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Abstract 

In this paper, I develop a method that extends quantile regressions to high dimensional factor 

analysis. In this context, the quantile function of a panel of variables with crosssection and time-

series dimensions N and T is endowed with a factor structure. Thus, both factors and factor loadings 

are allowed to be quantile-specific. I provide a set of conditions under which these objects are 

identified, and I propose a simple two-step iterative procedure called Quantile Principal Components 

(QPC) to estimate them. Uniform consistency of the estimators is established under general 

assumptions when N,T→∞ jointly. Lastly, under certain additional assumptions related to the density 

of the observations about the quantile of interest, and the relationship between N and T, I show that 

the QPC estimators are asymptotically normal with convergence rates similar to the ones derived in 

the traditional factor analysis literature. Monte Carlo simulations confirm the good performance of 

the QPC procedure, especially in non-linear environments, or when the factors affect higher 

moments of the observable variables and suggest that the proposed theory provides a good 

approximation to the finite sample distribution of the QPC estimators. 

 

Resumen 

En este artículo, desarrollo un método que extiende las regresiones cuantiles al análisis factorial de 

alta dimensión. En este contexto, la función cuantil de un panel de variables que posee N elementos 

observados durante T períodos se encuentra dotada de una estructura factorial. De este modo, la 

magnitud de los factores y las cargas factoriales pueden ser función de los cuantiles. Proporciono un 

conjunto de condiciones bajo las cuales estos objetos se encuentran identificados y propongo un 

procedimiento iterativo simple de dos pasos denominado Componentes Principales Cuantiles (CPC) 

para estimarlos. Bajo supuestos generales, establezco la consistencia uniforme de los estimadores 

cuando N,T→∞ conjuntamente. Finalmente, bajo ciertos supuestos adicionales relacionados a la 

densidad de observaciones en torno al cuantil de interés y a la relación entre N y T, muestro que los 

estimadores CPC son asintóticamente normales, con tasas de convergencia similares a aquellas 

derivadas en la literatura tradicional de análisis factorial. Simulaciones de Monte Carlo confirman el 

buen desempeño del procedimiento de estimación CPC, especialmente en ambientes no-lineales, o 

cuando los factores afectan momentos superiores de las variables observadas. Estos resultados 

sugieren que la teoría propuesta proporciona una buena aproximación a la distribución de muestras 

finitas de los estimadores CPC.     
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1 Introduction

During the last decades, high dimensional factor analysis has become an increasingly popular
and useful statistical tool in many economic applications. Its popularity resides in the fact
that it is a practical and easy way to summarize the information in large data sets into a
small number of unobserved variables that describe a mean curve jointly. For instance, factor
analysis has been used to model asset returns as a function of a small number of risk factors
(Ross, 1976; Connor and Korajczyk, 1988); decompose the business cycle into common and
specific shocks at the cross-country level (Gregory and Head, 1999; Forni et al., 2000; Crucini
et al., 2011; Karadimitropoulou and Leon-Ledesma, 2013), national level (Stock and Watson,
1989; Mariano and Marasawa, 2003; Aruoba et al., 2009), and industry-level (Forni and
Reichlin, 1998); improve forecasting models by including the so-called diffusion indexes (Stock
and Watson, 1999, 2002); and construct measures of systemic risk (Kritzman et al., 2011),
macroeconomic or financial uncertainty (Jurado et al., 2015) and network connectedness
(Billio et al., 2012) which are vital for policymakers to perform macro and financial stability
monitoring; among many other applications.

In this paper, I extend the quantile regression approach popularized by Koenker and
Bassett (1978) to high dimensional factor analysis. I name this concept as high dimensional
Quantile Factor Analysis (QFA). In this setup, for any scalar τ ∈ (0, 1), the τ -th condi-
tional quantile function of a panel consisting of N variables yit observed along T periods,
Qyit (τ |λ0

i (τ), f 0
t (τ)), is a linear function of K(τ) < min {N, T} unobserved quantile-specific

factors f 0
t (τ) that are known by the econometrician. Moreover, both N and T are large, and

the number of quantile-specific factors, K(τ), as well as the sensitivity (or factor loading)
of each variable i to each quantile factor, λ0

i (τ), are also permitted to be quantile-specific.
In this manner, the proposed setup captures the idea of a quantile factor model which has
the particularity of being flexible enough to characterize several linear and nonlinear factor
models available in the related literature.

Under standard assumptions, I show that both the quantile factors f 0
t (τ) and the quantile

factor loadings λ0
i (τ) are individually identified. The type of identification depends crucially

on the rotation chosen by the econometrician. In particular, the identification of f 0
t (τ) and

λ0
i (τ) is local if an orthogonal rotation, extensively used in Principal Components (PC), or

a recursive-type rotation is considered. In contrast, it is global once an errors-in-variables-
type rotation is employed. However, the identification of the quantile common component
c0
it(τ) = λ0

i (τ)′f 0
t (τ) is always a global one. Moreover, I show that if the ordering of the

observable variables yit is known in advance, i.e., we know which variable is affected by
which quantile factor, then all previous rotations deliver observationally equivalent quantile
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common components.
Then, I propose a simple two-step iterative procedure based on the minimization of the

quantile loss function to obtain the Quantile Principal Components (QPC) estimator of f 0
t (τ)

and λ0
i (τ) for any τ ∈ (0, 1). In the first step, the estimator of the quantile factors, f̂t (τ),

is computed using quantile regressions across cross-sections for each t, where the unobserved
quantile loadings are replaced by an initial guess. In the second step, the estimator of the
quantile factor loadings, λ̂i (τ), is computed using quantile regressions across periods for each
i, given the previous estimates for the quantile factors. This estimation procedure offers some
advantages in terms of efficiency, compared to the PC methodology, especially in nonlinear
setups or in factor models where the factors impact higher moments of the observable variable
yit.

Also, I establish the uniform consistency of both f̂t (τ) and λ̂i (τ) under general assump-
tions. In the proof, I proceed as in Chen et al. (2014) and show first the uniform consistency
of the QPC estimator of the quantile common component ĉit (τ) ≡ λ̂i(τ)′f̂t(τ) as N, T →∞
jointly, given that the objective function involved in the minimization of the quantile loss
function is convex in terms of this object. This feature, together with the compactness of the
parameter set, allows me to invoke a standard Uniform Law of Large Numbers argument.
Then, given this intermediate result, uniform consistency of f̂t (τ) and λ̂i (τ) follows from the
assumptions imposing a strong factor structure.

Lastly, under additional assumptions related to the sparsity of the observations around
the quantile of interest τ ∈ (0, 1) and the relationship between N and T , I show that the
QPC estimators f̂t(τ), λ̂i(τ) and ĉit(τ) are asymptotically Normal. In the latter case, the
convergence rate is slower than the one found by Bai (2003) for the common component of
standard high dimensional factor models. The proof relies on a uniform asymptotic approx-
imation of the subgradients evaluated at the QPC estimators using an argument similar to
the one employed by Qu (2008). Then, I show that the approximation admits a Bahadur
representation, i.e., both

√
N(f̂t(τ) − f 0

t (τ)) and
√
T (λ̂i(τ) − λ0

i (τ)) can be expressed as a
normalized sum of martingale difference sequences plus an op(·) term. Asymptotic normality
of these estimators follows then by a standard Uniform Central Limit Theorem argument.
The limiting distribution of the common component, on its part, is derived by showing that
ĉit(τ) − c0

it(τ) can be approximated by the sum of two random variables related to the two
differences mentioned above.

This paper is related to the literature on panel data models in which the error component
contains an interactive effect (a factor structure), e.g., Koenker (2004), Pesaran (2006), Bai
(2009), Kato et al. (2012), Bai and Li (2014), Harding and Lamarche (2014), Moon and
Weidner (2015, 2017), Fernandez-Val and Weidner (2016), among others. Albeit its similarity
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with this setting, these models differ from quantile factor models in at least two key aspects.
First, in the QFA context, the regressors of the model are the factors which, besides being
quantile-specific, are not observable by the econometrician, entailing in this manner several
estimation challenges. So, this paper contributes to the literature by providing an estimation
methodology that is easy to implement, even in nonlinear environments. Second, in most
of these models, the unobserved individual and time heterogeneity is treated as nuisance
parameters. Consequently, a large part of the analysis is devoted to the properties of fixed or
random effects estimator. In contrast, the properties of the factors and the factor loadings
are barely explored. I contribute to this strand of the related literature by analyzing the
asymptotic properties of these objects in a high dimensional quantile framework.

The rest of the paper is organized as follows. Section 2 starts by presenting the statistical
model behind high dimensional QFA and provides some examples to illustrate this concept.
Section 2.2 discusses in detail the individual identification of the quantile factors and quan-
tile factor loadings, while Section 2.3 presents the iterative procedure to obtain their QPC
estimators and highlights some of their properties. Section 3 provides the set of assump-
tions required to establish the uniform consistency and the asymptotic distribution for the
QPC estimator of the quantile factors, quantile factor loadings, and quantile common compo-
nents. Some aspects concerning the computation of consistent estimators for the asymptotic
variance-covariance matrices are discussed in Section 3.2.1. Finally, Section 4 concludes and
suggests additional elements that can be tackled by future research on this topic. All proofs
of primary and intermediate results are given the Appendix.

2 Model and Estimation

In this section, I present the data generating process behind high dimensional Quantile
Factor Analysis. Next, I provide a set of conditions under which the data identifies the
relevant parameters of the model. Finally, I propose an iterative algorithm to estimate the
quantile-specific factors and factor loadings, and I also discuss some of its properties in detail.

2.1 The Model

The main idea behind the traditional high dimensional factor analysis is that the behavior
across T periods of a set of N observed random variables can be characterized by a linear
combination of K < min {N, T} factors plus an error term. Formally,

yit = λ0′
i f

0
t + e0

it
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where yit is the i-th observed random variable at time t, f 0
t is a vector containing K factors,

λ0
i is a vector of factor loadings or sensitivities of the i-th variable to each factor, e0

it is an iid
error term, and the superscript “0” stands for true or population parameters. The product
c0
it ≡ λ0′

i f
0
t is typically known as the common component of yit, whereas the error term is

sometimes called the idiosyncratic component. Also, the theory underlying high dimensional
factor analysis allows both N and T to be large, and it assumes that the number of factors
K is known1. Finally, note that all elements on the right-hand side of the above equation
are not observable by the econometrician.

In this paper, I extend the traditional high dimensional factor analysis model by allowing
the factors or the factor loadings, or both, to be a function of a random variable uit distributed
uniformly over the interval [0, 1]. To be precise, I consider that the dynamics of the observable
variable yit is dictated by the following data generating process

yit = λ0
i (uit)

′f 0
t (uit), uit ∼ U [0, 1] (1)

Assumption 1. For all i, t, and τ ∈ (0, 1), the common component c0
it(τ) ≡ λ0

i (τ)′f 0
t (τ) is

nondecreasing in τ .

Let τ ∈ (0, 1) and G ( ·| θ0
it(τ)) be the cumulative distribution function of yit conditional

on θ0
it(τ) ≡ [λ0

i (τ)′, f 0
t (τ)′]

′. Under Assumption 1, the τ -th conditional quantile function of
the observable variable yit given θ0

it(τ), Qyit (τ | θ0
it(τ)) ≡ inf {yit : G (yit| θ0

it(τ)) ≥ τ}, is given
by

Qyit
(
τ | θ0

it(τ)
)

= λ0
i (τ)′ f 0

t (τ) , τ ∈ (0, 1) (2)

where the number of factors, K(τ), is also allowed to be quantile-specific. In other words, the
above equation says that all conditional quantiles of the observable random variable yit have
a factor model structure. So, equation (1) summarizes the idea of a Quantile Factor Analysis
model and, consequently, we refer to f 0

t (τ) and λ0
i (τ) in equation (2) as quantile factors and

quantile factor loadings, respectively. At first glance, the linearity of the proposed framework
may seem restrictive. However, as will be seen in the next examples, equation (1) can nest
several nonlinear factor model structures.

Example 1 (Standard Factor Model). Let yit = α0
iβ

0
t + v0

it, where both α0
i and β0

t are
scalars, and v0

it is an iid random variable with cumulative distribution function Gv (·). By
defining v0

it ≡ G−1
v (uit), where uit ∼ U [0, 1] for all i and t, the standard factor model can

1If this assumption is relaxed, thenK can be consistently estimated from the data by using the information-
criteria-based tests proposed by Bai and Ng (2002), or the testing procedure presented in Onatski (2009),
Kapetanios (2010), and Ahn and Horenstein (2013).
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be rewritten in the form of (1) by setting λ0
i (uit) = [α0

i , 1]′ and f 0
t (uit) = [β0

t , G
−1
v (uit)]

′, or
λ0
i (uit) = [α0

i , G
−1
v (uit)]

′ and f 0
t (uit) = [β0

t , 1]′.

Example 2 (Location-Scale Factor Model). Let yit = α0
iβ

0
t + γ0

t v
0
it, where γ0

t > 0

for all t. Similar to the previous case, this model can be rewritten in the form of (1) by
defining λ0

i (uit) = [α0
i , G

−1
v (uit)]

′ and f 0
t (uit) = [β0

t , γ
0
t ]
′, or λ0

i (uit) = [α0
i , 1]′ and f 0

t (uit) =

[β0
t , γ

0
tG
−1
v (uit)]

′, where v0
it = G−1

v (uit) with uit ∼ U(0, 1) for all i and t.

Example 3 (Nonlinear Factor Model). Let yit = α0
iβ

0
t e
v0
it , where α0

i , β
0
t > 0 for all i and

t, respectively. If λ0
i (uit) = α0

i e
aG−1

v (uit) and f 0
t (uit) = β0

t e
(1−a)G−1

v (uit), a ∈ [0, 1], then this
model has the form of (1).

The examples exhibited above are only a few out of many cases where a QFA model can
represent a factor model structure. Example 1 corresponds to the standard linear case where
both the factors and the factor loadings affect only the mean of the observable variable, i.e.,
the homoskedastic case. Its configuration implies that only the factors (or the loadings) are
quantile-specific and that one of the factor loadings (or factors) has to be equal to 1. This
configuration implies, in turn, that the quantile functions given by (2) are simply a vertical
displacement of one another.

A somewhat more complicated case is considered in Example 2. In this context, the
factors affect not only the mean of the observable variable but also its variance. Thus, the
heteroskedasticity of this model is proportional to the square of γ0

t . Moreover, two key aspects
of this example are worth highlighting. First, Assumption 1 imposes an additional restriction
to the domain of one of the factors (γ0

t > 0), which suggests that equations (1) and (2) are
not necessarily equivalent, the latter being the most restrictive one. Second, the number of
factors depends indeed on τ . In particular, if the idiosyncratic component v0

it is symmetric
about the origin, then the conditional quantile function evaluated at the median is equal to
0 and f 0

t (0.5) = β0
t , i.e., K(0.5) = 1. On the contrary, for any τ 6= 0.5, the quantile function

is different from 0 and, consequently, f 0
t (τ) = [β0

t , γ
0
t ] and K(τ) = 2.

Finally, Example 3 is a nonlinear factor model describing the behavior of a strictly positive
observable variable. The data generating process implies that either the factors or the factor
loadings, or both, are quantile-specific. Lastly, note that log yit = logα0

i + log β0
t +G−1

v (uit),
that is, the factor model is linear for log yit so we can define λ̃0

i (uit) = [logα0
i +aG−1

v (uit) , 1]′

and f̃ 0
t (uit) = [1, log f 0

t + (1 − a)G−1
v (uit)], a ∈ [0, 1], and the transformed model has the

form of a QFA model.
The matrix representation of equation (2) is given by

QY
(
τ |θ0(τ)

)
= F 0 (τ) Λ0 (τ)′ , τ ∈ (0, 1)
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where Y is a T × N matrix of observable variables, F 0 (τ) = [f 0
1 (τ) , . . . , f 0

T (τ)]′ ∈ ΘF ⊂
RT×K(τ) is a T × K(τ) matrix of quantile factors, Λ0 (τ) = [λ0

1 (τ) , . . . , λ0
N (τ)]′ ∈ ΘΛ ⊂

RN×K(τ) is a matrix of quantile factor loadings of dimension N × K(τ), and θ0(τ) ≡
[Λ0(τ)′, F 0(τ)′]′. The T ×N matrix C0 (τ) ≡ F 0 (τ) Λ0 (τ)′ contains all the common compo-
nents of the QFA model.

2.2 Identification

In this section, I provide a set of assumptions under which the population quantile factor load-
ings and quantile factors, θ0(τ), are identified by the data. I start by defining identification
in this context.

Definition 1 (Identification). For all τ ∈ (0, 1), let θ(τ) = [Λ(τ)′, F (τ)′]′ be a parameter
matrix. We say that θ (τ) is identified at θ0 (τ) ∈ ΘΛ×ΘF based on the quantile loss function
ρτ (u) = (τ − 1{u < 0})u, where 1{·} is the indicator function, when

θ(τ) = arg min
[Λ′,F ′]′∈ΘΛ×ΘF

Sτ (Λ, F ) (3)

where

Sτ (Λ, F ) = E

[
N∑
i=1

T∑
t=1

ρτ (yit − λ′ift)

]
(4)

if and only if θ (τ) = θ0 (τ).

Definition 1 highlights the point that identification of θ0 (τ) depends crucially on whether
we can find the minimizer of the objective function Sτ (Λ, F ). However, this task is not as
straightforward as it appears. In this sense, and as noted by Koenker and Bassett (1978) and
Koenker (2005, pp. 32-33), the quantile loss function ρτ (·) is continuous, but piecewise linear
and not everywhere differentiable. So, to achieve the identification of the model’s parameters,
I provide below a set of conditions ensuring the existence of a minimizer.

Assumption 2 (Identification).

1. For all i, t, and τ ∈ (0, 1), the observable random variable yit is generated by the QFA
model (1) - (2) and has absolutely continuous conditional cumulative distribution func-
tions Git ( ·| θ0

it(τ)) and continuous, strictly positive conditional densities git ( ·| θ0
it(τ)).

2. For all τ ∈ (0, 1), rank (C0 (τ)) = K(τ).

3. For all τ ∈ (0, 1), any of the following restrictions (or rotations) apply
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(a) F 0 (τ)′ F 0 (τ) /T = IK(τ), where IK(τ) is the identity matrix of size K(τ); and
Λ0 (τ)′ Λ0 (τ) is a diagonal matrix of size K(τ), whose diagonal elements being
positive, distinct, and arranged in decreasing order.

(b) F 0 (τ)′ F 0 (τ) /T = IK(τ); and Λ0 (τ) = [Λ0
1 (τ)′ ,Λ0

2 (τ)′]′, where Λ0
1 (τ) is a lower

triangular matrix of size K(τ) with non-zero diagonal elements.

(c) Λ0 (τ) = [IK(τ),Λ
0
2 (τ)′]′.

Assumptions 2.1 and 2.2 allow for the identification of the common component C0 (τ). In
particular, a strictly positive density of yit conditional on λ0

i (τ) and f 0
t (τ) (i.e., git ( ·| θ0

it(τ)) >

0) implies that the quadratic approximation of the population objective function (4) centered
around θ0 (τ) attains a global minimum at C0 (τ). Given that the latter is of full rank by
Assumption 2.2, i.e., the system of linear equations derived from the first-order conditions are
non-degenerate, then the global minimum is unique. Assumption 2.3, on the other hand, iden-
tifies F 0 (τ) and Λ0 (τ) separately. To see this, note that for anyK(τ)×K(τ) invertible matrix
A we have that C0 (τ) = F 0 (τ) Λ0 (τ)′ = F 0 (τ)AA−1Λ0 (τ)′ = F̃ 0 (τ) Λ̃0 (τ)′ = C̃0 (τ), where
F̃ 0 (τ) = F 0 (τ)A and Λ̃0 (τ) = Λ0 (τ)A−1′. Because both common components are obser-
vationally equivalent, an additional structure must be imposed to determine the quantile
factors and quantile loadings uniquely. Since there are many ways to restrict F 0 (τ) and
Λ0 (τ), Assumption 2.3 provides three alternative, more or less arbitrary sets of rotations
that have been primarily used in traditional factor analysis models (see, for example, An-
derson and Rubin, 1956)2. Assumption 2.3a is the default rotation in principal component
analysis via maximum likelihood estimation (see Jolliffe, 2002, pp. 270-274). It is, in essence,
a statistical rotation since it allows us to concentrate out the factor loadings from the prin-
cipal components optimization problem. Consequently, the resulting factors correspond to√
T times the eigenvectors associated with the K(τ) largest eigenvalues of the matrix Y ′Y .

Assumption 2.3b, on its part, requires Λ0
1 (τ) to be an invertible lower triangular matrix. This

configuration implies that the first quantile factor affects the first observable variable only;
the first two quantile factors affect the first two observable variables only, and so on up to the
K(τ)-th quantile factor. Afterward, all observable variables are affected by all quantile fac-
tors. Because of its similarity with a triangular system of simultaneous equations, the related
literature refers to it as recursive rotation. It is frequently used in empirical research (see, for
example, Geweke and Zhou, 1996). Finally, Assumption 2.3c is related to the measurement

2Bai and Li (2012), and Bai and Ng (2013) mention that three more related rotations can be obtained
from Assumption 2.3 by switching the role of F 0 (τ) and Λ0 (τ). For instance, in Assumption 2.3a we can
alternatively consider that Λ0 (τ)

′
Λ0 (τ) /N = IK(τ) and F 0 (τ)

′
F 0 (τ) is a diagonal matrix of size K(τ) with

all its diagonal elements being positive, distinct, and arranged in decreasing order. I will not consider them
in this paper, but all results are straightforwardly extensible to this alternative set of rotations.

8



error literature, which implies that the first K(τ) observable variables are noisy measures
of the corresponding quantile factors (see Wansbeek and Meijer, 2000, pp. 148-150). Hence
its name errors-in-variables rotation. Note that, unlike the two previous cases, this rotation
imposes all the restrictions on the quantile loadings and, therefore, leaves the quantile factors
unrestricted.

Although Assumptions 2.1 and 2.2 ensure together the existence of a unique quantile com-
mon component that minimizes (3), the choice of a particular rotation is not innocuous for
the type of identification attained by F 0 (τ) and Λ0 (τ) individually. This choice is an issue
that has been discussed since Algina (1980) and Bekker (1986), among many others. In par-
ticular, Assumptions 2.3a and 2.3b are local identification conditions, whereas Assumption
2.3c is a global identification one. In the former cases, identification is only up to a column-
sign change because both F 0 (τ) and −F 0 (τ), and Λ0 (τ) and −Λ0 (τ) satisfy the restrictions
imposed by these rotations and deliver the same common component. To see this point,
suppose that we have identified C0 (τ). Then, orthogonality of the quantile factors under As-
sumptions 2.3a, or 2.3b implies that C0 (τ)′C0 (τ) /T = Λ0 (τ)′ Λ0 (τ). Finally, because the
common component is of full rank, we can identify the magnitude of each column of Λ0 (τ)

but not its sign. Thus, after fixing the sign of each column of Λ0 (τ) (or F 0 (τ)), the rotations
become global identification restrictions3. Note, furthermore, that there is another source
of indeterminacy associated with rotations 2.3a and 2.3b. If we switch positions between
the k-th and (k + 1)-th columns of F 0 (τ) and of Λ0 (τ), the common component remains
unchanged, implying that an ordering restriction needs to be imposed. That is exactly what
the last part of Assumption 2.3a does to avoid this issue: it arranges the diagonal elements of
the matrix Λ0 (τ)′ Λ0 (τ) in decreasing order. As for Assumption 2.3b, the ordering restriction
is imposed in terms of specifying which variable is affected by which factors, plus a non-zero
restriction to all diagonal elements of the matrix Λ0

1 (τ). Otherwise, the k-th and (k + 1)-th
columns of Λ0 (τ) will share the same structure, and, consequently, the common component
will violate Assumption 2.2. To understand why Assumption 2.3c achieves global identifica-
tion of the quantile factors and the quantile loadings, consider the following partition of the
quantile common component C0 (τ) = [C0

1 (τ) , C0
2 (τ)], where C0

1 (τ) and C0
2 (τ) are of dimen-

sion T ×K(τ) and T × (N −K(τ)), respectively. Therefore, F 0 (τ) and Λ0
2 (τ) are uniquely

identified from F 0 (τ) = C0
1 (τ) and Λ0

2 (τ) = C0
2 (τ)′ F 0 (τ)

(
F 0 (τ)′ F 0 (τ)

)−1, respectively.
Finally, the choice of observable variables that are assumed to be noise measurements of the
K(τ) underlying factors avoids the ordering indeterminacy of this rotation.

Definition 2 (Equivalence of Common Components). For all τ ∈ (0, 1), we say that
3An alternative way to achieve global identification under Assumption 2.3b is by normalizing to 1 all

diagonal elements of the matrix Λ0
1 (τ).
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two common components C0
1 (τ) and C0

2 (τ) with respective parameter matrices θ0
1 (τ) ∈ Θ1

and θ0
2 (τ) ∈ Θ2 are equivalent if there exists a one-to-one transformation between θ0

1 (τ) and
θ0

2 (τ) throughout Θ1 and Θ2 such that C0
1 (τ) = C0

2 (τ).

Proposition 1 (Equivalence of Rotations). Suppose that the ordering of the observable
variables Y is known and Assumption 2.2 is satisfied. Then, for all τ ∈ (0, 1), the rotations
described in Assumption 2.3 are equivalent.

Proposition 1 indicates that the rotations described in Assumption 2.3 yield common
components that are observationally equivalent. To achieve this equivalence, we necessarily
need to know the ordering of the observable variables contained in Y , a process that, in
some cases, is user-specified but, in other cases, is accommodated by a structural model (see
Skrondal and Rabe-Hesketh, 2004, pp. 108-112).

The equivalence of rotations, as stated in Proposition 1, is an essential feature of As-
sumption 2.3 in at least two dimensions. First, if the interest of the econometrician is to
model the τ -th quantile function of some observable variables, then the choice of rotations is
irrelevant. Second, and more importantly, the equivalence is vital in the estimation of QFA
models such as (2) in the sense that one can use the set of identifying restrictions that pose
the less restrictive rotation in terms of computational complexity and processing time. I will
discuss in detail this last point in the next section.

Next, I establish the first main result of this paper, namely the individual identification
of the quantile factors and the quantile factor loadings.

Theorem 1 (Identification). Suppose that Assumption 2 holds. Then, for every τ ∈ (0, 1),
both F 0 (τ) and Λ0 (τ) are identified.

The intuition behind Theorem 1 is as follows. The quantile factors and quantile factor
loadings of model (2) are individually identified as the minimizer of the population optimiza-
tion problem given by (3) - (4). To achieve this goal, the theorem considers a quadratic
approximation of the objective function (4) centered around θ0 (τ). This procedure has the
crucial feature that the global minimum is attained just at θ0 (τ), for all τ ∈ (0, 1), subject
to a particular rotation.

2.3 The QPC Estimator

In this section, I present the proposed algorithm to obtain the Quantile Principal Compo-
nents (QPC) estimator of both the quantile factors and quantile factor loadings of the QFA
model (2). Then, I discuss some of its properties, namely its convergence and computa-
tional complexity. I finalize the section with a finite-sample properties analysis of the QPC
estimator relative to the Principal Components (PC) estimator.
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I start by discussing two key issues related to the QPC estimator. First, let us consider
the sample analog of the objective function (4), Vτ (Λ, F ), defined as

Vτ (Λ, F ) =
1

NT

N∑
i=1

T∑
t=1

ρτ (yit − λ′ift) (5)

for all τ ∈ (0, 1), which is a convex function in terms of the common component C = FΛ′.
Nevertheless, for any value of τ ∈ (0, 1), this function is not simultaneously convex in both
Λ and F . But note that, when either of these two arguments is kept fixed, then the sample
analog of the objective function is a convex function, i.e., if Λ is kept fixed at, say Λ̄, then
Vτ
(
Λ̄, F

)
is convex in F . Similarly, if F is kept fixed at F̄ , then Vτ

(
Λ, F̄

)
is a convex function

in Λ. Thus, this key feature of the sample analog of the objective function given by equation
(5) motivates a two-step iterative procedure for obtaining the QPC estimator of θ0 (τ).

Second, and as discussed in the previous section, the individual identification of the
quantile factors and quantile factor loadings requires further restrictions on these parameters.
Assumption 2.3 serves this purpose, and according to Proposition 1, all rotations considered
in this assumption are equivalent if we know the ordering of the observable variables Y . This
feature means that we can use any of the identifying restrictions to obtain the QPC estimator
of θ0 (τ). In this sense, Assumption 2.3a imposes nonlinear restrictions on both the quantile
factors and the quantile factor loadings. In contrast, the recursive rotation (Assumption 2.3b)
imposes nonlinear restrictions on the quantile factors and linear restrictions on the quantile
factor loadings. Finally, the errors-in-variables rotation (Assumption 2.3c) considers linear
restrictions on the quantile factor loadings only and leaves the quantile factors unrestricted.
Thus, in terms of computational complexity, as we will see later in this section, the last
rotation is the most convenient one to obtain the QPC estimator of Λ0 (τ) and F 0 (τ).

Definition 3 (Quantile Principal Components Estimator). For any τ ∈ (0, 1), the
QPC estimator θ̂ (τ) = [Λ̂ (τ)′ , F̂ (τ)′]′ of θ0 (τ) = [Λ0 (τ)′ , F 0 (τ)′]′ can be obtained through
the following two-step iterative procedure:

1. Start with initial matrices Λ̂(j) (τ) = [IK(τ), Λ̂
(j)
2 (τ)′]′ and F̂ (j) (τ).

2. Step 1: Fix Λ̂(j) (τ). Then, estimate F̂ (j+1) (τ) from

QYt(τ | Λ̂(j)(τ)) = Λ̂(j) (τ) ft (τ) (6)

using quantile regressions for every t = 1, . . . , T , where Yt = [y1t, . . . , yNt]
′ is an N -

dimensional vector of observable variables.
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3. Step 2: Fix F̂ (j+1) (τ). Then, estimate Λ̂
(j+1)
2 (τ) from

QYi(τ | F̂ (j+1)(τ)) = F̂ (j+1) (τ)λi (τ) (7)

using quantile regressions for every i = K(τ) + 1, . . . , N , where Yi = [yi1, . . . , yiT ]′ is a
T -dimensional vector of observable variables.

4. For ε > 0 small, if
∥∥∥θ̂(j+1)

(τ)− θ̂
(j)

(τ)
∥∥∥ < ε, then θ̂ (τ) = θ̂

(j+1)
(τ). Else, set j = j+1

and repeat steps 1 and 2 until the previous condition is met.

The intuition behind the algorithm is straightforward. For a given τ , we start by guessing
an initial matrix of quantile factor loadings. Note that because we impose the errors-in-
variables rotation, the upper K(τ) × K(τ) partition of this guess has to be the identity
matrix. Next, fix the guessed quantile factor loadings and obtain an estimate of the quantile
factors using quantile regressions across cross-sections for each of the T periods (equation (6)).
Now, fix the values of the estimated quantile factors and get an estimate of the quantile factor
loadings using quantile regressions across periods for each of the N−K(τ) unrestricted cross-
sections (equation (7)). If the discrepancy between initial guesses and quantile regressions
estimates under the Euclidean norm metric is smaller than a predefined accuracy level ε, then
the algorithm terminates, and the QPC estimator θ̂ (τ) has been found. Otherwise, repeat
the above steps using the estimates of the quantile-specific factors and loadings as starting
values.

The name of the QPC estimator comes from its similarity with the PC estimator computed
using the EM algorithm (Dempster et al., 1977)4. In this context, the factors are treated as
the missing piece of information. Under the assumption that the common components are
iid Normal with known variance, in the E-step of the algorithm, the factors are estimated
using OLS across cross-sections given some initial values of the factor loadings. Then, in the
M-step, the loadings are estimated using OLS across the time-series dimension, given the
estimates of the factors5.

Some other algorithms available in the literature similar to my proposed procedure are
Alzate and Suykens (2005) and Lim and Oh (2016). The first paper considers alternative
objective functions such as Huber and quadratic epsilon intensive loss functions but under
a kernel PC analysis framework. Broadly speaking, the algorithm first maps the observable
variable onto a feature space using nonlinear functions induced by a kernel. In the second

4Although PC can be computed explicitly via the eigendecomposition of the Y Y ′ matrix in a very straight-
forward manner, the EM literature argues that the algorithm is an alternative that offers some attractive
features when the econometrician faces high dimensional datasets or missing data.

5See Rubin and Thayer (1982), Roweis (1998), or Tipping and Bishop (1999) for further details.
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step, it performs linear PC on the mapped data. The last paper, on the other hand, uses
a composite quantile, which is a weighted linear combination (data-adaptively determined)
of convex modified Huber loss functions instead of square loss functions, to better describe
non-Gaussian distributed data. As a consequence, the proposed procedure is a two-step
algorithm where the relevant parameters are estimated using the traditional least-squares
criterion given specific values of another group of parameters.

2.3.1 Convergence and Complexity of the QPC Estimator

Because the sample analog of the objective function is convex once one of its arguments
remains fixed, as highlighted at the beginning of this section, note that

Vτ (Λ̂
(j) (τ) , F̂ (j) (τ)) ≥ Vτ (Λ̂

(j) (τ) , F̂ (j+1) (τ)) ≥ Vτ (Λ̂
(j+1) (τ) , F̂ (j+1) (τ))

that is, Vτ (Λ, F ) does not increase after each iteration. Thus, this descent property guaran-
tees the convergence of the algorithm to a local minimum of the optimization problem given
by equations (3) and (5). To ensure that the QPC estimator θ̂ (τ) is not a local optimum,
one could use different random starting points and keep the solution that delivers the smaller
value of Vτ (Λ̂ (τ) , F̂ (τ)). Alternatively, we can use more sophisticated methodologies, such
as the one based on a deterministic annealing framework proposed by Zhou and Lange (2010),
for instance6.

On the other hand, the computational complexity of the algorithm, which can be under-
stood as the total iterations or total time required by an iterative procedure to achieve ter-
mination in the worst-case scenario, can be found as follows. According to Definition 3, QPC
estimation involves running a series of quantile regressions, computed using interior-point
methods7. Portnoy and Koenker (1997) establish that for a sample of size n and p estimated
parameters, the complexity of the interior-point algorithm is O

(
n5/2p3

)
. In this case, the

first step of the procedure computes K(τ) quantile factors from cross-sections of size N using
quantile regressions T times. Thus, this first step has a complexity order of O

(
N5/2TK(τ)3

)
6Deterministic annealing is a statistical technique for approximating the global minimum of a given func-

tion. It consists of two iterative steps. In the first one, the objective function is flattened using a tuning
parameter to eliminate (most of) its local minima. Then, optimization is performed using the transformed
objective function. In the second step, the flattened objective function is warped by reverting the value of
the tuning parameter with a single or handful of local minima with the hope that one of them corresponds
to the global optimum.

7Interior-point methods, also known as barrier methods, are a particular class of algorithms designed
to solve convex optimization problems that arose from the search for algorithms with better theoretical
properties than the simplex method. One of its main characteristics is that they require all iterates to satisfy
inequality constraints strictly. See Nocedal and Wright (2006, pp. 563-597) for further details about this
class of algorithms.
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per iteration. Analogously, the second step is of order O
(
(N −K(τ))T 5/2K(τ)3

)
per iter-

ation because it estimates K(τ) quantile factor loadings from time series of size T using
quantile regressions N −K(τ) times.

Given the above results, the overall complexity of the QPC algorithm isO(NT (K(τ) · δNT )3)

per iteration, where δNT ≡ max
{√

N, (1−K(τ)/N)1/3
√
T
}
. Relative to the EM algorithm,

there is an unfavorable gap, because the complexity, in this case, is limited by O (TNK(τ))

per iteration (Roweis, 1998). Note also that the overall complexity depends crucially on the
rotation adopted to derive the QPC estimator. If one considers the traditional or the recursive
rotation instead, then the complexity of the algorithm is O

(
NTK(τ)3 ·max

{
N3/2, T 3/2

})
in the worst-case scenario. The difference becomes apparent once we analyze the nature of
the observable variables. If T grows at a much faster rate than N , as could be the case of
macroeconomic data, then the complexity is of order O

(
NT 5/2K(τ)3

)
under the traditional

and recursive rotations, but of smaller order O
(
(N −K(τ))T 5/2K(τ)3

)
in the default case.

Therefore, improvements in complexity under the errors-in-variables rotation are consider-
able when the number of quantile factors to be estimated is large. On the contrary, if N
grows faster than T , as could be the case of microeconomic data, then the complexity of
the algorithm is O

(
N5/2TK(τ)3

)
under any rotation, i.e., there is no gain in selecting one

rotation over another.
To get an upper bound of the number of required iterations for convergence of the al-

gorithm, suppose that after each iteration the distance between the QPC estimator θ̂
(j)

(τ)

and the true value of the parameters θ0(τ) is reduced by a proportion 0 < ∆NT < 1,
that is

∥∥θ̂(j)
(τ) − θ0 (τ)

∥∥ = ∆NT ·
∥∥θ̂(j−1)

(τ) − θ0 (τ)
∥∥. Therefore, after I iterations,

an initial distance
∥∥θ̂(0)

(τ) − θ0 (τ)
∥∥ is reduced by (∆NT )I ·

∥∥θ̂(0)
(τ) − θ0 (τ)

∥∥. From
Definition 3 and the triangle inequality, we note that the iterative procedure stops when
(∆NT )I ·

∥∥θ̂(0)
(τ) − θ0 (τ)

∥∥ < ε. Thus, the number of iterations I for termination of the
algorithm is

I <
log ε− log

∥∥∥θ̂(0)
(τ)− θ0 (τ)

∥∥∥
log ∆NT

The worst-case scenario literature applied to this case suggests ∆NT < 1− (NT )−1/2 and
assumes that the distance

∥∥θ̂(0)
(τ)− θ0 (τ)

∥∥ is independent of N and T (see Cormen et al.,
2001, pp. 62-84). Therefore, the number of required iterations I is of order O(

√
NT log ε),

and the complexity of the algorithm as a whole is O((
√
NTK(τ) · δNT )3 log ε).
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2.3.2 Performance of the QPC Estimator

In this section, I explore the finite sample properties of the QPC estimator with Monte Carlo
simulations. In particular, I consider three data generating processes (DGP) based on the
examples described at the beginning of this section:

• DGP 1: yit = α0
iβ

0
t + v0

it, where α0
i , β0

t , and v0
it are independent draws from N (0, 1).

• DGP 2: yit = α0
iβ

0
t + γ0

t v
0
it, where γ0

t = ex
0
t ; and α0

i , β0
t , x0

t , and v0
it are independent

draws from N (0, 1).

• DGP 3: yit = α0
iβ

0
t e
v0
it , where α0

i = ez
0
i , β0

t = ew
0
t ; and z0

i , w0
t , and v0

it are independent
draws from N (0, 1).

In all DGP’s, I consider three different cross-section dimensions, N = {10, 50, 100}, and four
different time series dimensions, T = {50, 100, 200, 1000}. Each configuration was simulated
1000 times, and in each simulation, I compute the PC estimators θ̃ = [Λ̃′, F̃ ′]′ and the QPC
estimators θ̂ (τ) = [Λ̂ (τ)′ , F̂ (τ)′]′ for τ = {0.25, 0.50, 0.75}. Note that under DGP 1 and
DGP 2, K(τ) = 1 for τ = 0.5 and K(τ) = 2 for τ 6= 0.5, whereas K(τ) = 1 for all τ ∈ (0, 1)

in DGP 3. I also kept track of the correlation between the estimated and true factors and
factor loadings to measure the estimation precision of PC and QPC.

Table 1 shows the average correlation associated with the simulations under the standard
factor model setup (DGP 1). Several findings are worth highlighting from it. Firstly, both
PC and QPC do a remarkable job of estimating the simulated factors and factor loadings.
In fact, in all cases considered, the average correlation between the simulated and estimated
parameters is above 0.85. In the particular case of the QPC estimator with τ = 0.5, it spikes
to over 0.99 when both N and T are greater or equal than 100, which suggests that the
estimated parameters can be effectively treated as the true ones. Secondly, it is clear from
Panels A and B of Table 1 that the estimation precision of the factor and factor loading tends
to improve as N and T becomes larger, respectively. This result is expected because the first
and second steps of the QPC algorithm uses cross-section and time-series data to estimate
the quantile factors and the quantile loadings, respectively. Thus, as N and T become larger,
the estimates get closer to the corresponding true parameters for each i and t. Thirdly, when
τ 6= 0.5, the QPC method fails to precisely estimate α0

i and β0
t . This outcome, which worsens

as both N and T becomes larger, has his root in the misspecification of the quantile factor
model. Recall from Example 1 that DGP 1 can be rewritten in the form of equation (1)
by setting λ0

i (uit) = [α0
i , 1]′ and f 0

t (uit) = [β0
t ,Φ

−1 (uit)], where Φ−1 (·) is the inverse of the
standard normal distribution function. This means that, when τ = 0.5, the model imposes
K(0.5) = 1 factor, whereas when τ = 0.25 or τ = 0.75, it imposes K(0.25) = K(0.75) = 2
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factors. Thus, the results showed in Table 1 support the good properties of the QPC estimator
in identified quantile factor analysis models over all quantiles τ ∈ (0, 1).

Figure 1 plots the simulated and estimated factors obtained using the PC and QPC
methodologies for the particular case where N = 10 and T = 200, as a way to quantify the
estimation bias graphically. All panels of this figure show that the QPC estimators with
τ = {0.25, 0.50, 0.75} and the PC estimator are, in effect, unbiased, which is consistent with
the average correlation measure discussed previously. Note, however, that the PC estimator is
more efficient than the QPC estimators. One reason that could explain this result is that the
QPC estimator does not have a closed-form solution, as is the case of the PC methodology via
the eigendecomposition of the Y ′Y matrix. Thus, the solution of the optimization problem
has to be calculated numerically. Panels (b) and (d) of this figure also shows that the QPC
estimator when τ = 0.25 or τ = 0.75 is slightly less precise than the same estimator computed
at the median. This result could be because at these quantiles, the data is sparser than at
τ = 0.5. Consequently, both quantile factors and quantile loadings are characterized less
accurately.

Table 2 shows the average correlation between the simulated and estimated factors under
the second DGP. From Panel A of this table, we can see that both estimation methodologies
well capture the first factor β0

t . In fact, in most cases, the average correlation is well above
0.90, and, as mentioned previously, it improves as N becomes larger. Another result to point
out from Panel A is that the estimates of quantiles at the tails of the distribution are, on
average, less accurate than those located at the center of the distribution. Note that under
this DGP, E [yit|α0

i , β
0
t ] = Qyit (0.50|α0

i , β
0
t ) = α0

iβ
0
t , i.e., the center of the joint conditional

distribution of yit is determined by one factor only. In this manner, the QPC estimator
with τ = 0.50 and the PC estimator does a remarkably good job in computing an estimator
of β0

t . In particular, the average correlation is over 0.9, even for small values of N , and
both estimators can be effectively treated as the true ones when N ≥ 50. This result is
also observed in the case of the QPC estimator with τ = 0.25 or τ = 0.75, although the
average correlations are somewhat smaller. On the other hand, for any τ 6= 0.5, we have that
Qyit (τ) = α0

iβ
0
t +γ0

t Φ
−1 (τ), which means that these quantiles contain additional information

that is exploited by the QPC methodology to compute an estimator for γ0
t . Panel B of this

table indicates that, in general, the QPC methodology with τ = 0.25 or τ = 0.75 delivers
accurate estimators of γ0

t when N = 50 or larger. Figures 2 and 3 corroborate these results
concerning the estimators of the first and second factors, respectively.

Finally, Table 3 depicts the average correlation between the simulated and estimated
factor and factor loading under a nonlinear factor model (DGP 3). Here we note that, for
any value of τ , the QPC methodology has a better performance relative to PC. For instance,
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when N = 100 and T = 1000, the average correlation between the simulated and estimated
factors via PC is about 0.85, whereas this correlation is around 0.95 for the QPC estimates
(Panel A). A similar result is found in the case of the quantile factor loadings estimates. From
Panel B, we see that when N = 100, the mean average correlation is around 0.90 under PC,
whereas it is close to 0.97 under QPC. So, the estimated factor loadings can be effectively
treated as the true ones for all values of τ considered. In terms of efficiency, Figure 4 points
to the QPC as the clear winner. Panels (b) through (d) show that, for all values of τ , the
QPC estimates are very close to their population counterparts. On the contrary, the PC
estimator displays a considerable variability around the simulated series, predicting in some
cases, negative values of β0

t . This result is at odds with the non-negativity assumption on
this factor.

3 Asymptotic Theory

I start this section by presenting a set of assumptions required to establish the uniform con-
sistency of the QPC estimator of the quantile factors, quantile factor loadings, and quantile
common component of the QFA model (2). Next, I provide some additional assumptions that
are used to derive an asymptotic theory for these estimators. Then, I discuss some aspects
related to the computation of consistent estimators for the asymptotic variance-covariance
matrices. Finally, I carry out Monte Carlo simulations intending to evaluate the adequacy of
the asymptotic results for approximating the finite sample distributions of the estimators.

3.1 Consistency of the QPC Estimator

At this point, it is convenient to introduce some additional notation. For all i, t, and
τ ∈ (0, 1), let ε0

it (τ) ≡ yit−Qyit (τ) be the quantile factor residual of model (2). I now make
the following assumptions.

Assumption 3 (Uniform Consistency).

1. For a given i and τ ∈ (0, 1), ψτ (ε0
it (τ)) = 1 {ε0

it (τ) < 0}− τ is a martingale difference
sequence with respect to λ0

i (τ) and f 0
t (τ). Also, for all i 6= j, ε0

it (τ) and ε0
jt (τ) are

independent.

2. For all i and t, the conditional densities git( ·| θ0
it(τ)) satisfy Assumption 2.1 and

0 < Lg ≤ git

(
G−1
it

(
τ | θ0

it(τ)
)∣∣∣θ0

it(τ)
)
≤ Ug <∞
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3. For any ε > 0, there exists σ (ε) > 0 such that∣∣∣git (G−1
it

(
τ | θ0

it(τ)
)

+ c
∣∣∣θ0
it(τ)

)
− git

(
G−1
it

(
τ
∣∣θ0
it(τ)

)∣∣∣θ0
it(τ)

)∣∣∣ < ε

for all |c| < σ (ε), and all i and t.

4. Quantile factors. For all τ ∈ (0, 1),

(a) T−1
∑T

t=1 f
0
t (τ) f 0

t (τ)′
p→ Σ0

F (τ) as T → ∞ for some K(τ)×K(τ) positive defi-
nite, non-random matrix.

(b) sup1≤t≤T ‖f 0
t (τ)‖ = op

(
T 1/2

)
.

5. Quantile factor loadings. For all τ ∈ (0, 1),

(a) N−1
∑N

i=1 λ
0
i (τ)λ0

i (τ)′
p→ Σ0

Λ (τ) as N → ∞ for some K(τ) × K(τ) positive
definite, non-random matrix.

(b) sup1≤i≤N ‖λ0
i (τ)‖ = op

(
N1/2

)
.

Assumption 3.1 is familiar in the quantile regression literature (see Koenker and Bassett,
1978; Koenker, 2005). For a given cross-section i and quantile indicator τ , it restricts the
dependence of the dichotomous random variable ψτ (ε0

it (τ)) with past values. It also excludes
cross-sectional dependence of the quantile factor residual ε0

it (τ) but allows for heteroskedas-
ticity and dynamic models. Assumptions 3.2 and 3.3 are similar to those considered in Oka
and Qu (2011). They are local because they impose restrictions over the conditional densities
evaluated at the quantile of interest instead of over the whole conditional distribution of the
observable variable yit. In particular, Assumption 3.2 requires that the conditional densities
evaluated at the τ -th quantile are uniformly bounded away from zero and infinity for all i and
t. This requirement implies that git( ·| θ0

it(τ)) can be unbounded at any quantile different from
τ . Assumption 3.3, on its part, imposes smoothness of git( ·| θ0

it(τ)) in a neighborhood of the
τ -th quantile of yit. Assumptions 3.4 and 3.5 impose some structure on the quantile factors
and quantile factor loadings, respectively. The first part of these assumptions are standard
in large dimensional factor models (see, for instance, Bai and Ng, 2002; Bai, 2003; Bai and
Ng, 2008; Bai and Li, 2012, among others). They together imply the existence of K(τ) unob-
served quantile factors, each having a non-trivial contribution to the τ -th conditional quantile
function of yit. The main difference with the traditional literature, however, is that in this
setup, the matrices Σ0

F (τ) and Σ0
Λ(τ) are also quantile-specific. Part (b) of Assumptions 3.4

and 3.5, which is familiar in the literature of M-estimators (see Huber and Ronchetti, 2009,
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pp. 126-130), is required to ensure the stochastic equicontinuity of the sequential empirical
processes derived from the estimation of the quantile factor residuals ε0

it (τ).
I illustrate the implications of Assumptions 3.1 to 3.3 by considering the examples de-

scribed in Section 2.1. Note that I do not include Assumptions 3.4 and 3.5 in this analysis
because they imply restrictions over the quantile factors and quantile factor loadings, respec-
tively, that are independent of the model structure.

Example 1 (Standard Factor Model). Because v0
it is iid, Assumption 3.1 is satisfied due

to the independence of v0
it. Moreover, because v0

it has cumulative distribution function Gv(·)
and density gv(·), then git(G

−1
it (τ)

∣∣ θ0
it(τ)) = gv(G

−1
v (τ)), where G−1

v (τ) denotes the τ -th
quantile function of v0

it. Thus, Assumption 3.2 is satisfied if Gv(·) is absolutely continuous
with continuous density gv(·) fulfilling 0 < Lg ≤ gv(G

−1
v (τ)) ≤ Ug < ∞. Assumption 3.3 is

satisfied if, additionally, gv(·) is continuous in an open ball around the τ -th quantile of yit.

Example 2 (Location-Scale Factor Model). Similar to the previous case, Assumption
3.1 is satisfied because of the independence of v0

it. However, in this case, git(G−1
it (τ)

∣∣ θ0
it(τ)) =

gv(G
−1
v (τ))/γ0

t , γ0
t > 0 for all t, implying that Assumption 3.2 is met if Gv(·) is absolutely

continuous, the density is continuous and satisfies δv < gv(G
−1
v (τ)) < ∞, and γ0

t < ∞ for
all t for some arbitrary strictly positive constant δv. If gv(·) is also continuous around the
quantile of interest, then Assumption 3.3 is satisfied.

Example 3 (Nonlinear Factor Model). Again, Assumption 3.1 is satisfied because of the
independence of v0

it. Because git(G
−1
it (τ)

∣∣ θ0
it(τ)) = gv(G

−1
v (τ))/yit and yit > 0 for all i and t,

Assumptions 3.2 and 3.3 are satisfied by similar arguments of Example 2. However, we also
require yit <∞ for all i and t in this case.

Next, I establish the second main result of this paper, namely the uniform consistency of
the QPC estimator.

Theorem 2 (Uniform Consistency of the QPC Estimator). Suppose that Assumption
3 holds. Let θ̂ (τ) be the QPC estimator of θ0 (τ) =

[
Λ0 (τ)′ , F 0 (τ)′

]′ obtained using a panel
consisting of i = 1, . . . , N cross-sections and t = 1, . . . , T periods. Then, as N, T → ∞, for
every τ ∈ (0, 1)

1. Uniformly in i, √
T
∥∥∥λ̂i(τ)− λ0

i (τ)
∥∥∥ = Op(1)
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2. Uniformly in t. √
N
∥∥∥f̂t(τ)− f 0

t (τ)
∥∥∥ = Op(1)

The proof of Theorem 2 consists of two parts. In the first part, I show the uniform
consistency of the QPC estimator of the common component ĉit (τ) = λ̂i (τ)′ f̂t (τ), which is
a strategy similar to the one used in Chen et al. (2014) in the context of nonlinear panel data
models with interactive effects. The proof relies on the convexity of the objective function
Vτ (Λ, F ) for the quantile common component of yit, and the compactness of the set Θ ⊂ R,
which contains the difference φ̂it(τ) = λ̂i(τ)′f̂t(τ)− λ0

i (τ)′f 0
t (τ). In particular, if consistency

does not hold, then the centered objective function evaluated at a fixed φ̂it (τ) is strictly
positive with probability close to 1, thus implying that ĉit (τ) cannot be its minimizer. So,
this part of the proof concludes that

min
{√

N,
√
T
}
·
∣∣ĉit (τ)− c0

it (τ)
∣∣ = Op (1) (8)

for fixed i and t. Then, by a standard Uniform Weak Law of Large Numbers argument, the
above result also holds uniformly in i and t. In this part, I only require Assumptions 3.1
to 3.3 since they impose restrictions over the random variable ψτ (ε0

it (τ)), which in turn is a
function of c0

it (τ), and over the conditional densities git( ·| θ0
it(τ)) evaluated at the quantile of

interest, respectively.
In the second part of the proof, I show the uniform consistency of both f̂t (τ) and λ̂i (τ)

starting from equation (8). To achieve this goal, I employ a first-order approximation of
φ̂it (τ) in terms of the differences φ̂λi (τ) ≡ λ̂i(τ)− λ0

i (τ) and φ̂ft (τ) ≡ f̂t(τ)− f 0
t (τ), together

with the strong factor structure implied by the second part of Assumptions 3.4 and 3.5. Then,
the argument exploits the fact that, as N, T → ∞, equation (8) is op(1). Therefore, both√
T
∥∥∥λ̂i(τ)− λ0

i (τ)
∥∥∥ and

√
N
∥∥∥f̂t(τ)− f 0

t (τ)
∥∥∥ have to be Op(1) jointly to meet this condition.

3.2 Asymptotic Distribution of the QPC Estimator

In this section, I impose the following additional assumptions to derive the limiting distribu-
tion of the QPC estimators λ̂i(τ), f̂t(τ), and ĉit(τ).

Assumption 4. Let git( ·| θ0
it(τ)) and Git( ·| θ0

it(τ)) be the conditional density and the condi-
tional cumulative distribution function, respectively, of the observable random variable yit in
the QFA model (2). Then, for any τ ∈ (0, 1),

1. T−1
∑T

t=1 git

(
G−1
it (τ | θ0

it(τ))
∣∣∣θ0
it(τ)

)
f 0
t (τ)f 0

t (τ)′
p→ H0

i (τ) uniformly in i as T →∞ for
some K(τ)×K(τ) positive definite, non-random matrix.
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2. N−1
∑N

i=1 git

(
G−1
it (τ | θ0

it(τ))
∣∣∣θ0
it(τ)

)
λ0
i (τ)λ0

i (τ)′
p→ J0

t (τ) uniformly in t as N →∞ for
some K(τ)×K(τ) positive definite, non-random matrix.

Assumption 4 above imposes some restrictions on the heteroskedasticity of the model.
To see this, note that both H0

i (τ) and J0
t (τ) are the limits of a matrix that is a function of

the conditional density git(·
∣∣θ0
it(τ)) evaluated at the quantile of interest; the latter being the

reciprocal of an object that is known in the related literature as the quantile density function8.
In this sense, if there is a high number of observations near the quantile of interest, i.e., the
data is locally dense, then G−1

it (τ | θ0
it(τ)) can be characterized accurately. On the contrary,

if the data around the quantile of interest is sparse, then the characterization of this element
is less precise. Moreover, the assumptions on git( ·| θ0

it(τ)) allow the local density of the data
to vary across time-series and cross-sections, impacting the heteroskedasticity of the model.

Next, I establish the third main result of this paper, namely the asymptotic distribution
of the QPC estimators of the quantile factors and quantile factor loadings.

Theorem 3 (Asymptotic Distribution of λ̂i(τ) and f̂t(τ)). Suppose that Assumptions
3 and 4 hold. Let λ̂i(τ) and f̂t(τ) be the QPC estimator of the quantile factor loadings λ0

i (τ)

and quantile factors f 0
t (τ), respectively. Then, as N, T →∞, for any τ ∈ (0, 1),

1. Uniformly in i, if
√
T/N → 0

√
T
(
λ̂i(τ)− λ0

i (τ)
)

d→ N
(
0, τ(1− τ)H0

i (τ)−1Σ0
F (τ)H0

i (τ)−1
)

2. Uniformly in t, if
√
N/T → 0

√
N
(
f̂t(τ)− f 0

t (τ)
)

d→ N
(
0, τ(1− τ)J0

t (τ)−1Σ0
Λ(τ)J0

t (τ)−1
)

where T−1
∑T

t=1 f
0
t (τ)f 0

t (τ)′
p→ Σ0

F (τ) and N−1
∑N

i=1 λ
0
i (τ)λ0

i (τ)′
p→ Σ0

Λ(τ) as T → ∞ and
N →∞, respectively.

The proof of Theorem 3 relies on the properties of the sub-gradient of the objective
function Vτ (Λ, F ) defined in (5), evaluated at the QPC estimator θ̂(τ) = [Λ̂(τ)′, F̂ (τ)′]′.
Recall that the quantile loss ρτ (·) is a piecewise linear and continuous function. Thus,
Vτ (Λ, F ) is everywhere differentiable except at the points at which the objective function
is equal to zero. Therefore, the optimality conditions of the problem are defined in terms of
the sub-gradient, rather than the gradient of Vτ (Λ, F ). In this manner, since the objective

8Alternatively, Tukey (1965) refers to this object as the sparsity function.
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function has two arguments, the respective sub-gradient vectors for any i, t, and τ ∈ (0, 1)

are the following

RΛ
i,τ (Λ, F ) = (NT )−1/2

T∑
t=1

ψτ (yit − λ′ift)ft (9)

RF
t,τ (Λ, F ) = (NT )−1/2

N∑
i=1

ψτ (yit − λ′ift)λi (10)

The first part of the proof provides a uniform asymptotic approximation for the sub-
gradients evaluated at the QPC estimators using the uniform consistency of θ̂(τ) and an
argument similar to the one employed by Qu (2008) in the derivation of the limiting distri-
bution of a test for structural change in the context of quantile regressions. Specifically, the
first part of the proof demonstrates that RΛ

i,τ (Λ̂(τ), F̂ (τ)) and RF
t,τ (Λ̂(τ), F̂ (τ)) can be ap-

proximated by RΛ
i,τ (Λ

0(τ), F 0(τ)) and RF
t,τ (Λ

0(τ), F 0(τ)), correspondingly, an additional term
capturing the difference between the QPC estimators and their actual counterparts, and an
op(·) term. Based on this result, the second part shows that the previous approximation
admits a Bahadur representation, i.e., both

√
T (λ̂i(τ) − λ0

i (τ)) and
√
N(f̂t(τ) − f 0

t (τ)) can
be expressed as a normalized sum of martingale difference sequences plus a random variable
that converges in probability to zero9. Using this approximation, I invoke a standard uniform
central limit theorem to show the asymptotic normality of the QPC estimator of both the
quantile factors and the quantile factor loadings.

The results of Theorem 3 allow both N and T to become large simultaneously. However,
additional restrictions on the relationship between these two dimensions need to be imposed.
In particular, in the case of λ̂i(τ), the time dimension T has to grow faster than the cross-
section dimension N for the result to hold. If on the contrary

√
T/N → δ > 0, then the

limiting distribution will not be centered at zero because of an additional Op(1) term in the
asymptotic approximation of the sub-gradient (9) when evaluated at the QPC estimator.
Further, the convergence rate implied by the theorem is min{N,

√
T}. To see this, note that

the asymptotic distribution of λ̂i(τ) can we expressed as follows

(
r2
NT

T
τ(1− τ)H0

i (τ)−1Σ0
F (τ)H0

i (τ)−1

)−1/2

rNT (λ̂i(τ)− λ0
i (τ))

d→ N (0, IK(τ))

9For more details about the Bahadur representation of uniform quantile processes, see Bahadur (1966)
and Kiefer (1967). For more information about the use of this representation within a quantile regression
context, see Koenker and Portnoy (1987), Portnoy and Koenker (1989), Gutenbrunner and Jureckova (1992),
Koenker and Machado (1999), and Koenker and Xiao (2002), among others.
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where rNT = min{N,
√
T}. Since

√
T/N → 0, the denominator of the previous expression

is bounded above and below, and the convergence rate of the estimator is min{N,
√
T} as

mentioned before, which captures the fact that to compute λ̂i(τ) we also need to estimate
the quantile factors because the econometrician does not observe F 0(τ) = [f 0

1 (τ), . . . , f 0
T (τ)]′.

If F 0(τ) is observed, then λ̂i(τ) is obtained simply by running quantile regressions across
periods for each cross-section i, and the convergence rate is, therefore, the usual

√
T (see

Koenker, 2005). Analogously, in the case of f̂t(τ), the cross-section dimension N has to
grow faster than the time dimension T to avoid an asymptotic bias due to the appearance of
an extra Op(1) term when approximating RF

t,τ (Λ̂(τ), F̂ (τ)). Its limiting distribution can be
alternatively expressed as

(
r̃2
NT

N
τ(1− τ)J0

t (τ)−1Σ0
Λ(τ)J0

t (τ)−1

)−1/2

r̃NT (f̂t(τ)− f 0
t (τ))

d→ N
(
0, IK(τ)

)
where r̃NT = min {

√
N, T}. The denominator of this expression is bounded both above

and below because
√
N/T → 0. This result implies that the convergence rate, in this

case, is min{
√
N, T} given that the quantile factor loadings are not observable and need

to be estimated. If Λ0(τ) = [λ0
1(τ), . . . , λ0

N(τ)]′ is observed, then f̂t(τ) is computed from
longitudinal quantile regressions for each period t and the convergence rate attained is

√
N .

Another feature of Theorem 3 is the fact that the covariance matrix of the limiting
distribution of λ̂i(τ) and f̂t(τ) depends on Σ0

F (τ) and Σ0
Λ(τ), respectively. This feature is

an expected result since, in the first case, the QPC algorithm computes the estimator of
the quantile loadings from the observable variables yit, treating F̂ (τ) as the actual quantile
factors. Hence, the asymptotic variance of λ̂i(τ) reflects this feature by incorporating a term
that captures the contribution of F 0(τ) to the τ -th quantile of yit. A symmetric argument
applies for the case of f̂t(τ) and Σ0

Λ(τ). Lastly, the matrices H0
i (τ) and J0

t (τ) incorporate
the number of observations close to the quantile of interest into the asymptotic variances in
the following manner. If the density of observations around τ ∈ (0, 1) is high (low), the QPC
estimator is computed more (less) accurately, and we would expect therefore a lower (higher)
asymptotic variance.

Below, I establish the asymptotic distribution of the quantile common component, which
corresponds to the last main result of this paper.

Theorem 4 (Asymptotic Distribution of ĉit(τ)). Suppose that Assumptions 3 and 4
hold. Let ĉit(τ) = λ̂i(τ)′f̂t(τ) be the QPC estimator of the quantile common component
c0
it(τ). Then, as N, T →∞, for any τ ∈ (0, 1),
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(
U0
it(τ)

T
+
W 0
it(τ)

N

)−1/2

(ĉit(τ)− c0
it(τ))

d→ N (0, 1)

uniformly in i and t, where

U0
it(τ) = τ(1− τ)f 0

t (τ)′H0
i (τ)−1Σ0

F (τ)H0
i (τ)−1f 0

t (τ)

and
W 0
it(τ) = τ(1− τ)λ0

i (τ)′J0
t (τ)−1Σ0

Λ(τ)J0
t (τ)−1λ0

i (τ)

The proof of the theorem above uses the results of Theorem 3 by recalling that c0
it(τ) =

λ0
i (τ)′f 0

t (τ), for all i, t, and τ ∈ (0, 1). Specifically, the argument is based on a uniform
asymptotic approximation intended to express the difference ĉit(τ) − c0

it(τ) as the sum of
two asymptotically independent random variables. Then, using this approximation, the final
result follows straightforwardly by Slutsky’s theorem and a Uniform Weak Law of Large
Numbers.

One important implication of the Theorem 4 is that, as opposed to the previous theorem,
it does not impose any restriction on the relationship between N and T , i.e., the ratio

√
T/N

or
√
N/T can attain any limit. Further, the asymptotic distribution of ĉit(τ) can be rewritten

as follows (
r̄2
NT

T
U0
it(τ) +

r̄2
NT

N
W 0
it(τ)

)−1/2

r̄NT
(
ĉit(τ)− c0

it(τ)
) d→ N (0, 1)

where r̄NT = min{
√
N,
√
T}. Regardless of the relationship between N and T , the denomina-

tor of this expression is bounded both above and below. Hence, the convergence rate, in this
case, is min{

√
N,
√
T}, which means that when the true quantile factors F 0(τ) are observed,

then the estimation of the quantile common component is equivalent to the estimation of
λ̂i(τ) via quantile regressions across periods. The convergence rate is, therefore,

√
T . Con-

versely, if Λ0(τ) is observed, then the computation of ĉit(τ) is equivalent to the computation
of f̂t(τ) using longitudinal quantile regressions, and so the convergence rate is

√
N .

Lastly, note that Theorem 4 has two special cases. First, if N/T → 0, then for any
τ ∈ (0, 1) the asymptotic distribution of ĉit(τ) is given by

√
N
(
ĉit(τ)− c0

it(τ)
) d→ N

(
0, τ(1− τ)λ0

i (τ)′J0
t (τ)−1Σ0

Λ(τ)J0
t (τ)−1λ0

i (τ)
)

In the second case, if T/N → 0, then the limiting distribution is as follows

√
T
(
ĉit(τ)− c0

it(τ)
) d→ N

(
0, τ(1− τ)f 0

t (τ)′H0
i (τ)−1Σ0

F (τ)H0
i (τ)−1f 0

t (τ)
)
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for all τ ∈ (0, 1).

3.2.1 Estimation of Asymptotic Variance-Covariance Matrices

In this section, I propose consistent estimators for the asymptotic variance-covariance matri-
ces of the QPC estimators derived in Theorems 3 and 4. As noted before, the main ingredients
are the matrices Σ0

F (τ) and Σ0
Λ(τ). They capture the contribution of the quantile factors and

quantile loadings to the total variance of yit, respectively, as well as the matrices H0
i (τ) and

J0
t (τ) that are related to the data dispersion around τ ∈ (0, 1).
First, the matrices Σ0

F (τ) and Σ0
Λ(τ) depend only on F 0(τ) and Λ0(τ), correspondingly.

Thus, in light of the results implied by Theorem 2, a consistent estimator of these matrices
is given by

Σ̂F (τ) =
1

T

T∑
t=1

f̂t(τ)f̂t(τ)′ (11)

and

Σ̂Λ(τ) =
1

N

N∑
i=1

λ̂i(τ)λ̂i(τ)′ (12)

for each τ ∈ (0, 1).
The matrices H0

i (τ) and J0
t (τ), on their part, need to be analyzed in more detail since

they both depend on the conditional density git(·
∣∣θ0
it(τ)) evaluated at the quantile of interest,

i.e., the reciprocal of the quantile density function. Because this quantity is unknown in
practice, a vast literature that started with the work by Siddiqui (1960) has been devoted
to its estimation. In particular, the approximation proposed by the author is based on
the derivative of the inverse function, i.e., dG−1

it (τ | θ0
it(τ))/dτ = 1/git

(
G−1
it (τ | θ0

it(τ))
∣∣∣θ0
it(τ)

)
,

where the derivative, in turn, can be approximated numerically by the following expression

dG−1
it (τ

∣∣θ0
it(τ))

dτ
≈ G−1

it (τ + h| θ0
it(τ))−G−1

it (τ − h| θ0
it(τ))

2h

and h > 0 is a bandwidth parameter that usually depends on the sample size. For some
small h, the previous approximation is preferable to the alternative (G−1

it (τ + h| θ0
it(τ)) −

G−1
it (τ | θ0

it(τ)))/h because in the former case the error is of order O(h4), whereas in the
latter is of order O(h2)10. These two elements imply that git

(
G−1
it (τ | θ0

it(τ))
∣∣ θ0

it(τ)
)
can be

estimated from the so-called difference quotient

10By straightforward Taylor expansions we have that G−1
it ( τ+h|θ0it(τ))−G

−1
it ( τ |θ0it(τ))

h =
dG−1

it ( τ |θ0it(τ))
dτ +

h
2

d2G−1
it ( τ |θ0it(τ))
dτ2 +O(h2) and G−1

it ( τ+h|θ0it(τ))−G
−1
it ( τ−h|θ0it(τ))

2h =
dG−1

it ( τ |θ0it(τ))
dτ + h

12

d3G−1
it ( τ |θ0it(τ))
dτ3 +O(h4).
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∆it(τ, h) =
2h

Ĝ−1
it (τ + h)− Ĝ−1

it (τ − h)
(13)

where Ĝ−1
it (·) is an estimator of G−1

it ( ·| θ0
it(τ)).

Regarding the determination of the bandwidth parameter h, there exist several options
in the related literature. One of them corresponds to the rule suggested by Bofinger (1975).
The selected bandwidth is then an optimal one in that it minimizes the mean square error
of the Gaussian density estimator

hB =

[
1

NT

4.5φ4(Φ−1(τ))

(2Φ−1(τ)2 + 1)2

]1/5

where φ(·) and Φ(·) is the standard Normal density and the standard Normal distribution
function, respectively. An alternative is a bandwidth suggested by Hall and Sheather (1988),
which is based on Edgeworth expansions of studentized quantiles with Gaussian density and
can be computed by the following expression

hHS =

[
1

NT

1.5z2
αφ

2(Φ−1(τ))

2Φ−1(τ)2 + 1

]1/3

where zα is such that Φ(zα) = 1−α/2. Note that both hB and hHS tend to zero as N, T →∞.
Turning to the computation of Ĝ−1

it (·), the natural candidate for this task is the QPC
estimator of the QFA model (2), i.e., Ĝ−1

it (τ) = λ̂i(τ)′f̂t(τ) = ĉit(τ). However, one potential
pitfall of this approach is that there is no guarantee that the denominator of the difference
quotient, dit(τ, h) ≡ Ĝ−1

it (τ + h) − Ĝ−1
it (τ − h), is positive for all i and t, due to a potential

quantile crossing problem. Fortunately, Koenker and Machado (1999) find that this problem
occurs only infrequently and then only in extreme regions of the support of τ . Thus, in this
context, we can expect that dit(τ, h) ≥ 0 in most cases. If this difference is negative for some
i and t, then the authors recommend to set ∆it(τ, h) = 0. Finally, in the rare cases in which
the difference is exactly equal to 0, then one can consider dit(τ, h)− ε instead, where ε > 0 is
a small tolerance parameter intended to avoid dividing by 0 when computing ∆it(τ, h). The
previous observation implies that to implement this approach, we can consider a modified
version of the difference quotient as follows

∆̃it(τ, h) = max

{
0,

2h

ĉit(τ + h)− ĉit(τ − h)− ε

}
, ε > 0 (14)

Thus, given the above, the matrices H0
i (τ) and J0

t (τ) can be consistently estimated by
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Ĥi(τ) =
1

T

T∑
t=1

∆̃it(τ, h)f̂t(τ)f̂t(τ)′ (15)

and

Ĵt(τ) =
1

N

N∑
i=1

∆̃it(τ, h)λ̂i(τ)λ̂i(τ)′ (16)

for any i, t, and τ ∈ (0, 1), and a given choice of the bandwidth parameter h.

3.2.2 Monte Carlo Simulations

In this section, I explore the adequacy of the asymptotic distributions derived previously
to approximate the finite sample distribution of the QPC estimators λ̂i(τ), f̂t(τ), and ĉit(τ)

using Monte Carlo simulations. To this end, the DGP considered is a location-scale factor
model given by yit = α0

iβ
0
t + β0

t v
0
it, where β0

t = ez
0
t > 0 for all t. In particular, α0

i , z0
t , and v0

it

are independent draws from a standard Normal distribution with distribution function Φ(·)
for all i, t. Moreover, I consider two alternative time dimensions T = {50, 100} and four
alternative cross-section dimensions N = {25, 50, 100, 1000}, which yields a total of eight
different setups. Each DGP configuration was simulated 1,000 times and at each simulation
I compute the QPC estimator of the quantile factors f 0

t (τ) = β0
t , the quantile factor loadings

λ0
i (τ) = α0

i + Φ−1(τ), and the quantile common components c0
it(τ) = λ0

i (τ)f 0
t (τ) for τ =

{0.25, 0.50, 0.75}.
Next, the QPC estimators were standardized in the following manner

λ̃i(τ) =

(
τ(1− τ)Ĥi(τ)−1Σ̂F (τ)Ĥi(τ)−1

T

)−1/2 (
λ̂i(τ)− λ0

i (τ)
)

f̃t(τ) =

(
τ(1− τ)Ĵt(τ)−1Σ̂Λ(τ)Ĵt(τ)−1

N

)−1/2 (
f̂t(τ)− f 0

t (τ)
)

c̃it(τ) =

(
Ûit(τ)

T
+
Ŵit(τ)

N

)−1/2 (
ĉit(τ)− c0

it(τ)
)

for all i and t, where the elements of the variance-covariance matrices were computed ac-
cording to the methodology described in the previous section. To preserve space, I report
only the results using the Bofinger bandwidth to compute the matrices Ĥi(τ) and Ĵt(τ). The
results under hHS are similar and are, therefore, omitted. If the asymptotic theory provided
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in Section 3.2 is a suitable approximation to the finite sample distribution of the QPC es-
timators, then the distribution of the standardized estimators λ̃i(τ), f̃t(τ) and c̃it(τ) should
be close to a standard Normal distribution for any i and t.

Tables 4 and 5 show the sample mean and the standard deviation, respectively, of the
standardized QPC estimators. These statistics were computed across simulations and, to
facilitate the exposition, I only report the results for i = bN/2c and t = bT/2c, where bxc is
the integer part of x11. The results show that, in general, the means are close to zero, and the
standard deviations are close to one, getting even closer to these values as N and T become
large. For example, when T = 50 and N = 25, the sample mean and standard deviation of
f̃t(0.25) is 0.158 and 1.380, respectively. When T = 100 and N = 1000, the results approach
the desired values, in absolute terms, to 0.004 and 1.078, correspondingly. Also, note that the
standard deviation of all standardized estimators computed at the median tends to be lower
than the QPC estimates at either τ = 0.25 or τ = 0.75. This result could be attributable
to the reciprocal of the quantile density function proxied by the difference quotient (14).
In particular, under a normal distribution, the observations are generally dense around the
median, whereas they are rather sparse at quantiles close to the tails. Thus, QPC estimators
at τ = 0.5 are more accurate relative to those computed at τ = 0.25 or τ = 0.75.

Figures 5 and 6 display the histogram of f̃t(0.25) and f̃t(0.50) for T = 50 and T = 100,
respectively, contrasted with the standard normal density12. Figures 7 and 8 show the same
information for λ̃i(0.25) and λ̃i(0.50), as well as Figures 9 and 10 for c̃it(0.25) and c̃it(0.50).
In all cases, to make the comparison with the Normal density, the histograms were scaled
so that the total area of the columns add up to one. Overall, the figures suggest that the
asymptotic distributions established in Theorems 3 and 4 provide a good approximation to
the finite sample distributions of the QPC estimators. In the case of f̃t(τ), for a given time
series dimension T and irrespectively of the value of τ , the approximation tends to improve
as N becomes larger in the sense that its histogram tends to stay more and more within the
boundaries defined by the standard Normal density. A similar pattern can be noticed for the
standardized quantile factor loading λ̃i(τ) and the standardized quantile common component
c̃it(τ). In the former case, for a given value of the cross-section dimension N and independent
of the value of τ , the asymptotic approximation becomes more accurate when T grows from
50 to 100.

To summarize, the evidence that emerges from the Monte Carlo simulations, although
limited to a few particular cases, seems to support the asymptotic theory presented in this
section. More precisely, the results show that the limiting distributions yield good approxi-

11The results for any observation (i, t), i = 1, . . . , N , and t = 1, . . . , T , are similar and hence do not change
the general conclusions of the paper.

12The histograms for τ = 0.75 are similar, thus were omitted to preserve space.
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mations to the finite sample distributions of the QPC estimators λ̂i(τ), f̂t(τ), and ĉit(τ).

4 Conclusions

In this paper, I propose a novel concept, high dimensional quantile factor analysis, where the
τ -th conditional quantile function of a set of observable variables has a factor structure. Also,
both factors and factor loadings, as well as the number of factors, are allowed to be quantile-
specific. Then, I provide a set of conditions under which these objects are identified but
highlighting that the type of identification, namely local or global, depends crucially on the
rotation considered by the econometrician. I propose a simple two-step iterative procedure
to obtain the QPC estimators of the quantile factors and quantile factor loadings, which re-
sembles the EM algorithm employed in PC estimation via maximum likelihood. Monte Carlo
simulations highlight the good performance of the procedure in small to moderate sample
sizes. In particular, the QPC estimator is more efficient than the PC estimator in nonlinear
settings, and can satisfactorily recover factors affecting higher moments of the observable
variables when PC estimator cannot. Lastly, under general assumptions, I establish uniform
consistency, and I provide an asymptotic theory to derive the rates of convergence and the
limiting distribution of the QPC estimators of the quantile factors, quantile factor loadings,
and quantile common components when both N and T grows large jointly.

Admittedly, there are several aspects of this context that deserve further attention. First,
the potential of the proposed framework can be illustrated with an interesting empirical appli-
cation. In this sense, Sagner (2020) employs the QFA methodology to propose and estimate
a new measure of systemic risk for the US from the information contained in asset returns.
The author shows that in the context of the external habits formation model of Campbell and
Cochrane (1999), and under the assumption that stock returns are heteroskedastic, the equi-
librium risk premium has a location-scale factor structure where the factors are a monotonic
transformation of the surplus consumption ratio, a state variable that captures the systemic
risk in the structural model. Another area of research within this context is the development
of an asymptotic theory for QFA models endowed with an approximate factor structure of
traditional factor models. This development will help to build a statistical test in the spirit of
Connor and Korajczyk (1993) and Kapetanios (2010) for determining the number of quantile
factors. This issue is essential, especially in empirical research. Recall that this paper builds
on the crucial assumption that the number of quantile factors K(τ) is known in advance. The
intuition behind the proposed test is that, if the number of quantile factors is misspecified,
then the quantile errors ε0

it(τ) will be cross-correlated. In contrast, if the statistical model
is correctly specified, the errors will be weakly correlated. Finally, another appealing area
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of research, especially for finance and risk management, is the extension of the inferential
theory further into the tails of the conditional distribution. As can be noticed from the re-
sults, as τ approaches the boundaries of the (0, 1) interval, the proposed theory does not hold
anymore since the asymptotic variance-covariance matrices are not well defined when τ → 0

or τ → 1. The incorporation of the asymptotics developed in the extreme quantile regression
literature (see, for example, Smith, 1994; Portnoy and Jureckova, 1999; Chernozhukov, 2005;
Chernozhukov and Fernandez-Val, 2011, among many others) into the high dimensional QFA
framework is assuredly a promising starting point to tackle this issue.
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A Appendix

This appendix provides detailed proofs for all theorems and propositions established in the
main text. The notation used is as follows. ‖A‖ stands for the Euclidean norm of a matrix
(or a vector), i.e., ‖A‖2 = trace (A′A). The symbols “ p→” and “ d→” denote convergence in
probability and convergence in distribution, respectively, whereas Op(·) and op (·) are the
usual symbols for the order of convergence in probability.

A.1 Proof of Proposition 1

Proof. The proof consists of three parts.
First, consider Assumption 2.3a ⇒ Assumption 2.3b. For all τ ∈ (0, 1), let F 0 (τ) and

Λ0 (τ) satisfy Assumption 2.3a. Consider the partition of the quantile factor loadings matrix
Λ0 (τ) = [Λ0

1 (τ)′ ,Λ0
2 (τ)′], where Λ0

1 (τ) is a K(τ)×K(τ) matrix. Next, consider the Gram-
Schmidt decomposition Λ0

1 (τ)′ = Q0 (τ)R0 (τ), where Q0 (τ) is an orthogonal matrix, and
R0 (τ) is a non-singular upper triangular matrix, both of them of size K(τ)×K(τ). Define
F̃ 0 (τ) = F 0 (τ)Q0 (τ) and Λ̃0 (τ) = Λ0 (τ)Q0 (τ). Note that

Λ̃0 (τ) =

[
Λ̃0

1 (τ)

Λ̃0
2 (τ)

]
=

[
R (τ)′

Λ0
2 (τ)Q0 (τ)

]

and
F̃ 0 (τ)′ F̃ 0 (τ)

T
= Q0 (τ)′

(
F 0 (τ)′ F 0 (τ)

T

)
Q0 (τ) = IK(τ)

Hence, F̃ 0 (τ) and Λ̃0 (τ) satisfy Assumption 2.3b. Finally, note that C̃0 (τ) = F̃ 0 (τ) Λ̃0 (τ)′ =

F 0 (τ)Q0 (τ)Q0 (τ)′ Λ0 (τ)′ = C0 (τ). Therefore, Assumptions 2.3a and 2.3b are equivalent
according to Definition 2.

Next, consider Assumption 2.3b ⇒ Assumption 2.3c. For all τ ∈ (0, 1), let F̃ 0 (τ)

and Λ̃0 (τ) satisfy Assumption 2.3b. Consider the partition of the quantile factor load-
ings matrix Λ̃ (τ) = [Λ̃0

1 (τ)′ , Λ̃0
2 (τ)′]′, where Λ̃0

1 (τ) is a K(τ) × K(τ) lower triangular ma-
trix. Because all diagonal elements of Λ̃0

1 (τ) are non-zero, its inverse exists, and we can
then define Λ̄0 (τ) = Λ̃0 (τ) Λ̃0

1 (τ)−1 = [IK(τ), (Λ̃
0
2Λ̃0

1 (τ)−1)′] and F̄ 0 (τ) = F̃ 0 (τ) Λ̃0
1 (τ).

Thus, F̄ 0 (τ) and Λ̄0 (τ) satisfy Assumption 2.3c. Moreover, since C̄0 (τ) = F̄ 0 (τ) Λ̄0 (τ) =

F̃ 0 (τ) Λ̃0
1 (τ) Λ̃0

1 (τ)−1′ Λ̃0 (τ) = C̃0 (τ), then Assumptions 2.3b and 2.3c are equivalent accord-
ing to Definition 2.

Lastly, consider Assumption 2.3c ⇒ Assumption 2.3a. For all τ ∈ (0, 1), let F̄ 0 (τ) and
Λ̄0 (τ) satisfy Assumption 2.3c. Because rank

(
C̄0 (τ)

)
= K(τ) by Assumption 2.2, consider
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the singular value decomposition

C̄0 (τ) = Ū0 (τ)

[
D̄0 (τ) 0

0 0

]
V̄ 0 (τ)′

where Ū0 (τ) is a T × T orthogonal matrix, D̄0 (τ) is a diagonal matrix of size K(τ),
and V̄ 0 (τ) is an N × N orthogonal matrix. The partitions Ū0 (τ) = [Ū0

1 (τ) , Ū0
2 (τ)] and

V̄ 0 (τ) = [V̄ 0
1 (τ) , V̄ 0

2 (τ)], where Ū0
1 (τ)′ Ū0

1 (τ) = V̄ 0
1 (τ)′ V̄ 0

1 (τ) = IK(τ), imply that C̄0 (τ) =

Ū0
1 (τ) D̄0 (τ) V̄ 0

1 (τ)′. With these elements at hand, define F 0 (τ) =
√
T Ū0

1 (τ) and Λ0 (τ) =

V̄ 0
1 (τ) D̄0 (τ) /

√
T , and note that

Λ0 (τ)′ Λ0 (τ) =
D̄0 (τ) V̄ 0

1 (τ)′ V̄ 0
1 (τ) D̄0 (τ)

T
=
D̄0 (τ)2

T

which is a diagonal matrix, and

F 0 (τ)′ F 0 (τ)

T
= Ū0

1 (τ)′ Ū0
1 (τ) = IK(τ)

Hence, F 0 (τ) and Λ0 (τ) satisfy Assumption 2.3a, and because C̄0 (τ) = C0 (τ) by construc-
tion, then we conclude that Assumptions 2.3c and 2.3a are equivalent according to Definition
2. The proof is complete. �

A.2 Proof of Theorem 1

The following definitions will be used extensively in this section. For all τ ∈ (0, 1), let
eit (τ, λi, ft) and ε0

it (τ) be the quantile factor error and the quantile factor residual, respec-
tively, which are given by the following expressions

eit (τ, λi, ft) = λ′ift −Qyit
(
τ | θ0

it(τ)
)

and
ε0
it (τ) = yit −Qyit

(
τ | θ0

it(τ)
)

where the τ -th quantile function of the observable variable yit conditional on θit ≡ [λ′i, f
′
t ]
′,

Qyit (τ | θ0
it(τ)), is given by equation (2). Before turning to the proof of Theorem 1, let us

first consider two useful lemmas.
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Lemma 1. Suppose that Assumption 2.1 holds. Then, the function

Aτ (λi, ft) = E
[
ρτ
(
ε0
it (τ)− eit (τ, λi, ft)

)
− ρτ

(
ε0
it (τ)

)∣∣ θ0
it(τ)

]
can be alternatively expressed as

Aτ (λi, ft) =
1

2
git

(
G−1
it

(
τ | θ0

it(τ)
)∣∣∣θ0

it(τ)
)[(

λi − λ0
i (τ)

)′
f 0
t (τ)

+
(
ft − f 0

t (τ)
)′
λ0
i (τ)

]2

+ op

(∥∥θit − θ0
it (τ)

∥∥2
)

(A.1)

for all i, t, and τ ∈ (0, 1).

Proof. For any τ ∈ (0, 1), using the definition of the quantile loss function ρτ (·) and the
conditional expectation yields

Aτ (λi, ft) =
[
Git

(
λ′ift| θ0

it(τ)
)
− τ
]
λ′ift

+τ

[∫ ∞
λ′ift

uitgit
(
uit| θ0

it(τ)
)
duit −

∫ ∞
λ0
i (τ)′f0

t (τ)

uitgit
(
uit| θ0

it(τ)
)
duit

]

+ (τ − 1)

[∫ λ′ift

−∞
uitgit

(
uit| θ0

it(τ)
)
duit −

∫ λ0
i (τ)′f0

t (τ)

−∞
uitgit

(
uit| θ0

it(τ)
)
duit

]

Based on the previous expression, the gradient and the Hessian of Aτ (λi, ft) is given,
respectively, by

∇Aτ (λi, ft) =
(
Git

(
λ′ift| θ0

it(τ)
)
− τ
) [ ft

λi

]
and

HAτ (λi, ft) = git
(
λ′ift| θ0

it(τ)
) [ ftf

′
t ftλ

′
i + hAτ (λi, ft)IK(τ)

λif
′
t + hAτ (λi, ft)IK(τ) λiλ

′
i

]

where hAτ (λi, ft) ≡ (Git (λ′ift| θ0
it(τ))− τ) /git (λ′ift| θ0

it(τ)) is a scalar that depends on the
conditional cumulative distribution function and the conditional density of yit. Thus, a
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second-order Taylor expansion of the function Aτ (λi, ft) around θ0
it (τ) is as follows

Aτ (λi, ft) = Aτ
(
λ0
i (τ) , f 0

t (τ)
)

+
[(
λi − λ0

i (τ)
)′
,
(
ft − f 0

t (τ)
)′]∇Aτ (λ0

i (τ) , f 0
t (τ)

)
+
[(
λi − λ0

i (τ)
)′
,
(
ft − f 0

t (τ)
)′]

HAτ
(
λ0
i (τ) , f 0

t (τ)
) [ λi − λ0

i (τ)

ft − f 0
t (τ)

]
+op

(∥∥θit − θ0
it (τ)

∥∥2
)

=
1

2
git

(
G−1
it

(
τ | θ0

it(τ)
)∣∣∣θ0

it(τ)
) [(

λi − λ0
i (τ)

)′
f 0
t (τ) +

(
ft − f 0

t (τ)
)′
λ0
i (τ)

]2

+op

(∥∥θit − θ0
it (τ)

∥∥2
)

for all i, t, and τ ∈ (0, 1). This last result completes the proof. �

Next, the following Lemma provides a first-order approximation of the quantile factor
error eit (τ, λi, ft).

Lemma 2. For any i, t, and τ ∈ (0, 1), the quantile factor error eit (τ, λi, ft) can be alter-
natively expressed as

eit (τ, λi, ft) =
[
λi − λ0

i (τ)
]′
f 0
t (τ) +

[
ft − f 0

t (τ)
]′
λ0
i (τ) + op

(∥∥θit − θ0
it (τ)

∥∥) (A.2)

Proof. For any i, t, and τ ∈ (0, 1), a first-order Taylor expansion of eit (τ, λi, ft) around θ0
it (τ)

results in

eit (τ, λi, ft) = eit
(
τ, λ0

i , f
0
t

)
+
[(
λi − λ0

i (τ)
)′
,
(
ft − f 0

t

)′] [ f 0
t (τ)

λ0
i (τ)

]
+op

(∥∥θit − θ0
it (τ)

∥∥)
=

(
λi − λ0

i (τ)
)′
f 0
t (τ) +

(
ft − f 0

t (τ)
)′
λ0
i (τ) + op

(∥∥θit − θ0
it (τ)

∥∥)
The last result completes the proof. �

Proof of Theorem 1. For any τ ∈ (0, 1), let Sτ (Λ, F ) be the objective function defined in
expression (4). Using the definition of the quantile factor errors eit (τ, λi, ft) and the quantile
factor residuals ε0

it (τ), we have that Sτ (Λ, F ) = E[S̃τ (Λ, F )], where

S̃τ (Λ, F ) = E

[
N∑
i=1

T∑
t=1

ρτ
(
ε0
it (τ)− eit (τ, λi, ft)

)∣∣∣∣∣θ0(τ)

]

and θ0(τ) ≡ [Λ0(τ)′, F 0(τ)′]′. Note that minimizing Sτ (Λ, F ) for θ = [Λ′, F ′]′ is equivalent to
minimizing S̃τ (Λ, F ) for the same argument. Moreover, because the quantile factor residual
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is independent of both Λ and F , the latter is, in turn, equivalent to minimizing S̃∗τ (Λ, F ) for
θ, where

S̃∗τ (Λ, F ) = E

[
N∑
i=1

T∑
t=1

{
ρτ
(
ε0
it (τ)− eit (τ, λi, ft)

)
− ρτ

(
ε0
it (τ)

)}∣∣∣∣∣θ0(τ)

]

Using Lemma 1 followed by Lemma 2, the above equation can be expressed as

S̃∗τ (Λ, F ) =
1

2

N∑
i=1

T∑
t=1

git

(
G−1
it

(
τ | θ0

it(τ)
)∣∣∣θ0

it(τ)
) [(

λi − λ0
i (τ)

)′
f 0
t (τ)

+
(
ft − f 0

t (τ)
)′
λ0
i (τ)

]2

+ op (1)

=
1

2

N∑
i=1

T∑
t=1

git

(
G−1
it

(
τ | θ0

it(τ)
)∣∣∣θ0

it(τ)
) [
λ′ift − λ0

i (τ)′ f 0
t (τ)

]2
+ op (1)

= trace
[(
FΛ′ − F 0 (τ) Λ0 (τ)′

)′
W (τ)

(
FΛ′ − F 0 (τ) Λ0 (τ)′

)]
where W (τ) is a matrix of weights whose elements wit ≡ git

(
G−1
it (τ | θ0

it(τ))
∣∣∣θ0
it(τ)

)
/2 are

strictly greater than 0, for all i, t, and τ ∈ (0, 1), by Assumption 2.1.
Let θ̄it (τ) =

[
λ̄i (τ)′ , f̄t (τ)′

]′ be the values of the quantile factors and quantile factor
loadings, respectively, that minimize Sτ (Λ, F ), and thus also S̃∗τ (Λ, F ). Then

S̃∗τ
(
Λ̄ (τ) , F̄ (τ)

)
= arg min

[Λ′,F ′]′∈Θ

S̃∗τ (Λ, F )

= S̃∗τ
(
Λ0 (τ) , F 0 (τ)

)
= 0

since S̃∗τ (Λ0 (τ) , F 0 (τ)) = 0 by construction. The above results imply that

trace
[(
F̄ (τ) Λ̄ (τ)′ − F 0 (τ) Λ0 (τ)′

)′
W (τ)

(
F̄ (τ) Λ̄ (τ)′ − F 0 (τ) Λ0 (τ)′

)]
= 0

trace
[(
C̄ (τ)− C0 (τ)

)′
W (τ)

(
C̄ (τ)− C0 (τ)

)]
= 0

Because of the properties of the trace operator and Assumption 2.2, the above equation
implies that C̄ (τ) = C0 (τ) for any τ ∈ (0, 1), i.e., the common component of the QFA model
is identified.

Finally, to see how the quantile factors F̄ (τ) and the quantile factor loadings Λ̄ (τ) are
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individually identified, consider the singular value decomposition of C̄ (τ)

C̄ (τ) = Ū (τ)

[
D̄ (τ) 0

0 0

]
V̄ (τ)′

where Ū (τ) is a T × T orthogonal matrix, D̄ is a K(τ) ×K(τ) diagonal matrix, and V̄ (τ)

is an N ×N orthogonal matrix. Consider the partitions Ū (τ) = [Ū1 (τ) , Ū2 (τ)] and V̄ (τ) =

[V̄1 (τ) , V̄2 (τ)] such that C̄ (τ) = Ū1 (τ) D̄ (τ) V̄1 (τ)′. Define

F̄ (τ) =
√
T Ū1 (τ)

Λ̄ (τ) =
1√
T
V̄1 (τ) D̄ (τ)

and note that F̄ (τ)′ F̄ (τ) /T = Ū1 (τ)′ Ū1 (τ) = IK(τ) and Λ̄ (τ)′ Λ̄ (τ) = D̄ (τ)2 /T is a
diagonal matrix. Hence, both F̄ (τ) and Λ̄ (τ) are individually identified (up to a column-sign
change) under Assumption 2.3a, and by Proposition 1 all rotations considered in Assumption
2.3 are equivalent. The proof is complete. �

A.3 Proof of Theorem 2

Definition 3 entails that the QPC estimator θ̂ (τ) is the one that solves the following opti-
mization problem

θ̂ (τ) = arg min
{Λ,F}

Vτ (Λ, F ) , τ ∈ (0, 1)

where the objective function Vτ (Λ, F ) was defined in equation (5). One aspect to note is that
because Vτ (Λ0 (τ) , F 0 (τ)) does not depend on both Λ and F , then the previous expression
is equivalent to

θ̂ (τ) = arg min
{Λ,F}

V ∗τ (Λ, F ) , τ ∈ (0, 1)

where V ∗τ (Λ, F ) ≡ Vτ (Λ, F )−Vτ (Λ0 (τ) , F 0 (τ)) is just the objective function centered about
Vτ (Λ0 (τ) , F 0 (τ)). Moreover, note that because θ̂ (τ) is the minimizer of Vτ (Λ, F ), and
hence of V ∗τ (Λ, F ), the previous equation evaluated at the QPC estimator is equal to 0 with
probability close to 1 for all τ ∈ (0, 1).

The following definitions will be used extensively in this section. For all i, t, and τ ∈ (0, 1),
we define φ̂it (τ) ≡ λ̂i (τ)′ f̂t (τ) − λ0

i (τ)′ f 0
t (τ) as the difference between the estimated and

the actual quantile common component of the observable variable yit, and Φ̂ (τ) a T × N

matrix whose elements are φ̂it (τ). By using these definitions, the centered objective function
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evaluated at the QPC estimator can be characterized by the following expression

V ∗τ (Φ̂ (τ)) =
1

NT

N∑
i=1

T∑
t=1

[
ρτ (ε

0
it (τ)− φ̂it (τ))− ρτ (ε0

it (τ))
]

(A.3)

where ε0
it (τ) ≡ yit −Qyit (τ) is the quantile factor residual defined in Section 3.1. Using the

identity by Knight (1998), we have that V ∗τ (Φ̂ (τ)) = W ∗
τ (Φ̂ (τ)) + Z∗τ (Φ̂ (τ)), where

W ∗
τ (Φ̂ (τ)) =

1

NT

N∑
i=1

T∑
t=1

∫ φ̂it(τ)

0

[
1
{
ε0
it (τ) < s

}
− 1

{
ε0
it (τ) < 0

}]
ds (A.4)

Z∗τ (Φ̂ (τ)) =
1

NT

N∑
i=1

T∑
t=1

ψτ
(
ε0
it (τ)

)
φ̂it (τ) (A.5)

Lastly, for all i, t, and τ ∈ (0, 1), we define

bit (τ, φ) ≡ 1
{
ε0
it (τ) < φ

}
ξit (τ, φ) ≡ [bit (τ, φ)− bit (τ, 0)]− E [bit (τ, φ)− bit (τ, 0)]

The following lemmas will be useful in providing an upper and lower bound forW ∗
τ (Φ̂ (τ)),

as well as in deriving their asymptotic properties. They use an argument similar to the ones
exposed in Oka and Qu (2011).

Lemma 3. For every τ ∈ (0, 1),

0 ≤ 1

2NT

N∑
i=1

T∑
t=1

[
bit(τ, φ̂it (τ) /2)− bit(τ, 0)

]
φ̂it (τ) ≤ W ∗

τ (Φ̂ (τ))

≤ 1

NT

N∑
i=1

T∑
t=1

[
bit(τ, φ̂it (τ))− bit(τ, 0)

]
φ̂it (τ)

Proof. See Lemma A.1 of Oka and Qu (2011). The details are omitted. �

Lemma 4. Suppose that Assumptions 3.1 to 3.3 hold. For all i, t and τ ∈ (0, 1), let Θ ={
φ̂it (τ) ∈ R :

∣∣∣φ̂it (τ)
∣∣∣ =

(
min

{√
N,
√
T
})−1

·B
}

be a compact set, where B < ∞ is an

arbitrary positive constant. Then

sup
1≤s≤T

sup
φ̂it(τ)∈Θ

∣∣∣∣∣(NT )−1/2
N∑
i=1

s∑
t=1

ξit(τ, φ̂it (τ))

∣∣∣∣∣ = op (1)

Proof. The proof considers fixed φ̂it (τ). Uniform convergence over Θ is guaranteed by the
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compactness of this set and the monotonicity of bit(τ, φ̂it (τ)) in φ̂it (τ).
First, for any φ̂it (τ) ∈ Θ, ξit(τ, φ̂it (τ)) satisfies

E

[∣∣∣ξit(τ, φ̂it (τ))
∣∣∣2∣∣∣∣ θ0

it(τ)

]
≤

∣∣∣Git

(
λ0
i (τ)′ f 0

t (τ) + φ̂it (τ)
∣∣∣ θ0

it(τ)
)

−Git

(
λ0
i (τ)′ f 0

t (τ)
∣∣∣θ0
it(τ)

)∣∣∣
= git

(
G−1
it

(
τ | θ0

it(τ)
)∣∣∣θ0

it(τ)
)
·
∣∣∣φ̂it (τ)

∣∣∣
≤

(
min

{√
N,
√
T
})−1

BUg (A.6)

where in the second inequality, I used the Mean Value Theorem and Assumption 3.3, and in
the last inequality, I used Assumption 3.2.

Next, using the Doob inequality followed by the Rosenthal inequality (Hall and Heyde,
1980, pp. 15 and 23), we have that

P

[
sup

1≤s≤T

∣∣∣∣∣(NT )−1/2

N∑
i=1

s∑
t=1

ξit(τ, φ̂it (τ))

∣∣∣∣∣ > ε

]

≤ M

ε2γ

{
(NT )−γE

[(
N∑
i=1

T∑
t=1

E

[∣∣∣ξit(τ, φ̂it (τ))
∣∣∣2∣∣∣∣ θ0

it(τ)

])γ]

+(NT )−γ
N∑
i=1

T∑
t=1

E

[∣∣∣ξit(τ, φ̂it (τ))
∣∣∣2γ]}

where M is a positive constant that depends only on γ > 2. By using equation (A.6), the
first term inside of the curly brackets is given by

(NT )−γE

[(
N∑
i=1

T∑
t=1

E

[∣∣∣ξit(τ, φ̂it (τ))
∣∣∣2∣∣∣∣ θ0

it(τ)

])γ]

≤ (NT )−γE

[(
N∑
i=1

T∑
t=1

(
min

{√
N,
√
T
})−1

BUg

)γ]
=
(

min
{√

N,
√
T
})−γ

BγUγ
g → 0 as N, T →∞ (A.7)
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Similarly, the second term inside of the curly brackets can be rewritten as

(NT )−γ
N∑
i=1

T∑
t=1

E

[∣∣∣ξit(τ, φ̂it (τ))
∣∣∣2γ]

= (NT )−γ
N∑
i=1

T∑
t=1

E

[
E

[∣∣∣ξit(τ, φ̂it (τ))
∣∣∣2γ−2 ∣∣∣ξit(τ, φ̂it (τ))

∣∣∣2∣∣∣∣ θ0
it(τ)

]]

≤ (NT )−γ
N∑
i=1

T∑
t=1

(
min

{√
N,
√
T
})−1

BUg

= (NT )1−γ
(

min
{√

N,
√
T
})−1

BUg → 0 as N, T →∞ (A.8)

where in the second inequality, I used the fact that
∣∣∣ξit(τ, φ̂it (τ))

∣∣∣ ≤ 1. Equations (A.7) and
(A.8) together provide the result stated in this lemma. �

Proof of Theorem 2. The proof consists of two parts. In the first part, I show the uniform
consistency of the quantile common component QPC estimator Ĉ (τ) by employing a proof
by contradiction. In particular, I show that if uniform consistency does not hold, then the
objective function centered about Vτ (Λ0 (τ) , F 0 (τ)) and evaluated at θ̂ (τ) is strictly positive
with probability close to 1, implying that Ĉ (τ) is not its minimizer. In the second part, I
exploit the uniform consistency of the quantile common component to show the consistency
of both the quantile factors and the quantile factor loadings using an argument similar to
Lemma 1 in Chen et al. (2014).

First, consider the proof for the estimated quantile common component ĉit(τ) = λ̂i (τ)′ f̂t (τ).
Because the centered objective function V ∗τ (Φ̂ (τ)) given in (A.3) is convex in φ̂it (τ) =

λ̂i (τ)′ f̂t (τ) − λ0
i (τ)′ f 0

t (τ), it suffices to consider its property over this argument satisfy-
ing min

{√
N,
√
T
}
·
∣∣∣φ̂it (τ)

∣∣∣ = B, where B is some arbitrary positive constant. By Knight

(1998) identity, V ∗τ (Φ̂ (τ)) = W ∗
τ (Φ̂ (τ)) + Z∗τ (Φ̂ (τ)) (equations A.4 and A.5), so that we can

analyze each term separately.
Start with W ∗

τ (Φ̂ (τ)). By Lemma 3 and the triangle inequality, the term min {N, T} ·
W ∗
τ (Φ̂ (τ)) is bounded below by the following expression

min {N, T}
2NT

{
N∑
i=1

T∑
t=1

E
[(
bit(τ, φ̂it (τ) /2)− bit(τ, 0)

)
φ̂it (τ)

∣∣∣ θ0
it(τ)

]
−

∣∣∣∣∣
N∑
i=1

T∑
t=1

ξit(τ, φ̂it (τ) /2)φ̂it (τ)

∣∣∣∣∣
}

Using the Mean Value Theorem and Assumption 3.3, the first term inside of the curly
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brackets can be rewritten as

min {N, T}
4NT

N∑
i=1

T∑
t=1

git
(
G−1
it

(
τ | θ0

it(τ)
)∣∣ θ0

it(τ)
)
·
∣∣∣φ̂it (τ)

∣∣∣2 ≥ min {N, T}
4NT

Lg

N∑
i=1

T∑
t=1

∣∣∣φ̂it (τ)
∣∣∣2

=
1

4
B2Lg

where in the derivation of the result, I invoke Assumption 3.2. By Lemma 4, the second term
inside of the curly brackets is of order op((max{

√
N,
√
T})−1B). Hence,

min {N, T} ·W ∗
τ (Φ̂ (τ)) ≥ 1

4
B2Lg (A.9)

For Z∗τ (Φ̂ (τ)), we have that

min {N, T} ·
∣∣∣Z∗τ (Φ̂ (τ))

∣∣∣ ≤ min
{
N−1/2T−1, N−1T−1/2

}
·B

∣∣∣∣∣
N∑
i=1

T∑
t=1

ψτ (ε
0
it (τ))

∣∣∣∣∣ (A.10)

Applying the Hájek-Rényi inequality for martingales (see Chow and Teicher, 1997, p.
255) to the previous expression yields

P

[
sup

1≤s≤T

∣∣∣∣∣min
{
N−1/2s−1, N−1s−1/2

} N∑
i=1

s∑
t=1

ψτ (ε
0
it (τ))

∣∣∣∣∣ > C

]

≤ 1

C2

T∑
t=1

min
{
t−2, (Nt)−1

}
· E
[∣∣ψτ (ε0

it (τ))
∣∣2]

where C is an arbitrary constant. Note that E[
∣∣ψτ (ε0

it (τ))
∣∣2] = τ (1− τ) < ∞ for all i

and t. Moreover,
∑T

t=1 t
−1 and

∑T
t=1 t

−2 are known as the generalized harmonic numbers of
order s = 1 and s = 2, respectively, which converge to the Riemann zeta function ζ(s) as
T → ∞. Thus, in the case of s = 1,

∑T
t=1 t

−1 = log T + γ̄, where γ̄ ≈ 0.577 is the Euler-
Mascheroni constant, whereas in the case of s = 2,

∑T
t=1 t

−2 = π2/6. Both results imply that
the right-hand side of the previous inequality can be made arbitrarily small by choosing a
large C. Consequently, if B is large, expression (A.9) is the dominant term asymptotically.
The previous argument implies that V ∗τ (Φ̂ (τ)) is strictly positive with probability close to
1 for large N and T . However, this is a contradiction since φ̂it (τ) is the minimizer of the
centered objective function V ∗τ (Φ̂ (τ)). In other words, this function has to be equal to zero
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with probability close to 1 as N, T →∞. Therefore, we conclude that

min
{√

N,
√
T
}
·
∣∣∣λ̂i (τ)′ f̂t (τ)− λ0

i (τ)′ f 0
t (τ)

∣∣∣ = Op (1) (A.11)

For the second part of the proof, note that as N, T →∞, the previous result implies that∣∣∣λ̂i(τ)′f̂t(τ)− λ0
i (τ)′f 0

t (τ)
∣∣∣ = op(1). Let φ̂λi (τ) ≡ λ̂i(τ)− λ0

i (τ) and φ̂ft (τ) ≡ f̂t(τ)− f 0
t (τ) be

the difference between the QPC estimator and the actual quantile factor loading and quantile
factor, respectively, for all i, t, and τ ∈ (0, 1). Hence, by Lemma 2, we have that∣∣∣λ̂i(τ)′f̂t(τ)− λ0

i (τ)′f 0
t (τ)

∣∣∣ =
∣∣∣φ̂λi (τ)′f 0

t (τ) + λ0
i (τ)′φ̂ft (τ)

∣∣∣
≤

∥∥∥φ̂λi (τ)
∥∥∥ · ∥∥f 0

t (τ)
∥∥+

∥∥∥φ̂ft (τ)
∥∥∥ · ∥∥λ0

i (τ)
∥∥

= op

(√
T
∥∥∥φ̂λi (τ)

∥∥∥)+ op

(√
N
∥∥∥φ̂ft (τ)

∥∥∥) (A.12)

where in the second inequality, I used the Cauchy-Schwarz inequality (see Lütkepohl, 1996,
p. 111), and the second part of Assumptions 3.4 and 3.5 supports the result (A.12). Thus,
the only way that the previous sum is op(1), as shown previously, occurs when

√
T
∥∥∥φ̂λi (τ)

∥∥∥ = Op(1)

and √
N
∥∥∥φ̂ft (τ)

∥∥∥ = Op(1)

uniformly in i and t, respectively, and for any τ ∈ (0, 1). The last two results complete the
proof. �

A.4 Proof of Theorem 3

Start by noting that, for all τ ∈ (0, 1), both subgradients given by equations (9) and (10)
can be alternatively rewritten as follows

RΛ
i,τ (Λ, F ) = R̃Λ

i,τ (Λ, F ) + (NT )−1/2

T∑
t=1

[
Git

(
λ′ift| θ0

it(τ)
)
− τ
]
ft (A.13)

where

R̃Λ
i,τ (Λ, F ) = (NT )−1/2

T∑
t=1

[
1{yit − λ′ift < 0} −Git

(
λ′ift| θ0

it(τ)
)]
ft

Similarly,
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RF
t,τ (Λ, F ) = R̃F

t,τ (Λ, F ) + (NT )−1/2

N∑
i=1

[
Git

(
λ′ift| θ0

it(τ)
)
− τ
]
λi (A.14)

with

R̃F
t,τ (Λ, F ) = (NT )−1/2

N∑
i=1

[
1{yit − λ′ift < 0} −Git

(
λ′ift| θ0

it(τ)
)]
λi

Next, for all i, t, and τ ∈ (0, 1), define φ̂λi (τ) ≡ λ̂i(τ)−λ0
i (τ) and φ̂ft (λ) ≡ f̂t(τ)−f 0

t (τ) as
the difference between the QPC estimator and the true quantile factor loading and quantile
factor, respectively. Also, let Φ̂Λ(τ) be an N × K(τ) matrix whose i-th row is φ̂λi (τ)′ and
Φ̂F (τ) a T ×K(τ) matrix whose t-th row is φ̂ft (τ)′.

The following lemma will be useful in the derivation of the asymptotic normality of
Λ̂(τ) = [λ̂1(τ), . . . , λ̂N(τ)]′ and F̂ (τ) = [f̂1(τ), . . . , f̂T (τ)]′. It uses an argument similar to the
one exposed in Qu (2008).

Lemma 5. Suppose that Assumptions 3 and 4 hold. Then, as N, T →∞, for any τ ∈ (0, 1),

1. Uniformly in i, if
√
T/N → 0

RΛ
i,τ (Λ̂(τ), F̂ (τ)) = RΛ

i,τ (Λ
0(τ), F 0(τ)) +

√
T

N
H0
i (τ)φ̂λi (τ) + op(T/

√
N)

2. Uniformly in t, if
√
N/T → 0

RF
t,τ (Λ̂(τ), F̂ (τ)) = RF

t,τ (Λ
0(τ), F 0(τ)) +

√
N

T
J0
t (τ)φ̂ft (τ) + op(N/

√
T )

Proof. I only prove part 1 of the lemma, since the second part can be derived from similar
arguments. Thus, consider the sub-gradient RΛ

i,τ (Λ, F ) evaluated at the QPC estimators
θ̂(τ) = [Λ̂(τ)′, F̂ (τ)′]′. Then, for any τ ∈ (0, 1), we have that

RΛ
i,τ (Λ̂(τ), F̂ (τ)) = RΛ

i,τ (Λ̂(τ), F̂ (τ))−RΛ
i,τ (Λ̂(τ), F 0(τ))︸ ︷︷ ︸

(a)

+RΛ
i,τ (Λ̂(τ), F 0(τ))︸ ︷︷ ︸

(b)

(A.15)

Term (a) on the right-hand side of the above expression satisfies
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∥∥(a)
∥∥ = (NT )−1/2

∥∥∥∥∥
T∑
t=1

ψτ (yit − λ̂i(τ)′f̂t(τ))f̂t(τ)−
T∑
t=1

ψt(yit − λ̂i(τ)′f 0
t (τ))f 0

t (τ)

∥∥∥∥∥
≤ (NT )−1/2

T∑
t=1

∣∣∣1{yit − λ̂i(τ)′f̂t(τ) < 0} − 1{yit − λ̂i(τ)′f 0
t (τ) < 0}

∣∣∣ · ∥∥f 0
t (τ)

∥∥
+(NT )−1/2

T∑
t=1

∣∣∣1{yit − λ̂i(τ)′f̂t(τ) < 0} − τ
∣∣∣ · ∥∥∥φ̂ft (τ)

∥∥∥
The first term is bounded above by

(NT )−1/2

T∑
t=1

∥∥∥f 0
t (τ)

∥∥∥ ≤ N−1/2

T∑
t=1

sup
1≤t≤T

T−1/2
∥∥∥f 0

t (τ)
∥∥∥

= op(T/
√
N) (A.16)

where in the last part, I used Assumption 3.4. By proceeding similarly, the second term is
bounded above by

(NT )−1/2

T∑
t=1

∥∥∥φ̂ft (τ)
∥∥∥ = Op(

√
T/N) (A.17)

because of Theorem 2. Therefore, if
√
T/N → 0, results (A.16) and (A.17) imply (a) =

op(1) + op(T/
√
N) = op(T/

√
N). Next, consider the second term on the right-hand side of

(A.15), which can be rewritten in the following manner using expression (A.13)

(b) = R̃Λ
i,τ (Λ

0(τ) + Φ̂Λ(τ), F 0(τ))− R̃Λ
i,τ (Λ

0(τ), F 0(τ))︸ ︷︷ ︸
(b)′

+ R̃Λ
i,τ (Λ

0(τ), F 0(τ))︸ ︷︷ ︸
(b)′′

+(NT )−1/2

T∑
t=1

[
Git

(
(λ0

i (τ) + φ̂λi (τ))′f 0
t (τ)

∣∣∣ θ0
it(τ)

)
− τ
]
f 0
t (τ)︸ ︷︷ ︸

(b)′′′

First,
√
N(b)′ = op(1) by Theorem A.3 in Bai (1996), which means that (b)′ = op(N

−1/2).
Next, using equation (A.13), the second term of the previous expression is equal to
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(b)′′ = RΛ
i,τ (Λ

0(τ), F 0(τ))

−(NT )−1/2

T∑
t=1

[
Git

(
λ0
i (τ)′f 0

t (τ)
∣∣ θ0

it(τ)
)
− τ
]
f 0
t (τ)

= RΛ
i,τ (Λ

0(τ), F 0(τ)) (A.18)

Finally, for the last term on the right-hand side of (b), we have that

(b)′′′ = (NT )−1/2

T∑
t=1

[
Git

(
(λ0

i (τ) + φ̂λi (τ))′f 0
t (τ)

∣∣∣ θ0
it(τ)

)
−Git

(
λ0
i (τ)′f 0

t (τ)
∣∣ θ0

it(τ)
)]
f 0
t (τ)

= (NT )−1/2

(
T∑
t=1

git
(
G−1
it (τ | θ0

it(τ))
∣∣ θ0

it(τ)
)
f 0
t (τ)f 0

t (τ)′

)
φ̂λi (τ)

=

√
T

N
H0
i (τ)φ̂λi (τ) as T →∞ (A.19)

uniformly in i, where in the second equality, I used the Mean Value Theorem and Assumption
3.1, and in the last equality I, used Assumption 4.2. Hence, all previous results imply that
for any τ ∈ (0, 1), as N, T →∞ and if

√
T/N → 0, then expression (A.15) is given by

RΛ
i,τ (Λ̂(τ), F̂ (τ)) = RΛ

i,τ (Λ
0(τ), F 0(τ)) +

√
T

N
H0
i (τ)φ̂λi (τ) + op(T/

√
N) (A.20)

uniformly in i. This last result completes the proof �

Proof of Theorem 3. For proving part 1 of the theorem, apply Lemma 5 and use the next
result

∥∥∥RΛ
i,τ (Λ̂(τ), F̂ (τ))

∥∥∥ ≤ (NT )−1/2

T∑
t=1

∣∣∣1{yit − λ̂i(τ)′f̂t(τ) < 0} − τ
∣∣∣ · ∥∥∥f 0

t (τ) + φ̂ft (τ)
∥∥∥

≤ (NT )−1/2

T∑
t=1

∥∥f 0
t (τ)

∥∥+ (NT )−1/2

T∑
t=1

∥∥∥φ̂ft (τ)
∥∥∥

= op(T/
√
N) +Op(

√
T/N) (A.21)
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which follows from Assumption 3.4 and Theorem 2. Hence, if
√
T/N → 0, then the above

expression is op(T/
√
N), implying that

√
T φ̂λi (τ) = −

√
NH0

i (τ)−1RΛ
i,τ (Λ

0(τ), F 0(τ)) + op(T )

and by Slutsky’s theorem

√
T (λ̂i(τ)− λ0

i (τ))
d→ N

(
0, τ(1− τ)H0

i (τ)−1Σ0
F (τ)H0

i (τ)−1
)

(A.22)

uniformly in i and for N, T → ∞. The proof of part 2 is similar and is, therefore, omitted.
The proof is complete. �

A.5 Proof of Theorem 4

The limiting distribution of the estimated quantile common components ĉit(τ) of the QFA
model (2) can be derived from Theorems 2 and 3. The proof utilizes an argument similar to
the one considered in Bai (2003).

Proof. From the definitions of ĉit(τ) and c0
it(τ), we have that for any τ ∈ (0, 1),

ĉit(τ)− c0
it(τ) = λ̂i(τ)′f̂t(τ)− λ0

i (τ)′f 0
t (τ)

= φ̂λi (τ)′φ̂ft (τ) + f 0
t (τ)′φ̂λi (τ) + λ0

i (τ)′φ̂ft (τ) (A.23)

Using the Cauchy-Schwarz inequality and Theorem 2, the first term on the right-hand
side of the previous expression satisfies

∣∣∣φ̂λi (τ)′φ̂ft (τ)
∣∣∣ ≤ ∥∥∥φ̂λi (τ)

∥∥∥ · ∥∥∥φ̂ft (τ)
∥∥∥

= Op((NT )−1/2)

uniformly over i and t. Next, using this result and Theorem 3, expression (A.23) can be
rewritten as follows

ĉit(τ)− c0
it(τ) = −

√
N

T
f 0
t (τ)′H0

i (τ)−1RΛ
i,τ (Λ

0(τ), F 0(τ))

−
√
T

N
λ0
i (τ)′J0

t (τ)−1RF
t,τ (Λ

0(τ), F 0(τ))

+Op((NT )−1/2) + op(max{
√
N,
√
T})
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Let ζ0
it(τ) ≡

√
Nf 0

t (τ)′H0
i (τ)−1RΛ

i,τ (Λ
0(τ), F 0(τ)). Then, by Assumptions 3.1, 3.4 and 4.2,

ζ0
it(τ)

d→ N (0, U0
it(τ)) uniformly over i and t, where

U0
it(τ) ≡ τ(1− τ)f 0

t (τ)′H0
i (τ)−1Σ0

F (τ)H0
i (τ)−1f 0

t (τ), τ ∈ (0, 1)

Similarly, let ϑ0
it(τ) ≡

√
Tλ0

i (τ)′J0
t (τ)−1RF

t,τ (Λ
0(τ), F 0(τ)). Thus, by Assumptions 3.1, 3.5

and 4.1, ϑ0
it(τ)

d→ N (0,W 0
it(τ)) uniformly over i and t, with

W 0
it(τ) ≡ τ(1− τ)λ0

i (τ)′J0
t (τ)−1Σ0

Λ(τ)J0
t (τ)−1λ0

i (τ), τ ∈ (0, 1)

Thereby, for any τ ∈ (0, 1),

ĉit(τ)− c0
it(τ) = −

(
ζ0
it(τ)√
T

+
ϑ0
it(τ)√
N

)
+ op(max{

√
N,
√
T}) (A.24)

as N, T →∞. Note that ζ0
it(τ) and ϑ0

it(τ) are asymptotically independent. This observation
occurs because both random variables depend on the sub-gradients RΛ

i,τ (Λ
0(τ), F 0(τ)) and

RF
t,τ (Λ

0(τ), F 0(τ)), correspondingly, which in turn are sums of martingale difference sequences
across time-series and cross-sections. Thus, the previous result implies that (ζ0

it(τ), ϑ0
it(τ))

converges uniformly in i and t to a bivariate normal distribution as N, T → ∞. Hence, for
any τ ∈ (0, 1),

−
(
ζ0
it(τ)√
T

+
ϑ0
it(τ)√
N

)
d→ N

(
0,
U0
it(τ)

T
+
W 0
it(τ)

N

)
which using expression (A.24) implies that

(
U0
it(τ)

T
+
W 0
it(τ)

N

)−1/2

(ĉit(τ)− c0
it(τ))

d→ N (0, 1) (A.25)

uniformly over i and t. This last result completes the proof. �
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Figure 1: Performance of QPC and PC Estimators of β0
t - DGP 1

(T = 200, N = 10)

(a) β̃t (b) β̂t (0.25)

(c) β̂t (0.50) (d) β̂t (0.75)

The red line corresponds to the simulated quantile factor β0
t . The grey shaded area corresponds to the QPC

estimators β̂t(τ) for τ = {0.25, 0.50, 0.75} and the PC estimator β̃t that were computed from 1,000 simulations of

a standard factor model (DGP 1).
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Figure 2: Performance of QPC and PC Estimators of β0
t - DGP 2

(T = 200, N = 100)

(a) β̃t (b) β̂t(0.25)

(c) β̂t(0.50) (d) β̂t(0.75)

The red line corresponds to the simulated quantile factor β0
t . The grey shaded area corresponds to the QPC

estimators β̂t(τ) for τ = {0.25, 0.50, 0.75} and the PC estimator β̃t that were computed from 1,000 simulations of

a location-scale factor model (DGP 2).
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Figure 3: Performance of QPC Estimators of γ0
t - DGP 2

(T = 200, N = 100)

(a) γ̂t(0.25)

(b) γ̂t (0.75)

The red line corresponds to the simulated quantile factor γ0
t . The grey shaded area corresponds to the QPC

estimators γ̂t(τ) for τ = {0.25, 0.50, 0.75} that were computed from 1,000 simulations of a location-scale factor

model (DGP 2).
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Figure 4: Performance of QPC and PC Estimators of β0
t - DGP 3

(T = 200, N = 100)

(a) β̃t (b) β̂t(0.25)

(c) β̂t(0.50) (d) β̂t(0.75)

The red line corresponds to the simulated quantile factor β0
t . The grey shaded area corresponds to the QPC

estimators β̂t(τ) for τ = {0.25, 0.50, 0.75} and the PC estimator β̃t that were computed from 1,000 simulations of

a nonlinear factor model (DGP 3).
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Figure 5: Histogram of Standardized QPC Factors (T = 50)

Panel A: τ = 0.25
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These graphs correspond to the histograms of S = 1, 000 simulated standardized quan-

tile factors f̃t(τ) for τ = {0.25, 0.50} and t = bT/2c, where bxc is the integer part of x.

The solid black line is the density of the standard Normal distribution.
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Figure 6: Histogram of Standardized QPC Factors (T = 100)

Panel A: τ = 0.25

−5 0 5
0

0.1

0.2

0.3

0.4

T=100, N=25

−5 0 5
0

0.1

0.2

0.3

0.4

T=100, N=50

−5 0 5
0

0.1

0.2

0.3

0.4

T=100, N=100

−5 0 5
0

0.1

0.2

0.3

0.4

T=100, N=1000

Panel B: τ = 0.50

−5 0 5
0

0.1

0.2

0.3

0.4

T=100, N=25

−5 0 5
0

0.1

0.2

0.3

0.4

T=100, N=50

−5 0 5
0

0.1

0.2

0.3

0.4

T=100, N=100

−5 0 5
0

0.1

0.2

0.3

0.4

T=100, N=1000

These graphs correspond to the histograms of S = 1, 000 simulated standardized quan-

tile factors f̃t(τ) for τ = {0.25, 0.50} and t = bT/2c, where bxc is the integer part of x.

The solid black line is the density of the standard Normal distribution.
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Figure 7: Histogram of Standardized QPC Factor Loadings (T = 50)

Panel A: τ = 0.25
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These graphs correspond to the histograms of S = 1, 000 simulated standardized quan-

tile factor loadings λ̃i(τ) for τ = {0.25, 0.50} and i = bN/2c, where bxc is the integer

part of x. The solid black line is the density of the standard Normal distribution.
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Figure 8: Histogram of Standardized QPC Factor Loadings (T = 100)

Panel A: τ = 0.25
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These graphs correspond to the histograms of S = 1, 000 simulated standardized quan-

tile factor loadingss λ̃i(τ) for τ = {0.25, 0.50} and i = bN/2c, where bxc is the integer

part of x. The solid black line is the density of the standard Normal distribution.
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Figure 9: Histogram of Standardized QPC Common Components (T = 50)

Panel A: τ = 0.25

−5 0 5
0

0.1

0.2

0.3

0.4

T=50, N=25

−5 0 5
0

0.1

0.2

0.3

0.4

T=50, N=50

−5 0 5
0

0.1

0.2

0.3

0.4

T=50, N=100

−5 0 5
0

0.1

0.2

0.3

0.4

T=50, N=1000

Panel B: τ = 0.50

−5 0 5
0

0.1

0.2

0.3

0.4

T=50, N=25

−5 0 5
0

0.1

0.2

0.3

0.4

T=50, N=50

−5 0 5
0

0.1

0.2

0.3

0.4

T=50, N=100

−5 0 5
0

0.1

0.2

0.3

0.4

T=50, N=1000

These graphs correspond to the histograms of S = 1, 000 simulated standardized quan-

tile common components c̃it(τ) for τ = {0.25, 0.50} and (i, t) = (bN/2c , bT/2c), where

bxc is the integer part of x. The solid black line is the density of the standard Normal

distribution.
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Figure 10: Histogram of Standardized QPC Common Components (T = 100)

Panel A: τ = 0.25
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These graphs correspond to the histograms of S = 1, 000 simulated standardized quan-

tile common components c̃it(τ) for τ = {0.25, 0.50} and (i, t) = (bN/2c , bT/2c), where

bxc is the integer part of x. The solid black line is the density of the standard Normal

distribution.
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