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Abstract

This paper provides several estimates for the shadow rate (SR) of the short-term interest rate in US. We 

assume maximal models with two and three Gaussian factors, and we use forward rates to estimate the 

parameters of the models. Based on that we conclude that point estimates of SR should be taken with 

caution as they depend on the characteristics of the dataset, in terms of the sample-size, maturities, and 

smoothness. The latter is even more crucial than other settings discussed previously in the literature, such 

as the number of factors.

Resumen

Este documento proporciona varias estimaciones de la tasa sombra de la tasa de interés a corto plazo en Estados 

Unidos. Usamos modelos máximos con dos y tres factores Gaussianos y utilizamos tasas forward para estimar 

los parámetros de los modelos. Sobre esta base, llegamos a la conclusión de que las estimaciones puntuales de la 

tasa sombra deben tomarse con cautela, ya que dependen de las caracteŕısticas del conjunto de datos, en términos 

del tamaño de la muestra, los vencimientos y la uniformidad del rango de tasas forward que se utilicen. Este 

último es incluso más crucial que otros elementos discutidos previamente en la literatura, como el número de 

factores.



I Introduction

There is an extensive literature on the estimate of the yield curve based on dynamic factors

and non-arbitrage opportunities. Singleton (2009) proposes a framework that has three key

ingredients: (i) a relationship between short-term interest rate and the dynamic factors, (ii)

a dynamic specification of the factors under the physical measure (P ), and (iii) a dynamic

specification of the factors under the risk-neutral measure (Q). Given a time-series of a set of

yields, several procedures can be apply to recover the parameters of the model. In particular,

when all relationships (i), (ii) and (iii) are linear and disturbances are Gaussian, then the

standard Kalman Filter can be applied. In that case, observed yields are related with the

factors in the measurement equation, using the parameters of the Q-measure; meanwhile the

dynamic of the factors is characterized by the transition equation, using the parameters of the

P -measure. In the last decade, simple procedures have been proposed, exploiting both the

linearity of relationships (i), (ii), and (iii) the normality assumption. For instance, Diebold

& Li (2006) adapt the popular Nelson & Siegel (1987) model to a dynamic version (DNS)

which allow them to relate yields with factors. In order to solve the model, they propose a

two-step approach: first, they extract factors using calibrated parameters of the Q-measure,

and second they estimate the parameters of the P -measure by fitting a VAR on the extracted

factors. Hamilton & Wu (2012) propose to run both a VAR model and a linear regression,

when the latter involves an extra yield that has measurement error, that assumption was

introduced in the literature of yield curve estimation by Chen & Scott (1993). Parameters of

the model can be obtained from empirical ones (VAR and OLS) by using minimum-distance

procedure. Finally, Adrian et al. (2013) propose a 3-step linear regressions approach, starting

with a VAR of the main principal components of large set of yields which provide parameters

of the P -measure, and then moving to pooled regressions of the excess returns, which impose

non-arbitrage conditions. Based on the latter they identify the parameters of the Q-measure.

It is important to stress that a limited number of parameters can be identified, this means that

some restrictions should be imposed in system of equations (i), (ii), and (iii). Different sets of

restrictions identify the same number of parameters; these sets are known as normalizations.

In this paper we use the normalization proposed by Giglio & Kelly (2018), which allow us

to identify all possible parameters (maximal model) in both 2 and 3 factor models. Further,

this normalization affects only equations (i) and (iii), providing simple formulas for pricing

(Q-measure). Although previous procedures are simple to implement, they do not impose
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the non-negative restriction on the short-term interest rate. This restriction was relevant

during the global financial crisis, in which several central banks reduced their monetary policy

rates significantly, putting those close to zero. In the case of the current Covid crisis, that

restriction is again relevant implying that a yield curve model should consider such restriction.

In that respect, Krippner (2012) proposes a very simple adjustment to include explicitly this

restriction under the normality assumption. This implies a closed-form relationship between

forward rate and factors, which is obtained from the truncated normal distribution. Thus,

the model preserve the features (i)-(iii) but controls for the fact that short-term interest rate

cannot be below of a given threshold, which it is generalized as Effective Lower Bound (ELB).

Christensen & Rudebusch (2015) introduce this constraint into the DNS model and use of

the Extended Kalman Filter (EKF) for solving the model, because the truncation introduces

a non-linearity in the measurement equation. Another use of EKF on this context (ELB

constraint) is proposed in Wu & Xia (2016); however, in that case, authors use forward rates

instead of yields. Krippner (2015) provides a comprehensive revision of models and methods

that include the ELB constraint. In particular, the authors suggests the use of iterated EKF

(IEKF), but there is not theoretical support for using IEKF instead of EKF. In this paper, we

estimate 2 and 3 Gaussian-factors yield curves models with the ELB constraint using forward

rates, and applying both EKF and IEKF. In that sense, we extend the analysis developed in

Wu & Xia (2016). Our discussions will be focused on the so-called Shadow-Rate (SR), which is

the unconstrained short-term interest rate.

Many empirical papers (Adrian et al., 2013; Wu & Xia, 2016) rely on smoothed yields to

estimate yield-curves. Smoothed yields are generated from actual transactions, but coupon

and other effects are removed, also they are interpolated across maturities. Two key datasets

of smoothed yields for US are GSW (Gürkaynak et al., 2007) and LW (Liu & Wu, 2020). Both

datasets (GSW and LW) are based on raw data provided by CRSP.1 GSW and LW datasets

are similar in excluding: (i) securities with special-features (eg., callable, flower bonds), and (ii)

instruments recently issued. In both cases, the goal is to avoid any possible liquidity premium.

However, GSW and LW datasets have some differences: (i) the GSW uses a parametric method

to summarize daily yield curves, meanwhile the LW uses a non-parametric kernel smoothing,

and (ii) the GSW excludes Treasury bills (short-term securities), meanwhile the LW includes
1This center is associated to the business school of University of Chicago and it collects financial data from

the 60s. It started with the need of the vice president of Merry Lynch to illustrate portfolio performance to his
clients.
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those. Liu & Wu (2020) provide significant evidence that these differences, along with others

related with outlier extraction matter. Indeed, they show that conclusions change if LW dataset

is used instead of GSW dataset when authors replicated the results reported in Cochrane &

Piazzesi (2005) and Giglio & Kelly (2018). In this paper, we use both datasets, considering

monthly frequency from January 1990 to December 2019 as a benchmark, and we also use a

sample that includes 2020.2 This allows us to extend the results presented in Liu & Wu (2020)

by providing an additional case: the SR derived in Wu & Xia (2016) using the LW dataset.

Several papers have documented in the literature that the SR is sensitive to the specification of

the model. For instance, Christensen & Rudebusch (2015, 2016), Bauer & Rudebusch (2016),

and Krippner (2013) show that the SR can be very sensitive to the number of factors included

in the estimation. In that sense, Krippner (2015) shows that, in general, models with two

factors used to produce more negative SR than models with three factors. Furthermore, Bauer

& Rudebusch (2016) and Christensen & Rudebusch (2015), show the sensitivity of the SR to

the ELB. However, Wu & Xia (2016) estimated the SR with the lower bound as a parameter

to be estimated and found a small difference in relation to the case in which the lower limit

is chosen. In addition, Krippner (2013) shows the sensitivity of the SR to the estimation

method, comparing the EKF with the IEKF. Suggests that results obtained using the EKF

may depend on whether the initialization parameters in the algorithm estimation are close to

the global optimal parameters, for what he proposes to use the IEKF instead. Also he shows

that SR is sensitive to the maturity span and observed that using longer maturities can deliver

more negative estimates than using shorter maturities. Thus, with this paper we provide

some insights on this by showing the sensitivity of the SR to different sets of maturities, set

of forward rates, yields datasets, normalization, number of factors and estimation procedure

(EKF and IEKF). Based on these exercises, that we described below our main conclusion is

that input data matters. In particular, the estimation of the SR using the LW dataset seems

to be more robust, to a number of changes in the specification of the model, than the ones

obtained by using GSW dataset.

Our first exercise, an update of Wu & Xia’s (2016) paper, implies some changes in the

parameters of the model. In order to assess the relevance of these changes, we discuss how

the SR is affected. In particular, the update provides a different assessment of the monetary

policy stance at the end of the original sample. A second exercise provides evidence about
2Special thanks to Cynthia Wu for updating LW dataset, that allow us to compare with GSW one during

2020.
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relevance of the input dataset for assessing the dynamic of the SR. Indeed, using GSW dataset

–used in the original paper— the SR fallen up -1.5% at the end of 2011 and remained around

there for two years, then a new reduction is observed getting a second minimum (-4%) in May

2014. Using the LW dataset the SR fallen very rapidly up to -4.5% at the beginning of 2014,

exhibiting a V-shape dynamic. This difference is explained by the dynamics of the longest

forward rates. We provide robustness exercises of this finding by dropping some forward rates

from the estimation procedure. As it is expected, the SR is highly correlated with the longest

forward rates when the ELB is active. Thus, to get a precise estimate of the SR, we need

proper information about long-term yields. In that respect, we compare the weights of the

EKF obtained from both datasets. We conclude that there is no a substantial change in the

weights between datasets. Although it seems that long-term forward rates in LW dataset

contribute more to the dynamic of the first risk factor during the ELB period relative to the

one in the GSW dataset. Further, estimates based on small samples tend to exhibit SR’s closer

to the ELB. A third exercise consider the sensitivity to the number of factors. We found that

previous discussion about discrepancies between 2 and 3 factor models are well-supported when

the GSW dataset is used. Indeed, the SR’s obtained in these cases provide difference on the

monetary policy instance in both: size and timing. However, discrepancies reduce significantly

when the LW dataset is used instead. A fourth exercise shows the sensitivity of the SR to the

estimation method. We estimate the model with 2 and 3 factors using the IEKF method and

we found that the parameters obtained are very similiar to those obtained with EKF procedure

while the results are more sensitive to the estimation procedure when GSW dataset is used

and 3 factors are considered, while the SR obtained using LW dataset shows robustness to

the estimation method using 2 or 3 factors. Finally, an update of the SR during pandemic

period (2020) is provided. In that particular case, both datasets tend to agree about the size

and timing of SR, although the estimates with the LW data tend to fall faster towards the end

of 2020, similarly to what was observed during 2009.

The paper is organized as follow. Section II provides a brief description of the models and the

estimation procedures. Section III presents empirical results, and Section IV concludes.

4



II Theoretical Setting

In this section, we summarize the key components of the Dynamic Term Structure Models

(DTSM) covering notation and relevant results. For simplicity interest rates are defined in

continuously compounded terms (rt), thus having the gross return (1 + Rt), then we have:

rt = log(1 +Rt).

1. Key Components of DTSM

As it is standard in the literature, we assume that the short-term interest rate (rt) is linear in

some dynamic factors (Xt): rt = δ0 + δ
′
1Xt. Dynamics of factors are characterized under the

physical measure (P ) by a vector autoregressive model (VAR) of order one: Xt = µ+ ΦXt−1 +

ΣUt. It is important to note that P -measure is the one obtained from the time-series of yields,

without imposing any non-arbitrage restriction. Further, we extract factors from observed

yields, without making any assumption regarding the economic interpretation. Usually, three

factors are enough to explain the variance of yields, and they are commonly named as level,

slope, and curvature. Diebold & Rudebusch (2013) discuss the economic interpretation of these

factors relating inflation with the level, the stage of the business cycle with the slope, and

third factor with a statistical element relevant for improving the fit of the data. Finally, to

prevent from arbitrage opportunities the P -measure should be adjusted to build a new measure:

risk-neutral one or Q-measure. That implies that under this new measure, the dynamic of

the factors is: Xt = µ∗ + Φ∗ Xt−1 + ΣVt. It is important to note that under P -measure each

component of Ut is distributed Gaussian with zero-mean and unit-variance; meanwhile under

Q-measure each component of Vt has these properties.

2. Normalization of Gaussian DTSM

The model above has more parameters that the ones that can be identified with the data.

Indeed, for the case of three factors, there are 34 parameters but only 22 can be identified

(Dai & Singleton, 2000).3 Table 1 summarizes the possible number of parameters of each

object (column 2), and the size of constrained objects (columns 3 to 10). Dai & Singleton
3Normalization is not relevant from the results of the shadow-rate, but it is important for comparing results

across different studies. The choice of a given normalization is beyond the purpose of this paper and it can be
justified from a computational point of view.
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(2000), Singleton (2009) and Hamilton & Wu (2012) offer different normalization for these 22

parameters; reported in columns DS, S, and HW, respectively. It should be noted that some

authors prefer to constrain the matrix Φ to be lower triangular rather than matrix Φ∗ or to set

vector µ to be zero rather than vector µ∗. In these settings, vector δ1 should be estimated which

implies that matrix Σ does not have any free parameter, meaning it is the identity matrix.

Other authors use alternative normalizations of the model, as Giglio & Kelly (2018), Wu & Xia

(2016), Diebold & Rudebusch (2013), Christensen et al. (2010) and Christensen & Rudebusch

(2012); reported in columns GK, DR, WX, CLR, and CR, respectively. In these cases, the

vector δ1 is fixed to (1,1,0)’ (or (1,1,1)’ for GK) at the cost of having free-parameters in the

matrix Σ. Giglio & Kelly (2018) impose that matrix Φ∗ is diagonal, meanwhile Wu & Xia

(2016) impose real eigenvalues with a pair repeated in that matrix. Authors claim that repeated

eigenvalues are consistent with the empirical data (1999-2013). A similar constraint is imposed

in Nelson & Siegel (1987), when authors consider that deterministic forward interest rate is the

solution of a second order differential equation with equal roots.4 Diebold & Rudebusch (2013)

consider a Dynamic version of Nelson-Siegel (DNS), which imply to add more restrictions to the

model: (i) unit root in one of the factor under Q-measure, affecting matrix Φ∗, and (ii) δ0 = 0

for the short-term interest rate. Christensen et al. (2010) and Christensen & Rudebusch (2012)

impose a diagonal Σ matrix in addition to the DNS structure, leaving some free parameter in

vector µ∗. Christensen & Rudebusch (2012) also add restrictions on the P -measure to improve

forecasting-ability: (i) unit root in one of the factors, affecting matrix Φ (ii) zero mean of the

same factor, affecting vector µ, and (iii) further zeros in off-diagonal elements of matrix Φ.

In this paper, we consider the GK normalization, but allowing that δ0 6= 0. Thus, estimates of

the parameters can be used directly into the pricing formula (Q-measure).5

3. Short-term and forward rates

Given that the DTSM is linear in the factor, the conditional mean of the m–periods ahead

short-term interest rate is αm,t := E∗t (rt+m). For the case of GK normalization, we have
4Nelson & Siegel (1987) propose a deterministic forward interest rate and they use the log pure expectation

hypothesis to derive zero coupon interest rates. Thus, the model does not have a Jensen term, which is obtained
when an affine model is applied. Alfaro (2011) discusses this element in the context of a discrete-time version
of the model.

5Diebold & Rudebusch (2013) propose a two-step procedure as an alternative to Kalman filter. In that
case, the parameters of the measurement equation, which are under Q-measure, are calibrated and estimates of
dynamic factors are obtained from that.
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Table 1: Parameter Normalizations

DS S HW GK WX DR CLR CR
δ0 1 1 1 1 0 1 0 0 0
δ1 3 3 3 3 0 0 0 0 0
µ 3 0 3 0 3 3 3 3 2
Φ 9 6 9 9 9 9 9 9 4
µ∗ 3 3 0 3 0 0 0 0 3
Φ∗ 9 9 6 6 3 2 1 1 1
Σ 6 0 0 0 6 6 6 3 3

34 22 22 22 21 21 19 16 13

µ∗ = 0 then αm,t = δ0 + (1, 1, 1)Φm
∗ Xt. In this paper we consider the forward rate between

periods t + m and t + m + 1, which it can be expressed as a weighted difference of yields:

fm,t = (m+ 1)ym+1,t−mym,t. Without any boundary restriction we have: fm,t = αm,t− 0.5Jm,

where Jm is the Jensen term. In the GK normalization that term is δ′1KmΩK ′mδ1 where

δ1 = (1, 1, 1)′, Ω = ΣΣ′, and Km = (I − Φ∗)−1(I − Φm
∗ ) a diagonal matrix. Further, the

conditional variance of the m-periods ahead short-term interest rate is time-invariant due

to Gaussian errors: σ2
m = V ar∗t (rt+m) = δ′1V ar

∗
t (Xt+m)δ1, then ee have: vec[V ar∗t (Xt+m)] =

(I − Γ)−1(I − Γm)vec[Ω], where Γ = Φ∗ ⊗ Φ∗.

As Wu & Xia (2016) we consider a restriction on the short-term interest rate: r̃t = max{rt, r},

with r be the Effectively Lower Bound (ELB). Based on the properties of truncated normal

distribution, then the conditional mean of the m–periods ahead constrained short-term interest

rate is (Krippner, 2012):

E∗t (r̃t+m) = r + σm

[(
αm,t − r
σm

)
N

(
αm,t − r
σm

)
+ n

(
αm,t − r
σm

)]
(1)

where N and n are –respectively— cumulative distribution function and density function of

the standard normal distribution. Wu & Xia (2016) show that the expression in brackets is

almost zero for values below -2, and similar to identity for values above 2. For simplicity they

define g(x) = xN (x) + n(x), with that

E∗t (r̃t+m) = r + σmg
(
αm,t − r
σm

)
. (2)

Thus, the constrained short-term interest rate (1) is completely determined by the first two
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moments of the unconstrained short-term interest rate.6 In practice, when the short-term

interest rate hit the ELB, we observe r̃t = r which is implicit in the yields and forward rates,

thus rt is the shadow rate (SR). As it is expected, forward rates will be non-linear expressions

of the dynamic factors and the yields will be also complex expressions. Under this setting, the

forward rate is proportional to the expected m–periods ahead constrained short-term interest

rate; however, Jensen terms should be considered as well. Wu & Xia (2016) propose a Taylor

approximation of these terms, deriving the following relationship:7

fm,t = r + σmg
(
αm,t − Jm − r

σm

)
(3)

4. Estimation Procedures

We have: (i) a linear transition equation, for which we assume that factors are characterized

by a VAR(1) model, and (ii) a non-linear measurement equation (3); that motivates the use of

the Extended Kalman Filter (EKF) and the iterated EKF (IEKF)8. The EKF is an extension

of the Kalman filter that linearizes the non-linear function g(·) around the estimate of the

state variable whenever the Kalman filter is updated. While the IEKF maintains the same

idea, but instead iterates over the measurement equation until it finds a fixed point before the

time update step. Bell & Cathey (1993) show that both the EKF and IEKF are applications

of the Gauss-Newton algorithm on the measurement update step, but EKF includes only one

iteration.

We use both filters, for a set of one-month forward rates and we add a measurement error with

equal variance for all forward rates. In general we use 7 rates, but we analyze the cases where

the longest forward rate is excluded from the sample. We consider 2 and 3 factors, in both

cases using the maximal models; however, in some of the estimations we fix one of the element

of the diagonal of Φ∗ to be one given that these elements tend to be very close to that number.

Finally, we fix the ELB to be 0.25%, following previous papers.

6It is important to stress that under Gaussian disturbances, the constrained short-term interest rate is
normally distributed, but truncated at the ELB. Thus, the first two moments are sufficient to characterize the
entire distribution.

7In the empirical exercises, an extra measurement error term is considered to account for the errors due to
the linear approximation. The size of the variance of measurement error depends on the data that we use.

8Christensen & Rudebusch (2015) provide evidence on the adequacy of EKF for estimating this model,
meanwhile Krippner (2015) suggests the use of IEKF.
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III Empirical Application

In this section, we report the results of estimating a 2 and 3 Gaussian-factors yield-curve

with the ELB constraint using forward rates. We concentrate our discussion on the GK

normalization, and estimating the model under different: (i) datasets of yields (GSW and LW),

(ii) set of forward rates, and (iii) time-periods.

1. Descriptive Statistics

Table 2 and 3 show descriptive statistics of forward rates obtained from GSW and LW datasets.9

We can observe that the shorter forward rates (3m, 6m, 12m and 24m) present fewer differences

in their mean between databases, while the longer rates present greater differences. This is

line with the fact that LW dataset includes a broader set of instruments in terms of maturities.

Additionally, we can note that the longer forward rates from the LW database (84m and 120m)

have higher volatilities than those obtained with the GSW data. This fact is important, since

as we will see later, long forward rates have more impact on the SR than short/medium forward

rates during the ELB.

Table 2: GSW forward rates descriptives

Forward Rate Mean Std q10 q50 q90 Max Min

3m 2.9725 2.3244 0.1748 2.5491 5.8657 8.4396 0.0155
6m 3.0884 2.3727 0.1828 2.7457 6.1890 8.6220 -0.0044
12m 3.3404 2.3791 0.3052 3.1715 6.3861 8.9010 0.0997
24m 3.8209 2.2622 1.0547 3.8008 6.7702 9.0372 0.3424
60m 4.9084 1.9594 2.2606 4.7171 7.8318 9.0644 1.4466
84m 5.3469 1.8906 2.7526 5.3464 8.1088 9.3244 1.6095
120m 5.6771 1.8442 2.9934 5.7959 8.2848 9.4602 1.8380

Table 3: LW forward rates descriptives

Forward Rate Mean Std q10 q50 q90 Max Min

3m 2.9217 2.2992 0.1315 2.4957 5.7506 8.3958 0.0504
6m 3.1099 2.3292 0.2281 2.7261 6.1479 8.6717 0.1165
12m 3.3706 2.3813 0.3910 3.0329 6.4141 9.0701 0.2231
24m 3.7919 2.2660 0.9238 3.7988 6.7714 8.8308 0.2908
60m 4.8445 1.9400 2.2970 4.7393 7.7948 9.0956 1.4632
84m 5.2252 1.9090 2.6142 5.3254 7.9230 9.1987 1.4789
120m 5.7847 1.9029 2.9470 6.1196 8.4352 10.0284 1.8272

Data in percentage points.

9Forward rates are shown in Figure 8 in Appendix A.
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2. Benchmark Results with EKF and IEKF

Table 4 shows the results of replication of Wu & Xia’s (2016) paper using the same dataset

(GSW). In particular, the first 3-columns (Panel A: ‘Original Sample’) are results for considering

the same normalization and the same sample period, which is January 1990 to December 2013.

The next 3-columns (Panel B: ‘Update to 2019’) show results based on extended sample period

to December 2019. In order to compare both results, we focus on the eigenvalues of matrices

Φ∗ and Φ, having the following result: adding 6 years to the estimation implies small changes

in matrix Φ∗, which implies almost no change in the pricing of bonds; however, there are

significant changes in matrix Φ, which involves an increase in the persistence of yields. Further,

the last 3-columns (Panel C: ‘GK normalization’) use the GK normalization, which does not

impose equal-roots on Φ∗. Table 5 is similar to Table 4 but using the LW dataset instead of

the GSW. Again, extending the sample period does not affect the eigenvalues of matrix Φ∗,

but the ones of matrix Φ. In contrast to previous table, it is unclear if there is an increase

in the persistence of yields. As in the case of the GSW dataset, the use of GK normalization

increases the log likelihood and improves information criteria. Similar results are obtained

when the estimation is carried out through IEKF (Appendix B). The parameters obtained by

IEKF show small changes in relation to those obtained by EKF, however, the eigenvalues tend

to be slightly higher under IEKF (Table 7). As we discussed early, yields in the GSW dataset

are very smooth due to a parametric estimation of the entire yield curve10. In contrast, yields

in the LW dataset are generated by local approximation using kernels; therefore, yields are

less smooth. That is reflected in the estimation of volatility of the measurement error (
√
ω),

which also accounts for the approximation error of forward rates. In the case of the GSW

dataset, this volatility is around 10% meanwhile for the LW dataset is 20%. Also variances of

the factors are also higher in LW than GSW dataset. Finally, a two-factor model is estimated.

Table 6 shows the results of the estimation of that model using the GK normalization and

also considering the case of unit root in Φ∗ matrix. The four left columns of the table show

the results using the dataset GSW, meanwhile in the four right columns the results with the

LW dataset are reported. The parameters are very similar, with the variance of the error

(
√
ω) being the exception. Now, these number suggest a measurement error of 20% and 30%,

respectively. These results are quite similar obtained under the IEKF estimate (Appendix B).

10For each day, a Svensson (1994)’s model is fitted (Gürkaynak et al., 2007).
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Table 4: Replication of Wu and Xia (2016) using GSW dataset

Parameters A. Original Sample B. Update to 2019 C. GK normalization

µP -0.3035 -0.2381 0.0253 0.0561 -0.7021 0.0002 -0.3787 0.3506 -1.0152
(0.1889) (0.1814) (0.016) (0.1953) (0.2759) (0.0202) (0.3453) (4.4084) (4.4411)

Φ 0.9638 -0.0026 0.3445 1.0022 0.0205 -0.3926 0.9884 0.0132 0.0125
(0.0199) (0.0183) (0.4821) (0.0076) (0.0065) (0.21) (0.0085) (0.0065) (0.0062)
-0.0226 0.942 1.0152 -0.0271 0.9605 0.9413 -0.0122 1.0816 0.1296
(0.0202) (0.0212) (0.5112) (0.0098) (0.0087) (0.2461) (0.1363) (0.3306) (0.3228)
0.0033 0.0028 0.8868 0.0002 -0.0003 0.9532 -0.0074 -0.1202 0.8368

(0.0018) (0.0019) (0.0384) (0.0008) (0.0009) (0.019) (0.137) (0.3272) (0.3262)

Φ∗ 0.9977 0.9995 0.9997
(0.0003) (0.0001) (0.0001)

0.9502 1 0.9566 1 0.9535
(0.0012) (0.0013) (0.0051)

0.9502 0.9566 0.9594
(0.0012) (0.0013) (0.0045)

1200Σ 0.416 0.2856 0.2796
(0.0393) (0.0236) (0.0221)
-0.3999 0.2445 -0.2858 0.261 0.2719 6.2412
(0.037) (0.0233) (0.0258) (0.0192) (2.6132) (9.8386)
-0.011 0.0033 0.039 0.0025 0.0013 0.0376 -0.5482 -6.2438 0.26

(0.0069) (0.0034) (0.003) (0.0042) (0.0029) (0.0032) (2.6077) (9.8467) (0.0193)

1200
√
ω 0.0893 0.0968 0.0967

(0.0027) (0.0027) (0.0027)

1200δ0 13.3745 29.9475 37.585
(1.0445) (3.9461) (10.3775)

EigenP 0.8452 0.9642 0.9832 0.9662 0.9662 0.9835 0.9632 0.9632 0.9806

EigenQ 0.9502 0.9502 0.9977 0.9566 0.9566 0.9995 0.9535 0.9594 0.9997

Llike 853.0904 978.8732 983.9316

AIC -1662 -1914 -1922

BIC -1663 -1915 -1923

Based on the following forward rates: 3 and 6 months, 1, 2, 5, 7, and 10 years from GSW dataset.
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Table 5: Replication of Wu and Xia (2016) using LW dataset

Parameters A. Original Sample B. Update to 2019 C. GK normalization

µP -0.3558 0.2119 0.0049 0.0284 -0.4125 -0.0055 -0.035 0.9573 -1.3201
(0.2346) (0.2358) (0.0071) (0.2138) (0.2846) (0.0121) (0.2097) (3.8174) (3.9329)

Φ 0.9799 0.0287 0.0283 1.002 0.0171 0.039 0.9997 0.0156 0.0155
(0.0147) (0.0184) (0.8891) (0.0078) (0.0074) (0.5279) (0.0073) (0.0068) (0.0075)
0.0186 0.9807 0.6786 -0.0123 0.9849 0.881 0.0704 1.1585 0.2284

(0.0153) (0.0174) (0.941) (0.0092) (0.0077) (0.6896) (0.1333) (0.1221) (0.1301)
-0.0002 -0.0012 0.9429 -0.0003 -0.0008 0.9308 -0.0807 -0.1741 0.7591
(0.0006) (0.0004) (0.0344) (0.0004) (0.0004) (0.0259) (0.1369) (0.1228) (0.1311)

Φ∗ 0.9954 0.9989 0.9989
(0.0013) (0.0004) (0.0004)

0.9773 1 0.9782 1 0.9763
(0.0044) (0.0031) (0.0024)

0.9773 0.9782 0.9796
(0.0044) (0.0031) (0.004)

1200Σ 0.661 0.3731 0.3671
(0.3373) (0.1008) (0.0992)
-0.6527 0.2868 -0.3818 0.2678 4.2576 6.2528
(0.3514) (0.0202) (0.1124) (0.0161) (2.0298) (4.8094)
-0.0193 0.0035 0.0197 -0.0149 0.0031 0.0204 -4.6338 -6.2858 0.2652
(0.0074) (0.0017) (0.0042) (0.0052) (0.0015) (0.0033) (1.9941) (4.8126) (0.0164)

1200
√
ω 0.2035 0.193 0.193

(0.0079) (0.0067) (0.0067)

1200δ0 13.7203 31.723 32.2547
(1.5091) (8.4217) (9.1268)

EigenP 0.9543 0.9543 0.9949 0.9449 0.9864 0.9864 0.9445 0.9864 0.9864

EigenQ 0.9773 0.9773 0.9954 0.9782 0.9782 0.9989 0.9763 0.9796 0.9989

Llike -281.9286 -212.2064 -207.2112

AIC 608 468 460

BIC 607 467 459

Based on the following forward rates: 3 and 6 months, 1, 2, 5, 7, and 10 years from LW dataset.
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Table 6: GK normalization considering 2 factors

Parameters GK-2F-GSW GK-2FR-GSW GK-2F-LW GK-2FR-LW

µP -0.0396 -0.0949 -0.0078 -0.0693 -0.025 -0.095 -0.0026 -0.0707
(0.0577) (0.0691) (0.0278) (0.0388) (0.0551) (0.0655) (0.028) (0.0356)

Φ 0.9961 0.0053 0.9966 0.0044 0.9986 0.0043 0.9994 0.0042
(0.0071) (0.0068) (0.0066) (0.0055) (0.0064) (0.0062) (0.0061) (0.0052)
-0.0096 0.9932 -0.0121 0.9913 -0.0094 0.9939 -0.0122 0.9918
(0.0081) (0.0064) (0.0085) (0.0061) (0.0066) (0.0055) (0.0073) (0.0056)

Φ∗ 0.9984 1.0 0.9984 1.0
(0.0003) (1.0) (0.0005) (1.0)

0.9744 0.9799 0.9788 0.9841
(0.0012) (0.0008) (0.0021) (0.0012)

1200Σ 0.3226 0.2438 0.2921 0.248
(0.0273) (0.021) (0.0272) (0.0203)
-0.1986 0.3453 -0.2323 0.3109 -0.2114 0.3426 -0.2559 0.31
(0.0456) (0.0218) (0.0399) (0.0169) (0.0465) (0.024) (0.0378) (0.0195)

1200
√
ω 0.1927 0.2099 0.2887 0.2992

(0.0075) (0.0072) (0.013) (0.012)

1200δ0 11.8769 8.2798 12.3599 8.6481
(1.2135) (0.2896) (1.9021) (0.2739)

EigenP 0.9946 0.9946 0.9939 0.9939 0.9962 0.9962 0.9956 0.9956

EigenQ 0.9744 0.9984 0.9799 1.0 0.9788 0.9984 0.9841 1.0

Llike -92.8448 -257.4132 -910.2568 -981.0488

AIC 212 539 1847 1845

BIC 211 538 1846 1985

Based on the following forward rates: 3 and 6 months, 1, 2, 5, 7, and 10 years from GSW and
LW dataset.
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3. Shadow Rates

Figure 1, panel A, shows the SRs using values of Table 4 (GSW dataset). We note that the

update in the estimation implies a further reduction of the SR in about 90 basis points in May

2014, from -3% to -3.9%; however, the use of GK normalization does not produce any further

change with respect to WX normalization. Figure 1, panel B, shows the SRs derived from

Table 5 (LW dataset). In that case, changes regarding the update also imply a similar revision

of the SR in about 90 bp in May 2016, from -4.6% to -3.7%.

Clearly, the use of GK normalization does not affect the results. It is important to stress that

the SR is used to assess the Monetary Policy Instance (MPI). Thus, the update of dataset

(GSW or LW) implies revisions of the estimate of the SR, and magnitudes are relevant for the

purpose of assessing the MPI.

Figure 1: Estimates of Shadow Rates
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(A) Shadow Rates (GSW)

Original Sample
Update to 2019
GK normalization
ELB = 0.25%

1989 1994 1999 2004 2009 2014 2019

5

0

5

10

(B) Shadow Rates (LW)

Note: Estimates of shadow rate using original sample used in Wu & Xia (2016), an
updated version until December 2019, and the normalization used in Giglio & Kelly
(2018). Panel (A) uses GSW database while panel (B) uses LW dataset.

Now we introduce two further changes: (i) different sets of forward rates, and (ii) different

sample size. The benchmark model uses the following forward rates: 3 and 6 months, 1, 2, 5,

7, and 10 years. In Figure 2, we compare the SR of the benchmark model (red line) with an

alternative that considers only five forward rates (blue line): 3 months, 1, 2, 5, and 10 years.
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In the case of the LW dataset, changes are very small; but for the GSW dataset, it shows

some differences regarding the recovery of the SR around 2014. Further, reducing the longest

forward rate (green lines) implies a different dynamic of SR being closer to the ELB. That

is true for both datasets, meaning that the longest forward rate is relevant for assessing the

dynamic of the SR during ELB periods. This is clearly observed in the Kalman filter gains,

which reduce the weight for short-term forward rate (3 months) and increase that for longest

forward rates (5 and 10 years) during the ELB episode.11.

In Figure 3, we compare the SR of the benchmark model (red line), that use 30 years of data,

with samples of 20 years (green line) and 10 years (blue line). All lines include the crisis period

and therefore the ELB episode. In both datasets (GSW and LW) the use of the last 10 years

implies SRs that are close to the ELB. This suggests that the bias of small-sample reduces the

sensitivity of the SR to the movements of the long-term interest rates; however the medium-size

sample (20 years) provides a reasonable performance.

Figure 2: Estimates of Shadow Rates with different sets of forward rates
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(A) Shadow Rates (GSW)

Maturities: 3, 6, 12, 24, 36 months
Maturities: 3, 12, 24, 36, 84 months
Maturities: 3, 12, 24, 60, 120 months
Maturities: 3, 6, 12, 24, 60, 84, 120 months
ELB = 0.25%

1989 1994 1999 2004 2009 2014 2019

5

0

5

10

(B) Shadow Rates (LW)

Note: Estimates of shadow rate using different sets of forward rates. Panel (A) uses
GSW database while panel (B) uses LW dataset.

11See Appendix C for selected weights obtained from EKF.
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Figure 3: Estimates of Shadow Rates with different sample sizes
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Sample size: 1990-2019
ELB = 0.25%
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(B) Shadow Rates (LW)

Note: Estimates of shadow rate using different sample sizes. Panel (A) uses GSW
database while panel (B) uses LW dataset.

Figure 4 shows the estimates of the SR using 3 and 2 factors. As before, the red line represents

the 3 factors case, and the blue line represents the 2 factors case. We observe that the 2 factor

SR is largely negative relative to the 3 factor SR when we use GSW dataset. In contrast, the

use of LW dataset provides small differences, although in both cases the drop is sharper in the

estimate with 2 factors. It should be noted that literature suggests relevant differences in SR

between the 3 and 2 factor models (Krippner, 2013; Christensen & Rudebusch, 2015). That is

consistent with the GSW dataset, but not with LW.
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Figure 4: Estimates of Shadow Rates with 3 and 2 factors
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(B) Shadow Rates (LW)

Note: Estimates of shadow rate considering 3 and 2 factors. Panel (A) uses GSW
database while panel (B) uses LW dataset.

Now we consider the results for the SR obtained by IEKF method. It can be seen in Figure

5 that some difference between EKF and IEKF appears when the GSW dataset; however,

these differences are not obtained in the case of the LW database. It should be noted that

the differences between GSW and LW are reduced under the estimation with IEKF. On the

other hand, estimating the 2-factor model with IEKF, we can observe in Figure 6 that the

SR results are similar to those obtained under EKF. In this sense, a lower sensitivity of the

model with 2 factors to the estimation method is observed in relation to the case in which we

consider 3 factors; however there the difference between datasets remains.
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Figure 5: Estimates of Shadow Rates with IEKF
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GK normalization (EKF)
GK normalization (IEKF)
ELB = 0.25%

Note: GK normalization shadow rate estimates with IEKF and EKF. Panel (A) uses
a GSW data and panel (B) uses LW data.

Figure 6: Estimates of Shadow Rates considering 2 factors and IEKF
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(B) Shadow Rates (LW)

Note: SR estimates correspond to those shown in Figure 4, but using the IEKF
method.
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Below we provide an update for SR during 2020. Figure 7 shows the update for 2020 of

the estimates with 3 factors and GK normalization. It shows us that the SR does not suffer

important changes with the re-estimation of the model with the additional observations and

that the SRs tend to agree about the size and timing between estimates considering different

datasets. However, the SR obtained with the LW dataset shows a faster drop than that

obtained with GSW.

Figure 7: Estimates of Shadow Rates 2020
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Note: Estimates of shadow rate considering 3 and GK normalization. Panel (A) uses
GSW database while panel (B) uses LW dataset.
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IV Conclusions

There is an increasing interest for assessing the monetary policy stance when the short-term

interest rate is at the effective lower bound. Under a standard Gaussian model, the shadow

rate (SR) could be obtained as a closed-form expression. That allows us to relate the yield

curve model to the forward rates and with that to estimate the model by implementing the

Extended Kalman filter (EKF) or the Iterated EKF.

In this paper we extend the results in Wu & Xia (2016) by considering a different dataset and

by changing the coverage of these datasets, in terms of sample size and maturities. Based on

that we offer several estimates of the SR, which suggests that figures should be taken with

caution. In particular, having a proper coverage of maturities it seems key for identifying

the SR from the long-term interest rates. That is confirmed by the use of the Kalman filter

weights, which are zero for short-term forward rate (3 months) during the ELB episode, but

significantly higher for longest forward rates (5 and 10 years).

The results emphasize the importance of dataset in the estimation of the SR. In this sense,

the SR estimates using 2 and 3 factors show that the number of factors could significantly

change the SR estimates as we observed in the case of the GSW database as opposed to the

LW database. Additionally, when we change the estimation method, we obtain that the SRs

show a certain sensitivity, particularly in the case in which 3 factors and the GSW data are

considered. Finally, we also show that updating the parameters towards 2020 barely modified

the results obtained initially, although the SR estimated with LW dataset falls faster towards

the end of 2020 compared to GSW, similar to what was observed in 2009. These results suggest

that the LW dataset seems to be more appropiate for the estimation of the SR in US.
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A Forward Rates

Figure 8: US Forward Rates
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Note: Panel (A) uses Gürkaynak et al. (2007) (GSW) dataset while panel (B) uses Liu & Wu (2020)
(LW) dataset.



B Iterated EKF

Table 7: Replication of Wu and Xia (2016) using GSW dataset and IEKF method

Parameters A. Original Sample B. Update to 2019 C. GK normalization

µP -0.2343 -0.1729 0.0205 0.1229 -0.6272 -0.0058 -0.3685 0.3567 -1.0092
(0.1872) (0.1949) (0.0152) (0.2037) (0.282) (0.0197) (0.5704) (7.0202) (6.7876)

Φ 0.9724 0.0031 0.4096 1.0048 0.0175 -0.1076 0.9889 0.0127 0.0125
(0.0201) (0.0197) (0.5294) (0.0078) (0.0067) (0.2279) (0.0144) (0.0072) (0.0068)
-0.0147 0.9432 1.0558 -0.024 0.9629 1.0932 -0.012 1.0986 0.1123
(0.0218) (0.0224) (0.5613) (0.0091) (0.0084) (0.2659) (0.3613) (1.786) (1.7228)
0.0029 0.002 0.9417 -0.0001 0.0 0.9829 -0.0072 -0.1349 0.8574

(0.0017) (0.0019) (0.0424) (0.0008) (0.0008) (0.0213) (0.3604) (1.7627) (1.7429)

Φ∗ 0.9977 0.9995 0.9997
(0.0003) (0.0001) (0.0002)

0.9497 1 0.9561 1 0.9529
(0.0013) (0.0014) (0.0248)

0.9497 0.9561 0.9589
(0.0013) (0.0014) (0.0191)

1200Σ 0.4122 0.2804 0.2763
(0.0373) (0.0223) (0.0201)
-0.402 0.2386 -0.2833 0.2459 0.2744 6.2355

(0.0347) (0.0224) (0.0237) (0.0199) (10.0792) (46.0496)
-0.0093 0.0037 0.04 0.0031 0.0033 0.0375 -0.5418 -6.2502 0.2466
(0.0069) (0.0035) (0.0034) (0.0042) (0.003) (0.0034) (10.0437) (46.0649) (0.0216)

1200
√
ω 0.0893 0.097 0.0969

(0.0027) (0.0028) (0.0026)

1200δ0 13.3824 29.9529 37.5851
(0.9725) (5.3694) (15.4969)

EigenP 0.8891 0.9618 1.0064 0.9701 0.9903 0.9903 0.978 0.978 0.9888

EigenQ 0.9497 0.9497 0.9977 0.9561 0.9561 0.9995 0.9529 0.9589 0.9997

Llike 859.8567 988.6244 988.314

AIC -1676 -1933 -1931

BIC -1677 -1934 -1932

Based on the following forward rates: 3 and 6 months, 1, 2, 5, 7, and 10 years from GSW dataset.



Table 8: Replication of Wu and Xia (2016) using LW dataset and IEKF method

Parameters A. Original Sample B. Update to 2019 C. GK normalization

µP -0.2926 0.118 0.0037 0.0329 -0.4084 -0.0041 -0.0009 0.9754 -1.3029
(0.1926) (0.2079) (0.0086) (0.2041) (0.2804) (0.0126) (0.2075) (4.5599) (4.6786)

Φ 0.9796 0.022 -0.2851 1.002 0.0147 0.0429 1.0005 0.016 0.0157
(0.0118) (0.0112) (0.7438) (0.0074) (0.0065) (0.5209) (0.0073) (0.0068) (0.0075)
0.0171 0.9904 1.2547 -0.0119 0.9906 0.8888 0.0516 1.1562 0.2089

(0.0141) (0.0108) (0.8602) (0.0087) (0.0073) (0.7698) (0.1755) (0.3472) (0.3512)
0.0001 -0.0008 0.9677 -0.0002 -0.0005 0.9426 -0.0602 -0.1689 0.7823

(0.0006) (0.0005) (0.0361) (0.0004) (0.0004) (0.0283) (0.18) (0.3475) (0.3569)

Φ∗ 0.9966 0.999 0.999
(0.001) (0.0004) (0.0005)

0.976 1 0.9774 1 0.9757
(0.004) (0.0031) (0.0046)

0.976 0.9774 0.9791
(0.004) (0.0031) (0.0028)

1200Σ 0.5033 0.3573 0.3598
(0.1663) (0.0895) (0.0936)
-0.4997 0.2809 -0.3678 0.2625 4.2567 6.256
(0.1809) (0.0186) (0.1024) (0.0151) (6.7329) (7.2653)
-0.0162 0.004 0.0216 -0.0147 0.0033 0.0216 -4.629 -6.2882 0.2601
(0.0061) (0.0019) (0.0039) (0.0055) (0.0017) (0.0035) (6.7953) (7.2683) (0.0151)

1200
√
ω 0.2016 0.1915 0.1916

(0.0077) (0.0065) (0.0065)

1200δ0 15.4037 31.7228 32.2534
(2.5805) (8.8908) (11.0656)

EigenP 0.9717 0.9717 0.9943 0.9518 0.9917 0.9917 0.9766 0.9766 0.9859

EigenQ 0.976 0.976 0.9966 0.9774 0.9774 0.999 0.9757 0.9791 0.999

Llike -273.6257 -204.7656 -200.1389

AIC 591 454 446

BIC 590 452 445

Based on the following forward rates: 3 and 6 months, 1, 2, 5, 7, and 10 years from LW dataset.



Table 9: GK normalization considering 2 factors and IEKF method

Parameters GK-2F-GSW GK-2FR-GSW GK-2F-LW GK-2FR-LW

µP -0.0313 -0.0894 -0.0064 -0.0562 -0.0243 -0.0957 -0.0016 -0.0695
(0.0605) (0.0725) (0.0276) (0.036) (0.0547) (0.0645) (0.0278) (0.0366)

Φ 0.9975 0.0058 0.9974 0.0048 0.9989 0.004 1.0002 0.0043
(0.0071) (0.0064) (0.0066) (0.0053) (0.0064) (0.0061) (0.0061) (0.0051)
-0.0093 0.9964 -0.0108 0.9941 -0.0103 0.995 -0.0135 0.9925
(0.0077) (0.0061) (0.0084) (0.0058) (0.0064) (0.0056) (0.0072) (0.0056)

Φ∗ 0.9985 1.0 0.9984 1.0
(0.0003) (1.0) (0.0005) (1.0)

0.9735 0.9794 0.9784 0.9838
(0.0012) (0.0007) (0.002) (0.0011)

1200Σ 0.3195 0.2408 0.2915 0.2475
(0.0279) (0.0218) (0.0269) (0.0206)
-0.1882 0.3642 -0.231 0.3159 -0.2094 0.3633 -0.2606 0.3236
(0.0518) (0.0324) (0.0473) (0.0205) (0.0477) (0.0308) (0.0398) (0.0242)

1200
√
ω 0.1889 0.2071 0.2857 0.2967

(0.0067) (0.0068) (0.0123) (0.0114)

1200δ0 12.5671 8.28 12.36 8.6481
(1.4242) (0.1415) (1.7467) (0.3174)

EigenP 0.9969 0.9969 0.9958 0.9958 0.997 0.997 0.9963 0.9963

EigenQ 0.9735 0.9985 0.9794 1.0 0.9784 0.9984 0.9838 1.0

Llike -66.3909 -239.1603 -899.2345 -972.0595

AIC 159 502 1824 1822

BIC 158 502 1824 1967

Based on the following forward rates: 3 and 6 months, 1, 2, 5, 7, and 10 years from GSW and
LW dataset.



C Kalman Filter Weights

Figure 9: Weights of forward rates with 3 factors

(A) GSW Dataset

1990 2000 2010 2020
10

5

0

5

10

15

3m
Factor 1 *10
Factor 2
Factor 3

1990 2000 2010 2020
10

5

0

5

10

15

6m
Factor 1 *10
Factor 2
Factor 3

1990 2000 2010 2020

20

0

20

40

5y
Factor 1 *10
Factor 2
Factor 3

1990 2000 2010 2020

20

10

0

10

20

30

10y
Factor 1 *10
Factor 2
Factor 3

(B) LW Dataset
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Note: Kalman weights for each factor and maturity indicate the relevance of each component of
each forward rate over time. Panel (A) uses GSW database while panel (B) uses LW dataset.
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