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Abstract 

This paper studies the problem of optimal path selection in a directed network by decision makers 

that have an intrinsic distaste for evaluating too many options. We propose a recursive logit model 

that incorporates choice aversion along the lines introduced by Fudenberg and Strzalecki (2015). We 

derive optimal flow allocations both sequentially and from a path-choice perspective, which is robust 

to the presence of overlapping routes. We obtain a tight characterization of welfare in terms of both 

the network topology and the degree of choice aversion, where we derive comparative statics 

consistent with previous research. 

 

Resumen 

Este artículo estudia el problema de la selección de ruta óptima en una red dirigida por parte de 

tomadores de decisiones que tienen una insatisfacción intrínseca por evaluar demasiadas opciones. 

Proponemos un modelo logit recursivo que incorpora aversión a la elección en la línea introducida 

por Fudenberg y Strzalecki (2015). Derivamos asignaciones de flujo óptimas tanto secuencialmente 

como desde una perspectiva de elección de senda, la cual es además robusta a la presencia de rutas 

parcialmente superpuestas. Obtenemos una caracterización del bienestar en términos tanto de la 

topología de la red como del grado de aversión a la elección, donde obtenemos estadísticas 

comparativas consistentes con investigaciones previas. 
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1. Introduction

This paper studies the problem in which a set of decision makers

(DM, hereafter) must construct a path over a directed acyclic graph

G by gauging the utilities or costs associated to the edges of it. This

problem, which can be equivalently grasped as finding an optimal flow

allocation in G, has been extensively analyzed along different fields

of study. The broad modeling appeal of this problem spans, for in-

stance, production networks (Acemoglu and Azar, 2020), trade net-

works (Chaney, 2014; Antràs and Chor, 2013; Fajgelbaum and Schaal,

2019, and Allen and Arkolakis, 2019), models of present-biased plan-

ning (Kleinberg et al., 2016; Kleinberg and Oren, 2018), pricing in

assembly networks (Choi et al., 2017), and decision problems in graph-

related settings in general (Ahuja et al., 1993).

One of the main challenges of this problem, however, is that even for

small networks, the number of paths can be admittedly large, which

may promptly lead to Bellman’s curse of dimensionality. By acknowl-

edging this feature, previous research proposed recursive stochastic

choice models as a way to circumvent computational infeasibility is-

sues (e.g. Akamatsu, 1996, 1997; Baillon and Cominetti, 2008; Melo,

2012, and Fosgerau et al., 2013).1 A salient model in this strand of lit-

erature corresponds to the recursive logit model, whose main advantage

is to find closed-form solutions for those optimal flow assignments.

An important assumption of the recursive logit model though, is that

whenever a new edge is added to the original network, the DM will be

better off: they could actually face better random shock realizations

and simply spare paths that were not available before. In other words,

the expansion of their choice set leads unequivocally to higher wel-

fare. This is a fundamental property of the logit model, which has its

theoretical foundation on the idea of preference for flexibility (Kreps,

1979).

1It is worth remarking that in a different context, Rust (1987) introduced the

recursive logit model to the study of single agent dynamic discrete choice problems.
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In stark contrast with these theoretical underpinnings however, there

exists ample evidence that DM may suffer from choice overload (e.g.

Sheena and Lepper, 2000 and Scheibehenne et al., 2010). Simply put,

the choice overload hypothesis states that an increase in the number of

alternatives to choose from may lead to adverse consequences, such as

lesser motivation to actually choose or lower satisfaction ex post. This

behavioral trait has been previously considered by Ortoleva (2013), who

introduced thinking aversion on DM preferences by means of thinking

costs associated to feasible options. A consistent rationale for this phe-

nomena also comes from the Rational Inattention literature (Matéjka

and Mckay, 2015; Caplin et al., 2019, and Fosgerau et al., 2020), as

adding options to a decision maker’s choice set increases the cost of

processing information. In all, it appears fairly possible that in a net-

worked dynamic choice environment the DM may end up worse off if

more options—which purportedly add flexibility—do not make up for

information bearing costs arising from choice overload.

1.1. Outline of the model. In this paper we study a recursive logit

model in directed networks that incorporates choice overload in DM

behavior. The modeling approach we tackle for this aim belongs to Fu-

denberg and Strzalecki (2015) choice aversion formulation: we adapt

their discounted adjusted logit model to the case of directed networks.

Formally, consider the directed acyclic graph G with source node s and

designated sink node t. In this setting we model decision makers’ be-

havior as a sequential choice process: when assessing an edge a at some

node i 6= t the DM evaluate both the flow utility and the appropriate

continuation value associated to such an edge. We conceptually pose

choice overload or thinking aversion into the setting by appealing to

Fudenberg and Strzalecki’s axiomatic characterization of choice aver-

sion: we introduce a term that penalizes the size of each choice set

that stems subsequently from every current edge under scrutiny. In

particular, when considering an edge a—which immediately leads to

node ja—the DM will penalize the number of outgoing edges at ja. In

other words, when facing a set of alternatives in order to depart from

a specific node, the DM incorporate the size of the ensuing choice set

when they appraise the continuation value of each outgoing edge.
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1.2. Our contribution. The main result of the paper is a joint charac-

terization of decision makers’ welfare in terms of the network topology

and the extent of choice aversion, which allows comparative statics that

ushers in a tight condition for evaluating welfare after additional paths

are incorporated into the original network.

In order to arrive at this result we show how the model of choice

aversion developed by Fudenberg and Strzalecki (2015) can be adapted

to the study of path choice in directed networks. In this environment

we establish the connection between recursive logit with choice aversion

and a standard logit model whose choice space is the set of available

paths in the network. This connection allows us to highlight the role

of choice aversion at the path level. In addition, we characterize the

solution of the recursive logit model in terms of a strictly concave op-

timization program, a characterization that also applies to the original

dynamic choice problem studied by Fudenberg and Strzalecki (2015).

Our path-choice analysis furthermore, highlights the role of choice

aversion in overcoming the problem of overlapping paths in digraphs

(Ben-Akiva and Bierlarie, 1999 and Frejinger and Bierlarie, 2007). It is

easy to generate simple examples where the presence of superposition

along different paths generates unrealistic behavior by DM. Our anal-

ysis therefore, portrays the way in which choice aversion nudges DM

behavior when choosing optimal paths: it performs as a mechanism

that penalizes the degree of overlap between distinct routes, which in

turn generates robust choice probability predictions.

We additionally provide comparative static exercises where we show

that an increase in the degree of choice aversion lowers decision mak-

ers’ welfare, and similarly an improvement in one of the edges of the

network raises their welfare. In the most noticeable comparative static

that we lay out, we show how the so-called Braess’s paradox emerges

from choice aversion. This paradox refers to the case in which adding

free routes into a transportation network ends up getting all DM worse

off, so this particular example stresses the generality of the model we

analyze and the results we derive.
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1.3. Related work. Our paper is connected to several strands of lit-

erature. First, our work is related to the operations research liter-

ature studying the problem of flow allocation with stochastic edge

costs. In particular, the papers by Bersetkas and Tsitsiklis (1991),

Polychronopoulos and Tsitsiklis (1996), Gao and Chabini (2006), and

Gao et al. (2010) analyze the case of flow allocation when the costs

(utilities) associated to the edges are stochastic. However none of these

of papers consider the problem of choice aversion. From this literature

also the closest papers to ours are Baillon and Cominetti (2008) and

Fosgerau et al. (2013) who study the problem of flow allocation using

a recursive logit choice model.2 Neither Baillon and Cominetti (2008)

nor Fosgerau et al. (2013) though, study the effect of choice aversion in

directed networks. In addition, these papers do not study comparative

statics or welfare in their settings. Second, our work is connected to the

recent literature on planning and present bias. In particular, the papers

by Kleinberg et al. (2016) and Kleinberg and Oren (2018) propose a

graph-theoretic model of tasks and goals, in which dependencies among

actions are represented by a directed graph, where a time-inconsistent

agent must construct a path through it. They focus therefore on study-

ing time inconsistency in graphs. By introducing choice aversion, our

work can complement this type of behavioral analysis.

Finally, our paper is related to the decision theory literature. As

we mentioned above, our paper is built upon the work by Fudenberg

and Strzalecki (2015) who axiomatize the dynamic logit model under

choice aversion. The novelty of our paper is that we embed their model

into a directed network, which highlights the role of choice aversion in

a different class of problems. In the same line, our paper is related to

Ortoleva (2013) who studies thinking aversion by means of a cost-of-

thinking function related to the choice set. Our analysis complements

his analysis by underscoring the role of thinking aversion in a networked

environment.

2It is worth remarking that Baillon and Cominetti (2008) study a recursive choice

model in directed networks subject to congestion effects. They consider a general

class of discrete choice models, being the logit a particular case of their approach.
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The rest of the paper is organized as follows: In section §2 we in-

troduce a recursive choice model with choice aversion into a directed

network. In §3 we derive optimal flow allocations both from the re-

cursive perspective and from the path choice viewpoint. Section §4
contains the main results of the paper: we analyze the way in which

welfare depends on the network topology and choice aversion, and in

section §5 we provide final remarks. Proofs are relegated to Appendix

A.

2. Recursive logit in Directed Networks

In this section we propose a recursive discrete choice model in di-

rected networks. Formally, we model a set of DM as solving a dynamic

programming problem over a directed, acyclic graph. In a noticeable

departure from previous literature, we adapt Fudenberg and Strzalecki

(2015) choice aversion formulation into the context of directed graphs,

and then analyze the consequences on equilibria and welfare.

2.1. Directed graphs. Consider a directed acyclic graph G = (N,A)

where N is the set of nodes and A the set of edges, respectively. We

denote the set of ingoing edges to node i by A−i , and the set of outgoing

edges from node i by A+
i . We refer accordingly to the out-degree of node

i as |A+
i |.

Without loss of generality, we assume that G has a single source-sink

pair, where s and t stand for the source (origin) and sink (destination)

nodes, respectively. Let ja be the node j that has been reached through

edge a. We therefore define a path as a sequence of edges (a1, . . . aK)

with ak+1 ∈ A+
jak

for all k < K.

The set of paths connecting nodes s and t is denoted byR. Similarly,

the set of paths connecting nodes s and i 6= t is denoted byRsi. Finally,

the set of all paths connecting nodes i 6= s and t is denoted as Rit.

A deterministic utility component ua > 0 is associated with each

edge a ∈ A+
i for all i 6= t. Path attributes are assumed to be edge
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additive, that is, for a path r = (a1, . . . aK) ∈ R its associated utility

is given by
∑K

k=1 uak .

We assume that at node s there is a unitary mass of DM who must

choose a path from the set R. For the sake of exposition the mass of

DM is summarized by the canonical vector es, which has a 1 in the

position of node s and zero elsewhere. The dimension of es is |N | − 1.

It is worth remarking that from an economic vantage point the di-

graph G can be interpreted in at least three different ways. First, we

note that a path can be seen as a bundle of goods produced by different

firms. Under this interpretation, the edges in a path involve comple-

mentary goods while different paths can be interpreted as substitute

bundles. In this case, the DM choose one bundle—or equivalently a

collection of inputs or components—connecting s and t. A second in-

terpretation is that G may represent a collection of tasks that a decision

maker must execute in order to obtain some specific reward. Notice

that this interpretation follows from the fact that a path r ∈ R can be

regarded as a forward directed sequence of consecutive edges connect-

ing s and t. Paths in R in this case represent different combinations of

tasks, which are associated with different rewards or costs. Such latter

formulation is consistent with the approach of Kleinberg et al. (2016)

and Kleinberg and Oren (2018). Finally, G may represent a transporta-

tion network in which the DM must choose one of the possible paths

connecting their origin s with the final destination t.

2.2. Utilities and choice aversion. We now develop a recursive

choice model over G that incorporates choice overload by means of an

specific kind of penalty on ensuing choice sets stemming from each edge

appraisal. In particular, we adapt Fudenberg and Strzalecki (2015)

choice aversion approach into the environment described by G as fol-

lows: for each a ∈ A+
i we associate a collection of i.i.d. random vari-

ables {εa}a∈A, such that the recursive utility associated to edge a is

defined as:

(1) Va = ua + E

(
max
a′∈A+

ja

{Va′ + εa′ − κ log |A+
ja
|}

)
for all a ∈ A+

i ,
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where ua denotes the instantaneous utility associated to edge a and

the term E
(

maxa′∈A+
ja
{Va′ + εa′ − κ log |A+

ja
|}
)

is the adjusted contin-

uation value associated to the selection of a. Notice that the latter term

includes the factor κ log |A+
ja
|, which is a penalty term that captures

the size of the set A+
ja

, where κ ≥ 0.3

From an economic point of view, Eq. (1) highlights the fact that DM

not only assess the utility derived from edges with instant consumption

consequences, but also consider the way in which current edges may

alter the choice sets that will be available in successive nodes along the

network.

Following Fudenberg and Strzalecki (2015), we impose the following

assumption on the random variables εa’s.

Assumption 1 (Logit choice rule). At each node i 6= t the collection of

random variables {εa}a∈A+
i

follows a Gumbel distribution with location

parameter β = 1.

Under this assumption, Eq. (1) can be expressed as:

(2) Va = ua + log
(∑

a′∈A+
ja
eVa′
)
− κ log |A+

ja
|,

where log
(∑

a′∈A+
ja
eVa′
)
− κ log |A+

ja
| provides a close form for the ad-

justed continuation value.

Let us define ϕja(V ) , log
(∑

a′∈A+
ja
eVa′
)

for all ja 6= t. Accordingly

Eq. (2) can be rewritten as:

(3) Va = ua + ϕja(V )− κ log |A+
ja
|.

Previous expression deserves some remarks. First, the continuation

value in Eq. (3) captures the complexity of the choice sets A+
ja

, as mea-

sured by κ log |A+
ja
|, with κ ≥ 0. Intuitively κ log |A+

ja
| penalizes the size

3Fudenberg and Strzalecki (2015) study a recursive logit model in the context

intertemporal choice. In doing so they consider a discount factor δ ∈ (0, 1). We

focus on a digraph G, without discounting.
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of the choice sets at different nodes, where the parameter κ ≥ 0 mea-

sures decision makers’ attitude towards the size of A+
ja

. In particular,

Va is a decreasing function of κ.

Second, when κ = 0, Eq. (3) boils down to a traditional recursive

logit model in which DM are choice loving in the sense that they always

prefer to add additional items into the menu, as in the “preference for

flexibility” of Kreps (1979). To see this, note that when κ = 0 the

function ϕja(V ) is increasing in |A+
ja
|. As a consequence, the recursive

utility Va is increasing in the size of A+
ja

. This latter feature implies that

traditional recursive logit models in directed networks (e.g. Baillon and

Cominetti, 2008 and Fosgerau et al., 2013) can be associated with an

intrinsic taste for plentiful options.

On the other hand, the case of κ ∈ (0, 1) from economic standpoint

may be interpreted as a situation where the DM prefer to include addi-

tional alternatives to the menu, provided they are not too much worse

than the current average. Finally, the case κ ≥ 1 is interpreted as

a situation in which the DM only wish to add alternatives that are

perceived sufficiently better. In particular, the case κ = 1 captures a

situation where the DM want to remove choices that are worse than

the average: they worry about choosing such additional alternatives by

accident given appraisal costs—such as Ortoleva’s thinking aversion—

that may offset the benefits of the corresponding random draw.

In sum, the parameter κ encapsulates the scale of penalties on the set

of ensuing actions arising from each nonterminal node, which unlocks

keen consequences on decision makers’ attitude towards marginally in-

creasing the set of edges. Following Fudenberg and Strzalecki (2015),

we identify κ as decision makers’ choice aversion parameter.

3. Flow allocation and recursive choice

Each decision maker is looking for an optimal path connecting s and

t. Now, when they reach node i 6= t, they observe the realization of the

random utilities Va + εa for all a ∈ A+
i , and consequently choose the

alternative a ∈ A+
i with the highest utility.
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This process is repeated at each subsequent node giving rise to a

recursive discrete choice model, where the expected flow entering node

i 6= t splits among the alternatives a ∈ A+
i according to the choice

probability:

(4) P(a|A+
i ) = P

(
Va + εa ≥ V ′a + εa′ ∀a′ 6= a ∈ A+

i

)
∀i 6= t.

Due to Assumption 1, Eq. (4) can be rewritten as:

(5) P(a|A+
i ) =

eua+ϕja (V )−κ log |A+
ja
|∑

a′∈A+
i
e
ua′+ϕja′

(V )−κ log |A+
ja′
|
∀i 6= t.

It is worth stressing that for κ > 0, the choice probability P(a|A+
i )

is decreasing in |A+
ja
|, which merely reflects the penalty on edges as-

sociated with adjusted continuation values that comprise larger choice

sets. This is fundamental difference with the traditional logit model,

which assumes κ = 0 as we mentioned before.

Mathematically, the recursive process just described induces a Markov

chain over the graph G, where the transition probabilities are given by

(6) Pij =

{
P(a|A+

i ) if if = i and j = jf ,

0 otherwise,

for i 6= t. Here, in particular, Ptt = 1 and Pti = 0 for all i 6= t, i.e. node

t is an absorbing state.

Let xi be the expected flow entering at node i towards sink node t.

Then the flow received by edge a is given by:

(7) fa = xiP(a|A+
i ) ∀a ∈ A+

i ,

with f = (fa)a∈A denoting the expected flow vector. In addition let

P̂ = (Pij)i,j 6=t denote the restriction to the set of nodesN\{t}. Then the

expected demand vector x = (xi)i 6=t may be expressed as x = es + P̂Tx
which generates the following stochastic conservation flow equations

(8) xi =
∑
a∈A−i

fa for all i 6= t.

A flow vector f satisfying (8) is called feasible and the set of all such

vectors is denoted by F .
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The next result characterizes the solution of the recursive logit in

terms of a strictly concave optimization problem.

Proposition 1. A solution to the recursive logit is given by the unique

solution to the following optimization program:

(9) max
f∈F

∑
i 6=t

∑
a∈A+

i

fa(ua − κ log |A+
ja
|)− Jκ(f)

 ,

where Jκ(f) =
∑

i 6=t

[∑
a∈A+

i
fa ln fa −

(∑
a∈A+

i
fa log

(∑
a∈A+

i
fa

))]
.

Moreover for all i 6= t, the flow of each edge is given by:

(10) fa = xi
eua+ϕja (V )−κ log |A+

ja
|∑

a′∈A+
i
e
ua′+ϕja′

(V )−κ log |A+
ja′
|
∀a ∈ A+

i .

Some remarks are in order. First, from an economic perspective, pro-

gram (9) can be interpreted as the utility function of a representative

agent who must decide how to allocate the flow over G: such program

therefore provides a microfoundation for the choice probabilities that

optimally allocate the flow on G. Second, the term Jκ(f) is the entropy

generated by the presence of the random variables ε’s, which in turn in-

corporates the role of the choice aversion term κ log |A+
i |. Finally, it is

worth mentioning that Proposition 1 complements the axiomatic char-

acterization provided by Fudenberg and Strzalecki (2015) in the sense

that the solution to their recursive choice model can be equivalently

obtained as the answer to program (9).

3.1. Path choice analysis. So far we have described a situation where

a set of DM choice their optimal path in a recursive fashion. Because

of the logit structure of the problem however, the very same analysis

can be equivalently stated in terms of path choices.
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In doing so, we assume that for each path r ∈ R the utility associated

to it is a random variable defined as

(11) Ũr = Ur + εr ∀r ∈ R,

where Ur =
∑

a∈r(ua − κ log |A+
ja
|) =

∑
a∈r ua − κ

∑
a∈r log |A+

ja
| and

{εr}r∈R is a collection of absolutely continuous random variables satis-

fying Assumption 1.

Under these conditions, the probability of choosing path r is defined

as:

(12) Pr , P
(
Ũr = arg max

r′∈R
{Ur′ + εr′}

)
∀r ∈ R.

Equations (11) and (12) jointly define a path choice model over R,

where we again refer to the Gumbel assumption to obtain:

(13) Pr =
eUr∑

r′∈R e
Ur′

∀r ∈ R.

Proposition 2. For each path r = (a1, . . . , aK) ∈ R with K ≥ 2, the

following equality holds

Pr =
K∏
k=1

P(ak|A+
s )P(ak+1|A+

jak
).

This result intuitively establishes that the probability of choosing

path r can be expressed as the product of the choice probabilities as-

sociated to the edges that give rise to it. From a behavioral point of

view, Propositon 2 is relevant because it shows the way in which choice

aversion can be interpreted as a mechanism that overcomes the prob-

lem of overlapping paths (Ben-Akiva and Lerman, 1985). To stress this

point let’s define Pr as follows:

(14) Pr =
eur−κγr∑

r′∈R e
ur′−κγr′

for all r ∈ R,

where γr ,
∑

a∈r log |A+
ja
|.
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It is easy to see that for κ > 0, κγr can be interpreted as a penalty

term that accounts for the size of the choice set at each of the nodes

accessed along path r. For the sake of concreteness consider the net-

work in Figure 1. The set of paths is given by R = {r1, r2, r3} where

r1 = (a1, a3), r2 = (a1, a4), and r3 = (a2). For this small network, paths

r1 and r2 overlap, sharing the common edge a1. Given this feature—for

the case of κ = 0—we argue that the logit model (13) does not provide

sensible results regarding optimal flow allocation.

s i1 t
a1

a2

a3

a4

Figure 1. Logit path choice

To see this let’s assume ua1 = 1.9, ua3 = ua4 = 0.1, and ua2 = 2.

For this parametrization, coupled with κ = 0, it follows that ur1 =

ur2 = ur3 = 2, and consequently the logit choice rule (14) assigns

one third of flow to each path. In other words with κ = 0 we get

Pr1 = Pr2 = Pr3 = 1
3
. However, since paths r1 and r2 are identical, the

assignment Pr1 = Pr2 = 1
4

and Pr3 = 1
2

seems more appealing.

The root of this discrepancy lies in the fact that the logit path choice

model is restricted by the Independence from Irrelevant Alternatives

(IIA) property, which does not hold in the context of route choice due

to overlapping paths (Ben-Akiva and Lerman, 1985; Ben-Akiva and

Bierlarie, 1999, and Frejinger and Bierlarie, 2007). However, for κ > 0

the logit model with choice aversion predicts a flow allocation closer

to
(
1
4
, 1
4
, 1
2

)
. For instance, in the cases of κ = 1 and κ = 2 we find

that the optimal flow allocations are
(

3
10
, 3
10
, 2
5

)
and (0.26, 0.26, 0.48),

respectively.
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What the analysis just laid out shows—which applies to the general

case of directed networks—is that from the vantage point of path selec-

tion, choice aversion is a robust way to derive optimal flow allocations,

even in the case of superposition of different routes.

Most importantly, choice aversion provides a justification for the

class of models known as path size logit, which is precisely an attempt

to overcome the problem posed by overlapping paths in the context

of path choice (e.g. Ben-Akiva and Bierlarie, 1999 and Frejinger and

Bierlarie, 2007).

In sum, coming back to the general case, the term κγr in Eq. (14),

can be interpreted as a correction that penalizes those paths who share

common edges. Beyond arithmetics however, choice aversion ends up

relieving optimal flow allocation by means of path selection from the

straightjacket of the independence assumption of the logit choice model.

3.2. Welfare. We now turn to define welfare in our environment in

order to provide comparative statics under different network topologies.

Because of Proposition 2 particularly, we can define Decision Makers’

welfare as follows:

(15) W(κ) , E
(

max
r∈R
{Ur + εr}

)
= log

(∑
r∈R

eUr

)
,

where last equality follows from Assumption 1. Notice that our def-

inition makes explicit the dependence of DM welfare on the choice

aversion parameter κ.

Following the literature on discrete choice models, expression (15)

can be interpreted as the inclusive value of paths in R, which is equiv-

alent to say thatW(κ) measures the inclusive value of the source node

s. As we shall see in next section,W(κ) plays a key role when analyzing

the impact of changes on the topology of G.
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4. Welfare and network topology

In this section we state the main result of the paper. We show that

improvements to the network can decrease aggregate welfare, which is

measured as decision makers’ surplus. In order to establish this result

we begin by showing how aggregate welfare is decreasing on κ.

Proposition 3. Let κ′ > κ > 0. Then W(κ′) <W(κ).

The next result establishes that increasing the instant utility associ-

ated to a particular edge increases W .

Proposition 4. Consider a node i 6= t and an edge a ∈ A+
i . Then

dW(κ)

dua
= xiP(a|A+

i ) = fa

Now we are ready to establish our main result: adding edges to the

digraph G can decrease social welfare.

Theorem 1. Fix a node i 6= s, t. Suppose that a new link a′ is added to

node i. Then W(κ) increases if and only the following condition holds:

(16) P(a′|A+
i ∪ {a′}) > 1−

(
|A+

i |
|A+

i |+ 1

)κ
.

It is worth stressing three implications of this result. First, Theo-

rem 1 underscores the way in which local effects—namely, the addition

of alternatives at the node level—propagate throughout the network

and unlock aggregate welfare effects. Second, it connects Fudenberg

and Strzalecki (2015) axiomatic characterization of stochastic choice in

dynamic settings with networked markets. In particular, Theorem 1

extends their Proposition 3 to the case of graph-related settings. And

finally, and most notably, it shows that Braess’s network paradox may

equivalently stem from choice aversion with no allusion to congestion

whatsoever. Next section discusses this result in detail.

4.1. Braess’s Paradox. Theorem 1 provides a simple condition that

characterizes the way in which an improvement at the node level may

increase consumer surplus. This result can be connected to Braess’s
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paradox (Braess, 1968; Braess et al., 2005), which states that adding

free routes into a transportation network makes every decision maker

worse off. The connection we establish is that we may generate this

phenomenon as a consequence of choice aversion in a general directed

network.

In order to see how our result is related to Braess’s paradox, consider

the special directed networks given in Figures 2(A) and 2(B). Figure

2(A) shows a parallel serial network with paths r1 = (a1, a2) and r2 =

(a3, a4). The set of paths therefore is given byR = {r1, r2}, and welfare

described by

W(κ) = log(eUr1 + eUr2 ).

i1

s t

i2

a1 a2

a3 a4

(A) Two unconnected paths

i1

s t

i2

a1 a2

a3 a4

a5

(B) Both paths connected by a5

Figure 2. Braess’s paradox ensuing from choice aversion.

Now assume that the network in Figure 2(A) is modified by means of

adding a new edge starting at node i1 and ending at node i2, as Figure

2(B) shows. Now the new set of paths is given by R̃ = {r1, r2, r3},
where r1 and r2 are defined as before and r3 = (a1, a5, a4). Decision

makers’ surplus for this modified network is given by:

W̃(κ) = log(eUr1 + eUr2 + eUr3 ).
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Theorem 1 allows us to characterize the effects of adding edge a5 into

the original network. In particular, W̃(κ) >W(κ) iff

P(a5|{a2, a5}) > 1−
(

1

2

)κ
.

In order words, moving from network 2(A) to 2(B) improves deci-

sion makers’ welfare if and only if the probability of choosing a5 is

strictly greater than 1 −
(
1
2

)κ
, which is automatically satisfied when

κ = 0. Now, let’s state this condition in terms of κ. In doing so,

we assume u = ua1 = ua2 = ua3 = ua4 > 0 and ua5 = u + ε with

ε > 0. Given this parametrization it is easy to see that W(κ) =

log 2e2u = log 2 + 2u and W̃(κ) = log
(
e2u + e2u−κ log 2 + e2u+ε−κ log 2

)
=

2u+ log
(
1 + e−κ log 2(1 + eε)

)
.

Then W̃(κ) >W(κ) if and only if

eu+ε

eu + eu+ε
=

eε

1 + eε
> 1−

(
1

2

)κ
.

Previous expression can be rewritten as:

κ >
log(1 + eε)

log(2)
.

It is easy to see that for ε > 0 we have the W̃(κ) > W(κ) if and

only if κ > 1. As we mentioned in §2, the case of κ ≥ 1 corresponds

to a situation where the DM only want to add alternatives that are

sufficiently better that the existent ones. In this case, the DM want

to add edge a5 whenever κ ≥ 1. In particular, for values of κ ∈ (0, 1)

improving the network can make all DM worse off. Thereby, under

choice aversion we can obtain the very same type of paradox described

by Braess (1968); Braess et al. (2005): while they obtain this result

as a consequence of decision makers’ selfish behavior in a congestion

game, we derive it as a consequence of choice aversion, which provides

a different perspective to the problem of network design.
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5. Conclusion

This paper discussed the role of choice aversion in directed networks,

which is an avenue we took as a modeling device to incorporate the fact

that decision makers may have an intrinsic distaste to deal with big sets

of options in sequential decision processes. By merely adapting and

connecting concepts already established in previous work, we ended

up no only characterizing optimal paths along our network, but also

highlighting the role of choice aversion in generating robust solutions

in the presence of overlapping alternatives and obtaining paradoxes in

related fields. Finally, we informally pose our paper as providing an

additional rationale for some specific patterns of network formation in

international trade (e.g. Chaney, 2014): under choice aversion only a

manageable set of options is preferable, which is consistent with partial

diversification of trade partners.
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Appendix A. Proofs

Proof of Proposition 1. This result follows from a direct application

of Melo (2012, Proposition 2). �

Proof of Proposition 2. Let r be a path of length K ≥ 2. In

particular, let r = (a1, . . . , aK) ∈ R. Using the Markovian structure of

the recursive logit, the probability of choosing path r can be expressed

as:

P̂r = P(a1|A+
s )× P(a2|A+

a1
)× · · · × P(aK |A+

jaK−1
).

Thanks to the logit assumption, we have that previous expression can

be written as

P̂r =
e
ua1+ϕja1

−κ log |A+
ja1
|

eϕs
× e

ua2+ϕja2
−κ log |A+

ja2
|

eϕja1
× · · · × euaL

eϕaL−1
.

After some simple algebra we find:

P̂r =
eUr

eϕs
=

eUr∑
r′∈R e

Ur′
= Pr.

Now, starting with the choice probability of path r given by Pr = eUr

eϕs ,

and by a similar argument as the one used above, we must necessarily

conclude that Pr = P̂r. Because previous analysis holds for all r ∈ R
the conclusion follows at once. �

Proof of Proposition 3. Consider a path r ∈ R and assume that

κ′κ > 0. Then by the definition of r we can define Ur(κ
′) =

∑
a∈r(ua−

κ′|A+
ja
|). Then it is easy to see that Ur(κ

′) < Ur(κ) for all r ∈ R. In

particular eUr(κ′) < eUr(κ) and summing over all r ∈ R we get:∑
r∈R

eUr(κ′) <
∑
r∈R

eUr(κ).

Taking log in previous expression we conclude W(κ′) <W(κ). �

The following lemma shows that the utility associated to paths pass-

ing through node i can be decomposed in a very simple way.

Lemma 1. For each node i 6= t the following holds:∑
r∈Ri

eUr =
∑
r′∈Rsi

eUr′eϕi(V )−κ log |A+
i |
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where ϕi(V ) = log
(∑

a∈A+
i
eVa
)

.

Proof. Let r′ ∈ Rsi be defined as r′ = (a1, . . . , al) with jal = i. Then

it follows that we can construct the utility associated to all paths of

the form r = (r′, r′′) ∈ Ri as Ur′ + Ur′′ . In particular, we can write∑
r′′∈Rit

eUr′+Ur′′ . Exploiting the recursive structure of the problem, it

is easy to see that eϕi(V ) =
∑

r′′∈Rit
eUr′′ .

This latter expression implies that∑
r′′∈Rit

eUr′+Ur′′ = eUr′eϕi(V )

Adding up over all r′ ∈ Rsi we conclude that:∑
r∈Ri

eUr =
∑
r′∈Rsi

∑
r′′∈Rit

eUr′+Ur′′ =
∑
r∈Rsi

eUr′eϕi(V ).

Because previous analysis holds for all node i 6= t the conclusion

follows. �

Proof of Proposition 4. By Lemma 1 it is easy to see that

W(κ) = log

∑
r∈Ri

eUr +
∑
r∈Rc

i

eUr

 = log

 ∑
r′∈Rsi

eUr′eϕi(V ) +
∑
r∈Rc

i

eUr

 .

Taking differential with respect to dua we get

dW(κ) =

∑
r∈Rsi

eUr′eϕi(V )∑
r∈R e

Ur

∂ϕi(V )

∂ua
dua.

Noting that xi =
∑

r∈Rsi
eUr′ eϕi(V )∑

r∈R e
Ur we conclude that:

dW(κ)

dua
= xiP(a|A+

i ) = fa.

�

Proof Theorem 1. The proof of this result exploit the recursive

structure of the problem. Let R̃ denote the set of paths after adding

a new link a′. Accordingly define R̃i. Let W(κ) = log
(∑

r∈R e
Ur
)

and W̃(κ) = log
(∑

r∈R̃ e
Ur
)

consumer’ surplus before and after the
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addition of a′. Note that CS(κ) = log
(∑

r∈Ri
eUr +

∑
r∈Rc

i
eUr

)
and

W̃(κ) = log
(∑

r∈R̃i
eUr +

∑
r∈R̃c

i
eUr

)
.

Adding edge a′ increases consumers’ surplus if and only if the fol-

lowing hold:

log

∑
r∈R̃i

eUr +
∑
r∈R̃c

i

eUr

 > log

∑
r∈Ri

eUr +
∑
r∈Rc

i

eUr

 .

Noting that Rc
i = Rc

i previous conditions boils down to:

(17)
∑
r∈R̃i

eUr >
∑
r∈Ri

eUr .

By Lemma 1 we can write the following:∑
r∈Ri

eUr =
∑
r′∈Ri

eUr′+ϕi(V )−κ log |A+
i | =

∑
r∈Ri

eUr+ϕi(V )|A+
i |−κ

Similarly∑
r∈R̃i

eUr =
∑
r∈R̃i

eUr+ϕi(Ṽ )−κ log(|A+
i |+1) =

∑
r∈R̃i

eUr+ϕi(V )(|A+
i |+ 1)−κ,

where Ṽ denotes the recursive utility (1) after adding edge a′.

Then Eq. (17) can be written as follows:

(18)
∑
r∈Ri

eUr+ϕi(Ṽ )(|A+
i |+ 1)−κ >

∑
r∈Ri

eUr+ϕi(V )|A+
i |−κ.

Previous expression can be written as:∑
a∈A+

i

eVa + eVa′

 (|A+
i |+ 1)−κ >

∑
a∈A+

i

eVa

 |A+
i |−κ.

Then after some algebra we find:(
|A+

i |
|A+

i |+ 1

)κ
>

∑
a∈A+

i
eVa∑

a∈A+
i
eVa + eVa′

.
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Using the fact that

∑
a∈A+

i
eVa∑

a∈A+
i
eVa+eVa′

= 1 − P(a′|A+
i ∪ {a′}) we can

conclude that W̃(κ) >W(κ) if and only if

P(a′|A+
i ∪ {a′}) > 1−

(
|A+

i |
|A+

i |+ 1

)κ
.

�
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