrarily
close to a reflecting boundary, which is what we have done in for Figure 9. Pick an
arbitrary function `q(η, q) ∈ [0, `max

q (η, q)) and an arbitrary µq for the set D◦.
Step 3. Use risk-balance condition (RBJ) to solve for |σR|2. For each (η, q), assign
γ(η, q) fraction of the variance to the fundamental Brownian shock, and 1− γ(η, q) to
the sunspot Brownian shock. In constructing Figure 9, we set γ ≡ 1. Then, solve for
other equilibrium objects from the equations above.
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D Model extensions and further analyses

D.1 Beliefs about disaster states

In this section, we outline a richer class of W-BSE when σ = 0. The entire set of W-BSEs
studied here will be indexed by agents’ beliefs about the “tail scenario” in the economy,
i.e., what happens when experts are severely undercapitalized.

Mathematically, recall that we previously have assumed κ(0) = 0; in other words,
experts fully deleverage as their wealth vanishes. Some intuitive refinements like a small
amount of idiosyncratic risk (Appendix D.2) or a small amount of commitment frictions
(Appendix D.3) can justify the assumption κ(0) = 0. However, strictly speaking, κ(0) = 0
turns out to not be necessary without these refinements, and it will be interesting to relax
this assumption.

Consider any κ0 ∈ (0, 1) and put κ(0) = κ0. We will call κ0 the disaster belief in the
economy. The sunspot equilibrium is similar to Proposition 1, with the generalization
that the boundary condition to the ODE (15) is now κ(0) = κ0 rather than κ(0) = 0.33

Proposition D.1. For σ = 0 and fixed tail belief κ0 ∈ (0, 1), there exists a W-BSE, with
σq(η) 6= 0 on a positive measure subset of (0, 1). As κ0 → 0, this equilibrium converges to the
W-BSE of Proposition 1. As κ0 → 1, the equilibrium converges to the FE of Lemma 1.

Based on Proposition D.1, proved at the end of this section, one can view both the
W-BSE and the FE as outcomes of coordination on experts’ deleveraging. If experts never
sell any capital, there can be no price volatility, with σq = 0 at all times. If agents expect

33As in footnote 17, there is a closed-form solution when ρh = ρe, which is

q(η) =
1
ρ

[
(ae − ah)η + ah +

√
((ae − ah)η + ah)2 − a2

h + (ae − ah)2κ2
0

]
, for η < η∗ =

1
2

ae − ah
ae

(1− κ2
0).

As κ0 decreases, the slope q′(η) increases, consistent with the idea that pessimism about the disaster state
raises the sensitivity of equilibrium to sunspot shocks away from disaster. Clearly, this solution converges
to the W-BSE solution in footnote 17 as κ0 → 0, and to the FE solution ae/ρ as κ0 → 1.
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κ0 = 0, which translates to full deleveraging and large capital fire sales, then the W-
BSE prevails. But for any κ0 ∈ (0, 1), an intermediate sunspot equilibrium will prevail,
with a self-fulfilling amount of expert deleveraging and associated price dynamics. In
this simple way, the boundary condition κ0 ∈ [0, 1] spans an entire range of sunspot
equilibria from more to less volatile. An illustration is in Figure D.1.34
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Figure D.1: Capital price q, volatility σq, and stationary CDFs of η for different levels of disaster belief κ0.
Parameters: ρe = ρh = 0.05, ae = 0.11, ah = 0.03. OLG parameters (for the CDF): ν = 0.1 and δ = 0.04.

This result provides a clear illustration of the central property that the degree of
capital fire sales is indeterminate in these models. Intuitively, greater optimism about
other experts’ ability to retain capital in the tail scenario induces smaller capital fire sales
in response to sunspot shocks, which keeps volatility low, asset prices high, and justifies
the optimism.

Proof of Proposition D.1. In the first step, we prove existence of an equilibrium for
fixed κ0 ∈ (0, 1). In the second step, we take the limits as κ0 → 0 and κ0 → 1.

Step 1: Existence. Let F(x, y) := ae−ah
yρ̄(x)−xae−(1−x)ah

y. Fix ε > 0. Consider the initial value
problem y′ = F(x, y), with y(0) = (κ0ae +(1− κ0)ah)/ρh. As discussed in the text, y′(0+)

is bounded, which is enough to ensure that F is bounded and uniformly Lipschitz on
R := {(x, y) : 0 < x < 1, xae + (1− x)ah < yρ̄(x)}. Thus, the standard Picard-Lidelöf
theorem implies that there exists a unique solution q∗ to this initial value problem, for
η ∈ (0, b), some b. Standard continuation arguments can be used to show that either (i)

34This result is also convenient in some numerical situations. Since the W-BSE is just the limit of
equilibria as κ0 → 0, we can construct an approximate numerical solution with κ0 very small (but not
quite 0).
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b = 1, (ii) q∗(η) is unbounded as η → b, or (iii) b satisfies bae + (1− b)ah = q∗(b)ρ̄(b). If
case (ii) is true, since F > 0 on R, we will in fact have q∗(b−) = +∞. Case (iii) is ruled
out by the fact that F(b−, q∗(b−)) = +∞. We are left with cases (i) or (ii).

In case (i), we will set η∗ = inf{η ∈ (0, 1) : q∗(η) = ae/ρ̄(η)}, with the convention that
η∗ = 1 if this set is empty. Note that η∗ < 1 in this case: otherwise q∗(1−)ρ̄(1−) < ae,
which implies F(1−, q∗(1−)) < 0, which by continuity of q∗ and F implies an η◦ ∈ (0, 1)
such that η◦ae + (1− η◦)ah = q∗(η◦), which was just ruled out (case (iii)). In case (ii), we
will set η∗ = inf{η ∈ (0, b) : q∗(η) = ae/ρ̄(η)}, with the convention that η∗ = 1 if this
set is empty. Note that we also clearly have η∗ < b < 1 in this case.

Finally, set q(η) = 1η<η∗q∗(η) + 1η≥η∗ae/ρ̄(η). This function satisfies q′ = F(η, q)
on (0, η∗), q(0) = (κ0ae + (1− κ0)ah)/ρh, and q(η∗) = ae/ρ̄(η). Thus, we have found a
solution to the capital price satisfying all the desired relations. As discussed in the text,
finding such a capital price is enough to prove that a Markov sunspot equilibrium exists.

Since equation (16) implies σ2
q > 0 on (0, η∗), in order to establish σq(η) 6= 0 on

a positive measure subset, it suffices to show that η∗ > 0. But this is automatically
implied by the boundary condition q(0) = (κ0ae + (1− κ0)ah)/ρh < ae/ρh for κ0 < 1,
coupled with the continuity of the solution q(η).

Step 2: W-BSE and FE as limiting equilibria. For each initial condition κ(0) = κ0, let
(qκ0 , η∗κ0

) be the associated equilibrium capital price and misallocation threshold (at
which point households begin purchasing capital).

Define the candidate solution for the W-BSE, (q0, η∗0 ) := limκ0→0(qκ0 , η∗κ0
). It suffices

to show that q0 satisfies (i) q′0 = F(η, q0) on (0, η∗0 ), (ii) q0(0) = ah/ρh, and (iii) q0(η
∗
0 ) =

ae/ρ̄(η∗0 ). Write the integral version of the ODE:

qκ0(η) =
κ0ae + (1− κ0)ah

ρh
+
∫ η

0
F(x, qκ0(x))dx.

Next, we claim that qκ0(x) is weakly increasing in κ0, for each x. Indeed, qκ0(0) is strictly
increasing in κ0. By continuity, we may consider x∗ := inf{x : qκ̃0(x) = qκ0(x)} for some
κ̃0 > κ0. In that case, since F does not depend on κ̃0 or κ0, we have qκ̃0(x) = qκ0(x) for
all x ≥ x∗. This proves qκ̃0(x) ≥ qκ0(x) for all x. Combine this with the fact that ∂qF < 0
to see that {F(x, qκ0(x)) : κ0 ∈ (0, 1)} is a sequence which is monotonically (weakly)
decreasing in κ0, for each x. Thus, by the monotone convergence theorem,

q0(η) =
ah
ρh

+
∫ η

0
F(x, q0(x))dx,
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which proves (i), by differentiating, and (ii), by substituting η = 0. Similarly,

qκ0(η
∗
κ0
) =

ae

ρ̄(η∗κ0
)

κ0→0−→ q0(η
∗
0 ) =

ae

ρ̄(η∗0 )
,

which proves (iii).
Define the candidate solution for the FE, (q1, η∗1 ) := limκ0→1(qκ0 , η∗κ0

). It suffices to
show that η∗1 = 0, so that q1(η) = ae/ρ̄(η) for all η. Note that qκ0(0) → ae/ρh as
κ0 → 1. By continuity of (qκ0 , η∗κ0

) in κ0, we also have qκ0(0) → q1(0) as κ0 → 1.
Thus, q1(0) = ae/ρh. By the definition of η∗1 = inf{η : q(η) = ae/ρ̄(η)}, we must have
η∗1 = 0.

D.2 Idiosyncratic uncertainty

Here, we add idiosyncratic risk to capital. Doing so raises 3 substantive points: (1) small
idiosyncratic uncertainty can provide an equilibrium refinement, by selecting equilibria
with the property limη→0 κ = 0; (2) large idiosyncratic uncertainty eliminates sunspot
equilibria where η is the sole state variable (i.e., where sunspot shocks are iid); (3) id-
iosyncratic uncertainty allows us to study, in a non-trivial way, the stability properties of
the “deterministic steady state” of our model.

Setting. In addition to the model assumptions listed in Section 1, individual capital now
evolves as

dki,t = ki,t[gdt + σ̃dB̃i,t], (D.1)

where (B̃i)i∈[0,1] is a continuum of independent Brownian motions. Agents with indexes
i ∈ [0, I] are experts, and those with i ∈ [I, 1] are households. As in Section 1, the
aggregate stock of capital Kt :=

∫ 1
0 ki,tdi grows deterministically at rate g (no aggregate

shocks).
As before, suppose Z is a one-dimensional Brownian motion (a sunspot shock), in-

dependent of all B̃i. Conjecture

dqt = qt[µq,tdt + σq,tdZt].

We will focus on Markov equilibria in which η is the sole state variable. A fundamental
equilibrium features σq ≡ 0. A sunspot equilibrium features σq which is not identically zero.

57



Small uncertainty as equilibrium refinement. The first result in this environment is
that any equilibrium (even one with additional state variables beyond η) must feature
full deleveraging by experts, as they become poor, simply as a consequence of portfolio
optimality. To see this, note that risk balance condition (RB), the combination of expert
and household capital FOCs, is now modified to read

0 = min
[
1− κ,

ae − ah
q
− κ − η

η(1− η)
(σ̃2 + σ2

q )
]
. (D.2)

Note that ae − ah > 0 and σ̃2 + σ2
q > 0. Thus, as η → 0, we must have κ → 0. Since this

holds for any arbitrarily small σ̃, we conclude that the equilibria with disaster beliefs
κ0 > 0 (see Section D.1) are not robust.

Lemma D.1. Any equilibrium with σ̃ > 0 has the property limη→0 κ = 0.

Large uncertainty eliminates iid sunspots. In Section 2.2, we have demonstrated how
sunspot equilibria with η as the sole state variable are incompatible with the presence of
exogenous aggregate fundamental risk. Here, we show that the conclusion is similar if
the exogenous risk is idiosyncratic rather than aggregate.

Even with idiosyncratic risk σ̃, one may follow the same analysis as Section 2.1 to
show that equation (15) still determines q if σq 6= 0. In other words, the candidate
sunspot equilibrium of this model has a solution (q, κ), both as functions of η, which
are independent of the amount of idiosyncratic risk σ̃ (i.e., the same as in the W-BSE).
Denote η∗ := inf{η : κ(η) = 1} the boundary point where households begin managing
capital. This is also independent of σ̃.

Next, use equation (D.2) to solve for σq, given the solutions (q, κ). We get

σ2
q = −σ̃2 +

η(1− η)

κ − η

ae − ah
q

, if κ < 1.

Since σ2
q ≥ 0 is required, an immediate consequence is that σ̃ high enough eliminates the

existence of any sunspot volatility. We collect these results in the following lemma.

Lemma D.2. Let (q, κ, η∗) be given by the W-BSE of Proposition 1. If capital has idiosyncratic
risk σ̃, and σ̃2 ≥ supη<η∗

η(1−η)
κ(η)−η

ae−ah
q(η) , any Markov equilibrium in η requires σq = 0.

Intuitively, there is a trade-off between endogenous volatility σq and exogenous volatil-
ity σ̃. With higher idiosyncratic volatility σ̃, amplification of the aggregate sunspot shock
is necessarily reduced. To understand this, consider Merton’s optimal capital portfolio
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when there is only idiosyncratic volatility

qk j

nj
=

aj/q + g− r
σ̃2 , j ∈ {e, h}.

As σ̃ increases the optimal capital demand becomes more inelastic to changes in the
capital price q. Thus, for a given shift in the wealth distribution η and change in capital
price q, the amount of capital that changes hands between experts and households will
be dampened as σ̃ increases. But it is exactly such capital purchases/sales which are the
key ingredient to our sunspot volatility, allowing price fluctuations to be self-fulfilled.
As σ̃ increases, this mechanism is weakened, leading to a decrease in σq. Eventually, the
mechanism is severed altogether because σ2

q < 0 is not possible.

Steady state stability. In an attempt to differentiate ourselves from the literature, here we
examine the traditional stability properties of this model. The addition of idiosyncratic
risk provides a convenient environment for stability analysis, for the following reason.
Stability properties are typically studied around the “steady state” of a deterministic
equilibrium. In Section 2.1 (with σ̃ = 0), the volatile W-BSE precludes this, and studying
a deterministic equilibrium instead puts us in the FE, which trivially has κ = 1 always.
With idiosyncratic risk, we can study a fundamental equilibrium in which capital prices
evolve deterministically, even though κ < 1 in steady state.

The crucial feature of the W-BSE, preserved in this model, is that capital prices are
determined by a function q such that qt = q(ηt). Supposing that to be true, a steady
state is fully characterized by the value η = ηss such that all non-growing variables are
constant over time. This steady state is thus determined by the equation η̇ = 0, where

η̇ = η(1− η)
[
ρh − ρe + σ̃2

(
(

κ

η
)2 − (

1− κ

1− η
)2
)]

+ δ(ν− η).

It is straightforward to show that equilibrium features stable state variable dynamics, in
the sense that ∂η̇

∂η |η=ηss < 0. However, because the “co-state” q is determined explicitly
as a function of η, the steady state is not “stable” in the usual sense required by the
multiplicity literature. Technically, there is only one stable eigenvalue of the dynamical
system (ηt, qt) near steady state (ηss, qss).

Lemma D.3. The steady state of the model with idiosyncratic risk is saddle path stable.

Proof of Lemma D.3. First, we show that q is a function of η, i.e., qt = q(ηt). Goods
market clearing is still characterized by the price-output relation (PO). With idiosyncratic
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risk, the risk balance condition (RB) is now (D.2). The solution to the system (PO) and
(D.2) can be computed explicitly. Indeed, define

η∗ := sup{η : (ae − ah)ηρ̄(η) = aeσ̃
2}.

Then, κ = 1 for all η ∈ (η∗, 1). For η ∈ (0, η∗), we compute κ < 1 as the positive root κ̃

from
0 = (ae − ah)κ̃

2 + [ah − η(ae − ah)]κ̃ − ηah −
η(1− η)(ae − ah)ρ̄(η)

σ̃2 .

After determining κ for all values of η, capital price q can be computed from (PO), as an
explicit function of η.

Given qt = q(ηt), the dynamics of qt are given by q̇t = q′(ηt)η̇t, which only depends
on η and not q (notice that η̇t also only depends on η and not q). Consequently, the
linearized system near steady state takes the form

[
η̇

q̇

]
=

[
m1 0
m2 0

] [
η

q

]

for m1, m2 6= 0. The eigenvalues of this system are m1 < 0 and 0.

As a result of Lemma D.3, there is a unique transition path (ηt, qt)t≥0 to steady state,
given an initial condition η0. In other words, q0 is pinned down uniquely. Our sunspot
equilibria are not constructed by randomizing over a multiplicity of transition paths that
arise due to steady state stability, which is the usual approach (Azariadis, 1981; Cass
and Shell, 1983). This can be seen in a relatively transparent way by examining Lemma
D.2, which shows how sunspot equilibria can exist in this model (if σ̃ is small enough),
despite the instability of the steady state.

D.3 Limited commitment as equilibrium refinement

Here, we add a small limited commitment friction, in the spirit of Gertler and Kiyotaki
(2010). The result: only equilibria with the property limη→0 κ = 0 survive, similarly to
equilibria with a small amount of idiosyncratic risk (Appendix D.2).

Suppose capital holders can abscond with a fraction λ−1 ∈ (0, 1) of their assets and
renege on repayment of their short-term bonds. After doing this diversion, the capital
holder would have net worth ñj,t := λ−1qtk j,t.

To prevent diversion, bondholders will impose some limitation on borrowing. To see
this, note that diversion delivers utility log(ñj,t) + ξt, where ξt is an aggregate process
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(independent of the identity j of the diverter). For diversion to be sub-optimal, it must be
the case that log(ñj,t)+ ξt ≤ log(nj,t)+ ξt. As a result, bondholders impose the following
leverage constraint to ensure non-diversion is incentive compatible:

qtk j,t

nj,t
≤ λ. (D.3)

We will study the equilibrium with constraint (D.3) additionally imposed, and then we
will take λ→ ∞ so that the limited commitment friction is vanishingly small.

Risk balance condition (RB) is now replaced by

0 = min
[
1− κ, λη − qκ,

ae − ah
q
− κ − η

η(1− η)
|σR|2

]
. (D.4)

The most important feature of equation (D.4) is that leverage constrained experts (λη =

qκ) must hold less than the full capital stock (κ < 1).
Condition (D.4) implies that there exists a threshold ηλ := inf{η : λη > qκ} below

which experts’ leverage constraints bind. By combining λη = qκ with condition (PO) for
κ, we obtain an explicit formula for the capital price in this region:

q =
1
2

[ ah
ρ̄
+
√
(ah/ρ̄)2 + 4λη(ae − ah)/ρ̄

]
, if η ≤ ηλ. (D.5)

Taking the limit η → 0 in equation (D.5) shows that q → ah/ρh and thus κ → 0. This
proves that there is no flexibility for coordination on a worst-case capital price, unlike
the leverage-unconstrained economy. The equilibrium is unique along this dimension,
coinciding with κ0 = 0.

As the limited commitment problem vanishes (λ → ∞), the leverage constraint be-
comes non-binding at all times (formally ηλ → 0).35 But along the sequence, κ0 = 0 is
uniformly required. (And if we focus on equilibria which are Markov in η, the entire
equilibrium converges to the W-BSE of Proposition 1.) We collect these results.

Lemma D.4. Among all equilibria, only those with the property limη→0 κ = 0 survive a
vanishingly-small limited commitment friction.

Intuitively, the leverage constraint gives experts an additional motive to sell capital,
which forces coordination on maximal selling in response to negative sunspot shocks.
Said differently: due to the prospect of violating the leverage constraint, losses incurred

35This intuitive property can be shown easily by taking λ→ ∞ in (D.5). For any fixed η ∈ (0, 1), taking
this limit implies q→ ∞, which is ruled out by price-output relation (PO).
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from retaining capital when others are selling is larger than losses incurred from selling
capital when others are retaining it. This property is reminiscent of “risk dominant”
equilibria being selected by strategic uncertainty (Harsanyi and Selten, 1988; Frankel
et al., 2003), but the exact modeling is different here.

D.4 General CRRA preferences

We modify the model of Section 1 by generalizing preferences to the CRRA type. In
particular, we replace the log(c) term in utility specification (3) with the flow consump-
tion utility c1−γ/(1− γ). For simplicity, we consider no OLG structure (δ = 0), but we
continue to allow experts’ discount rate to exceed households’ (ρe ≥ ρh). We impose
σ = 0 so that any non-deterministic equilibrium is a sunspot equilibrium. Finally, we
restrict attention to W-BSEs, i.e., those equilibria in which experts’ wealth share η is the
only state variable.

Equilibrium. The key equation (14) still holds, repeated here for convenience:

[
1− (κ − η)

q′

q

]
ση = 0. (D.6)

The sunspot equilibrium is associated with the term in brackets being equal to zero.
Unlike with logarithmic preferences, this condition does not pin down q(η) function,
because we can no longer write κ(q, η) from the goods market clearing condition: the
consumption to wealth ratio is not constant anymore, and depends on agents’ value
functions.

The value function can be written as Vi = vi(η)K1−γ/(1− γ) where vi(η) is deter-
mined in equilibrium. Then, consumption is ci/ni = (ηiq)1/γ−1/v1/γ

i where ηi corre-
sponds to the wealth share of sector i. Then, goods market clearing becomes

q1/γ
[( η

ve

)1/γ
+
(1− η

vh

)1/γ]
= (ae − ah)κ + ah. (D.7)

Optimal portfolio decisions imply that

0 = min
[
1− κ,

ae − ah
q
−
(v′h

vh
− v′e

ve
+

1
η(1− η)

)
(κ − η)σ2

q

]
. (D.8)

The HJB equation for i ∈ {e, h} has the familiar form ρiVi = u(c) + E[ dVi
dt ], which be-

62



comes

ρi =
(ηiq)1/γ−1

v1/γ
i

+
v′i
vi

µη +
1
2

v′′i
vi

σ2
η

︸ ︷︷ ︸
:=µv,i

+(1− γ)g. (D.9)

The dynamics of η satisfy

ση = (κ − η)σq (D.10)

µη = η(1− η)
(

ςe
κ

η
σq − ςh

1− κ

1− η
σq +

ch
nh
− ce

ne

)
− σησq (D.11)

and agent-specific risk prices satisfy

ςe = −
v′e
ve

ση +
ση

η
+ σq (D.12)

ςh = −v′h
vh

ση −
ση

1− η
+ σq. (D.13)

A Markov equilibrium is a set of functions: prices {q, σq, ςe, ςh}, allocation {κ}, value
functions {vh, ve} and aggregate state dynamics {ση, µη} that solve the system (D.6)-
(D.13).

The fundamental equilibrium corresponds to the solution for (D.6) where ση = 0,
which implies deterministic economic dynamics. Then, the capital price has no volatility
(σq = 0), risk prices are zero (ςe = ςh = 0), and experts hold the entire capital stock
(κ = 1). The capital price is then solved from (D.7), and the value functions satisfy

ρi =
(ηiq)1/γ−1

v1/γ
i

+
v′i
vi

η(1− η)

(
ch
nh
− ce

ne

)

︸ ︷︷ ︸
=µη

+(1− γ)g.

Conversely, the sunspot equilibrium corresponds to the solution for (D.6) with q′
q =

(κ − η)−1 (and potentially ση 6= 0).

Disaster belief. With logarithmic preferences, we proved that any sunspot equilibrium
must satisfy σq(0+) = 0. This allowed us, in Section D.1, to construct sunspot equilibria
with κ(0+) = κ0 for any κ0 ∈ [0, 1). With CRRA preferences, we attempt to construct
the same class of equilibria, with σq(0+) = 0 and κ0 ∈ (0, 1).

In order to have a non-degenerate stationary distribution, we have the following
requirements. Since ση(0+) = κ0σq(0+) = 0, the state variable avoids the boundary {0}
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if µη(0+) > 0. Using (D.8) for κ < 1, we have36

ae − ah
q(0+)

= (ςe(0+)− ςh(0+))σq(0+)

which allows us to show that37

µη(0+) = κ0
ae − ah
q(0+)

> 0.

In addition, we need µη(η∗+) < 0 where η∗ := inf{η : κ(η) = 1}. This requirement
should be satisfied for ρe − ρh sufficiently large.38

Numerical solution. We do not provide an existence proof—which involves the exis-
tence of a solution to the ODE system—but construct numerical examples. For tractabil-
ity, the numerical examples are constructed for κ0 > 0, which keeps q′(0+) = q(0+)/κ0

bounded.39

The numerical strategy is the following. Construct a grid {η1, . . . , ηN} with limit
points arbitrarily close to but bounded away from zero and one. Conjecture value func-
tions vh(η) and ve(η). Impose κ(η1) = κ0 and use (D.7) to solve for q(η1). At each interior
grid point, use q′ = q/(κ − η) and (D.7) to solve for κ(η) and q(η) until κ(η∗) = 1. In
this region, recover σq from (D.8). For η ∈ (η∗, 1] impose κ(η) = 1 and σq = 0, and solve
capital price from (D.7). The rest of equilibrium objects are calculated directly from the
system above. The guesses of the value functions are updated by augmenting the HJBs
(D.9) with a time derivative and moving a small time-step backward, as in Brunnermeier
and Sannikov (2016). The procedure terminates when the value functions converge to
time-independent functions.

In Figure D.2, we plot the equilibrium objects as functions of η, for different levels of
risk aversion γ. In Figure D.3, we make the same plots, for different levels of the disaster
belief κ0. Higher risk aversion (higher γ) or more pessimism about disasters (lower κ0)
generates sunspot equilibria featuring lower capital prices and higher volatility.

36Note that this implies ςe(0+)− ςh(0+) diverges.
37This expression also assumes that ςh(0+) remains bounded. This is a mild assumption since house-

holds own all capital.
38There is an important distinction between the restriction not to reach η = 0 and µη(η∗+) < 0. Without

the first one, the equilibrium for any κ0 > 0 unravels, while without the second one, the equilibrium is
still valid, but it has a degenerate stationary distribution at some value ηss > η∗.

39With logarithmic utility, we obtain a limiting result in Proposition D.1, that as κ0 → 0, the equilibrium
converges to the W-BSE with κ(0) = 0. With CRRA, we do not prove such a result analytically, but we do
observe numerically what looks like convergence as κ0 becomes small.
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Figure D.2: Sunspot equilibrium for different risk aversion γ. The disaster belief is set to κ0 = 0.001. Other
parameters: ae = 0.11, ah = 0.03, ρe = 0.06, ρh = 0.05, g = 0.02.

Figure D.3: Sunspot equilibrium for different disaster beliefs κ0. Risk aversion is set to γ = 2. Other
parameters: ae = 0.11, ah = 0.03, ρe = 0.06, ρh = 0.05, g = 0.02.
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D.5 Correlation between sentiment and fundamentals

What happens if sentiment shocks are correlated with fundamental shocks? To model
this, we allow

dst = µs,tdt + σ
(1)
s,t dZ(1)

t + σ
(2)
s,t dZ(2)

t .

In Section 4.1, we restricted attention to σ
(1)
s,t = 0. Without this assumption, equations

(22) and (21) are modified to read:

0 = min
[
1− κ,

ae − ah
q
− κ − η

η(1− η)

( (σ + σ
(1)
s ∂s log q)2 + (σ

(2)
s ∂s log q)2

(1− (κ − η)∂η log q)2

)]

σq =
( 1

0 )(κ − η)σ∂η log q + σs∂s log q
1− (κ − η)∂η log q

.

The rest of the equilibrium restrictions are identical.
For the present illustration, we additionally assume that σ

(2)
s,t = 0, i.e., sentiment

shocks only load on fundamental shocks. What emerges is the possibility that sentiment
shocks “hedge” fundamental shocks: we can have σ

(1)
s ∂s log q < 0, which lowers return

volatility and raises asset prices. In the extreme case, if σ
(1)
s ∂s log q → −σ, the economy

will converge to the W-BSE of Section 2.1. At the other end, if σ
(1)
s ∂s log q → 0, the

economy resembles the Fundamental Equilibrium (FE) with positive fundamental shocks
(this FE was qFE in our baseline construction in Section 4.1). Thus, by constructing our
conjectured capital price function as a convex combination of the W-BSE and the FE, with
weight 1− s on the W-BSE and s on the FE, we can ensure that σ

(1)
s ∂s log q endogenously

emerges negative. Figure D.4 displays the equilibrium constructed this way.

Figure D.4: Capital price q, volatility of capital returns |σR|, and sunspot shock volatility |σs|. Parameters:
ρe = ρh = 0.05, ae = 0.11, ah = 0.03, σ = 0.10.
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D.6 Exogenous sunspot dynamics

In Section 4.1, we solved for a Markov S-BSE that featured endogenous sunspot dynam-
ics, i.e., (σs, µs) could potentially depend on η. Here, we show that sunspot equilibria
can be built on top of exogenous sunspot dynamics as well. As we will show, this con-
struction can be naturally viewed as the limit of equilibria in which the variable s has
a vanishing contribution to fundamentals. With that in mind, we actually start from a
more general setting in which s can impact fundamental volatility, and then we take the
limit as this impact becomes vanishingly small.

Consider the following stochastic volatility model:

dKt

Kt
= gdt + σ

√
1 + ωstdZt

dst = µs(st)dt + ϑ
√

1 + ωstdZt

where ϑ > 0 is an exogenous parameter and ω ∈ R measures the impact of st on capital
growth volatility. Thus, the diffusion of st, namely σs(s) := ϑ

√
1 + ωs, is specified

exogenously. Also, µs(s) is an exogenous function that is specified to ensure that st ∈
(smin, smax), for some pre-specified interval satisfying smin ≥ 0 and csmax > −1. Such a
choice can always be made, e.g., by putting µs(s) = −(smax− s)−(1+β)+ (s− smin)

−(1+β).
Note that st becomes a sunspot when ω = 0. When ω < 0, the state st is an inverse
measure of capital’s volatility.

For simplicity, we assume there is a single aggregate shock, i.e., Z is a one-dimensional
Brownian motion; this can easily be generalized to multiple shocks. Also for simplicity
of expressions, we assume here that ρe = ρh = ρ. Then, an equilibrium capital price
function q(η, s) must satisfy the PDE defined by the following system

ρq = κae + (1− κ)ah

0 = min
[
1− κ,

ae − ah
q
− (κ − η)(1 + ωs)

η(1− η)

( σ + ϑ∂s log q
1− (κ − η)∂η log q

)2]
.

Technically, the multiplicity arises from the selection of the boundary conditions on
q(η, smin) and q(η, smax), which are not pinned down by any equilibrium restriction.

We perform two exercises. First, we show that there are multiple equilibria for a given
set of parameters. We use ω < 0 here, along with smin = 0 and smax = 2. In this case,
the “natural” and intuitive solution is for q to increase with s, while volatility decreases.
In Figure D.5, we pick a “low” boundary condition for q(η, 0) and the solution follows
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this intuition.40
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Figure D.5: Equilibrium with ω = −0.25, and the “low” boundary condition for q(η, 0), which is a 50%
weighted-average of the fundamental equilibrium and the infinite-volatility equilibrium. Other parame-
ters: ρe = ρh = 0.05, ae = 0.11, ah = 0.03, σ = 0.1, ϑ = 0.25. The boundary condition at η = 0 is set so that
κ(0, s) = 0.01 for all s.

However, agents could equally well coordinate on a “high” boundary condition,
which results in the solution of Figure D.6.41 Notice the capital price and return volatil-
ity exhibit a non-monotonicity in s. At low values of s, q is decreasing in s, while return
volatility increases. This behavior is made possible by the “coordination component” of
the response to changes in s and not by the “fundamental component.”

Our second exercise considers the limit ω → 0. Figure D.7 shows the solution for
ω = −10−6, again equipped with the “low” boundary condition for q(η, 0). There re-
mains a tremendous amount of variation in the equilibrium as s varies, illustrating con-
vergence to a sunspot equilibrium. Thus, as promised, we are able to construct sunspot
equilibria even if the dynamics (σs, µs) are specified exogenously. In fact, it appears that
the amount of price volatility is relatively insensitive to the real effects s has (i.e., the
size of ω), which is reminiscent of the “volatility paradox” of Brunnermeier and San-
nikov (2014) but one level deeper. Their paradox is that total volatility is only modestly
sensitive to exogenous fundamental volatility; our paradox is that total volatility is only
modestly sensitive to the exogenous impact of s on fundamental volatility.

40This “low” boundary condition is a weighted average between the solution with infinite volatility and
the fundamental equilibrium solution. The fundamental equilibrium, which is the capital price solution
that keeps s = 0 fixed forever, is discussed in Online Appendix E. The infinite-volatility solution has κ = η,
hence q = (ηae + (1− η)ah)/ρ̄(η).

41This “high” boundary condition is a weighted average between the W-BSE of Section 2.1 (which is a
potential solution to the equilibrium with σ = 0) and the fundamental equilibrium solution.
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Figure D.6: Equilibrium with ω = −0.25, and the “high” boundary condition for q(η, 0), which is a
50% weighted-average of the fundamental equilibrium and a W-BSE. Other parameters: ρe = ρh = 0.05,
ae = 0.11, ah = 0.03, σ = 0.1, ϑ = 0.25. The boundary condition at η = 0 is set so that κ(0, s) = 0.01 for all
s.
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Figure D.7: Equilibrium with near-sunspot ω = −10−6 and the “low” boundary condition for q(η, 0),
which is a 50% weighted-average of the fundamental equilibrium and the infinite-volatility equilibrium.
Other parameters: ρe = ρh = 0.05, ae = 0.11, ah = 0.03, σ = 0.1, ϑ = 0.25. The boundary condition at
η = 0 is set so that κ(0, s) = 0.01 for all s.

E Fundamental Equilibria

In this section, we investigate properties of equilibria where sunspot shocks Z(2) are
irrelevant and experts’ wealth share η serves as the only state variable, i.e., fundamental
equilibria. We illustrate previously undocumented multiplicity along two dimensions:
the disaster belief κ0 and the sign of the sensitivity of capital returns to fundamental
shocks σ + σq. The key equations describing FEs are (PO), (A.1), and (18), restated here
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for convenience:

qρ̄ = κae + (1− κ)ah (E.1)

0 = min
[
1− κ,

ae − ah
q
− κ − η

η(1− η)
(σ + σq)

2
]
. (E.2)

σq =
(κ − η)q′/q

1− (κ − η)q′/q
σ. (E.3)

Also, wealth share dynamics are given in (11)-(12), restated here for convenience:

µη = −η(1− η)(ρe − ρh) + 1{κ<1}(κ − 2κη + η2)
ae − ah

q
+ δ(ν− η) (E.4)

ση = (κ − η)(σ + σq). (E.5)

We define a fundamental equilibrium as follows.42

Definition 5. Given η0 ∈ (0, 1), a Markov fundamental equilibrium consists of adapted
processes (ηt, qt, κt)t≥0 such that (E.1)-(E.3) hold, and (E.4)-(E.5) describe dynamics of ηt.

E.1 Properties of the non-sunspot solution with fundamental shocks

We describe here some properties of fundamental equilibria with fundamental volatility
σ > 0, where we additionally impose the full-deleveraging condition κ(0) = 0.

Lemma E.1. Assuming it exists, suppose (q, κ) is a fundamental equilibrium in η in the sense
of Definition 5. Assume κ(0+) = 0. Define η∗ := inf{η : κ = 1}. Then, the following hold:

(i) (ρ̄q− ηae − (1− η)ah)
q′
q = ae − ah − σ

√
q ρ̄q−ηae−(1−η)ah

η(1−η)
, for all η ∈ (0, η∗).

(ii) ηae + (1− η)ah < ρ̄q < ae , for all η ∈ (0, η∗).

(iii) q′(0+)
q(0+)

= ae
ah
− ρe

ρh
+ ρh

( ae−ah
σah

)2.

(iv) If σ is sufficiently small, then q′ > ae−ah
ρ̄ , for η ∈ (0, η∗).

(v) If σ is sufficiently small, then ρh
ρe

(1−ah/ae
σ2 − 1 + ρh

ρe

)−1
< η∗ < 1.

(vi) On η ∈ (0, η∗), the solution q is infinitely-differentiable.
42We omit rt from the definition, since it can be read off of (9), given other objects, and affects no other

equation.
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Proof of Lemma E.1. Since a fundamental equilibrium is assumed to exist, we make
use of equations (E.1) and (E.2). Recall that ρ̄ := ηρe + (1− η)ρh. By analogy, let ā :=
ηae + (1− η)ah.

(i) Start from equation (E.2), and rearrange to obtain the result, where we have im-
plicitly selected the solution with 1 > (κ − η) q′

q .

(ii) The first inequality, which is equivalent to κ > η, is a direct implication of equation
(E.2). The second inequality, equivalent to κ < 1, is a restatement of the definition
of η∗.

(iii) Start from equation (E.2). Taking the limit η → 0, and using κ(0+) = 0, delivers
an equation for κ′(0+). Differentiating (E.1), we may then substitute κ′(0+) =
ρhq′(0+)+(ρe−ρh)q(0+)

ae−ah
. Rearranging, we obtain the desired result.

(iv) By part (iii), there exists η◦ > 0 and σ̄ > 0 such that uniformly for all σ < σ̄, we
have q′ > ae−ah

ρ̄ on the set {η < η◦}. On the set {η◦ ≤ η < η∗}, we know that
κ − η is bounded away from zero, uniformly for all σ < σ̄. Using the expression
in part (i), the fact that q is bounded by ae/ρ̄ uniformly for all σ, and the previous
fact about κ − η = ρ̄q− ā, we can write

q′ =
ae − ah
ρ̄q− ā

q− o(σ), η ∈ (η◦, η∗).

Therefore,

q′ + o(σ) =
ae − ah
ρ̄q− ā

q =
ae − ah

ρ̄

q
q− ā/ρ̄

>
ae − ah

ρ̄
, η ∈ (η◦, η∗),

where the last inequality is due to ρ̄q > ā [part (ii)]. Taking σ is small enough
implies the result on (η◦, η∗), which we combine with the result on (0, η◦) to con-
clude.

(v) Consider the function q̃ := ā/ρ̄, whose derivative is q̃′ = ae−ah
ρ̄ − ā

ρ̄
ρe−ρh

ρ̄ < ae−ah
ρ̄ .

Combining this result with part (iv), we obtain q′ > q̃′. If q̃ was the capital price,
then equation (E.1) implies the associated capital share κ̃ = η. On the other hand,
the fact that q′ > q̃′ implies κ′ > κ̃′ = 1, which implies η∗ < 1.

Next, consider η ∈ (η∗, 1) so that κ = 1. By equation (E.2), with q = ae/ρ̄, we must
have

σ2 ≤ ηρ̄
ae − ah

ae

(
1 + (1− η)

ρe − ρh
ρ̄

)2
, η ≥ η∗.
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This is equivalent to

1 ≤ η
ρe

ρh

( ae − ah
aeσ2 ρe − 1 +

ρh
ρe

)
, η ≥ η∗.

Substituting η = η∗, and rearranging, we obtain the first inequality. There is no
contradiction with η∗ < 1, due to the assumption that σ can be made small enough.

(vi) Note that F(η, q) := q[ ae−ah
ρ̄(η)q−ā(η) − σ( η(1−η)(ρ̄(η)q−ā(η))

q )] is infinitely differentiable in
both arguments on {(η, q) : η ∈ (0, 1), ρ̄(η)q > ā(η)}. Thus, the result is a simple
consequence of differentiating part (i), noting that by part (ii) we have ρ̄(η)q(η) >
ā(η), and then using induction.

Although the existing literature always imposes κ(0+) = 0, this is actually not a nec-
essary feature of a fundamental equilibrium.43 If we let κ0 ∈ (0, 1) be a given “disaster
belief” about experts’ deleveraging and we suppose κ(0+) = κ0 (similar to Appendix
D.1 for the sunspot case with σ = 0), there is no inherent contradiction to equilibrium.
Existence of such an equilibrium boils down simply to existence of a solution to a first-
order ODE. Thus, a variety of fundamental equilibria could exist, and indeed we provide
a numerical example after the following lemma and proof.

Lemma E.2. A fundamental equilibrium with disaster belief κ0 ∈ (0, 1) exists if the free bound-
ary problem

(ρ̄q− ηae − (1− η)ah)
q′

q
= ae − ah − σ

√
q

ρ̄q− ηae − (1− η)ah
η(1− η)

, on η ∈ (0, η∗), (E.6)

subject to q(0) =
κ0ae + (1− κ0)ah

ρh
and q(η∗) =

ae

ρ̄(η∗)
, (E.7)

has a solution.
43Brunnermeier and Sannikov (2014) justify κ0 = 0 in their online appendix: “because in the event that

ηt drops to 0, experts are pushed to the solvency constraint and must liquidate any capital holdings to
households.” This is technically not needed; as shown in Lemma E.2 of Appendix E.1, the dynamics of ηt
will not allow it to ever reach 0, so there is no contradiction to equilibrium with both κ0 > 0 and σ > 0.
Although we do not prove an existence result, Appendix E.1 presents several numerical examples. The
continuum of fundamental equilibria, indexed by κ0, may be of independent theoretical interest.

In some sense, the literature has picked the worst possible fundamental equilibrium (minimal-price,
maximal-volatility) by imposing κ0 = 0. This can be partly justified by the refinement results of Sections
D.2 and D.3, which carry over to the case with σ > 0, i.e., only the belief κ0 = 0 survives vanishingly-small
idiosyncratic risk or a vanishingly-small limited commitment friction.
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Proof of Lemma E.2. A fundamental equilibrium in state variable η exists if and only if
equations (E.1), (E.2), and (E.3) hold, and if the time-paths (ηt)t≥0 induced by dynamics
(ση, µη) avoid η = 0 almost-surely. We will demonstrate these conditions.

Suppose (E.6)-(E.7) has a solution (q, η∗) corresponding to κ0 ∈ (0, 1). If there are
multiple solutions, we pick the one such that q(η) < ae/ρ̄(η) for all η ∈ (0, η∗), which
is always possible because the boundary conditions (E.7) imply ρ̄(0)q(0) < ρ̄(η∗)q(η∗).
Set q(η) = ae/ρ̄(η) for all η ≥ η∗. Define κ = ρ̄q−ah

ae−ah
. Note that (E.1) is automatically

satisfied. Note that (E.3) is also satisfied automatically, by applying Itô’s formula to the
solution q(η) and using ση = (κ − η)(σ + σq).

We show (E.2) holds separately on (0, η∗) and [η∗, 1). Using (E.1) and (E.3) in the ODE
(E.6) and rearranging, we show that (E.2) holds when κ < 1. The boundary condition
q(η∗) = ae/ρ̄(η∗) is equivalent to κ(η∗) = 1, which shows that κ(η) < 1 for all η < η∗.
Therefore, we have proven that (E.2) holds on (0, η∗).

If η∗ = 1, then we are done verifying (E.2); otherwise, we need to verify (E.2) on
[η∗, 1). On this set, κ = 1, so we need to verify

η
ae − ah

q
≥ (σ + σq)

2 for all η ≥ η∗. (E.8)

First, we show that it suffices to verify this condition exactly at η∗. Indeed, on (η∗, 1),
we have κ = 1 and q = ae/ρ̄. Substituting these and (E.3) into (E.8), we obtain

(E.8) holds ⇔
( ae − ah

aeσ2 ρe −
ρe − ρh

ρe

)
η ≥ ρh

ρe
for all η ≥ η∗.

But since the left-hand-side is increasing in η, if it holds at η = η∗, it holds for all η > η∗.
Now, writing (E.8) at η∗, using (E.3) to replace σq, and using ODE (E.6) to replace

η∗ ae−ah
q(η∗) = σ[1− (1− η∗)q′(η∗−)/q(η∗)]−1, we need to verify

(E.8) holds ⇔ σ

1− (1− η∗)q′(η∗−)/q(η∗)
≥ σ

1− (1− η)q′(η∗+)/q(η∗)
⇔ q′(η∗−) ≥ q′(η∗+).

We clearly have q′(η∗−) ≥ q′(η∗+) by the simple fact that q < ae/ρ̄ for η < η∗ and
q = ae/ρ̄ for η ≥ η∗.

Finally, it remains to very that ηt almost-surely never reaches the boundary 0. Near
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η = 0, the dynamics in (E.4)-(E.5) become

µη(η) = κ0
ae − ah
q(0+)

+ δν + o(η)

σ2
η(η) = κ0

ae − ah
q(0+)

η + o(η).

By the same analysis as in Theorem 1, the boundary 0 is unattainable.

What happens in an equilibrium of Lemma E.2 in which κ0 > 0? Behavior at the
boundary η = 0 is substantially different than the κ0 = 0 case, because equation (E.2)
can only hold there if σq → −σ as η → 0. Capital prices “hedge” fundamental shocks
to capital, in a brief region of the state space (0, ηhedge). Said differently, given the
formula (E.3), the fact that σq(0+) = −σ implies q′(0+) = −∞, so that prices rise as
experts lose wealth in a region of the state space. The hedging region is exactly what
incentivizes experts to take so much leverage (indeed, expert leverage κ/η blows up near
0). For η > ηhedge, this behavior reverses, and the equilibrium behaves very much like
the equilibrium with κ0 = 0. Overall, there is no inconsistency with equilibrium even
though q′ < 0 in the region (0, ηhedge).44

Figure E.1 displays several examples of equilibria with different choices of κ0 > 0.
The solid black lines, which are equilibrium outcomes with κ0 = 0.001, corresponds
approximately to the equilibrium choice made by Brunnermeier and Sannikov (2014).
The other curves, with higher disaster beliefs κ0, are new to the literature. Similar to the
the sunspot results of Section D.1, more optimistic disaster beliefs raise capital prices
and reduce capital price volatility.

E.2 The “hedging” equilibrium

The equilibria described in Appendix E.1 are “normal” in the sense that a positive ex-
ogenous shock increases asset prices and experts’ wealth share. But technically, agents
do not care about the direction prices move when they make their portfolio choices.
They only care about risk which is measured in return variance; this can be seen in the

44One may think that q′(0+) = −∞, and more generally that q′ < 0 in some region of the state space,
could imply that κ hits η at some point. However, this cannot happen. Indeed, since κ0 > 0, we have that
q(0+) > q̃(0+), where q̃(η) := ((ae − ah)η + ah)/ρ̄ is the price function consistent with κ = η.

To see this, assume there is an η̂ ∈ (0, 1) such that κ(η̂) = η̂ (or equivalently, q(η̂) = q̃(η̂)). If there
is more than one, consider the minimum among them, so q(η) > q̃(η) for all η ∈ (0, η̂). From the q̃(η)
definition, we have q̃′(η) = (ae − ah)/ρ̄− ((ae − ah)η̂ + ah)(ρe − ρh)/ρ̄2 < ∞, while from (E.6) it must be
that q′(η̂−)→ ∞. This is a contradiction.
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Figure E.1: Fundamental equilibria with different disaster beliefs κ0. Parameters: ρe = ρh = 0.05, ae = 0.11,
ah = 0.03, σ = 0.025. OLG parameters: ν = 0.1 and δ = 0.04.

optimality condition (E.2) where (σ + σq)2 appears. An immediate implication is that
two types of equilibria are possible: the “normal” one has σ + σq > 0; an alternative
equilibrium has σ + σq < 0.45

We term this latter equilibrium the “hedging” equilibrium because asset price move-
ments move oppositely to exogenous shocks. In fact, asset price responses are so strong
in opposition that experts actually gain in wealth share upon a negative fundamental
shock. This can only happen because of coordination: experts and households sim-
ply believe negative shocks are good news for asset prices, so they rush to purchase
capital, which percolates through equilibrium relationships to justify beliefs about price
increases. Such coordination stands in contrast to the normal equilibrium, in which
negative shocks beget fire sales that push down asset prices.

Mathematically, we need only solve a slightly different capital price ODE. Whereas
ODE (E.6) holds in the normal equilibrium, the hedging equilibrium requires

(ρ̄q− ηae − (1− η)ah)
q′

q
= ae − ah + σ

√
q

ρ̄q− ηae − (1− η)ah
η(1− η)

, on η ∈ (0, η∗). (E.9)

The difference between (E.9) and (E.6) is merely the sign in front of σ + σ, which en-
sures different signs for σq. Finally, note that just like the normal equilibria, hedging

45For a conjecture of this specific type of indeterminacy, see footnote 16 of Kiyotaki and Moore (1997).
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equilibria could exist for κ0 6= 0. Figure E.2 compares a normal equilibrium to a hedging
equilibrium.

Figure E.2: Two equilibria (normal versus hedging) both with disaster belief κ0 = 0.1. Parameters: ρe =
ρh = 0.05, ae = 0.11, ah = 0.03, σ = 0.025. OLG parameters: ν = 0.1 and δ = 0.04.
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