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Resumen
Este documento desarrolla las propiedades asintóticas y de muestras pequeñas del Método Eficiente
de Momentos (EMM) y del Método de Inferencia Indirecta (II), al ser aplicados para estimar
modelos ARMA estacionarios. También se discuten resultados respecto a identificación, selección
de modelos e inferencia. Las propiedades de estos estimadores son comparadas con las de Máxima
Verosimilitud (ML) mediante experimentos de Monte Carlo diseñados para procesos ARMA
invertibles y no invertibles. �����

Abstract
This paper presents the asymptotic and finite sample properties of the Efficient Method of
Moments (EMM) and Indirect Inference (II), when applied to estimating stationary ARMA models.
Issues such as identification, model selection, and testing are also discussed. The properties of
these estimators are compared to those of Maximum Likelihood (ML) using Monte Carlo
experiments for both invertible and non-invertible ARMA models.
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1 Introduction

There is a long-standing tradition of estimating stationary ARMA models using

likelihood-based methods, the estimation of a sequence of long autoregressions, or

non-linear least squares.1 Gallant and Tauchen (1996) developed a kind of

minimum chi-square estimator (called the Efficient Method of Moments, or EMM

for short), which is also suitable for estimating stationary ARMA models. In fact,

Gouriéroux, et al. (1993) estimate an invertible MA(1) model using a method that

is similar in spirit to EMM (Indirect Inference, II for short).

Nevertheless, simulation-based methods (such as EMM and II) are not

routinely applied to estimate ARMA models because of evident shortcomings: first,

the Maximum Likelihood Estimator (MLE) performs efficiently (in the Root Mean

Square Error, RMSE, sense), so it is not clear why less efficient alternative methods

should be considered. Second, simulation-based methods are costly to use, because

they require more computer time than simpler alternatives. Finally, tests based on

simulation-based estimators may be cumbersome and, as reported elsewhere

(Chumacero, 1997), may present important size problems.

The conventional view, therefore, is that while EMM and II may be useful in

different setups (particularly when the alternative is the conventional method of

moments or when MLE is unfeasible); they don’t appear to offer any practical

advantage when estimating ARMA models.

This paper challenges that view by showing that if the asymptotic properties

of both the EMM and II moment conditions are exploited, computationally

efficient algorithms can be developed to estimate ARMA models. In this sense,

efficiency could therefore be defined more broadly.

This paper also presents other contributions that may be useful to EMM

and II users in setups other than those considered here. In particular, issues such as

identification, testing, and model selection are explicitly discussed.

The paper is organized as follows. Section 2 presents a brief description of

EMM and II. Section 3 describes the class of estimators considered, discusses the

                                                
1 See Ghysels, et al. (1994) or Galbraith and Zinde-Walsh (1994, 1997) for references.
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issue of identification, and derives their asymptotic properties. Section 4 presents the

results of Monte Carlo experiments to assess the finite sample properties of the

estimators described in the previous section. Finally, Section 5 summarizes the main

findings.

2 The Estimation Methods

Consider a stationary stochastic process ( ),t tp y x ρ  describing yt in terms of

exogenous variables (xt) and structural parameters ( )ρ , which the econometrician is

interested in estimating. Consider also an auxiliary model ( ), ,t tf y x θ  which can be

expressed analytically, whereas ( ),t tp y x ρ  may not. Gallant and Tauchen (1996)

propose using the scores of the auxiliary model:

( ) ( )ˆ/ ln ,t t Tf y xθ θ∂ ∂

to generate the GMM moment conditions

( ) ( ) ( ) ( ) ( )ˆ ˆ, / ln , ,t tT T Tm f y x p y x dy p x dxρ θ θ θ ρ ρ= ∂ ∂∫ ∫ (1)

where T̂θ  is defined as the maximum likelihood estimator of ( )f ⋅  for a sample of size

T; that is:

( )
1

ˆ ˆargmax ln | ,
T

t tT T
t

f y x
θ

θ θ
∈Θ =

= ∑ (2)

When analytical expressions for (1) are not available, simulations may be

required to compute them; in which case we approximate the moments by:

( ) ( ) ( ) ( ) ( )( )
1

1ˆ ˆ ˆ, , / ln ,
N

n nT T T TN
n

m m f y x
N

ρ θ ρ θ θ ρ ρ θ
=

≅ = ∂ ∂∑ � � (3)

where N is the sample size of the Monte Carlo integral approximation drawn from a

sample of y and x, for a given value of .ρ
When (3) is used to approximate the moments, the Generalized Method of

Moments (GMM) estimator of ,ρ  with an efficient weighting matrix, is given by:

( )( ) ( )1ˆ ˆ ˆˆ argmin , ,T T TN N
R

m I m
ρ

ρ ρ θ ρ θ
−

∈
′= (4)

If the auxiliary model constitutes a good statistical description of the data

generating process of y, the outer-product of the gradients (OPG) can be used in the

weighting matrix:
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( )( ) ( )( )
1

1ˆ ˆ ˆ/ ln , / ln ,
T

t t t tT T T
t

I f y x f y x
T

θ θ θ θ
=

′   = ∂ ∂ ∂ ∂      ∑ (5)

Gallant and Tauchen (1996) demonstrate the strong convergence and

asymptotic normality of the estimator presented in (4).2

( ) ( ) 11
0ˆ N 0,DT d I dρ ρρ ρ

−− ′− →   
where ( ) . . . .

0 0 0
ˆ ˆ, / , ,  and .a s a s

T Td m I Iρ ρ θ ρ θ θ′= ∂ ∂ → →

By standard arguments, the asymptotic distribution of the objective function

that ρ̂  minimizes is given by:

( )( ) ( )1 2ˆ ˆ ˆˆ ˆ, , D

T T T TN N h rTJ Tm I mρ θ ρ θ χ
−

−
′= → (6)

with r and h denoting the dimensions of ρ  and θ  respectively.

Equation (6) corresponds to the familiar over-identifying restrictions test

described by Hansen (1982). As in GMM, the order condition for identification

requires that .h r≥  The rank condition is more involved, given that in this setup we

require the existence of a unique function linking ρ  and θ  in a sense that will be

defined more precisely below.

Given the results described, and provided identification conditions are met,

statistical inference may be carried out the same way as in GMM. However,

depending on the complexity of the auxiliary model, it may be difficult to construct

Wald-type tests based on the variance-covariance matrix obtained by differentiating

the moments (Chumacero, 1997).

If (1) can be obtained analytically, all the expressions using ( )
Nm ⋅  should be

replaced by ( ).Tm ⋅  As the next section indicates, a simple analytical expression for

(1) is available when estimating Gaussian ARMA models, thus making simulation-

based methods for computing (3) both unnecessarily costly and inefficient.

The Indirect Inference estimator (II) developed by Gouriéroux, et al. (1993) is

similar to EMM, the main difference being the choice of moment conditions. II

mimics the optimization underlying (2), instead of the first order conditions, in which

case we define:

( ) ( ) ( )( )
1

argmax ln ,
N

n nN
n

f y x
θ

θ ρ ρ ρ θ
∈Θ =

= ∑� � � (7)

                                                
2 See Tauchen (1996) for a step-by-step derivation of these results.
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That is, we find the MLE of the auxiliary model for a given value of ρ  and an

artificial realization of size N of y and x. The moment conditions that II uses are

given by (8) instead of (3).

( ) ( )ˆ ˆ, T TN Nm ρ θ θ ρ θ = −  
� (8)

There is a major difference between EMM and II. While the former carries out

only one optimization of the auxiliary model and uses the parameters estimated there

while evaluating the scores with simulated data, whereas II requires optimization of

the auxiliary model for each value of the structural model under consideration,

making it computationally more demanding.

In the next section, we show that in the case of Gaussian ARMA models,

simulations are not required, because there is an analytical expression for the

relationship between the parameters of the auxiliary and structural models.

3 Estimating ARMA Models with EMM and II

3.1 The General Case

Consider a stationary Gaussian ARMA(p,q) model with 0q ≠  that we are interested

in estimating, and denote by ( 0,1,...)i iγ =  to its autocovariances.

( )2

1 1

, ~ N 0,
p q

t t ti t i i t i
i i

y yδ ε α ε ε σ− −
= =

= + +∑ ∑
The auxiliary model used for estimating this process is given by:

( )2

1

, ~ N 0,
j

vt t ti t i
i

y y v vβ σ−
=

= +∑
To remain consistent with the notation system used in the previous section,

the structural parameters of this model are ( )2
1 1,.., , ,.., , ,p qρ δ δ α α σ=  and the

auxiliary model’s parameters are ( )2
1 2, ,.., , .vjθ β β β σ=

The order condition for identification requires .j p q≥ +  The rank condition

can be studied by evaluating the asymptotic properties of the estimators of the AR(j)

auxiliary model.

In this case, it is a simple matter to verify that:
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1
1 0,10 1 1 1

01 2 2 0,2. .2
0

01 2 0,

2
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ˆ

ˆ
ˆ

ˆ

ˆ

ˆ

j

ja s

jj j j
j

jT

t i t i
at j i

v

y y
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β β

γ γ γ γ ββ

β
σ

−
−

−

− −

−
= + =

                         = → = =                                
  −   = →

−

∑ ∑

"
"
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"

. . 2
0 0, 0,0, 0,

1 1 1

1 2
j j j i

s

i i il i l
i i l

γ β γ β β β
−

+
= = =

     + + −         ∑ ∑ ∑

(9)

Thus, all the auxiliary model’s parameters are (asymptotically speaking) a

non-linear function of the first j autocovariances of y. As (9) makes clear,

approximating moment conditions for II is unnecessary, given that this equation can

be used directly instead of (7).

In the case of EMM, identification requires a unique set of parameters in the

structural model that accompanied with the consistent auxiliary model estimators

make (1) equal to 0.

As will be shown shortly, this condition is equivalent to the identifiability

condition that must also be imposed for estimating ARMA models with ML (see

Hamilton, 1994 or Tanaka, 1996). Given that for every invertible stationary ARMA

model there is an observationally equivalent non-invertible ARMA model, the same

requirements imposed on any stationary ARMA model estimated using ML should

apply when estimating with EMM or II.

As the structural model is assumed to be Gaussian, the scores of the auxiliary

model can be expressed as:

( )
1 1

2

2
0

1 1 1
2 4

ˆ ˆ

1,..,
ˆˆ,

ˆ ˆ ˆ ˆ1 2
1
ˆ ˆ2 2

ji

i l i l l l i
l l i

v
T T j j j i

i i il i l
i i l

v v

i j
m

γ β γ β γ

σ
ρ θ

γ β γ β β β

σ σ

− −
= = +

−

+
= = =

   + +     = 
 =        + + −           − + 
  

∑ ∑

∑ ∑ ∑
(10)

where the dimension of (10) is ( )1 1j + ×  and corresponds to the unconditional

expectation of the scores of the auxiliary model. The last moment condition is equal

to zero when β̂  is replaced by 0β . This is also the case for the first j moments (up to

a reparameterization discussed below). As with II, approximating the moment
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conditions using Monte Carlo simulations (as in equation 3) is unnecessary, because

these can be derived analytically.

Gouriéroux, et al. (1993), Ghysels, et al. (1994), Chumacero (1997) and

Michaelides and Ng (1997) use Monte Carlo methods to approximate either (9) or

(10) for the case of Gaussian MA(1) models. Nevertheless, as these equations show,

the moments can be obtained directly. To estimate the parameters of the ARMA

process one can simply replace the autocovariances by functions of the structural

model’s parameters.

Next, we apply these results to two particular processes, an MA(1) and an

ARMA(1,1) and the go on to conduct Monte Carlo experiments to assess the finite

sample properties of different EMM and II estimators, comparing them with those of

ML.

3.2 The MA(1) Model

The model that we are interested in estimating is:

( )2
1, ~ N 0,t t tty ε αε ε σ−= +

while the auxiliary model is again an AR(j) process.

In this case the autocovariances are given by:

( )2 2 2
0 11 , , 0 for 1.i iγ σ α γ σ α γ= + = = >

It is trivial to verify that for any AR(j) auxiliary model, estimates converge to:

( )

( ) ( )( )
( )( )

1 2 1
. .

2 12 2 2 2

ˆ 1 11 for 1,..,
1ˆ 1

i i j i
a si

j j
v

i j
α αβ

ασ σ α

− + −

+ +

   − −  → =   −    −    
when 1,α ≠  and to:

( ) ( )

( )

1
. .

22

ˆ 1 11 for 1,..,
1 2ˆ

i i
a si

v

j i
i j

j j

αβ

σσ

−   − + −   → =   + +     
in the unit root case.

Once analytical expressions for the asymptotic values of auxiliary model’s

parameters are found, it is easy to verify (by direct substitution) that (9) is equal to

zero.
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Note, however, that given that the auxiliary model’s parameters are functions

of the autocovariances, there is always an invertible MA model that is

observationally equivalent to a non-invertible MA model. In this case, the following

MA(1) model reproduces the same autocovariances and the same estimates for the

auxiliary model, thus also satisfying (10):

( )* 2
1 *
, ~ N 0,t t tty ε α ε ε σ−= +

with * 2 2 2
*

1/   and  .α α σ σ α= =  Thus, the only case in which EMM or II can satisfy

the rank condition (exactly) is when 1α = ± .

3.3 The ARMA(1,1) Model

The other model that we are interested in estimating is:

( )2
1 1, ~ N 0,t t tt ty yδ ε αε ε σ− −= + +

while the auxiliary model is once again an AR(j) process.

In this case the autocovariances are given by:

( )2 2
2

20 01 1

1 2
, ,  for 1.

1 i i i
σ α αδ

γ γ γ δ σ α γ δγ
δ −

+ +
= = + = >

−
This process yields auxiliary model and moment conditions estimates

expressed by (9) and (10). As with the MA(1) process discussed above, when
* 2 2 2

*
1/   and  α α σ σ α= =  are replaced by 2 and ,α σ  both processes are

observationally equivalent. Again, identification requires a stance with respect to the

invertibility of the process.

The next section develops several Monte Carlo experiments to assess the finite

sample properties of several EMM and II estimators for these two cases, discusses

choosing the auxiliary model, testing, and compares results with those obtained using

ML.

4 The Monte Carlo Experiments

There have been at least four Monte Carlo experiments to assess the finite sample

properties of simulation-based methods for invertible MA(1) processes. Gouriéroux,
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et al. (1993) uses Indirect Inference with AR(1), AR(2), and AR(3) auxiliary models;

setting 0.5.α = −
Ghysels, et al. (1994) compares several simulation-based estimators for

different specifications of the invertible MA(1), but use simulations to approximate

the moment conditions.

Michaelides and Ng (1997) also perform Monte Carlo experiments for different

sample sizes and different values of N to approximate the moment conditions in (3).

Nevertheless, as their histograms show, even though they are estimating an invertible

MA(1) model, they allow for estimates of α greater than 1 (in absolute value), so

don’t impose the necessary identification conditions. In their study, they set the

auxiliary model at AR(3).

Chumacero (1997) also studies the case of the finite sample properties of the

invertible MA(1) model with fixed AR auxiliary models (2 and 3), along with two

other Monte Carlo experiments for more complex setups, which show the superior

performance of EMM with respect to GMM in several counts.

In a different setup, Gallant and Tauchen (1999) also present Monte Carlo

evidence showing the gains in efficiency of using EMM over the conventional method

of moments estimators.

These papers, however, leave several questions unanswered. These are

addressed here:

 From a practical standpoint, how should one choose the auxiliary model?

Do any model selection criteria offer better results in terms of efficiency?

 Chumacero (1997) and Michaelides and Ng (1997) present evidence that

the finite sample properties of the over-identifying restrictions test

described in (6) presents problems of size. In particular, there is strong

evidence of over-rejections. Is there a simple way to correct this problem

and provide a better approximation of the asymptotic distribution of this

test?

 How well do Wald-type tests perform under different specifications for

ARMA models?

 How well do EMM and II perform when estimating non-invertible ARMA

models?
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 What are the gains from using the exact moment conditions instead of

using the simulation-based approximations?

 Is there any gain from estimating stationary ARMA models with EMM or

II instead of ML?

4.1 Design of the Experiments

In order to answer the questions posed above, two types of experiments were

implemented. One for different specifications of a MA(1) model (both invertible and

non-invertible), and the other for different specifications of an ARMA(1,1) model. In

each case, results were compared with the properties of ML estimators. The ML

estimators were estimated using the conditional likelihood when the true process was

invertible, and the unconditional (exact) likelihood when the process was not.

Each setup used 1,000 samples, each of size T=100 and T=200, values chosen

to allow comparison with previous studies (particularly Ghysels, et al., 1994 and

Michaelides and Ng, 1997).

In the case of EMM and II, two different types of estimators were chosen, one

using the exact moment conditions and the other approximates them, using

N=2,500.

Finally, three selection criteria for the choice of the lag length of the auxiliary

model were used. These are the Akaike Information Criterion (AIC), the Schwarz

Criterion (BIC), and the Hannan & Quinn criterion (HQ). Given that the auxiliary

model assumes normality, they are defined as:
( ) ( )
( ) ( )
( ) ( )( )

2

2

2

ˆAIC ln 2 /

ˆBIC ln ln /

ˆHQ ln 2 ln ln /

v

v

v

j j T

j j T T

j j T T

σ

σ

σ

= +

= +

= +

(11)

where j is chosen to minimize (11) in all cases.

Chumacero (1997) showed that the choice of weighting matrix is not as crucial

in EMM as in GMM and that (5) provides results basically identical to other

procedures requiring the computing of HAC matrices.3 This is the case when the

                                                
3 HAC stands for Heteroskedasticity-Autocorrelation Consistent matrices.
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auxiliary model is chosen correctly, in the sense of providing a good statistical

description of all data features. Here, therefore, we concentrate on comparing model

selection criteria described in (11) and their implications for the properties of the

coefficients and the statistics commonly used for inference. In all the samples the

maximum and minimum lags for the auxiliary model were set to 20 and 2

respectively. The minimum lag is set in order to force the model to be over-identified.

For each sample, each expression in (11) was minimized and j was chosen

accordingly.

4.2 Results for the MA(1) Model

Tables 1 to 4 report the results for different specifications of the MA(1) model,4

comparing results obtained using EMM and II to those obtained by ML. The main

findings are:

 As known, BIC tends to select more parsimonious models, followed by HQ,

and AIC always chooses larger auxiliary models.

 The three selection criteria provide no discernable differences in terms of

bias. Nevertheless, AIC tends to provide more efficient estimates, followed

by HQ, and finally BIC. This because BIC is too conservative in the choice

of lag length, particularly in cases near a unit root.

 In this simple example, a choice of N=2,500 approximates the exact

moment conditions well. However, because moments can be computed

exactly for any stationary ARMA model, these approximations are

unnecessary.5 Aside from the fact that using the exact moment conditions

yields better finite sample results, there is also a practical reason to do so.

The gains in computing time are substantial. In fact, even in this simple

set-up, and even for moderate sample sizes, obtaining EMM estimates

using the exact moment conditions can be up to 8 times faster than using

                                                
4 Results for alternative data-generating-processes are available upon request. All computations were

performed with GAUSS.
5 All previous Monte Carlo experiments conducted in this set-up use the approximation to the

moment conditions instead of the exact moments.
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ML. Although inefficient (in the RMSE sense), numerical approximation is

also very costly in terms of computing time. This is particularly true in the

case of II, which can take 22 times longer to compute than when analytical

moments are used.6

 When comparing EMM and II, the last tends to dominate EMM in the

RMSE for the case of MA(1) models. There is, however, an important

caveat. As Tauchen (1996) noted, EMM provides a numerically stable

environment for optimizing the GMM objective function. This is not the

case for II, particularly when dealing with MA processes close to the unit

circle. In fact, for these specifications convergence had to be “forced” in

about 52% of the cases, where the objective function turned out to be

unstable even when analytical moments were supplied. This is not the case

for EMM where convergence was never “forced”.

 As documented in Chumacero (1997) and Michaelides and Ng (1997), in

this set-up, EMM tends to over-reject the null when using the standard

over-identifying restrictions test. Furthermore, the less parsimonious the

auxiliary model, the greater the size problem. Thus, AIC tends to over-

reject more than HQ, which does the same compared to BIC. The

magnitude of over-rejections is rather important; thus a simple correction

is suggested. Instead of using the actual sample size, T-q should be used for

scaling (6). As Table 3 shows, this simple modification allows for an almost

complete correction of the size distortion around standard levels of

significance. At any rate, size distortions are still important for levels of

more than 15%. Due in part to the unstable nature of the II objective

function, its size distortions are more significant and cannot be corrected

with the simple procedure described above.

 With respect to Wald-type tests, when using EMM and when the

parameter is relatively distant from the unit circle, they behave well

(Table 4). Nonetheless, they tend to become unstable near the unit root,

thus making the inversion of Chi-square tests preferable. Note, however,

that in all these cases, a correction as the one described above is also
                                                
6 These gains are even more impressive when dealing with more complex ARMA models.
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needed. For II, results were not even reported, because even when distant

from the unit circle, the objective function was so unstable that

singularities were common.

To conclude, EMM tends to perform well when estimating MA(1) models,

particularly for cases approaching a unit root where the bias usually associated with

conditional ML is less. At any rate, ML is still more efficient in terms of Root Mean

Square Error (RMSE). There is however one important advantage to using EMM,

and that is the time needed to estimate these models. In fact, EMM is at least twice

as fast as ML. When the over-identifying restrictions test is suitably transformed,

AIC should become the selection criterion of choice, because it usually provides more

efficient estimates. AIC should not be chosen for inference, however, if the objective

function is not transformed. In the case of II, even when the reported RMSEs are

generally smaller than with EMM, the objective function is particularly unstable, and

in most cases convergence had to be forced. Given the unstable nature of this

objective function, over-identifying restrictions tests and Wald tests present

significant size distortions than cannot be corrected.

4.2 Results for the ARMA(1,1) Model

As in the previous exercise, several specifications for the ARMA(1,1) process were

estimated. In all cases, the parameter associated with the autoregressive coefficient

was set equal to -0.8 and the coefficient associated with the MA component was

allowed to vary. Once again 1,000 samples each of sizes 100 and 200 were artificially

generated and estimated by ML and three EMM and II estimators. In the later cases,

we used the exact moment conditions, choosing the auxiliary models using the three

selection criteria discussed above.

The results of these experiments are reported in Tables 5 and 6 and can be

summarized as follows:

 The selection criterion that renders the smallest RMSE for the

autoregressive coefficient is BIC, followed by HQ, and finally AIC. This

order is reversed when we compare the RMSE for the MA coefficient. The

inference is clear: particularly where the process is invertible, the auxiliary
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model that best captures the dynamics of the MA coefficient requires

several lags. To better capture the characteristics of the AR component,

parsimony is preferred (BIC).

 All models do equally well in terms of bias. As discussed above,

particularly where the MA coefficient is close to the unit circle, EMM

reduces ML-associated bias.

 The gains in computing time rise substantially when using EMM instead of

ML. In particular, the average estimation for a sample size of 200 is 20

times faster with EMM than with ML. These gains are increased to a

factor of 35 if the exact likelihood is used when estimating using ML.

 There is another compelling reason, besides computational efficiency, to

use EMM. The EMM objective function is numerically stable, thus one

could use EMM (with analytical moments) to compute starting values and

then proceed with ML.

 Compared to EMM, II still shows significant numerical stability problems.

This time, however, EMM tends to outperform II in the RMSE for several

specifications. Again, II required “forced” convergence in more than 60% of

the cases.

5 Concluding Remarks

This paper develops a methodology for estimating stationary Gaussian ARMA

models (both invertible and non-invertible) using EMM and II. In contrast to the

prevailing practice, simulation is not required to compute the moment conditions

used by these methods. The gains in terms of efficiency and computing time are

substantial.

Where the ARMA process is close to the unit circle, EMM may be preferred

because it reduces bias. In any case, ML still yields lower RMSE than EMM and II.

This paper also addresses how to choose the auxiliary model, examining three

automatic selection criteria. This revealed that AIC tends to perform better than

BIC and HQ (in terms of RMSE) when estimating pure MA models.
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Experiments performed also indicated a simple way of correcting the over-

rejection problem that typically occurs when using Hansen’s (1982) test. If this

correction is not performed, large-scale auxiliary models will present significant size

distortions. This correction does not apply when using II because its objective

function is numerically unstable near the unit root.

When dealing with ARMA models that are relatively close to the unit circle,

Wald-type tests do not perform adequately. Thus, inverting chi-square tests are

preferable once a (T-q) correction is performed.



15

Table 1

Properties of the Estimators: MA(1) Model (T=100)

EMM II

αααα=-0.5 Mean RMSE Time Mean RMSE Time j

ML -0.508 0.098 1.038 -0.508 0.098 1.038

AIC -0.506 0.136 1.000 -0.540 0.144 1.113 2.927

AIC-N -0.506 0.137 6.519 -0.540 0.146 2.982 2.927

αααα=-0.95 Mean RMSE Time Mean RMSE Time j

ML -0.910 0.072 1.536 -0.910 0.072 1.536

AIC -0.908 0.113 1.000 -0.965 0.068 5.687 7.598

AIC-N -0.905 0.115 7.569 -0.964 0.068 17.777 7.598

αααα=-1.05 Mean RMSE Time Mean RMSE Time j

MLX -1.041 0.045 2.231 -1.041 0.045 2.231

AIC -1.116 0.161 1.000 -1.042 0.086 5.188 7.660

AIC-N -1.119 0.165 7.775 -1.043 0.086 16.242 7.660

αααα=-1.5 Mean RMSE Time Mean RMSE Time j

MLX -1.508 0.210 2.808 -1.508 0.210 2.808

AIC -1.509 0.346 1.000 -1.394 0.300 1.986 4.110

AIC-N -1.511 0.346 6.781 -1.381 0.321 2.155 4.110
Notes: The results were obtained by estimating 1,000 samples. RMSE = Root Mean Square Error.

Time = Mean of the ratio between time to convergence of a method and time to convergence of

EMM using analytical moments and the AIC information criterion. j = Average lag length of

the auxiliary model. ML = Results obtained with the conditional Maximum Likelihood

estimator. MLX = Results obtained with the unconditional (exact) Maximum Likelihood

estimator. AIC = Results using AIC as information criterion and the analytical moment

conditions. AIC-N = Results using AIC as information criterion and a numerical approximation

for the moments.
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Table 2

Properties of the Estimators: MA(1) Model (T=200)

EMM II

αααα=-0.5 Mean RMSE Time Mean RMSE Time j

ML -0.505 0.065 2.717 -0.505 0.065 2.717

AIC -0.505 0.081 1.000 -0.526 0.085 1.006 3.455

BIC -0.505 0.085 0.985 -0.518 0.089 0.982 2.159

HQ -0.509 0.084 0.985 -0.525 0.089 0.983 2.456

αααα=-0.95 Mean RMSE Time Mean RMSE Time j

ML -0.926 0.046 2.741 -0.926 0.046 2.741

AIC -0.936 0.069 1.000 -0.972 0.052 19.818 10.313

BIC -0.930 0.092 0.991 -0.964 0.068 17.777 5.114

HQ -0.938 0.076 0.976 -0.973 0.056 19.381 7.398

αααα=-1.05 Mean RMSE Time Mean RMSE Time j

MLX -1.045 0.031 5.106 -1.045 0.031 5.106

AIC -1.072 0.084 1.000 -1.031 0.057 17.955 10.338

BIC -1.085 0.122 1.005 -1.042 0.084 16.242 5.137

HQ -1.073 0.096 0.993 -1.031 0.063 17.930 7.432

αααα=-1.5 Mean RMSE Time Mean RMSE Time j

MLX -1.501 0.133 7.993 -1.501 0.133 7.993

AIC -1.498 0.190 1.000 -1.432 0.184 1.407 4.873

BIC -1.470 0.241 1.104 -1.414 0.238 2.155 2.780

HQ -1.477 0.208 1.034 -1.417 0.202 1.666 3.516
Notes: See Table 1 for definitions.
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Table 3

Properties of the Over-Identifying Restrictions Test: MA(1) Model (T=100)

EMM II

TJT TJT-q TJT TJT-q
αααα=-0.5 M 5% 10% M 5% 10% M 5% 10% M 5% 10%

AIC 4.2 6.0 12.7 12.9 4.2 10.2 0.1 33.5 35.5 1.4 31.2 34.5

AIC-N 3.8 6.8 13.1 11.6 4.4 10.5 0.9 33.0 35.8 1.7 31.1 34.4

αααα=-0.95 M 5% 10% M 5% 10% M 5% 10% M 5% 10%

AIC 0.1 9.8 18.9 13.6 4.5 9.4 0.1 70.1 73.3 0.1 67.9 71.3

AIC-N 0.1 10.6 19.0 8.7 4.7 10.0 0.1 69.8 72.4 0.1 67.4 70.7

αααα=-1.05 M 5% 10% M 5% 10% M 5% 10% M 5% 10%

AIC 0.1 10.3 18.7 13.3 4.3 8.4 0.1 70.7 73.9 0.1 68.9 71.6

AIC-N 0.1 10.2 18.6 8.8 4.5 9.8 0.1 70.2 72.7 0.1 67.8 71.1

αααα=-1.5 M 5% 10% M 5% 10% M 5% 10% M 5% 10%

AIC 3.3 7.6 13.4 15.1 5.4 9.4 0.3 18.1 20.9 0.2 16.0 19.2

AIC-N 2.3 8.0 14.2 11.9 5.6 10.1 0.3 17.7 20.9 0.2 16.2 19.0
Notes: TJT  = Over-identifying restrictions test. (T-q)JT-q  = Over-identifying restrictions test adjusted

by degrees of freedom. M = P-value of the Mann-Whitney-Wilcoxon Test. 5%, 10% = Size of

the test for the nominal counterpart. AIC = Results from EMM using AIC as information

criterion and the analytical moment conditions. AIC-N = Results from EMM using AIC as

information criterion and a numerical approximation for the moments.
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Table 4

Properties of the Wald Test: MA(1) Model (EMM)

T=100 T=200

αααα=-0.5 WT WT-q WT WT-q

Estimator M 5% 10% M 5% 10% M 5% 10% M 5% 10%

ML

AIC-N

AIC

BIC-N

BIC

HQ-N

HQ

20.0

15.2

17.7

47.4

49.1

33.4

36.0

7.2

8.4

9.1

6.3

6.8

6.4

7.3

12.6

13.3

13.0

11.0

10.6

11.5

11.3

20.0

19.4

22.4

48.1

44.5

38.1

40.9

7.2

8.1

8.3

6.0

6.6

6.2

7.0

12.6

13.0

12.7

10.9

10.6

11.5

11.3

36.6

13.0

19.5

25.5

39.2

17.9

26.9

5.2

7.9

6.7

6.5

5.0

6.7

5.3

12.0

13.3

11.5

10.8

8.8

11.4

9.6

36.6

15.1

22.3

27.5

41.7

19.7

29.4

5.2

7.6

6.5

6.1

4.8

6.5

5.2

12.0

12.5

11.2

10.7

8.8

11.3

9.6

αααα=-1.5 WT WT-q WT WT-q

Estimator M 5% 10% M 5% 10% M 5% 10% M 5% 10%

MLX

AIC-N

AIC

BIC-N

BIC

HQ-N

HQ

38.7

8.0

7.5

0.2

0.2

0.6

0.6

8.6

1.6

1.8

0.3

0.3

0.5

0.5

11.1

4.8

5.0

1.9

2.0

2.4

2.3

38.7

5.9

5.6

0.2

0.2

0.4

0.5

8.6

1.2

1.2

0.3

0.3

0.4

0.5

11.1

3.5

4.4

1.7

1.8

1.9

2.0

47.2

48.3

15.4

5.8

4.6

23.1

15.9

7.5

4.9

4.2

1.5

0.9

2.8

2.3

11.3

10.7

9.0

4.5

3.9

6.3

6.1

47.2

48.1

41.8

5.2

4.0

21.0

14.3

7.5

4.8

3.9

1.2

0.9

2.4

2.1

11.3

9.4

8.8

4.0

3.8

5.5

5.9
Notes: WT  = Wald test for the null. WT-q  = Wald test for the null adjusted by degrees of freedom. M

= P-value of the Mann-Whitney-Wilcoxon Test. 5%, 10% = Size of the test for the nominal

counterpart. ML = Results obtained using the conditional ML estimator. MLX = Results

obtained using the unconditional (exact) ML estimator. AIC-N, BIC-N, HQ-N = Results from

EMM using AIC, BIC or HQ as information criterion and a numerical approximation for the

moments (N=2,500). AIC, BIC, HQ = Results from EMM using AIC, BIC or as information

criterion and the exact moment conditions.



19

Table 5

Properties of the Estimators: ARMA(1,1) Model (δδδδ=-0.8, T=100)

EMM II

Estimator δδδδ αααα δδδδ αααα

αααα=-0.7 Mean RMSE Mean RMSE Mean RMSE Mean RMSE j

ML -0.793 0.064 -0.704 0.085 -0.793 0.064 -0.704 0.085

AIC -0.771 0.125 -0.742 0.170 -0.743 0.336 -0.832 0.216 5.40

BIC -0.774 0.096 -0.755 0.185 -0.813 0.169 -0.796 0.225 3.48

HQ -0.775 0.102 -0.754 0.175 -0.774 0.228 -0.828 0.225 4.06

αααα=-0.8 Mean RMSE Mean RMSE Mean RMSE Mean RMSE j

ML -0.795 0.063 -0.797 0.075 -0.795 0.063 -0.797 0.075

AIC -0.775 0.127 -0.829 0.155 -0.812 0.323 -0.922 0.173 6.42

BIC -0.779 0.097 -0.843 0.167 -0.863 0.198 -0.891 0.189 3.88

HQ -0.777 0.105 -0.842 0.155 -0.838 0.248 -0.919 0.180 4.83

αααα=-0.9 Mean RMSE Mean RMSE Mean RMSE Mean RMSE j

ML -0.797 0.061 -0.880 0.067 -0.797 0.061 -0.880 0.067

AIC -0.777 0.135 -0.893 0.148 -0.961 0.390 -0.967 0.106 7.89

BIC -0.783 0.097 -0.897 0.139 -0.941 0.267 -0.939 0.136 4.28

HQ -0.782 0.110 -0.901 0.127 -0.960 0.332 -0.962 0.111 5.67

αααα=-0.95 Mean RMSE Mean RMSE Mean RMSE Mean RMSE j

ML -0.801 0.061 -0.909 0.072 -0.801 0.061 -0.909 0.072

AIC -0.779 0.139 -0.912 0.133 -0.997 0.479 -0.976 0.091 8.72

BIC -0.785 0.100 -0.909 0.140 -0.971 0.301 -0.950 0.117 4.46

HQ -0.783 0.114 -0.914 0.165 -0.997 0.388 -0.973 0.131 5.99
Notes: See Table 4 for definitions.
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Table 6

Properties of the Estimators: ARMA(1,1) Model (δδδδ=-0.8, T=200)

EMM II

Estimator δδδδ αααα δδδδ αααα

αααα=-0.7 Mean RMSE Mean RMSE Mean RMSE Mean RMSE j

ML -0.797 0.044 -0.702 0.057 -0.797 0.044 -0.702 0.057

AIC -0.784 0.064 -0.724 0.097 -0.689 0.273 -0.797 0.156 6.13

BIC -0.786 0.058 -0.746 0.132 -0.745 0.145 -0.805 0.178 3.94

HQ -0.785 0.060 -0.737 0.113 -0.714 0.189 -0.809 0.167 4.72

αααα=-0.8 Mean RMSE Mean RMSE Mean RMSE Mean RMSE j

ML -0.798 0.043 -0.799 0.049 -0.798 0.043 -0.799 0.049

AIC -0.785 0.068 -0.823 0.093 -0.711 0.254 -0.899 0.139 7.93

BIC -0.788 0.057 -0.853 0.129 -0.785 0.144 -0.918 0.161 4.69

HQ -0.787 0.060 -0.840 0.113 -0.752 0.184 -0.912 0.151 5.84

αααα=-0.9 Mean RMSE Mean RMSE Mean RMSE Mean RMSE j

ML -0.799 0.043 -0.889 0.042 -0.799 0.043 -0.889 0.042

AIC -0.788 0.070 -0.911 0.076 -0.844 0.255 -0.970 0.090 10.42

BIC -0.791 0.064 -0.924 0.100 -0.884 0.189 -0.969 0.099 5.59

HQ -0.790 0.062 -0.921 0.086 -0.877 0.217 -0.974 0.094 7.45

αααα=-0.95 Mean RMSE Mean RMSE Mean RMSE Mean RMSE j

ML -0.801 0.042 -0.926 0.046 -0.801 0.042 -0.926 0.046

AIC -0.790 0.073 -0.942 0.065 -0.967 0.337 -0.982 0.077 11.94

BIC -0.793 0.063 -0.941 0.089 -0.936 0.235 -0.976 0.067 5.97

HQ -0.793 0.062 -0.944 0.073 -0.960 0.283 -0.985 0.090 8.19
Notes: See Table 1 for definitions.
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