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Abstract 

Cross-sectional variation in micro data can be used to empirically evaluate sufficient statistics for the response 

of aggregate variables to policy shocks of interest. We demonstrate an easy-to-use approach through a detailed 

example. We evaluate the sufficiency of micro pricing moments for the aggregate real effects of monetary 

policy shocks. Our analysis shows how a widely held notion about the kurtosis of price changes, as sufficient 

for summarizing the selection effect, turns out not to hold empirically. On theoretical grounds, we show how a 

small change in assumptions - removing random menu costs - can nonetheless reconcile the predictions of the 

existing theoretical literature with our empirical regularities. 

Resumen 

Este artículo propone una metodología basada en micro datos para evaluar candidatos de estadísticos 

suficientes propuestos para cuantificar la respuesta de variables agregadas a shocks de política. Esa 

metodología se ilustra usando un ejemplo: la relación entre estadísticas de datos micro de precios y el efecto 

agregado de la política monetaria. El principal resultado es que no hay evidencia de la validez empírica de la 

importancia de un estadístico suficiente ampliamente aceptada en modelos de costos de menú, la razón de 

curtosis de la distribución de cambios de precios sobre la frecuencia de dichos cambios. Teóricamente, se 

muestra que una variación en el modelo estándar puede reconciliar las predicciones del modelo con la 

evidencia encontrada. 
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I Introduction

A first-order question in macroeconomics concerns the degree of monetary non-neutrality

– do monetary policy shocks have real output effects or do they tend to be absorbed

by inflationary responses? How price-setting is modeled matters for answering these

questions. The use of micro price data, following the pioneering work of Bils and Klenow

(2004) and Nakamura and Steinsson (2008), has been a highly successful approach to

discipline pricing models and gauge the associated degree of monetary non-neutrality.

However, evidence is scarce about the empirical relationship between the micro price

moments used to discipline models and monetary non-neutrality.

This paper evaluates the informativeness of popular pricing moments for monetary

non-neutrality. Empirically, frequency of price changes is the only robustly significant

pricing moment. This result is in line with the predictions of basic models of price

rigidities. Further, we show our empirical findings can guide modeling efforts in the

domain of price-setting by focusing on the role that the ratio of kurtosis over frequency

plays for monetary non-neutrality. This is a moment that Alvarez et al. (2016a, 2020)

have proven to be a theoretically sufficient statistic for monetary non-neutrality in a

wide class of pricing models. We instead find in a quantitative menu cost model that

this ratio has an ambiguous relationship with monetary non-neutrality. We show which

modeling ingredients are behind this discrepancy with previous theoretical work, aligning

theoretical and empirical results.

Our analysis starts by establishing four main empirical results. First, frequency of

price changes is the only one among eight popular pricing moments that has a robust,

statistically significant relationship with monetary non-neutrality.1 As kurtosis of price

changes bears no significant relationship with the degree of monetary non-neutrality, it

is the frequency of price changes that makes the ratio of kurtosis over frequency take

on statistical significance. We establish these results using a multitude of regression

specifications. They include placebo exercises where other, insignificant pricing moments

1We rely a broad set of alternative but empirically highly correlated measures of monetary non-
neutrality, using the response of either prices or real sales to monetary policy shocks identified under
three alternative approaches: FAVAR as in Boivin et al. (2009), narrative as in Romer and Romer (2004)
with the extended sample of Wieland and Yang (2020), and high-frequency as in Nakamura and Steinsson
(2018). The pricing moments include frequency, kurtosis, the ratio of kurtosis over frequency, average size,
standard deviation, fraction of small and fraction of positive price changes, and the standard deviation
of price durations.
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become significant once divided by frequency. Our results are robust to the use of

alternative measures of monetary non-neutrality, fixed effects, instruments to account

for measurement error, and specifications in levels or logs.

Second, frequency of price changes is the only pricing moment analyzed that is

highly informative for explaining variation in the degree of monetary non-neutrality.

Frequency univariately explains around 30 percent of the observed variation in monetary

non-neutrality across finely disaggregated sectors. Other pricing moments explain less.

For instance, kurtosis or the ratio of kurtosis over frequency univariately explain 4 percent

and 17 percent. All pricing moments together account for 33 percent of total variation.

Inclusion of non-pricing moments increases R2 from 33 percent to 52 percent.

Third, two non-pricing moments stand out as significant for monetary non-neutrality:

profit rates, and the persistence of sectoral shocks. As in Boivin et al. (2009), profit rates

can be understood to measure the extent of competition in a sector, while the persistence

of sectoral shocks may affect the strength of the selection effect as in Golosov and Lucas

(2007). These non-pricing moments explain a substantial fraction of variation in monetary

non-neutrality and influence the significance of pricing moments. For example, upon their

inclusion, the ratio of kurtosis over frequency can become statistically insignificant.

Last, our empirical results suggest that the search for an empirically relevant

sufficient statistic encapsulating monetary non-neutrality is unlikely to end with any single

pricing moment. Except for frequency, the pricing moments considered are not robustly

statistically significant for monetary non-neutrality, a necessary condition for sufficiency.

In addition, sufficient statistics should fully summarize the relationship with monetary

non-neutrality such that no other pricing or non-pricing variable contains additional

information.2 However, omitted variable bias is present for all pricing moments. We

apply formal tests following Oster (2019), among other checks, to confirm the scope for

omitted variable bias.3

Although our goal is to broadly evaluate the empirical informativeness of popular

pricing and non-pricing moments in the micro data, a particular angle of our analysis is

2See for example Fisher (1922): “No other statistic that can be calculated from the same sample
provides any additional information as to the value of the parameter.”

3This procedure considers changes in explanatory power we observe along with the instability of
coefficients across specifications. The insight that ties together omitted variable bias and informativeness
is that concern for omitted variable bias lessens only as a model gets closer to explaining all of the
variation in the dependent variable – that is, as R2 increases towards its upper bound.
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that it provides evidence on whether the ratio of kurtosis over frequency of price changes is

an empirically sufficient statistic for monetary non-neutrality, as posited by Alvarez et al.

(2016a, 2020). As presented above, the ratio of kurtosis over frequency is informative

for monetary non-neutrality in some specifications, but it is not an empirically sufficient

statistic. Its significance stems from the significance of frequency, while kurtosis only adds

noise. Significance can be lost altogether when other, non-pricing moments are included.

Additionally, we find limited evidence that the estimated coefficients of kurtosis and

frequency, included as separate regressors, bear an equal but opposite sign as predicted

by theory. In short, our results point towards a gap between assumptions in theoretical

work and the empirical environment where its findings can be assessed.

Our theoretical analysis gives our empirical findings a positive note. As we trace

out which modeling assumptions have which consequences for the relation of pricing

moments and monetary non-neutrality, our findings can guide modeling choices. To make

our point, we concentrate attention on menu cost models and three pricing moments:

kurtosis, frequency, and their ratio. Our baseline model is an augmented version of

Nakamura and Steinsson (2010) calibrated in standard quantitative fashion. Set in

discrete time, it features trend inflation, stochastic aggregate productivity and monetary

shocks, leptokurtic idiosyncratic productivity shocks, menu costs and Calvo-plus free price

changes, among other model ingredients.4 The model predicts that both frequency and

kurtosis have negative relationships with monetary non-neutrality. As a result, their

ratio has a non-monotonic relation with monetary non-neutrality. We compute these

relationships by comparing steady-state pricing moments and monetary non-neutrality

across different calibrations.5

Next, starting from the simplest model nested in our setup, we add each of the above

assumptions sequentially to show how they determine the relation of pricing moments with

monetary non-neutrality. In particular, this stepwise addition clarifies which assumptions

4We note that the model does not fit in the class of models studied by Alvarez et al. (2016a, 2020).
5First, for a given calibration, we simulate the steady state distribution by simulating a time series

of 1000 periods after a burn-in of 500 periods. In each period we compute a moment of interest
and use the average moment over time as the steady state pricing moment. Second, we compute
the associated monetary non-neutrality after we shift the steady-state distribution with a one-time
expansionary monetary shock, averaging the change in consumption across 3500 simulations. Third,
we repeat these steps for different calibrations to obtain potentially different steady state distributions
and monetary non-neutrality. In order to vary the moments we consider, we change the size of menu
costs, the size of idiosyncratic shocks, the CalvoPlus parameter and the extent of leptokurtic shocks.
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are behind the different predictions of our quantitative menu cost model compared to

Alvarez et al. (2016a, 2020). This simplest nested model is the Golosov-Lucas model set

in discrete time, featuring fixed menu costs, no aggregate shocks, Gaussian idiosyncratic

productivity shocks and no trend inflation. To start with, we implement a monetary

shock as an unexpected, one-time shift in the distribution of price gaps. This model

falls into the class of models in Alvarez et al. (2016a, 2020), except that we do not use

a second-order approximation for firm flow profits and solve a discrete-time setting. As

a consequence, alternative calibrations cannot generate variation in kurtosis as predicted

by their theory although kurtosis does not precisely equal 1.6 However, once we add in

stochastic monetary shocks, variation in kurtosis emerges. Both frequency and kurtosis

bear a negative relationship with monetary non-neutrality and the ratio has an ambiguous

relation, as in our full model. This result carries significance for a widely used modeling

technique that may apply beyond the price setting focus in this paper: It matters for

model predictions if we allow for stochastic aggregate shocks, or if we implement an

aggregate shock as an unexpected one-time shift in relative prices.

As we enrich the list of modeling assumptions further, we find that adding random

menu costs reverses the sign of the relation between kurtosis and monetary non-neutrality.

Random menu costs can mechanically increase kurtosis and make some price changes not

subject to selection (Golosov and Lucas (2007)), so monetary non-neutrality coincidentally

increases. Now, the ratio of kurtosis over frequency has a positive relation with

non-neutrality as in Alvarez et al. (2016a, 2020), who also assume random menu costs.

However, adding in leptokurtic idiosyncratic shocks once more reverses the sign of the

relation of kurtosis with monetary non-neutrality, working through a similar mechanism

as in Karadi and Reiff (2019). At the same time, this addition generates an ambiguous

relation of the ratio with monetary non-neutrality. Finally, the addition of the remaining

model ingredients has no further effect on the sign of the relationship. In particular, the

addition of 2 percent trend inflation has little additional effect in line with Baley and

Blanco (2021).

As these exercises show, the relation of frequency with monetary non-neutrality is

robust across modeling assumptions, but the relation of kurtosis and the ratio of kurtosis

6The reason lies in the discrete-time approximation of our setting. In Appendix A, we show that
using a quadratic loss function approximation of firm flow profit does not change our results. Figure 11
illustrates this.
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over frequency is not, just as in the data. Likely, sectors differ in practice in the extent to

which assumptions from our exercise apply. In some sectors, fixed menu costs or aggregate

shocks may dominate, implying a negative relation between kurtosis and non-neutrality,

while random menu costs may dominate in other sectors, implying the opposite sign. The

presence of different price setting mechanisms across sectors implies that a multi-sector

model would always generate a positive relationship between frequency and monetary

non-neutrality, but an unstable relationship between kurtosis and monetary non-neutrality

depending on sectoral weights.

Literature. Our analysis contributes to a large empirical literature that has used

micro pricing moments to analyze the effects of monetary policy shocks, starting with the

work of Bils and Klenow (2004), Nakamura and Steinsson (2008) and Midrigan (2011).

Another approach to discipline models has been to use specific episodes. For example,

Gagnon (2009) evaluates the performance of Calvo versus menu cost models based on

the Tequila crisis in Mexico, Alvarez et al. (2019) based on hyperinflation in Argentina,

Nakamura et al. (2018) for the Great Inflation in the US, or Karadi and Reiff (2019) for

VAT changes in Hungary. Gopinath and Itskhoki (2010) study the interaction between

price flexibility and exchange rate shocks affecting price responses. Our work shows that

the extent to which variation in micro pricing moments across sectors drives monetary

non-neutrality can additionally be used to discipline models. By diving into sectoral and

firm-level data, we exploit such variation.

Another literature our paper touches upon argues that conventional pricing moments

may not be sufficient statistics for monetary non-neutrality in quantitative models. Dotsey

and Wolman (2020), Karadi and Reiff (2019), Alexandrov (2020), Bonomo et al. (2020), or

Bonomo et al. (2021) make such arguments. We make two contributions in this context:

First, we provide direct empirical evidence in this regard. Second, we emphasize that

pricing moments per se do not sufficiently summarize monetary non-neutrality. We show

how different model ingredients affect the relation of pricing moments with monetary

non-neutrality by going through our list of modeling assumptions. This analysis builds

on several advances that have pushed the modeling frontier in menu cost models, such as

Golosov and Lucas (2007), Caballero and Engel (2007), Nakamura and Steinsson (2010)

and Midrigan (2011). Our list of modeling assumptions can be extended further as the

above papers show, for example to take into account empirical phenomena such as price
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adjustment synchronization (Bonomo et al. (2020)). Without exhaustively doing so, the

broader point of our analysis remains to emphasize the challenges that theory faces in

light of a complex empirical environment.

Our work also contributes to the literature providing evidence on the interaction of

sticky prices and monetary shocks. Gorodnichenko and Weber (2016) show that firms

with high frequency of price change have greater conditional volatility of stock returns

after monetary policy announcements. In contrast, Bils et al. (2003) find that when broad

categories of consumer goods are split into flexible and sticky price sectors, that prices for

flexible goods actually decrease relative to sticky prices after an expansionary monetary

shock. Henkel (2020) finds the response of industrial production to monetary shocks varies

with price stickiness while Meier and Reinelt (2020) show markup dispersion increases in

response to monetary shocks. Castro (2020) uses regional variation in price stickiness to

study monetary non-neutrality.

Finally, in related work subsequent to ours, Alvarez et al. (2021) have used an

empirical strategy similar in spirit to ours, although with many important differences

such as the use of French rather than US data. Our paper addresses the major concerns

that the authors shared with us,7 while also including many other robustness checks.

The rest of the paper proceeds as follows. Section II discusses the data, empirical

methodology, and results. Section III presents the menu cost model. Section IV presents

the model results and Section V concludes.

II Empirical Analysis

This section describes our data and the methodology we use to test which micro pricing

moments are informative about the price or output response following an identified

monetary shock, as well as our findings.

7Among other highly correlated measures, our empirical section also uses the monetary non-neutrality
measure they propose. We also explain how R2 and testing for omitted variable bias are tied together.
We report results with and without fixed effects. While our model section shares the broader motivation
of our empirical analysis, we clarify why our model predictions differ from Alvarez et al. (2016a, 2020).
We also show that normalization for large shocks is not responsible for our findings.
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A Data

Our main dependent variables are 154 producer price (PPI) inflation series from Boivin

et al. (2009). This dataset on which we build also includes various further macroeconomic

indicators and financial variables. Some examples are measures of industrial production,

interest rates, employment and various aggregate price indices. We also include

disaggregated data on personal consumption expenditure (PCE) series published by the

Bureau of Economic Analysis, consistent with Boivin et al. (2009). The resulting data

set is a balanced panel of 653 monthly series, spanning 353 months from January 1976 to

June 2005. As in Boivin et al. (2009), we transform each series to ensure stationarity.

We first sort the 154 sectors into an above-median and a below-median set according

to 8 pricing moments of interest: Frequency, kurtosis, the ratio of kurtosis over frequency,

average size, standard deviation, fraction of small and fraction of positive price changes,

and the standard deviation of price durations. This sorting requires us to have sectoral

price-setting statistics. We obtain them by using the micro price data that underlie the

construction of the PPI at the BLS. For each of the corresponding 154 series, we construct

sector-level price statistics using PPI micro data from 1998 to 2005. We compute pricing

moments by pooling price changes at the sector-month level, and then take averages over

time at the respective six-digit NAICS industry level, each of which corresponds to one

of the 154 series. Summary statistics are in Table 1. We assign sectors into above-median

and below-median subsets for any given moment of interest and compute the average

inflation rate in each subset.

As an important complement to these sector-level series, we use firm-level data on

real sales and pricing moments. First, we compute 5 firm-level moments: frequency,

kurtosis, the kurtosis over frequency ratio, average size, and standard deviation of price

change. We compute these pricing moments using the PPI micro data for the 584 firms

that Gilchrist et al. (2017) match to Compustat data. The pricing data are available

from 2005 through 2014 for these calculations. As with the sectoral calculations, we pool

all price changes within a firm over time to calculate firm pricing moments. Second, we

merge firm-level sales from Compustat into this dataset to obtain a measure of output.

Whenever we compute pricing moments, we restrict our sample to firms with a minimum

of 5 price changes over the full sample period, which leaves 420 firms in the analysis.

Summary statistics are in Table 11 in Appendix B.
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To avoid measurement error in kurtosis as pointed out by Eichenbaum et al. (2014),

we follow the approach suggested in Alvarez et al. (2016a) in both the industry and

the firm exercises. We drop all price changes of less than 1 cent and more than the

99th percentile of the absolute price change distribution. We disregard the $25 upper

bound on price levels as in Alvarez et al. (2016a) since it does not meaningfully apply

to PPI micro data. We present additional ways of addressing measurement error in our

robustness section, including the instrumental variables approach in Gorodnichenko and

Weber (2016).

B Identification of Monetary Policy Shocks

We rely on several commonly used schemes of identifying monetary policy shocks. Our

two primary ones are the FAVAR approach as in Boivin et al. (2009) and the Romer

and Romer (2004) narrative approach. We refer the reader to the respective papers

for details. The approaches have various advantages and disadvantages that have been

discussed elsewhere but are orthogonal to the purpose of our analysis. Our analysis uses

the original data associated with these two identification schemes, from January 1976 to

June 2005 for the FAVAR, and from January 1969 to December 2007 for the narrative

scheme with the extension by Wieland and Yang (2020). Appendix B further shows

robustness to using the high-frequency approach as in Nakamura and Steinsson (2018)

using data from January 1995 through March 2014.

C Aggregated Approach

We first estimate the importance of our micro pricing moments for monetary non-

neutrality at an aggregate level, depending on whether sectors fall into one of two bins:

The first (second) bin contains all sectors with pricing moments above (below) the median

value of the specific moment being evaluated. Then, we produce an impulse response for

either set. Methodological details vary slightly by identification scheme, but across bins

and identification schemes, we find a robust relationship of frequency of price changes

with monetary non-neutrality and a tenuous one for kurtosis.

In the FAVAR monetary shock identification, we compute estimated price impulse
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responses IRFk,h for each of the k sectors at each monthly horizon h.8 We then compute

the mean of the impulse response at each horizon h in the two subsets of the data

characterized as above-median and below-median according to each pricing moment.

In the monetary shock identification following Romer and Romer (2004), we obtain

differential impulse responses for an above-median and below-median set by estimating

the following local projections:

log(ppij,t+h) = βh + IPS>M [θA,h ∗MPshockt + ϕA,hzj,t]

+(1− IPS>M)[θB,h ∗MPshockt + ϕB,hzj,t] + εj,t+h
(1)

where IPS>M is a dummy variable that indicates if the price level is for the above-median

set according to the pricing moments of interest. θj,h denotes the impulse response of the

price level to an identified monetary policy shock h months after the shock for the average

industry in the above-median or below-median set indexed by j. zj,t denotes controls that

include two lags of the shock, two lags of the fed funds rate, and current and two lags of

the unemployment rate, industrial production, and price level. The dependent variable is

the average PPI in the high or low subsets described above in the data section. We have

normalized the monetary shock such that an increase in the shock is expansionary.9

Across all identification schemes and specifications, we find that pricing moments

systematically relate to monetary non-neutrality as Figures 1 and 2 illustrate.10 Low-

frequency sectors have a smaller price response to the monetary shock than high-frequency

sectors, regardless of the identification scheme. This result implies that low-frequency

sectors have larger cumulative output responses.

In turn, the price responses in the high- and the low-kurtosis sectors are at best not

significantly different from one another, as the Romer and Romer identification shows.

8We specifically follow Boivin et al. (2009) in the FAVAR methodology. We first use the FAVAR to
generate PPI inflationary responses πk,t for each sector k: πk,t = λ′kCt + ek,t; in this setting the sectoral
inflationary response is given by the loading λ′k on the VAR evolution of the common components Ct.
This component in turn includes the evolution of the federal funds rate which we shock. Monetary
policy shocks are identified using the standard recursive assumption. The fed funds rate may respond
to contemporaneous fluctuations in the estimated factors, but none of the common factors can respond
within a month to unanticipated changes in monetary policy. Given the estimated FAVAR coefficients,
we compute estimated impulse response functions for each of the k sectors.

9We additionally estimate the OLS specification of Romer and Romer (2004) in Figure 15 in Appendix
B. The results are consistent using this alternative estimation method. Figure 16 in Appendix B shows
the impulses estimated using data from 1976 through 2007. Results show the same patterns during this
time period.

10Results using high-frequency shocks show the same patterns and are in Figure 12 in Appendix B.
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The FAVAR analysis shows that high-kurtosis sectors have an even stronger price response

than low-kurtosis sectors – which implies less monetary non-neutrality. This fragility in

the relationship persists in subsequent exercises. In the model sections we show how this

fragility can arise naturally in quantitative menu cost models.

In terms of the ratio of kurtosis over frequency of price changes, we find that

the strong negative relationship of frequency with monetary non-neutrality dominates

the relationship in this aggregate setup, despite the fragility inherent in the kurtosis

relationship. The sectors with high kurtosis over frequency ratios have a smaller price

response to the monetary shock than those with low kurtosis over frequency ratios.

This suggests that they have a larger real output response. This finding holds across

identification schemes.

Carvalho and Schwartzman (2015) show in that dispersion of the duration of price

spells is a sufficient statistic for monetary non-neutrality in some time-dependent pricing

models after conditioning on the frequency of price changes. We consistently find that

a low dispersion of durations is associated with a higher price response, implying low

monetary non-neutrality. This finding holds across our identification schemes. The

reason for this result lies in the negative empirical relationship of the frequency of price

adjustment with the dispersion of price durations.11 However, after conditioning on price

change frequency, it does not predict the price response as the next section shows.

The other pricing moments we study do not have clear univariate relationships with

monetary non-neutrality across identification schemes.

D Detailed Regression Approach

We now exploit detailed variation in pricing moments at the industry- and firm-level,

and find that the same results obtained in our aggregate approach emerge in both

univariate and multivariate regression settings with richer sets of controls. In contrast

to the specifications in the preceding subsection, the multivariate setting combines

all pricing and non-pricing moments. This combination allows us to learn about the

relative informativeness of individual pricing moments and other predictors of monetary

non-neutrality.

11The correlation between frequency of price adjustment with the dispersion of price durations is -0.74
across industries. Due to this strong negative collinearity, we do not include it in some multivariate
specifications in the following sections.
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Our regression analysis follows two approaches to gauging the effects of pricing

behavior on monetary non-neutrality. First, we use sectoral price responses h periods

after an identified monetary shock as a direct measure of monetary non-neutrality, which

we regress on the pricing moments taking into account broad industry fixed effects:

log(IRFk,h) = ah + αj,h + β′Mk + γ′Xk + εk,h (2)

where log(IRFk,h) denotes the response of prices at a 24-month horizon in six-digit NAICS

sector k from the FAVAR analysis.12 αj,h represent three-digit NAICS fixed effects as

additional control variables to capture any common factors across broad industries j, and

Xk represent other industry level covariates, such as profits or the persistence of shocks

that can potentially affect monetary non-neutrality. Such common factors are for example

sectoral exposure to oil, market structure, variations in strategic complementarity or any

other source of unobserved heterogeneity. Mk contains one or more of the 8 industry

pricing moments we study.

To provide guidance for modeling, one needs to gauge the relative importance of

pricing moments, and the stability of their relationship with monetary non-neutrality.

We do so by evaluating the effect of including multiple moments and controls on

informativeness by considering goodness-of-fit statistics such as R2, the log likelihood, and

the approach in Oster (2019). This approach ties an assessment of coefficient stability to

changes in informativeness of various specifications. The idea is that concern for omitted

variable bias only lessens as the model gets closer to explaining all of the variation in

the dependent variable — that is, as R2 increases towards its upper bound. Hence, when

evaluating specifications for omitted variable bias, one should simultaneously normalize

any observed coefficient changes by changes in explanatory power.

In particular, we perform the Oster (2019) test by focusing on individual pricing

moments relative to multivariate specifications that contain all pricing moments together.

We also consider frequency, or kurtosis, against a specification with kurtosis and

frequency; and kurtosis, frequency or their ratio against the multivariate specifications.

12Figure 19 in the Appendix shows the full horizon response from the FAVAR estimated price-level
response for all univariate specifications and several multivariate specifications. The coefficient values are
estimated from log(IRFk,h) = ah +αj,h +β′hMk + γhXk + εk,h where the horizon h is varied from 1 to 48
months. The results are consistent with Table 2. The figure shows that frequency of price change has a
greater impact on the price response at shorter horizons before slowly decaying in importance. Kurtosis
of price change has no estimated effect for the full impulse.
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This approach allows us to establish the scope for omitted variable bias when explaining

monetary non-neutrality.

Second, we use an interaction approach. Here, the effect on monetary non-neutrality

is gauged indirectly. We interact sectoral micro pricing moments in our regressions

with Romer and Romer shocks and estimate potentially differential impulse responses

to monetary policy shocks. Again, we include multiple moments in the interaction to

assess their joint relationship with monetary non-neutrality. We estimate the following

specification:

log(ppik,t+h) = α + αk + αt + β′Mk ∗MPt + γ′Xk ∗MPt + εk,t+h (3)

where log(ppik,t+h) is the log sectoral price level 48 months after the monetary policy

shock. As an alternative dependent variable, we use the same methodology with firm-level

real sales in the next subsection. MPt denotes the Romer and Romer identified monetary

policy shocks. Mk represents one or several of our industry-level pricing moments.Other

industry-level controls Xk include gross profit rates, and the volatility and persistence of

sectoral shocks. αk represent six-digit NAICS industry fixed effects, while αt denote time

fixed effects at a monthly frequency. Both are included in all specifications.

Across these two approaches, we continue to find that univariately, frequency of

price changes is significantly related to monetary non-neutrality as in the univariate

industry-level regression setup. Kurtosis of price changes is not statistically significantly

related to monetary non-neutrality and has an unstable sign when compared to

multivariate specifications. As in the previous subsection, the strength of the relationship

of frequency with monetary non-neutrality dominates and generates a significant and

negative univariate relation of the ratio of kurtosis over frequency with monetary

non-neutrality. Other moments are not significant or come with an unstable sign. Table

2, and Table 10 in the Appendix, summarize the results in Columns 1-8, the first for the

FAVAR and the second for the Romer and Romer shocks. Figure 3 plots the full impulse

response in Panels (a) through (h) for the Romer and Romer shocks.

A further insight from the univariate specifications in Columns 1-8 of Table 2 lies

in the measures of informativeness for the various moments: Frequency of price changes

is clearly the most informative pricing moment. We compute as measures of fit R2,
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adjusted R2, the log likelihood, and the Bayesian information criterion, not taking into

account industry fixed effects, in order to gauge the contribution of individual moments

to overall explanatory power. We see, for example, that the explanatory power (R2) of

frequency of price changes is the highest among all moments with 30 percent while others,

such as kurtosis of price changes, are quite uninformative in comparison, with an R2 of

approximately 4 percent. The ratio of kurtosis over frequency compared to frequency

alone has a much lower explanatory power of 17 percent, suggesting that kurtosis adds

noise to the information contained just in the frequency of price changes. The low levels

of R2 are important below when assessing evidence for omitted variable bias following the

procedure in Oster (2019). The other measures of fit provide a similar picture.

Then we turn to a multivariate setting. Here, our main results emerge in a richer

setup. We find, consistent with our previous results, that the frequency of price changes

is consistently statistically significant when we include all pricing moments. This result

remains when all pricing moments plus non-pricing moments are included — in particular,

gross profit rates, the standard deviation and persistence of sectoral shocks. Profit rates

can be understood to capture the extent of competition in the sector, while the persistence

of sectoral shocks might affect the strength of the selection effect. We find that other

pricing moments are not significant or consistently significant across specifications. This

holds for kurtosis of price changes, which always remains statistically insignificant, but

also for the ratio of kurtosis over frequency, which can lose significance in the multivariate

settings. Whether we include fixed effects or not does not alter these conclusions. Table

2 summarizes these multivariate results in Columns 9-13 for the FAVAR approach, while

Columns 8-11 in Table 10 display the results for the Romer and Romer approach.

A particular multivariate specification pertaining to the sufficient statistic proposed

by Alvarez et al. (2016a, 2020) will be discussed further in Section F . This specification

is a bivariate regression setup with kurtosis and frequency as the only two explanatory

variables. As shown in Column 9 of Table 2 and Table 10, a previously implicit result

from the aggregate analysis is now directly validated. Frequency, and not kurtosis, is

the driver for the informativeness of the ratio of kurtosis over frequency for monetary

non-neutrality. Frequency is highly statistically significant in this bivariate regression,

while kurtosis is not statistically significant. A formal likelihood ratio test confirms the

result: We cannot reject the null at a 5 percent significance level that a model with just
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frequency explains the data as well as a model with both frequency and kurtosis. But we

can reject the null at a 1 percent significance level that a model with only kurtosis fits

equally well. This result is shown in the row denoted “LR test 1” in Table 2.

In general, these richer multivariate specifications reveal two insights: First, measured

informativeness in the regressions with all pricing moments, or with only kurtosis and

frequency, is very similar to that found in the univariate frequency of price change

specification. Hence, frequency is the most informative pricing moment. Second, when we

include further variables, such as the volatility and persistence of shocks or profit rates,

the informativeness of the specifications in the FAVAR setup improves. For example,

the simple R2 measure goes up to 52 percent if we additionally include volatility and

persistence of shocks compared to 30 percent if we only include frequency, or 33 percent

if we include all pricing moments. This finding suggests that single or multiple pricing

moments are not robust in summarizing monetary non-neutrality. These results can be

seen by comparing the univariate, bivariate and multivariate results in Tables 2 and 10.

More formally, we gauge the extent of omitted variable bias by computing the δ test

statistic in Oster (2019), for all pricing moments in the FAVAR setup relative to fuller

specifications. The results are summarized in the rows denoted by “δ” in Table 2. The

first row tests each individual moment or the ratio of kurtosis over frequency against the

richer models (that is, against Columns 12 and 14, respectively, and in the case of the

standard deviation of price durations against Column 10). The complementary second

row compares kurtosis or frequency, respectively, to the specification that jointly includes

only kurtosis and frequency of price changes (Column 9). Rows 3 and 4 present robustness

checks where we assume the true R2 is 0.8. We find that δ is much below unity or even

negative for kurtosis. This finding suggests that selection on unobservables does not have

to be large to explain away our regression results due to omitted variable bias.

Finally, we also formally compare the model fit of each univariate specification

against our more complex multivariate specifications using likelihood ratio tests for each

specification in Columns 1-8 against the saturated specifications in Columns 12 and 14,

reported in the row labeled “LR test 2.” We always reject the null that a model with

just a single pricing moment fits the data equally well as a model with the saturated

specification. These findings underline the fragility that is associated with using univariate

pricing moments as summary statistics for monetary non-neutrality.
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D.1 Firm-Level Regression Results

Our main findings also emerge robustly from our firm-level regressions using Romer and

Romer shocks. These highly disaggregated specifications allow us to take into account

time and detailed firm-level fixed effects while also controlling for four quarters of lagged

log sales. Moreover, these specifications use firm-level real sales as a dependent variable,

which allows us to confirm our previous findings for a dependent variable that measures

monetary non-neutrality using quantities rather than prices. In this exercise, we restrict

our attention to the ratio of kurtosis over frequency, kurtosis, frequency, the standard

deviation and the average size of price changes as moments of interest.

Specifically, we continue to use the interaction approach used above with the Romer

and Romer shocks where the effect on monetary non-neutrality is gauged indirectly.

We include multiple moments in the interaction to assess their joint relationship with

monetary non-neutrality. We estimate the following specification:

log(salesj,t+h) = α + αt + αj + θh ∗MPt ∗Mj + γ′Xj,t + εj,t+h (4)

where log(salesj,t+h) is the log firm-level real sales h quarters after the Romer and Romer

shock where we use h=4. MPt denotes the Romer and Romer identified monetary policy

shocks. Mj represents one or several of our firm-level pricing moments. Firm-level controls

Xj,t include four quarters of lagged log sales. αj and αt denote firm and time fixed effects.

Consistent with the results from our previous industry and aggregate analyses,

we find that frequency is individually highly significant, while kurtosis is statistically

insignificant. The standard deviation and the average size of price changes are not

statistically significant. The ratio of kurtosis over frequency has a positive and significant

sign as predicted by theory. But in a bivariate setting that includes frequency and kurtosis

as explanatory variables, it again shows that frequency is the only informative component

behind the ratio of kurtosis over frequency. Only frequency is statistically significant in

this bivariate specification while kurtosis is insignificant. In a multivariate setting that

includes all individual moments jointly, only frequency is again statistically significant.

Table 3 summarizes the regression results while Figure 4 plots the full impulse response
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for each specification.13

In terms of informativeness, a simple regression of our dependent variable on fixed

effects and controls already explains much of the variation with an R2 of more than

60 percent, with most variation explained by the control variables as shown in Column

0. Adding any pricing moments in an interaction with monetary policy shocks does not

increase R2. This is a well-known result for specifications with autoregressive components.

This finding reinforces the conclusion that pricing moments are not the only informative

summaries for the response of key variables of interest to monetary policy shocks.

E Robustness to Measurement Error

This section shows that results are unaffected by potential measurement error in kurtosis

and other micro moments. First, a simple fact lessens concerns about measurement error:

Key moments are very stable and persistent over time. As Table 1 shows in its last

column, the correlation of pricing moments between 1998 to 2003 and 2004 to 2005 at the

industry level is quite high. It ranges between 0.39 for the average size of price changes

and 0.91 for the frequency of price changes. Kurtosis has a correlation of 0.85. The same

results hold true for the entire time series. Figure 20 in the Appendix shows that pricing

moments and the ordering across industries are remarkably stable over time.

Second, our aggregate results appear quite robust when applying different trimming

methods for small and large price changes.14 We focus our analysis on kurtosis and

frequency in this exercise because kurtosis is particularly prone to measurement issues as

shown by Eichenbaum et al. (2014). Table 9 in the Appendix presents the results. Each

row corresponds to a type of trimming. Across moments and types of trimming, pricing

moments including kurtosis appear to be well measured with regard to extreme price

changes, and invariant. Because kurtosis is in practice most susceptive to measurement

error, its stability is reassuring also for all other moments.

Third, we show that an instrumental variables approach to address attenuation bias

– due to classical measurement error – does not change our key regression results. To

13In the Appendix, we show that these results are robust to a horizon of 8 quarters after the shock in
Table 12, and to using the high-frequency identified shocks of Nakamura and Steinsson (2018) as shown
in Tables 13 and 14 and Figure 13.

14We follow the trimming methodology exactly as in Table 5 in the appendix of Alvarez et al. (2016b).
The only difference is that we replicate their calculations separately for above-median and below-median
sets of each pricing moment.
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implement such an approach, we follow Gorodnichenko and Weber (2016) and split our

sample into an early and a late time period of approximately equal size. We then use

moments from one period as instruments for moments in the other period. We find that

the instrumented coefficient estimates continue to be similar to our baseline estimates,

suggesting that attenuation bias due to measurement error is not driving our results.

Our main message from the preceding analyses re-emerges: Frequency of price changes

is always significant, across univariate, bivariate, and multivariate settings. Kurtosis is

now significant in some of the univariate and bivariate specifications, but not in the

multivariate settings. The ratio of kurtosis over frequency becomes insignificant in all

multivariate specifications. The specific results are shown in Table 15 for the univariate

setting, and in Table 16 for the multivariate case.

F Relation to Alvarez et al. (2016a, 2020)

Although our analysis has broader motivation, it also has a straightforward connection to

Alvarez et al. (2016a, 2020). They prove that the ratio of kurtosis and frequency of price

changes is a sufficient statistic for monetary non-neutrality in a large class of models. This

ratio is one of the pricing moments we study. This section recapitulates the main result in

Alvarez et al. (2016a, 2020). We discuss how results previously presented, in combination

with additional exercises, shed light on the empirical application of their theory. A reader

interested in the details of these results can read the self-contained section, or otherwise

can skip ahead to the model analysis in Section III.

F.1 The Sufficient Statistic in Alvarez et al. (2016a, 2020)

The analytical menu cost model in Alvarez et al. (2016a, 2020) is set in continuous time

and features random menu costs, Gaussian idiosyncratic productivity shocks, no stochastic

monetary shocks, no trend inflation, and firm quadratic objective functions, among other

ingredients. This model captures the essence of many pricing models including Taylor

(1980), Calvo (1983), Reis (2006), Golosov and Lucas (2007), Nakamura and Steinsson
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(2010), Midrigan (2011) and Alvarez and Lippi (2014).15 In Alvarez et al. (2016a, 2020),

they summarize monetary non-neutrality M by the following expression when monetary

shocks are small:

M =
δ

6ε

kurtosis

frequency
(5)

whereM denotes the integral of the output response following a once-and-for-all monetary

shock, kurtosis the steady-state kurtosis of price changes, frequency the steady-state

frequency of price changes, 1
ε

the supply elasticity of labor to the real wage, and δ the

size of a small monetary shock.

When monetary shocks are large, Alvarez et al. (2016a, 2020) show that this

relationship must be adjusted by another pricing moment, the steady-state standard

deviation of price changes denoted by Std(∆p), such that M is

M = M̃
(

δ

Std(∆p)

)
Std(∆p) (6)

where M̃ is the expression in (5) for small shocks, and Std(∆p) enters in two ways,

dividing the size of monetary shocks and as a re-scaling factor.

Our regressions relate in a straight-forward way to either equation (5) or (6). We start

by describing a comprehensive set of empirical measures of monetary non-neutrality we

investigate. First, to evaluate the relation between monetary non-neutrality and pricing

moments, we use an indirect time-series specification that regresses a panel of prices

or real sales on interactions of monetary shocks with kurtosis and frequency, as well as

their ratio, plus controls. Second, we use direct, cross-sectional measures of monetary

non-neutrality, that is, we use as a measure of M̃ the price response of sector k at a

horizon h, of which we take logs.16 We also use a specification in levels where the measure

15However, strictly speaking, many of these models do include stochastic aggregate shocks. By contrast,
Alvarez et al. (2016a, 2020) assume that only idiosyncratic shocks generate the distribution of price
changes from which pricing moments are computed. While a useful theoretical simplification, it is
inconsistent with pricing moments measurable in the data. Our theory in Section IV suggests that this
assumption is important for understanding the relationship between kurtosis and monetary non-neutrality
in a quantitative menu cost model.

16The associated specification is the following, based on equation (5) above:

logM = log δ − log 6ε+ log kurtosis− log frequency (7)
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of monetary non-neutrality is cumulative, denoted by CIRP . Alvarez et al. (2021) show

this is the specification that their theory implies, once a constant is included into the

regression and kurtosis and frequency are normalized by their means. These measures

pick up different features of the impulse response function. However, in practice, we find

CIRP and our measure are highly correlated, with a correlation coefficient of 0.9965 in

levels and 0.87 in logs. These high correlations explain why the results from specifications

in logs are robust to using CIRP , or a specification in levels. A comparison of Table 2 in

logs with Tables 17 and 18 using CIRP illustrates this robustness.

In addition, we report results after adjusting for large shocks, as prescribed by theory.

When we estimate specification (3) using the normalized narrative and high-frequency

identification schemes, we additionally control for the standard deviation of price changes

in our specifications expecting it to enter negatively and significantly. However, no

adjustment is necessary in our FAVAR analysis as this setup is linear in nature. The

standard deviation for price changes in the numerator of the adjustment factor cancels

out with the standard deviation of price changes that divides the shock.

We use this battery of specifications to gauge the evidence for the statistical

significance of the ratio of kurtosis over frequency for monetary non-neutrality. This

analysis is complemented by a placebo test where we regress our measures of monetary

non-neutrality on the ratio of frequency and any other pricing moment instead of kurtosis.

Separately, we check the prediction that coefficients on kurtosis and frequency of price

changes have equal but opposite signs as implied by equations (5) and (6).

To complete the test of sufficiency, we check for omitted variable bias. Here we

include additional pricing moments and non-pricing moments, such as the persistence

of shocks, into our specifications. We also allow for fixed effects to filter out sources of

unobserved heterogeneity. We equally report results without fixed effects. But tests of

omitted variable bias are also where our analysis goes beyond tests of significance by

assessing the strength of the link between the strict theoretical setup and the empirical

environment.

Our analysis does so in two ways: First, we run model comparisons between equation

(7) against more restricted statistical models where only frequency or only kurtosis is the

explanatory variable. Furthermore, we run model comparisons against richer statistical

models with additional explanatory variables. The goal of these tests is to gauge the
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goodness of fit of the sufficient statistic in the data. It may well be the case that

statistically, a single moment or the addition of further variables significantly improves

our understanding of what drives monetary non-neutrality in the actual data. Second, we

include the formal test by Oster (2019) to tie together our assessment of omitted variable

bias to an assessment of changes in informativeness.

F.2 Evaluating the Sufficient Statistics Result

Our main conclusion is that the theoretically sufficient statistic in Alvarez et al. (2016a,

2020) is not sufficient in a statistical sense. The same conclusion applies to all of the pricing

moments we evaluate: They all fail to pass several empirical tests for sufficiency status.

While frequency emerges as the informative driver of the ratio of kurtosis over frequency,

other pricing and non-pricing moments are also informative for monetary non-neutrality

in the data.

We start with results from the univariate setting, which appear to confirm Alvarez

et al. (2016a, 2020): The ratio of kurtosis over frequency has a robust statistical relation

to measures of monetary non-neutrality. However, as we have shown in a bivariate setting,

it is frequency of price changes in the ratio that contains the information generating the

significant relation to monetary non-neutrality while kurtosis actually adds noise. We

reach this conclusion based on several pieces of evidence. First, a statistical model with

just frequency as an explanatory variable is more informative with respect to the data than

a model with the ratio of kurtosis over frequency in it, or a model with only kurtosis in it.

Second, a placebo exercise where the ratio of any of our pricing moments over frequency

appears significant reinforces this conclusion as Table 20 in Appendix B summarizes. Each

such ratio is statistically related to monetary non-neutrality, but driven by frequency.

Our multivariate specifications reinforce these findings. The significance of kurtosis

over frequency of price changes is driven by the frequency of price changes. Frequency of

price changes is robustly informative about monetary non-neutrality. Kurtosis remains

insignificant. This insight about the importance of the frequency of price changes holds

true when we use a comprehensive set of pricing moments, or include non-pricing moments,

such as the persistence of sectoral shocks. Further, we also find that kurtosis and frequency

do not always emerge from the regression results with equal but opposite signs in the

FAVAR analysis as the F-tests in Tables 2, 17, and 18 indicate. However the null
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hypothesis of equality is not rejected using Romer and Romer shocks in Table 3. The

ratio of kurtosis over frequency, which was statistically significant in the univariate setting,

becomes insignificant when included along with other pricing moments and non-pricing

moments. The multivariate columns of Tables 2 and 17 illustrate this result, while Tables

3 and 18 show that it may remain marginally significant in some cases.

An instrumental variables approach confirms these findings while correcting for

potential measurement error, as shown in Tables 16 and 19. In these specifications, we also

find that non-pricing moments turn out to be informative about monetary non-neutrality.

This latter finding is important because it contradicts the definition of a sufficient statistic

— that no other variable is informative. Results when we perform an adjustment for large

shocks are consistent as shown in Panels A and B in Table 4.

Statistical evaluation along two dimensions suggests that omitted variable bias is

reason for concern. First, when we add explanatory variables, we find that additional

information turns out to be important not just in terms of affecting statistical significance,

but also when we consider the predictive power of our specifications. Our measures of

informativeness show a strong increase as we go from the univariate specifications to the

bivariate and multivariate ones. In line with these results, a likelihood ratio test formally

rejects the version of the sufficient statistic including just frequency and kurtosis as in

equation 6 against our fullest specification, as Tables 2, 17 and 18 indicate in the line

labeled “LR Test 2.” Similarly, a likelihood ratio test rejects the specification with only

the ratio of kurtosis over frequency against the specification with the ratio and all other

moments and controls. Second, near-zero or even negative δ estimates for all pricing

moments in tests following Oster (2019) more broadly suggest that none of our pricing

moments can be sufficient statistics. Tables 2, 17, and 18 summarize these results.

III General Equilibrium Pricing Model

This section and the next show how the sign of the theoretical relationship between micro

pricing moments and monetary non-neutrality can depend on small changes in modeling

assumptions. We concentrate our attention on menu cost models and kurtosis, frequency,

and their ratio. In our baseline quantitative model, both frequency and kurtosis have

negative relationships with non-neutrality such that their ratio is characterized by an
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ambiguous, non-monotonic relationship. As we add assumptions sequentially, going from a

simple nested model up to our full baseline model, the result for frequency remains robust,

while kurtosis and their ratio of kurtosis over frequency exhibit a fragile relationship

with monetary non-neutrality. In particular, we find that the sufficient statistic result in

Alvarez et al. (2016a, 2020) only holds under certain assumptions.

This section presents our baseline model, while the subsequent Section IV presents

quantitative exercises and provides intuition for our findings.

A Model Setup

Our model encompasses a generalized setup that nests several model variants. Our

baseline setup presents a second-generation menu cost model that follows Nakamura and

Steinsson (2010). It includes elements of menu cost and Calvo price setting, idiosyncratic

leptokurtic productivity shocks as in Midrigan (2011), and aggregate productivity and

monetary shocks. Our setup also encapsulates the Golosov and Lucas (2007) model.

A.1 Households

This modelling block is standard. Households maximize expected utility, given by

Et

∞∑
τ=0

βt
[
log(Ct+τ )− ωLt+τ

]
(8)

They consume a continuum of differentiated products indexed by i. The composite

consumption good Ct is the Dixit-Stiglitz aggregate of these differentiated goods,

Ct =

[ ∫ 1

0

ct(i)
θ−1
θ di

] θ
θ−1

(9)

where θ is the elasticity of substitution between the differentiated goods.

Households decide each period how much to consume of each differentiated good by

choosing the consumption bundle that yields the highest level of the consumption index

Ct. This implies that household demand for differentiated good i is

ct(i) = Ct

(
pt(i)

Pt

)−θ
(10)

where pt(i) is the price of good i at time t and Pt is the price level in period t,
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Pt =

[ ∫ 1

0

pt(i)
1−θdi

] 1
1−θ

(11)

A complete set of Arrow-Debreu securities is traded, which implies that the budget

constraint of the household is written as

PtCt + Et[Dt,t+1Bt+1] ≤ Bt +WtLt +

∫ 1

0

πt(i)di (12)

where Bt+1 is a random variable that denotes state-contingent payoffs of the portfolio of

financial assets purchased by the household in period t and sold in period t + 1. Dt+1 is

the unique stochastic discount factor that prices the payoffs, Wt is the wage rate of the

economy at time t, πt(i) is the profit of firm i in period t. A no-Ponzi-game condition is

assumed so that household financial wealth is always large enough so that future income

is high enough to avoid default.

The first-order conditions of the household maximization problem are

Dt,t+1 = β

(
CtPt

Ct+1Pt+1

)
(13)

Wt

Pt
= ωCt (14)

where equation (13) describes the relationship between asset prices and consumption, and

(14) describes labor supply.

A.2 Firms

There is a continuum of firms indexed by i. The production function of firm i is given by

yt(i) = Atzt(i)Lt(i) (15)

where Lt(i) is labor rented from households, At is an aggregate productivity shock, and

zt(i) are idiosyncratic productivity shocks.

Firm i maximizes the present discounted value of future profits,

Et

∞∑
τ=0

Dt,t+τπt+τ (i) (16)
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where profits are given by:

πt(i) = pt(i)yt(i)−WtLt(i)− χ(i)WtIt(i) (17)

It(i) is an indicator function equal to one if the firm changes its price and equal to zero

otherwise. χ(i) is the menu cost of changing prices. The final term indicates that firms

must hire an extra χ(i) units of labor if they decide to change prices with probability

1 − α, or may change their price for free with probability α. This is the “CalvoPlus”

parameter from Nakamura and Steinsson (2010) that enables the model to encapsulate

both a menu cost and a pure Calvo model. In the case of the baseline menu cost setup,

this parameter is set such that a small probability of receiving a free price change enables

the model to generate small price changes.

Total demand for good i is given by:

yt(i) = Yt

(
pt(i)

Pt

)−θ
(18)

The firm’s problem is to maximize profits in (17) subject to its production function (15),

demand for its final good product (18), and the behavior of aggregate variables.

Aggregate productivity follows an AR(1) process with νt ∼ N(0,1):

log(At) = ρAlog(At−1) + σAνt (19)

The log of firm productivity follows a mean reverting AR(1) process with shocks that

arrive infrequently according to a Poisson process with εt(i) ∼ N(0,1):

logzt(i) =

ρzlogzt−1(i) + σzεt(i) with probability pz

logzt−1(i) with probability 1− pz,
(20)

Nominal aggregate spending St = PtCt is a random walk with a drift and ηt ∼ N(0,1):

log(St) = µ+ log(St−1) + σsηt (21)

The state space of the firm’s problem is an infinite dimensional object because the

evolution of the aggregate price level depends on the joint distribution of all firms’ prices,

productivity levels, and menu costs. Thus, we assume firms only perceive the evolution
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of the price level as a function of a small number of moments of the distribution as in

Krusell and Smith (1998). In particular, we assume that firms use the forecasting rule:

log

(
Pt
St

)
= γ0 + γ1logAt + γ2log

(
Pt−1

St

)
+ γ3

(
log

(
Pt−1

St

)
∗ logAt

)
(22)

The accuracy of the rule is checked using the maximum den Haan (2010) statistic in

a dynamic forecast. The model is solved recursively by discretization and simulated using

the non-stochastic simulation method of Young (2010).

B Calibration

We use two complementary sets of parameters in all subsequent model calibrations. The

first set of parameters is common to all model calibrations. Our model is a monthly

model so the discount rate is set to β = (0.96)
1
12 . The elasticity of substitution is set

to θ = 6.8 as in Vavra (2014). The nominal shock process is calibrated to match the

mean growth rate of nominal GDP minus the mean growth rate of real GDP and the

standard deviation of nominal GDP growth over the period from 1998 to 2012. This

implies µ = 0.002 and σs = 0.0037. Finally the model is linear in labor so we calibrate

the productivity parameters to match the quarterly persistence and standard deviation

of average labor productivity from 1976-2005. This gives ρA = 0.8925 and σA = 0.0037.

The second set of parameters is calibrated internally to match micro pricing moments,

and is used to parameterize our baseline model. The relevant parameters are the menu

cost χ, the probability of an idiosyncratic shock, pz, the volatility of idiosyncratic shocks

σz, the persistence of idiosyncratic shocks ρz, and the probability of a free price change

α. Their values will be discussed in the next section.

IV Model Results

This section illustrates how modeling assumptions determine the relationship between

pricing moments and monetary non-neutrality.
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A Model Predictions

In a first step, we calibrate the baseline model, described in detail in the previous section,

to match price-setting statistics from the CPI micro data during the period 1988-2012

documented by Vavra (2014).17 This part of the exercise is in line with conventional

calibration approaches in the literature. However, next we undertake a comparative

statics exercise where we vary one pricing moment at a time to understand its respective

importance for monetary non-neutrality. The moments we examine are the frequency and

kurtosis of price changes, as well as their ratio. We consider four alternative specifications:

a case of high and a case of low frequency of price changes that hold kurtosis and other

moments constant, as well as a case of high, and a case of low kurtosis that hold frequency

and other moments constant. We set the ratio of kurtosis over frequency to be the same in

the high-frequency and the low-kurtosis cases. This choice allows us to study if the ratio

of kurtosis over frequency is a sufficient statistic in this off-the-shelf menu cost model.

Tables 5 and 6 summarize the moments and parameters associated with each case.

Our outcome variable of interest, as in the empirical analysis, continues to be

monetary non-neutrality. We measure it by examining the cumulative effect of a one-time

permanent expansionary monetary shock on real output. We implement it with a shock

that doubles the monthly nominal output growth rate by increasing nominal output by

0.002. The real effects of this shock are given by the cumulative consumption response.

When we vary one pricing moment at a time, while holding all others fixed, we find

three main results. The top row of Figure 5 summarizes them graphically. First, we

find that monetary non-neutrality is a negative function of frequency in our menu cost

model, conditional on kurtosis. This result, which we illustrate in Panel (a), confirms the

conventional notion that more frequent price adjustment is associated with smaller real

output effects. Second, the impulse response functions in Panel (b) show that an increase

in kurtosis conditional on frequency decreases monetary non-neutrality.

Third, we show that the ratio of kurtosis over frequency has a non-monotonic

relationship with monetary non-neutrality. Panel (c) in Figure 5 illustrates this finding

graphically. Varying either frequency or kurtosis while holding their ratio constant leads

to different cumulative consumption responses. A comparison of the high-frequency and

17We define the fraction of small price changes as those less than 1 percent in absolute value and take
these data from Luo and Villar (2021). This definition allows comparison across different pricing data
sets.
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low-kurtosis calibration illustrates this finding: The ratio of kurtosis over frequency is

32 for both calibrations, but the high-frequency calibration with a frequency of 0.15 and

kurtosis of 4.9 exhibits a lower consumption response than the low-kurtosis calibration

with a frequency of 0.11 and kurtosis of 3.6. The reason is that increasing frequency and

decreasing kurtosis can individually both decrease the ratio of kurtosis over frequency

relative to the baseline. But, at the same time, they cause the total consumption response

to move in opposite directions.

In a second step, we analyze what predictions between pricing moments and monetary

non-neutrality arise in the Golosov and Lucas (2007) model. The Golosov-Lucas model

is nested in our baseline model after we remove aggregate productivity shocks and turn

leptokurtic idiosyncratic productivity shocks into walk processes. We set trend inflation

to zero and the Calvo plus parameter to zero so there are no free price changes. Table

6 summarizes our parameter choices.18 We use the same small one-time expansionary

monetary shock as in the previous model simulation exercise to generate consumption

impulse response functions as a measure of monetary non-neutrality.

The same three predictions as in the baseline model also arise in this setup. First,

frequency conditional on kurtosis is negatively associated with monetary non-neutrality.

Panel (d) in Figure 5 illustrate this result. Second, an increase in kurtosis in the Golosov

and Lucas (2007) model, conditional on frequency, is associated with a decrease in

monetary non-neutrality. Panel (e) in Figure 5 illustrates this result: As kurtosis of

price changes increases, the consumption impact of a monetary shock falls. Increasing

kurtosis from 1.4 to 2.2, holding frequency constant, decreases monetary non-neutrality

by 43 percent as measured by the cumulative consumption response over 12 months. The

reason that monetary non-neutrality falls as kurtosis rises is due to the concurrent effect

on the average size of price changes. We increase kurtosis while holding frequency fixed

by decreasing the size of the menu cost from 0.0241 to 0.0054, as well as the volatility of

idiosyncratic productivity shocks from 0.029 to 0.01. Intuitively, these changes decrease

the average size of price changes while increasing the number of firms that have prices

close to the inaction band of changing prices. Therefore when a monetary shock occurs in

the high-kurtosis case, it triggers more price changes and selection, decreasing monetary

non-neutrality. Panels (a) and (b) in Figure 6 illustrates this shift in the simulated

18Specifically we set the ρz = 1 to generate random walk productivity shocks. The probability of
receiving an idiosyncratic shock is set to 1 (pz = 1), and the drift of nominal GDP is set to 0 (µ = 0).
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distribution of price changes closer to the Ss bands. Third, we find that an increase in the

ratio of kurtosis over frequency is associated with a non-monotonic response of monetary

non-neutrality. Panel (f) of Figure 5 illustrates this result.19

These predictions of the Golosov-Lucas model may appear surprising because Alvarez

et al. (2016a, 2020) have shown that kurtosis always equals unity in their Golosov-Lucas

setup, leaving no room to vary kurtosis in the first place. However, this conclusion does not

apply in our setting. First, in discrete time, there is always a non-negligible mass at the Ss

bands while that mass is always 0 in continuous time. Changes in the model parameters

change the mass at the bounds, and hence potentially the steady-state distribution of

price changes and the kurtosis of the distribution. More discreteness can exacerbate

the findings that kurtosis can vary. Accordingly, we find that our result becomes more

pronounced as we increase the extent of discreteness from monthly to quarterly and to

semi-annual sampling frequencies. Table 7 illustrates this finding.

Second, the main reason, however, lies in how we implement monetary shocks in the

setup. Our simulations allow for both stochastic monetary and idiosyncratic productivity

shocks. Both determine the steady-state distribution of price changes. In this setup, we

implement a common monetary shock with an unexpected one-time permanent monetary

expansion. Different parameter values, including those for aggregate and idiosyncratic

volatility, can generate the same frequency of price changes but different values of kurtosis.

This is due to the different implied steady-state price change distributions as Figure

6 shows. Our setup is in line with the setup in Golosov and Lucas (2007). Alvarez

et al. (2016a, 2020), by contrast, study a setting with a one-time permanent monetary

shift, but no stochastic monetary shocks. If we remove stochastic monetary shocks, we

approximately replicate the predictions in Alvarez et al. (2016a, 2020). In particular,

kurtosis no longer varies.20 The consumption response to a monetary shock divided by

the standard deviation of price changes is also approximately the same.

The reason for these findings is as Alvarez et al. (2016a, 2020) argue: A one-time

19We confirm these results if the monetary shock is considered “large” as defined by Alvarez et al.
(2016a, 2020). For this exercise, we hold the frequency of price changes constant across both calibrations.
We then shock the model with a monetary shock standardized by the standard deviation of price changes,

δ
Std(∆p) , in both calibrations, and normalize the size of the impulse response by the standard deviation

of price changes. Figure 10 in Appendix A displays our results.
20In this setup without stochastic monetary shocks, kurtosis is fixed at 1.3 across the baseline, high

and low kurtosis calibrations. This compares to variation in kurtosis of 1.35 to 2.2 in our baseline
Golosov-Lucas model with stochastic monetary shocks.
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monetary shock only rescales distributions based on otherwise purely idiosyncratic shocks,

but leaves kurtosis and frequency invariant. This makes the ratio of these moments a

sufficient statistic in their setup, a result that no longer applies if one allows for stochastic

variation in the aggregate monetary process. This result suggests a potential gap between

micro pricing moments in their model and those measurable in the data, when monetary

shocks are stochastic.21

B Reconciling Models and Data

The previous analysis has shown that both frequency and kurtosis of price changes have

a negative relationship with monetary non-neutrality across several workhorse models,

and thus their ratio has a non-monotonic relationship. This result depends on the details

of how monetary shocks are implemented, as we illustrated. Now we show how the

addition of assumptions leads us from the simple Golosov-Lucas model to the full baseline

model and how each assumption matters. First, a simple change in the assumption

about price setting from fixed to random menu costs can flip the sign of the relationship

between kurtosis and monetary non-neutrality. Second, another modeling assumption

about leptokurtic shocks can make the sign of the relationship between kurtosis and

monetary non-neutrality reverse once more, without affecting frequency. But then, no

further changes in the assumptions affect the relationships of moments with monetary

non-neutrality. These findings suggest that small variations in modeling assumptions

may reconcile model predictions with the fragility of kurtosis as well as robustness of

frequency in our empirical analysis.

The simple change in price setting assumptions that makes the details of the monetary

process discussed above irrelevant lies in how we set up menu costs. If we add in random

menu costs in our variation of the Golosov and Lucas (2007) model, this small change in

price setting assumptions is enough to reverse the sign of the relationship between kurtosis

and monetary non-neutrality, conditional on the frequency of price changes. Under

random menu costs, firms are randomly selected to receive a free price change, implying

that these prices have zero selection into changing. This feature is implemented by setting

the Calvo plus parameter to a positive number. Table 6 displays our specific parameter

21Including stochastic aggregate productivity shocks instead of monetary shocks also allows kurtosis
to vary and also generates a negative relationship between kurtosis and monetary non-neutrality.
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calibrations. Panel (b) in Figure 8 illustrates this reversal: As kurtosis increases, monetary

non-neutrality now increases. It is now positive. This sign reversal for the relationship

of kurtosis and monetary non-neutrality as a result generates a strictly positive relation

between the ratio of kurtosis over frequency and monetary non-neutrality.

What is the deeper intuition for this result? What is evident from the calibration

and the model moments in Table 5 is that the fraction of random, free price changes,

denoted by L, plays a key role. From a modeling standpoint, as the fraction of random,

free price changes increases from 73 percent to 91 percent, the degree of Calvoness of

the model increases. These price changes have no selection effect in them, decreasing the

overall selection effect, causing monetary non-neutrality to rise. At the same time, the

random, small price changes draw mass towards zero and therefore increase the kurtosis

of the price change distribution, holding the frequency constant. Hence, when kurtosis

is positively affected by the fraction of free price changes in a random menu cost model,

kurtosis can also have a positive relationship with monetary non-neutrality.

Figure 7 illustrates the effects of the random menu cost assumption by considering

the distribution of price changes. As Panel (a) shows, the random menu costs increase

the number of small price changes, relative to our version of the fixed menu cost model of

Golosov and Lucas (2007) in Panel (a) of Figure 6. Panel (b) illustrates that an increase

in Calvoness can moreover increase the number of small price changes, hence monetary

non-neutrality, and kurtosis at the same time.

Which additional modeling assumption(s) can resurrect the negative relation of

kurtosis and the non-monotonic relation of the ratio of kurtosis over frequency with

monetary non-neutrality in the baseline model? We find, in line with the results, for

example, in Bonomo et al. (2020) or Karadi and Reiff (2019), that the introduction of

leptokurtic shocks leads to a negative relation of kurtosis with monetary non-neutrality

and an ambiguous relation of the ratio with non-neutrality. Frequency has a robust

negative relation with monetary non-neutrality. No further addition from the list of

assumptions leading up to the baseline model changes the relation of kurtosis, frequency,

or their ratio with monetary non-neutrality. Figure 8 illustrates this finding. Table 8

summarizes the sign of the relationship between kurtosis, frequency or their ratio and

monetary non-neutrality as we add one assumption at a time.22

22Figure 9 in Appendix A illustrates the findings for frequency.
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We take away from our modeling results two insights: First, on a positive note,

we have found a robust, negative relation of frequency with monetary non-neutrality

across models consistent with our empirical evidence. Second, the theoretical relationship

between popular pricing moments and monetary non-neutrality is closely linked to

modeling details. We have shown this result in the context of kurtosis, frequency and

their ratio, and by going through a long list of modeling assumptions. This list could

be extended further, for example to take into account empirical phenomena like price

adjustment synchronization (Bonomo et al. (2020)). Without exhaustively doing so, the

broader point of our analysis is to emphasize the challenges that theory faces in light of

a complex empirical environment.

The dependence of results on modeling assumptions is also a welcome model feature.

Likely, it presents a mirror image of differences across sectors in reality. In some sectors, for

example, fixed menu costs or aggregate shocks may dominate, implying a negative relation

between kurtosis and monetary non-neutrality. Random menu costs may dominate in

other sectors, implying the opposite sign. This scenario implies that a multi-sector model

that weights different model assumptions across sectors would always generate a negative

relation between frequency and monetary non-neutrality, but an unstable relationship

between kurtosis and monetary non-neutrality. Hence, our empirical null result in the

aggregate for the relation between kurtosis and monetary non-neutrality conditional on

frequency, and the frequent insignificance of kurtosis over frequency in our regressions

present themselves as manifestations of sectoral heterogeneity in modeling assumptions.

V Conclusion

Using micro price data, we have empirically evaluated what price-setting moments are

informative for monetary non-neutrality. We exploit sectoral and firm-level variation in

pricing moments to show empirically that among a set of eight popular pricing moments,

only frequency has an empirically robust relationship with monetary non-neutrality, and

also drives whatever information is contained in the ratio of kurtosis over frequency.

Kurtosis over frequency is not a sufficient statistic for monetary non-neutrality.

On the theory side, we show that small changes in modeling assumptions can have

important effects on the sign of the relationship between pricing moments and monetary
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non-neutrality. For this reason, pricing moments per se do not sufficiently encapsulate

monetary non-neutrality. Future empirical work may investigate variation in price setting

assumptions across sectors of the economy.
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VI Tables

Mean Median Standard Dev. 25th Percentile 75th Percentile Corr(Early,Late)
Kurtosis
Frequency

34.73 28.75 23.16 18.61 45.11 0.89

Frequency 0.16 0.09 0.16 0.06 0.23 0.91
Kurtosis 3.97 3.45 2.57 2.47 4.73 0.85
Average Size 0.07 0.07 0.03 0.06 0.09 0.45
S.D. 0.08 0.08 0.03 0.06 0.10 0.39
Frac. Small 0.12 0.09 0.09 0.05 0.18 0.69
Fraction Pos. 0.62 0.60 0.11 0.53 0.69 0.51
S.D. Duration 10.75 10.61 5.50 6.19 14.77
N 154 154 154 154 154

Table 1: Industry-Level Summary Statistics

Note: This table summarizes the pricing moments listed in each row. S.D. Duration denotes the standard
deviation of the duration of price spells; all other statistics are moments based on log price changes. The
last column reports the correlation for a given moment computed in 1998-2003 and 2004-2005.
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Cross-Sectional Determinants of Sectoral Price Response
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Log Kurtosis
Frequency

-0.250*** -0.127 -0.129

(0.074) (0.111) (0.093)
Log Frequency 0.422*** 0.476*** 0.441** 0.411*** 0.274** .206*

(0.073) (0.074) (0.184) (0.102) (0.134) (0.115)
Log Kurtosis 0.138 -0.151 -0.189 -0.166 -0.113 -0.151

(0.119) (0.112) (0.142) (0.132) (0.131) (0.108)
Log Avg. Size -0.316** -0.252 -0.202 -0.111 -0.091 -0.356 -0.280

(0.148) (0.221) (0.232) (0.203) (0.216) (0.220) (0.173)
Log S.D. -0.158 0.117 0.014 -0.136 -0.198 -0.015 -0.112

(0.127) (0.189) (0.195) (0.152) (0.150) (0.203) (0.168)
Log Frac. Small 0.017 -0.105 -0.106 -0.096 -0.093 -0.107 -0.114*

(0.077) (0.078) (0.074) (0.064) (0.059) (0.067) (0.062)
Log Frac. Pos. -0.334 0.160 0.070 0.020 0.080 -0.130 -0.030

(0.382) (0.426) (0.434) (0.343) (0.311) (0.339) (0.310)
Log S.D. Duration -0.593*** -0.090

(.076) (0.188)
Log Profit -0.439** -0.298 -.406** -0.341 -0.420**

(0.195) (0.194) (0.172) (0.201) (0.169)
SD(ek) 10.283 10.445 13.895 12.565

(12.401) (10.042) (12.020) (9.458)
ρ(ek) 0.570*** .678*** 0.602*** 0.709***

(0.116) (0.103) (0.111) (0.102)
constant -.855*** -.963*** -1.803*** -2.459*** -1.996*** -1.552*** -1.792*** -.803*** -.652** -1.034 -2.150** -2.625** 2.840*** -3.489*** -3.479***

(0.246) (0.182) (0.227) (0.456) (0.367) (0.211) (0.275) (0.196) (0.265) (0.834) (1.010) (0.853) (1.061) (0.750) (1.006)
R2 0.1773 0.303 0.042 0.106 0.067 0.002 0.031 0.295 0.320 0.327 0.389 0.594 0.524 0.579 0.516
adj. R2 0.1717 0.298 0.035 0.100 0.061 < 0.000 0.024 0.290 0.311 0.293 0.367 0.500 0.492 0.486 0.487
log likelihood -142.570 -130.274 -153.863 -148.688 -151.844 -153.161 -154.713 -131.157 -128.483 -121.447 -117.771 -84.835 -96.302 -87.449 -97.567
BIC 295.134 270.543 317.720 307.370 313.682 316.289 319.420 272.308 271.957 282.708 265.485 309.018 242.370 333.164 239.924

H0 : βfreq = −βkurt
F-stat 8.08 1.79 3.27 1.53 0.20
p-value 0.005 0.183 0.073 0.219 0.652
LR test 1 3.58 50.76

(0.0584) (< 0.000)
LR test 2 90.01 62.75 109.93 102.24 108.55 111.19 114.29 67.18 59.17

(< 0.000) (< 0.000) (< 0.000) (< 0.000) (< 0.000) (< 0.000) (< 0.000) (< 0.000) (< 0.000)
δ 0.159 0.165 -0.187 0.102 -0.066 -0.594 -0.051 0.026
δ 0.355 -0.252
δ(R2

max = 0.8) 0.300 0.311 -0.367 0.167 -0.109 -0.971 -0.084 0.043
δ(R2

max = 0.8) 0.523 -0.414
NAICS 3 FE X X X X X X X X X X X X - X -
N 148 148 148 148 148 146 148 148 148 146 145 145 145 145 145

Table 2: Drivers of Monetary Non-Neutrality (FAVAR Approach)

Note: This table uses regression analysis to test the informativeness of pricing moments for monetary
non-neutrality based on the FAVAR specification. We estimate the following specification: log(IRFk,h) =
ah + αj,h + β′Mk + γ′Xk + εk,h where log(IRFk,h) is the response of prices at a 24-month horizon in a
six-digit NAICS sector k in our FAVAR analysis. Mk contains one of our industry-level pricing moments:
frequency, kurtosis, the ratio of the two statistics, average size, standard deviation of price changes,
fraction of small price changes, fraction of positive price changes, and standard deviation of price duration,
or the full set of pricing moments. αj,h denotes three-digit NAICS industry j fixed effects, included in all
specifications. Xk denotes sector-level controls, including the gross profit rate, the volatility of sector-level
shocks, and the auto-correlation of sector-level shocks. Two log likelihood ratio tests are computed: LR
test 1 compares specifications (2) or respectively (3) against (9), while LR test 2 compares (1) through (7)
as well as (9) against (13), and (8) against (13) with the standard deviation of price durations included.
Log likelihood ratio tests and measures of fit are computed excluding industry fixed effects and robust
standard errors, except in columns (12) and (14). Log likelihood ratio tests and measures of fit are
computed excluding industry fixed effects and robust standard errors, except in columns (12) and (14).
δ denotes the test statistic in Oster (2019), while δ(R2

max=0.8) computes this statistic for a maximum
possible R2 of 80%. The first and third δ rows comprise a test of (2) and (3) against (12), (1) against
(14), and (4) through (8) against (10), and the second and fourth δ rows a test of (2) and (3) against (9).
Robust standard errors in parentheses. *** denotes significance at the 1 percent level, ** significance at
the 5 percent level, * significance at the 10 percent level.
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Cross-Sectional Determinants of Firm-Level Sales Responses
(0) (1) (2) (3) (4) (5) (6) (7) (8)

Log Kurtosis
Frequency

*MPt 1.853** 1.666*

(0.845) (0.865)
Log Frequency*MPt -1.893** -1.999** -1.858*

(0.947) (0.918) (0.976)
Log Kurtosis*MPt -0.012 0.901 0.671

(1.997) (1.940) (1.981)
Log S.D.*MPt -2.696 -1.286 -1.802

(2.183) (3.755) (3.665)
Log Avg. Size*MPt -4.050 -2.254 -1.270

(3.028) (5.725) (5.145)
H0 : βfreq = −βkurt

F-stat 0.26 0.27
p-value 0.611 0.605
Firm Controls X X X X X X X X X
Firm FE X X X X X X X X X
Time FE X X X X X X X X X
R2 0.608 0.608 0.608 0.608 0.608 0.608 0.608 0.608 0.608
N 26,122 26,122 26,122 26,122 26,122 26,122 26,122 26,122 26,122

Table 3: Firm-Level Drivers of Monetary Non-Neutrality (Romer and Romer Approach)

Note: This table uses regression analysis at the firm-level to test the informativeness of five pricing
moments for monetary non-neutrality based on the Romer and Romer identification. We estimate the
following specification: log(salesj,t+4) = α+αt+αj+θh∗MPt∗Mj+γ′Xj,t+εj,t+4, where log(salesj,t+4)
is the log firm-level real sales 4 quarters after the Romer and Romer shock. Mj contains one of our five
firm-level pricing moments: frequency, kurtosis, the ratio of the two statistics, standard deviation of price
changes, the average size of price changes, or multiple moments interacted with the Romer and Romer
shock denoted by MPt. αt and αj are firm and time fixed effects. Four quarters of lagged log sales are
included as additional controls in Xt. Column 0 reports the specification with controls and fixed effects
included, but no pricing moments. Within R2 is reported. Standard errors are two-way clustered by
firms and month. *** Significant at the 1 percent level, ** significant at the 5 percent level, * significant
at the 10 percent level.
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A. Non-normalized MP
(1) (2) (3) (4)

LogKurt
Freq

*MPt -1.680** -2.372***

(0.655) (0.774)
Log Freq*MPt 1.798*** 2.289***

(0.653) (0.743)
Log Kurt*MPt -0.682 -1.096

(0.758) (0.663)
Log SD*MPt 0.791 3.257***

(0.658) (0.946)
Log Frac. Small*MPt 0.049 -0.284

(0.319) (0.380)
Log Frac. Pos.*MPt 2.404 2.739

(3.352) (3.023)
Log Avg*MPt 0.154 -3.305***

(0.897) (1.118)

H0 : βfreq = −βkurt
F-stat 3.37 1.94
p-value 0.069 0.165
R2 0.001 0.001 0.001 0.001
N 60,672 60,672 59,904 59,904

B. Normalized MP

LogKurt
Freq

*MPnorm,t -0.069* -0.131***

(0.039) (0.048)
Log Freq*MPnorm,t 0.067** 0.121***

(0.033) (0.046)
Log Kurt*MPnorm,t -0.004 -0.038

(0.047) (0.039)
Log SD*MPnorm,t -0.042** -0.033* -0.137* 0.032

(0.018) (0.020) (0.070) (0.036)
Log Frac. Small*MPnorm,t 0.022 -0.008

(0.026) (0.029)
Log Frac. Pos.*MPnorm,t 0.118 0.138

(0.226) (0.182)
Log Avg*MPnorm,t 0.047 -0.150**

(0.047) (0.058)

H0 : βfreq = −βkurt
F-stat 3.82 6.58
p-value 0.05 0.01
Industry FE X X X X
Time FE X X X X
R2 0.000 0.000 0.001 0.001
N 60,672 60,672 59,904 59,904

Table 4: Non-normalized vs. Normalized Shocks (Romer and Romer Approach)

Note: This table uses regression analysis to evaluate the role of shock normalization for the
informativeness of pricing moments for monetary non-neutrality. In Panel A, we focus on “non-normalized
monetary shocks.” In Panel B, we use “normalized monetary shocks,” defined as MPnormk,t = MPt

SDk
,

where SDk is the standard deviation of price changes for each sector k. In Panel A, we estimate
the following regressions: log(ppik,t+h) = α + αk + αt + β′Mk ∗ MPt + γ′Xk ∗ MPt + εk,t+h,where
log(ppik,t+h) is the log of the h-month cumulative sectoral response of price to the Romer and Romer
monetary policy shock denoted by MPt, where h=48, Mk contains one of our industry-level pricing
moments: frequency, kurtosis, the ratio of the two statistics, average size, standard deviation of price
changes, fraction of small price changes, fraction of positive price changes, or the full set of pricing
moments. αk and αt denote six-digit NAICS industry fixed effects and time fixed effects at monthly
frequency. Both are included in all specifications. For Panel B, we use the following specification:
log(ppik,t+h) = α+ αk + αt + β′Mk ∗MPnormk,t + γ′Xk ∗MPnormk,t + εk,t+h. Standard errors are two-way
clustered by firms and month. *** Significant at the 1 percent level, ** significant at the 5 percent level,
* significant at the 10 percent level.
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High Low High Low
Moment Data Baseline Frequency Frequency Kurtosis Kurtosis

Golosov-Lucas
Frequency 0.11 0.11 0.15 0.08 0.11 0.11
Fraction Positive 0.65 0.51 0.51 0.51 0.49 0.51
Average Size 0.077 0.077 0.077 0.077 0.033 0.154
Fraction Small 0.13 0.00 0.00 0.00 0.00 0.00
Kurtosis 4.9 1.41 1.40 1.44 2.23 1.35
Kurtosis

Frequency
44.5 12.8 9.39 18.1 20.3 9.7

Golosov-Lucas with Random Menu Costs
Frequency 0.11 0.11 0.15 0.08 0.11 0.11
Fraction Positive 0.65 0.51 0.51 0.51 0.51 0.51
Average Size 0.077 0.077 0.077 0.077 0.077 0.077
Fraction Small 0.13 0.13 0.14 0.13 0.14 0.12
Kurtosis 4.9 2.7 2.7 2.7 3.4 2.0
Kurtosis

Frequency
44.5 25.0 18.2 32.6 30.2 18.6

L 0.73 0.74 0.76 0.91 0.55
Golosov-Lucas with Random Menu Costs and Leptokurtic Shocks

Frequency 0.11 0.11 0.15 0.08 0.11 0.11
Fraction Positive 0.65 0.50 0.50 0.50 0.50 0.51
Average Size 0.077 0.077 0.077 0.077 0.077 0.077
Fraction Small 0.13 0.13 0.13 0.13 0.13 0.13
Kurtosis 4.9 4.9 4.9 4.9 6.8 2.5
Kurtosis

Frequency
44.5 44.9 32.2 62.8 62.6 22.1

Golosov-Lucas with Random Menu Costs, Leptokurtic Shocks,
and Trend Inflation

Frequency 0.11 0.11 0.15 0.08 0.11 0.11
Fraction Positive 0.65 0.69 0.67 0.73 0.72 0.67
Average Size 0.077 0.077 0.077 0.077 0.077 0.077
Fraction Small 0.13 0.13 0.13 0.13 0.13 0.13
Kurtosis 4.9 4.9 4.9 4.9 6.7 3.8
Kurtosis

Frequency
44.5 45.0 32.6 61.6 60.9 34.6

Golosov-Lucas with Random Menu Costs, Leptokurtic Shocks,
Trend Inflation, and Aggregate TFP Shocks

Frequency 0.11 0.11 0.15 0.08 0.11 0.11
Fraction Positive 0.65 0.63 0.67 0.67 0.64 0.63
Average Size 0.077 0.07 0.077 0.077 0.077 0.077
Fraction Small 0.13 0.13 0.13 0.13 0.13 0.13
Kurtosis 4.9 4.9 4.9 4.9 6.9 3.8
Kurtosis

Frequency
44.5 43.6 62.1 32.6 61.5 34.9

Baseline
Frequency 0.11 0.11 0.15 0.07 0.11 0.11
Fraction Positive 0.65 0.63 0.61 0.67 0.64 0.62
Average Size 0.077 0.077 0.077 0.077 0.077 0.077
Fraction Small 0.13 0.13 0.13 0.13 0.13 0.13
Kurtosis 4.9 4.9 4.9 4.9 6.5 3.6
Kurtosis

Frequency
58.2 44.4 32.3 68.1 57.4 32.3

Table 5: Model Moments

Note: The table shows the model moments that are internally targeted for each economy. All monthly
CPI data moments are taken from Vavra (2014) and are calculated using data from 1988-2014. Fraction
of small price changes less than 1 percent in absolute value taken from Luo and Villar (2021). Boldface
moments are targeted. L is defined as the fraction of price changes that are free.
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High Low High Low
Parameter Baseline Frequency Frequency Kurtosis Kurtosis

Golosov-Lucas
χ 0.0241 0.0181 0.034 0.0054 0.115
pz 1.0 1.0 1.0 1.0 1.0
σz 0.029 0.0345 0.0243 0.01 0.11
ρz 1.0 1.0 1.0 1.0 1.0
α 0.0 0.0 0.0 0.0 0.0

Golosov-Lucas with Random Menu Costs
χ 0.195 0.14 0.25 0.7 0.089
pz 1.0 1.0 1.0 1.0 1.0
σz 0.044 0.051 0.0383 0.062 0.037
ρz 1.0 1.0 1.0 1.0 1.0
α 0.08 0.1106 0.061 0.10 0.06
Golosov-Lucas with Random Menu Costs and Leptokurtic Shocks
χ 0.00215 0.001 0.0048 0.00115 0.0353
pz 0.084 0.117 0.06 0.06 0.20
σz 0.148 0.14 0.146 0.16 0.082
ρz 1.0 1.0 1.0 1.0 1.0
α 0.017 0.009 0.0132 0.085 0.035

Golosov-Lucas with Random Menu Costs, Leptokurtic Shocks,
and Trend Inflation

χ 0.0074 0.003 0.0225 0.0039 0.0175
pz 0.083 0.115 0.0605 0.06 0.11
σz 0.156 0.16 0.0383 0.197 0.124
ρz 1.0 1.0 1.0 1.0 1.0
α 0.03 0.035 0.028 0.023 0.036

Golosov-Lucas with Random Menu Costs, Leptokurtic Shocks,
Trend Inflation, and Aggregate TFP Shocks

χ 0.0095 0.005 0.02 0.0055 0.02
pz 0.086 0.115 0.0605 0.06 0.11
σz 0.1425 0.1455 0.14 0.173 0.118
ρz 1.0 1.0 1.0 1.0 1.0
α 0.029 0.036 0.026 0.022 0.036

Baseline
χ 0.0095 0.0048 0.022 0.0055 0.02
pz 0.072 0.115 0.025 0.053 0.01
σz 0.13 0.143 0.116 0.144 0.103
ρz 0.75 0.99 0.65 0.65 0.75
α 0.029 0.036 0.022 0.022 0.036

Table 6: Model Parameters

Note: The table shows the model parameters that are internally calibrated for each economy. χ denotes
the menu cost of adjusting prices, pz the probability that log firm productivity follows an AR(1) process
with standard deviation σz, ρz the persistence of idiosyncratic probability shocks, and α is the probability
of a free price change.
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Moment Monthly Quarterly Bi-annual

Frequency 0.11 0.31 0.51
Fraction Positive 0.51 0.54 0.59
Average Size 0.077 0.077 0.078
Fraction Small 0.0 0.02 0.06
Kurtosis 1.40 1.55 2.01

Table 7: Model Moments: Horizon Variation

Note: The table shows the moments of the Golosov-Lucas model at different sampling horizons. The
model is solved at a monthly frequency and then simulated with a panel of 10,000 firms. Moments are
then calculated by sampling price changes at monthly, quarterly, and bi-annual frequency.

Correlation between Monetary Non-Neutrality
Model and Kurtosis and Frequency and Kurtosis

Frequency

Golosov-Lucas, no stochastic monetary shocks None Negative Positive
Golosov-Lucas, with stochastic monetary shocks Negative Negative Ambiguous
+ RMC Positive Negative Positive
+ Leptokurtic Shocks Negative Negative Ambiguous
+ Trend Inflation Negative Negative Ambiguous
+ Aggregate Productivity Shocks Negative Negative Ambiguous
Baseline Model Negative Negative Ambiguous

Table 8: Model Assumptions: Moment Effects

Note: The table summarizes the sign of the relationship between kurtosis, frequency, or their ratio
and monetary non-neutrality as we add additional model parameters to the Golosov-Lucas model with
stochastic monetary shocks in the steady-state. The first row shows the correlations in the Golosov-Lucas
model without stochastic monetary shocks in the steady-state. We compute the correlation between
moments and monetary non-neutrality in several steps: First, for a given calibration, we simulate the
steady state distribution by simulating a time series of 1000 periods after a burn-in of 500 periods. In each
period we compute a moment of interest and use the average moment over time as the steady state pricing
moment. Second, we compute the associated monetary non-neutrality after we shift the steady-state
distribution with a one-time expansionary monetary shock, averaging the change in consumption across
3500 simulations. Third, we repeat these steps for different calibrations to obtain potentially different
steady state distributions and monetary non-neutrality.
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VII Figures

A Aggregated Results
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(f) Standard Deviation
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(g) Fraction Small

0 12 24 36 48

Months

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Above Median

Below Median

(h) Fraction Positive

Figure 1: FAVAR Monetary Policy Shock Impulse Responses

Note: In the above panels, “Above Median” and “Below Median” refer to the average impulse response
function of industries whose pricing moment is above or below the median value of that statistic for all
industries. All panels show the estimated impulse responses of sectoral prices in percent to an identified
25-basis-point unexpected decrease in the federal funds rate.
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Figure 2: Romer and Romer Monetary Policy Shock Aggregated Impulse Responses

Note: In the above figures, we plot the respectively estimated coefficients θA,h and θB,h from the following
specification: Log(ppij,t+h) = βh+IPS>M [θA,h ∗MPshockt+ϕA,hzj,t]+(1−IPS>M )[θB,h ∗MPshockt+
ϕB,hzj,t]+εj,t+h where ppij,t+h is the price level for industries in the “Above Median” or “Below Median”
set according to the pricing moment of interest, at time t measured at monthly frequency, h months into
the future. Controls include two lags of the RR shock, two lags of the fed funds rate, and current and two
lags of the unemployment rate, industrial production, and price level. Standard errors are constructed
using the Newey-West correction for serial autocorrelation. Dashed lines present 68% standard error
bands.
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B Sectoral and Firm-Level Results
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Figure 3: Romer and Romer Monetary Policy Shock, Industry-Level Impulse Responses

Note: In the above panels, we plot the respectively estimated coefficients θh from the following
specification: log(ppik,t+h) = α + αth + αkh + β′hMk ∗MPt + γ′hXk ∗MPt + εk,t+h where log(ppik,t+h)
denotes industry k’s price response at time t measured at monthly frequency, h months into the future.
Time and 6-digit NAICS fixed effects are included in all specifications. Mk contains the log of one or
more of the industry-level pricing moments: frequency, kurtosis, kurtosis over frequency, average size,
standard deviation of price changes, fraction of small price changes, fraction of positive price changes,
or the standard deviation of price duration. Panel (i) controls for frequency and kurtosis separately.
Standard errors are two-way clustered by industry and month. Dashed lines present 68% standard error
bands.
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Figure 4: Romer and Romer Monetary Policy Shock Firm-Level Impulse Responses

Note: In the above panels, we plot the respectively estimated coefficients θh from the following
specification: Log(salesj,t+h) = α + αth + αjh + θh ∗ Mj ∗ MPt + γ′hXj,t + εj,t+h where salesj,t+h
denotes firm j real sales at time t measured at quarterly frequency, h months into the future. Controls
further include 4 quarters of lagged log real sales. Monetary policy shocks are measured by the Romer
and Romer series. Mj contains the log of one or more of the firm-level pricing moments: frequency,
kurtosis, kurtosis over frequency, average size, or the standard deviation of price change. In panel (f), the
solid blue line is the frequency interaction coefficient and the dash-dot red line is the kurtosis interaction
coefficient with only those pricing moments included. Standard errors are two-way clustered by firms and
month. Dashed lines present 90% standard error bands.
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C Model Results
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Figure 5: Consumption Impulse Responses

Note: Impulse responses of consumption to a one-time permanent increase in log nominal output of size
0.002 for different calibrations of our baseline monthly menu cost model are shown in the top row, while
different calibrations of the Golosov-Lucas model are shown in the bottom row. The percent increase in
consumption due to the expansionary shock is plotted where the shock occurs at the horizon labeled 1.
The results are based on simulations of 3500 economies.
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Figure 6: Model Price Distributions - Golosov-Lucas Model

Note: Price change distribution in two calibrations of the Golosov-Lucas model are shown above. Panel
(a) displays the baseline model calibration distribution while Panel (b) shows the high kurtosis calibration
model distribution.
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Figure 7: Model Price Distributions - Golosov-Lucas Model with Random Menu Costs

Note: Price change distribution in two calibrations of the Golosov-Lucas model with random menu costs
are shown above. Panel (a) displays the baseline model calibration distribution while Panel (b) shows
the high kurtosis calibration model distribution.
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(d) Golosov-Lucas with Random
Menu Costs, Leptokurtic Shocks,
and Trend Inflation
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(e) Golosov-Lucas with Random
Menu Costs, Leptokurtic Shocks,
Trend Inflation, and Aggregate
TFP Shocks
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Figure 8: Model Assumptions: Kurtosis Effects

Note: Impulse responses of consumption to a one-time permanent increase in log nominal output of size
0.002 for different calibrations as we vary one modeling assumption at a time. The percent increase in
consumption due to the expansionary shock is plotted where the shock occurs at the horizon labeled 1.
The results are based on simulations of 3500 economies.
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A Model Appendix

A Golosov-Lucas Frequency Comparative Statics

This section presents additional model results.

First, it shows the comparative statics exercise under different model assumptions

when frequency is allowed to vary holding kurtosis fixed. As frequency increases, the

cumulative consumption impact decreases in all models. The results are shown in Figure

9.
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Figure 9: Model Assumptions: Frequency Effects

Note: Impulse responses of consumption to a one-time permanent increase in log nominal output of size
0.002 for different calibrations as we vary one modeling assumption at a time. The percent increase in
consumption due to the expansionary shock is plotted where the shock occurs at the horizon labeled 1.
The results are based on simulations of 3500 economies.

Next, Figure 10 shows the scaled impulse response function when the monetary shock
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is considered “large” as defined by Alvarez et al. (2016a, 2020), and confirms that the

small shock results continue to hold in this environment. For this exercise, we hold the

frequency of price changes constant across both calibrations. We then shock the model

with a monetary shock standardized by the standard deviation of price changes, δ
Std(∆p)

,

in both calibrations, and normalize the size of the impulse response by the standard

deviation of price changes. The figure shows that when kurtosis is lower, the scaled

monetary non-neutrality is higher. This result establishes that whether monetary shocks

are standardized or not is not the reason why monetary non-neutrality differs among

calibrations in our Golosov-Lucas model.
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(a) Golosov-Lucas Model

Figure 10: Large Shock Consumption Impulse Responses, Golosov-Lucas Model

Note: Impulse responses of consumption to a one-time permanent increase in log nominal output of size
0.00031 divided by the standard deviation of price change for different calibrations and resulting impulse
responses normalized by the standard deviation of price changes in each of the two model simulations.
The percent increase in consumption due to the expansionary shock is plotted where the shock occurs at
the horizon labeled 1. The results are based on simulations of 3500 economies.

Last, Figure 11 shows that the negative relationship between kurtosis and monetary

non-neutrality holds in the Golosov-Lucas model with stochastic monetary shocks when

we solve it with the exact firm flow profit function, or if the firm flow profit function it

is approximated by a quadratic loss function as in Alvarez et al. (2016a). In the model

without stochastic monetary shocks where the firm profit function is approximated by a

quadratic loss function, kurtosis does not vary in alternative calibrations.
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Figure 11: Consumption Impulse Responses, Golosov-Lucas Model

Note: Impulse responses of consumption to a one-time permanent increase in log nominal output of size
0.002 for different variations of the Golosov-Lucas model. In panel (a), firm flow profit is approximated
by a quadratic loss function. In panel (b), firm flow profit is not approximated. The percent increase in
consumption due to the expansionary shock is plotted where the shock occurs at the horizon labeled 1.
The results are based on simulations of 3500 economies.
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B Empirical Appendix

In this Appendix, we show summary statistics and additional robustness checks for

different time periods of interest, measurement error, type of monetary shock, measures

of monetary non-neutrality, and levels of disaggregation.

Table 9 considers different trimming methods for small and large price changes, and

calculates moments by above-median and below-median sets of each pricing moment.

Table 10 presents regression estimates of Equation (3) using the Romer and Romer shocks.

In Table 11 we present the summary statistics for pricing moments of interest at the

firm-level. Table 12 shows that the firm-level results are the same if we lengthen the

horizon from 4 to 8 quarters using Romer and Romer monetary shocks. Tables 13 and

14 present firm-level results using the Nakamura and Steinsson high-frequency monetary

shocks from January 1995 through March 2014. Table 15 presents instrumental variable

results for the univariate part of Table 2, while Table 16 presents the main multivariate

results. Table 17 replicates Table 2 with the dependent variable given by the cumulated

impulse price response, CIRP , as defined in Alvarez et al. (2021) and in logs. Table 18

estimates the same specification in levels and based on normalized explanatory variables.

Table 19 presents multivariate results from an instrumental variables approach using the

cumulated price response, CIRP , as in Alvarez et al. (2021), both in logs and in levels,

and standardized pricing moments in the level regressions. Table 20 shows the results

of a placebo test that combines the frequency of price changes with any of the pricing

moments instead of the kurtosis of price changes.

The Appendix also contains several figures. Figures 12 and 13 illustrate our main

aggregate and firm-level results using the monetary shock series from Nakamura and

Steinsson (2018), based on data from January 1995 through March 2014. Figure 14 uses

the Gertler and Karadi (2015) version of the monetary shock series from January 1990 to

June 2014. Figure 15 presents estimates from the OLS specification of Romer and Romer

(2004). In Figure 16 we show that the Romer and Romer shock results continue to hold

when we restrict the data to 1976 to 2007. Figures 17 and 18 present robustness checks of

the FAVAR exercise to trimming small and large price changes, while Figure 19 present

sensitivity results to the choice of horizon for Table 2. Figure 20 plots the raw pricing

moments over time.
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Low Frequency High Frequency

Type of Trimming Mean Median N Mean Median N Case
< P99 0.057 0.055 38092 0.262 0.223 160974 0
> 0.1% 0.060 0.057 40244 0.280 0.227 170598 1
< log(10/3) 0.058 0.056 38606 0.263 0.223 161499 2
< log(2) 0.058 0.056 38220 0.263 0.223 161145 3
< 100% 0.058 0.056 38510 0.263 0.223 161431 4
> 0% 0.061 0.058 40986 0.283 0.230 173172 5
> 0.5% 0.057 0.054 37437 0.266 0.211 158419 6
> 1.0% 0.054 0.051 36377 0.250 0.190 141862 7
> 0.1%, < log(2) 0.054 0.051 36510 0.251 0.190 142030 8

Low Kurtosis High Kurtosis

Type of Trimming Mean Median N Mean Median N Case
< P99 2.36 2.32 31315 4.85 4.31 167751 0
> 0.1% 2.43 2.41 30287 5.03 4.46 180555 1
< log(10/3) 2.42 2.47 31081 5.33 4.68 169024 2
< log(2) 2.37 2.32 29363 5.00 4.45 170002 3
< 100% 2.41 2.43 30515 5.23 4.67 169426 4
> 0% 2.46 2.47 33583 5.09 4.51 180575 5
> 0.5% 2.34 2.32 29271 4.73 4.29 166585 6
> 1.0% 2.24 2.24 26091 4.45 4.12 152148 7
> 0.1%, < log(2) 2.26 2.25 26172 4.57 4.16 152368 8

Low Kurtosis
Frequency

High Kurtosis
Frequency

Type of Trimming Mean Median N Mean Median N Case
< P99 17.11 17.75 136640 49.80 42.98 62426 0
> 0.1% 17.07 17.60 146225 49.44 42.90 64617 1
< log(10/3) 17.76 18.61 116696 51.96 45.79 83409 2
< log(2) 17.30 17.75 116413 50.42 43.49 82952 3
< 100% 17.63 18.19 116647 51.47 44.78 83294 4
> 0% 17.06 17.75 128030 49.38 43.03 86128 5
> 0.5% 17.03 17.34 135421 49.80 43.53 60435 6
> 1.0% 17.09 17.69 121119 50.34 44.16 57120 7
> 0.1%, < log(2) 17.29 17.69 120798 50.87 44.16 57742 8

Table 9: Pricing Moments Robustness

Note: The table shows the average and median price change moment by above-median and below-median
bin, under various trimming methods. The top panel reports mean and median price change frequency
by above-median and below-median set, the middle panel reports mean and median price change kurtosis
by above-median and below-median set, and the bottom panel reports mean and median price change
kurtosis over frequency by above-median and below-median set. Moments are computed by standardizing
price changes at the 6-digit NAICS industry level. N is the number of observations in each set for each
trimming method. Each row describes a different subsample of the data applying the filter described in
the column “Type of Trimming.” The subsample for case 0 is the baseline sample in the main text of the
paper: price changes are included if they are larger in absolute value than $0.01 and lower in value than
the 99th percentile of changes. Each additional row describes the impact of changing one of the upper or
lower thresholds in the “Type of Trimming.” The second row changes the lower trimming threshold such
that the sample now includes price changes if they are larger in absolute value than 0.1% and lower in
value than the 99th percentile of changes. Case 8 changes both the upper and lower thresholds.
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Cross-Sectional Determinants of Sectoral Price Response
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

LogKurt
Freq

*MPt -1.680** -1.098**

(0.655) (0.549)
Log Frequency*MPt 1.579*** 1.798*** 2.289*** 0.837**

(0.532) (0.653) (0.743) (0.379)
Log Kurtosis*MPt 1.086* -0.682 -1.096 -0.749

(0.638) (0.758) (0.663) (0.551)
Log S.D.*MPt -0.741 0.791 0.285 1.232**

(0.555) (0.658) (0.339) (0.581)
Log Frac. Small*MPt 0.225 0.049 0.079 -0.029

(0.430) (0.319) (0.311) (0.317)
Log Frac. Pos.*MPt -2.415 2.404 1.813 2.172

(3.522) (3.352) (3.611) (3.107)
Log Avg. Size*MPt -1.409** 0.154 -0.228 -1.274*

(0.598) (0.897) (0.579) (0.767)
Log S.D. Duration*MPt -2.249***

(0.775)
Log Profit*MPt -1.671 -1.584

(1.141) (1.023)
SD(ek) *MPt 77.577*** 72.392**

(29.304) (34.960)
ρ(ek) *MPt 1.001 1.018
Industry FE X X X X X X X X X X X X
Time FE X X X X X X X X X X X X
R2 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001
N 60,672 60,672 60,672 60,672 59,904 60,672 60,672 60,672 60,672 59,904 57,490 57,490

H0 : βf = −βkurt
F-stat 3.37 1.94 0.01
p-value 0.069 0.165 0.904

Table 10: Drivers of Monetary Non-Neutrality (Romer and Romer Approach)

Note: This table uses regression analysis to test the informativeness of pricing moments for monetary
non-neutrality using Romer and Romer monetary policy shocks. We estimate the following specification:
log(ppik,t+h) = α+ αk + αt + β′Mk ∗MPt + γ′Xk ∗MPt + εk,t+h, where log(ppik,t+h) is the log sectoral
price level h months after the Romer and Romer shock denoted by MPt, where h=48. Mk contains one
of our industry-level pricing moments: frequency, kurtosis, the ratio of the two statistics, average size,
standard deviation of price changes, fraction of small price changes, fraction of positive price changes,
standard deviation of price duration, or the full set of pricing moments. Xk are sector-level controls,
including the gross profit rate, the volatility of sector-level shocks, and the autocorrelation of sector-level
shocks. αk are six-digit NAICS industry fixed effects and are included in all specifications. αt are time
fixed effects at monthly frequency and are included in all specifications. Standard errors are two-way
clustered by firms and month. *** Significant at the 1 percent level, ** significant at the 5 percent level,
* significant at the 10 percent level.

Mean SD p50
Frequency 0.15 0.19 0.07
Kurtosis 4.82 2.99 4.10
Kurtosis
Frequency

84.56 80.08 58.62

S.D. 0.08 0.06 0.07
Avg. Size 0.07 0.03 0.06
Number of Price Changes 118.30 225.26 37.00
Firms 420

Table 11: Firm-Level Summary Statistics

Note: This table shows the mean, standard deviation, and median firm-level pricing moments for our
Compustat-PPI matched sample using monthly data from 2005 through 2014.
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Cross-Sectional Determinants of Firm-Level Sales Responses
(0) (1) (2) (3) (4) (5) (6) (7) (8)

Log Kurtosis
Frequency

*MPt 2.198** 2.062**

(1.023) (1.021)
Log Frequency*MPt -2.345** -2.430** -2.007*

(1.035) (1.063) (1.113)
Log Kurtosis*MPt -0.366 0.730 2.328

(1.893) (1.914) (2.173)
Log S.D.*MPt -0.111 -4.544 -4.380

(1.452) (3.528) (3.050)
Log Avg. Size*MPt 4.212 10.894 10.625*

(3.034) (6.937) (5.976)
H0 : βfreq = −βkurt

F-stat 0.75 0.02
p-value 0.389 0.894
Firm Controls X X X X X X X X X
Firm FE X X X X X X X X X
Time FE X X X X X X X X X
R2 0.434 0.434 0.434 0.434 0.434 0.434 0.434 0.435 0.435
N 25,869 25,869 25,869 25,869 25,869 25,869 25,869 25,869 25,869

Table 12: Firm Sales Response at Long Horizon (Romer and Romer Approach)

Note: This table uses regression analysis at the firm level to test the informativeness of five pricing
moments for monetary non-neutrality based on the Romer and Romer identification. We estimate the
following specification: log(salesj,t+8) = α+αth+αjh+θh∗MPt∗Mj+γ

′Xj,t+εj,t+8, where log(salesj,t+8)
is the log firm-level real sales h = 8 quarters after the Romer and Romer shock. Mj contains one of our
five firm-level pricing moments: frequency, kurtosis, the ratio of the two statistics, standard deviation of
price changes, the average size of price changes, and multiple moments interacted with the Romer and
Romer shock denoted by MPt. αt and αj are firm and time fixed effects. Four quarters of lagged log
sales are included as additional controls in Xt. Column 0 reports the specification with controls and
fixed effects included, but no pricing moments. Within R2 is reported. Standard errors are two-way
clustered by firms and month. *** Significant at the 1 percent level, ** significant at the 5 percent level,
* significant at the 10 percent level.
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Cross-Sectional Determinants of Firm-Level Sales Responses
(0) (1) (2) (3) (4) (5) (6) (7) (8)

Log Kurtosis
Frequency

*MPt 6.420* 6.493*

(3.470) (3.623)
Log Frequency*MPt -9.824** -9.576** -10.604**

(4.526) (4.420) (4.423)
Log Kurtosis*MPt -7.515 -6.137 -9.236

(8.784) (8.518) (9.854)
Log S.D.*MPt -0.821 9.615 0.875

(7.614) (16.220) (15.800)
Log Avg. Size*MPt -1.004 -18.377 -0.220

(13.691) (29.908) (28.146)
H0 : βfreq = −βkurt

F-stat 2.17 2.84
p-value 0.147 0.098
Firm Controls X X X X X X X X X
Firm FE X X X X X X X X X
Time FE X X X X X X X X X
R2 0.471 0.471 0.472 0.471 0.471 0.471 0.472 0.472 0.471
N 17,542 17,542 17,542 17,542 17,542 17,542 17,542 17,542 17,542

Table 13: Firm Sales Response (High-Frequency Approach)

Note: This table uses regression analysis at the firm level to test the informativeness of five pricing
moments for monetary non-neutrality based on the Nakamura and Steinsson high-frequency identification.
We estimate the following specification: log(salesj,t+4) = α+αth +αjh+ θh ∗MPt ∗Mj +γ′Xj,t + εj,t+4,
where log(salesj,t+4) is the log firm-level real sales h = 4 quarters after the Nakamura and Steinsson
high-frequency shock. Mj contains one of our five firm-level pricing moments: frequency, kurtosis, the
ratio of the two statistics, standard deviation of price changes, the average size of price changes, and
multiple moments interacted with the high-frequency shock denoted by MPt. αth and αjh are firm and
time fixed effects. Four quarters of lagged log sales are included as additional controls in Xt. Column 0
reports the specification with controls and fixed effects included, but no pricing moments. Within R2 is
reported. Standard errors are two-way clustered by firms and month. *** Significant at the 1 percent
level, ** significant at the 5 percent level, * significant at the 10 percent level.
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Cross-Sectional Determinants of Firm-Level Sales Responses
(0) (1) (2) (3) (4) (5) (6) (7) (8)

Log Kurtosis
Frequency

*MPt 6.188** 6.518*

(2.905) (3.314)
Log Frequency*MPt -9.652*** -9.387*** -10.172***

(3.289) (3.250) (3.570)
Log Kurtosis*MPt -7.918 -6.561 -7.525

(7.399) (7.276) (8.444)
Log S.D.*MPt 2.545 7.616 -0.343

(6.528) (12.866) (12.814)
Log Avg. Size*MPt 7.582 -6.517 9.998

(12.349) (25.766) (23.075)
H0 : βfreq = −βkurt

F-stat 3.75 3.58
p-value 0.058 0.064
Firm Controls X X X X X X X X X
Firm FE X X X X X X X X X
Time FE X X X X X X X X X
R2 0.311 0.311 0.311 0.311 0.311 0.311 0.311 0.311 0.311
N 17,330 17,330 17,330 17,330 17,330 17,330 17,330 17,330 17,330

Table 14: Firm Sales Response at Long Horizon (High-Frequency Approach)

Note: This table uses regression analysis at the firm level to test the informativeness of five pricing
moments for monetary non-neutrality based on the Nakamura and Steinsson high-frequency identification.
We estimate the following specification: log(salesj,t+8) = α+αth +αjh+ θh ∗MPt ∗Mj +γ′Xj,t + εj,t+8,
where log(salesj,t+8) is the log firm-level real sales h = 8 quarters after the Nakamura and Steinsson
high-frequency shock. Mj contains one of our five firm-level pricing moments: frequency, kurtosis, the
ratio of the two statistics, standard deviation of price changes, the average size of price changes, and
multiple moments interacted with the high-frequency shock denoted by MPt. αth and αjh are firm and
time fixed effects. four quarters of lagged log sales are included as additional controls in Xt. Column 0
reports the specification with controls and fixed effects included, but no pricing moments. Within R2 is
reported. Standard errors are two-way clustered by firms and month. *** Significant at the 1 percent
level, ** significant at the 5 percent level, * significant at the 10 percent level.
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Cross-Sectional Determinants of Sectoral Price Response Univariate Specifications
Baseline Sample 1, IV Sample 2 Sample 2, IV Sample 1

(1) (2) (3) (4) (5) (6)
Log Kurtosis

Frequency
-0.420*** -0.250*** -0.493*** -0.335*** -0.448*** -0.269***

(0.060) (0.074) (0.066) (0.074) (0.071) (0.077)
NAICS 3 FE X X X
N 148 148 147 147 147 147
Log Frequency 0.448*** 0.422*** 0.470*** 0.454*** 0.507*** 0.521***

(0.056) (0.073) (0.060) (0.078) (0.067) (0.094)
NAICS 3 FE X X X
N 148 148 148 148 148 148
Log Kurtosis 0.289*** 0.138 0.303** 0.072 0.301** 0.181

(0.106) (0.119) (0.131) (0.129) (0.124) (0.122)
NAICS 3 FE X X X
N 148 148 147 147 147 147
Log Avg. Size -0.594*** -0.316** -0.497*** -0.313 -1.065*** -0.536**

(0.120) (0.148) (0.182) (0.231) (0.205) (0.234)
N 148 148 148 148 148 148
Log Std. Dev. -0.456*** -0.158 -0.444** -0.236 -0.687*** -0.181

(0.141) (0.127) (0.184) (0.169) (0.241) (0.252)
NAICS 3 FE X X X
N 148 148 147 147 147 147
Log Frac. Small 0.034 0.017 0.150 0.136 0.098 0.134

(0.071) (0.077) (0.092) (0.088) (0.099) (0.093)
NAICS 3 FE X X X
N 146 146 136 136 136 136
Log Frac. Pos. -0.702** -0.334 -0.775 -0.694 -0.950 -0.260

(0.304) (0.382) (0.575) (0.716) (0.585) (0.836)
NAICS 3 FE X X X
N 148 148 148 148 148 148

Table 15: Measurement Error: Instrumental Variables Univariate Specification

Note: This table uses regression analysis to test the informativeness of pricing moments for monetary
non-neutrality. We estimate the following specification: log(IRFk,h) = a + αj,h + β′Mk + εk,h where
log(IRFk,h) is the response of prices at a 24-month horizon in six-digit NAICS sector k in our FAVAR
analysis. Mk contains one of our industry-level pricing moments: frequency, kurtosis, the ratio of the two
statistics, average size, standard deviation of price changes, fraction of small price changes, or fraction
of positive price changes. αj,h are three-digit NAICS industry fixed effects and are included in columns
(2), (4), and (6). The pricing moments are calculated over the full sample in columns (1) and (2). In
columns (3) through (6), the data set is split into an early and late subsample and the two subsamples
are used as instruments for each other. Robust standard errors in parentheses. *** Significant at the 1
percent level, ** significant at the 5 percent level, * significant at the 10 percent level.

57



C
ro

ss
-S

ec
ti

on
al

D
et

er
m

in
an

ts
of

S
ec

to
ra

l
P

ri
ce

R
es

p
on

se
M

u
lt

iv
ar

ia
te

S
p

ec
ifi

ca
ti

on
s

B
as

el
in

e
S
am

p
le

1,
IV

S
am

p
le

2
S
am

p
le

2,
IV

S
am

p
le

1
B

as
el

in
e

S
am

p
le

1,
IV

S
am

p
le

2
S
am

p
le

2,
IV

S
am

p
le

1
B

as
el

in
e

S
am

p
le

1,
IV

S
am

p
le

2
S
am

p
le

2,
IV

S
am

p
le

1

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0)

(1
1)

(1
2)

(1
3)

(1
4)

(1
5)

(1
6)

(1
7)

(1
8)

L
og

K
u

rt
o
si

s
F

re
q
u

en
cy

-0
.1

29
-0

.1
27

-0
.2

01
-0

.1
44

-0
.1

32
-0

.2
27

(0
.0

93
)

(0
.1

12
)

(0
.1

43
)

(0
.1

66
)

(0
.2

09
)

(0
.2

39
)

L
og

F
re

q
u
en

cy
0.

52
0*

**
0.

47
6*

**
0.

56
1*

**
0.

54
9*

**
0.

62
3*

**
0.

60
1*

**
0.

52
7*

**
0.

50
7*

**
0.

86
7*

**
0.

63
0*

**
0.

59
6*

*
0.

62
0*

**
(0

.0
56

)
(0

.0
74

)
(0

.0
62

)
(0

.0
74

)
(0

.0
72

)
(0

.0
99

)
(0

.0
88

)
(0

.0
91

)
(0

.2
22

)
(0

.1
26

)
(0

.2
73

)
(0

.1
97

)
L

og
K

u
rt

os
is

-0
.2

22
**

-0
.1

51
-0

.2
37

*
-0

.2
23

*
-0

.3
13

**
-0

.2
20

*
-0

.2
21

-0
.2

03
-0

.3
99

-0
.1

98
-0

.7
42

-0
.7

11
(0

.1
04

)
(0

.1
12

)
(0

.1
27

)
(0

.1
20

)
(0

.1
25

)
(0

.1
18

)
(0

.1
39

)
(0

.1
35

)
(0

.3
26

)
(0

.2
58

)
(0

.4
75

)
(0

.5
19

)
L

og
S
.D

.
-0

.0
83

0.
09

7
-0

.3
74

-0
.0

93
1.

67
1

2.
06

5
-0

.1
12

-0
.0

15
0.

13
0

0.
31

1
0.

57
0

1.
03

7
(0

.2
27

)
(0

.1
85

)
(0

.8
53

)
(0

.7
27

)
(1

.4
34

)
(1

.6
74

)
(0

.1
68

)
(0

.2
03

)
(0

.4
91

)
(0

.5
39

)
(0

.8
52

)
(1

.1
33

)
L

og
A

v
g.

S
iz

e
-0

.1
82

-0
.2

25
0.

72
4

0.
37

8
-2

.6
23

*
-2

.3
69

-0
.2

80
-0

.3
56

-0
.2

65
-0

.4
47

-1
.3

91
**

-1
.7

44
*

(0
.2

63
)

(0
.2

22
)

(1
.0

39
)

(0
.8

61
)

(1
.4

79
)

(1
.5

86
)

(0
.1

73
)

(0
.2

20
)

(0
.5

10
)

(0
.5

88
)

(0
.6

51
)

(0
.9

06
)

L
og

F
ra

c.
S
m

al
l

-0
.1

49
**

-0
.1

04
0.

12
5

0.
10

2
-0

.5
14

**
-0

.2
49

-0
.1

14
*

-0
.1

07
0.

03
6

0.
03

4
-0

.3
45

**
-0

.2
96

**
(0

.0
68

)
(0

.0
78

)
(0

.2
06

)
(0

.1
49

)
(0

.2
28

)
(0

.1
74

)
(0

.0
62

)
(0

.0
67

)
(0

.1
34

)
(0

.1
29

)
(0

.1
49

)
(0

.1
48

)
L

og
F

ra
c.

P
os

.
0.

25
2

0.
21

0
1.

94
0*

0.
43

3
-0

.2
75

-0
.3

26
-0

.0
30

-0
.1

30
0.

36
3

-0
.3

01
-1

.2
06

-1
.2

22
(0

.4
06

)
(0

.4
15

)
(1

.0
83

)
(0

.7
49

)
(1

.5
22

)
(1

.3
92

)
(0

.3
10

)
(0

.3
39

)
(0

.6
94

)
(0

.6
33

)
(0

.9
75

)
(0

.9
08

)
L

og
P

ro
fi
t

-0
.4

20
**

-0
.3

41
*

-0
.4

72
**

*
-0

.3
74

*
-0

.5
23

**
*

-0
.3

49
*

(0
.1

69
)

(0
.2

01
)

(0
.1

78
)

(0
.1

97
)

(0
.1

82
)

(0
.1

91
)

S
D

(e
k
)

12
.5

65
13

.8
95

7.
11

8
8.

44
1

1.
34

7
7.

24
5

(9
.4

58
)

(1
2.

02
1)

(9
.6

62
)

(1
1.

59
1)

(1
0.

13
6)

(1
1.

61
3)

ρ
(e
k
)

0.
70

9*
**

0.
60

3*
**

0.
73

8*
**

0.
50

7*
**

0.
62

7*
**

0.
51

8*
**

(0
.1

02
)

(0
.1

11
)

(0
.1

25
)

(0
.1

14
)

(0
.1

28
)

(0
.1

41
)

co
n
st

an
t

-0
.4

24
*

-0
.6

52
**

-0
.2

60
-0

.4
08

-0
.1

60
-0

.3
81

-1
.3

47
-1

.0
15

3.
01

4
0.

97
0

-3
.8

23
-1

.6
68

-3
.4

89
**

*
-3

.4
79

**
*

-2
.0

41
-2

.5
28

-5
.7

87
**

*
-5

.2
80

**
(0

.2
19

)
(0

.2
65

)
(0

.2
55

)
(0

.2
85

)
(0

.2
72

)
(0

.2
84

)
(0

.8
33

)
(0

.8
33

)
(2

.9
15

)
(1

.7
89

)
(2

.9
69

)
(2

.5
47

)
(0

.7
50

)
(1

.0
06

)
(1

.5
85

)
(1

.8
64

)
(2

.0
73

)
(2

.2
57

)
N

A
IC

S
3

F
E

X
X

X
X

X
X

X
X

X
R

2
0.

32
0

0.
50

9
0.

27
7

0.
48

1
0.

33
1

0.
50

1
0.

33
1

0.
50

5
-0

.1
11

0.
50

0
-0

.0
45

0.
28

3
0.

51
6

0.
57

9
0.

50
3

0.
60

1
0.

31
9

0.
45

5
N

14
8

14
8

14
7

14
7

14
7

14
7

14
6

14
6

13
6

13
6

13
6

13
6

14
5

14
5

13
5

13
5

13
5

13
5

T
ab

le
16

:
M

ea
su

re
m

en
t

E
rr

or
:

In
st

ru
m

en
ta

l
V

ar
ia

b
le

s
M

u
lt

iv
ar

ia
te

S
p

ec
ifi

ca
ti

on
I

N
o
t
e

:
T

h
is

ta
b

le
u

se
s

re
gr

es
si

on
an

al
y
si

s
to

te
st

th
e

in
fo

rm
a
ti

ve
n

es
s

o
f

p
ri

ci
n

g
m

o
m

en
ts

fo
r

m
o
n

et
a
ry

n
o
n

-n
eu

tr
a
li

ty
.

W
e

es
ti

m
a
te

th
e

fo
ll

ow
in

g
sp

ec
ifi

ca
ti

on
:
lo
g
(I
R
F
k
,h

)
=
a

+
α
j,
h

+
β
′ M

k
+
ε k
,h

w
h

er
e
lo
g
(I
R
F
k
,h

)
is

th
e

re
sp

o
n

se
o
f

p
ri

ce
s

a
t

a
2
4
-m

o
n
th

h
o
ri

zo
n

in
si

x
-d

ig
it

N
A

IC
S

se
ct

o
r
k

in
ou

r
F
A

V
A

R
an

al
y
si

s.
M
k

co
n
ta

in
s

on
e

of
ou

r
in

d
u

st
ry

-l
ev

el
p

ri
ci

n
g

m
o
m

en
ts

:
fr

eq
u

en
cy

,
k
u

rt
o
si

s,
th

e
ra

ti
o

o
f

th
e

tw
o

st
a
ti

st
ic

s,
av

er
a
g
e

si
ze

,
st

a
n

d
a
rd

d
ev

ia
ti

on
of

p
ri

ce
ch

an
ge

s,
fr

ac
ti

on
of

sm
al

l
p

ri
ce

ch
an

g
es

,
o
r

fr
a
ct

io
n

o
f

p
o
si

ti
v
e

p
ri

ce
ch

a
n

g
es

.
α
j,
h

a
re

th
re

e-
d

ig
it

N
A

IC
S

in
d

u
st

ry
fi

x
ed

eff
ec

ts
.

T
h

e
p

ri
ci

n
g

m
om

en
ts

ar
e

ca
lc

u
la

te
d

ov
er

th
e

fu
ll

sa
m

p
le

in
co

lu
m

n
s

(1
)-

(2
),

(7
)-

(8
),

a
n

d
(1

3
)-

(1
4
).

In
co

lu
m

n
s

(3
)-

(6
),

(9
)-

(1
2
),

a
n

d
(1

5
)-

(1
8
),

th
e

d
a
ta

se
t

is
sp

li
t

in
to

an
ea

rl
y

an
d

la
te

su
b

sa
m

p
le

an
d

th
e

tw
o

su
b

sa
m

p
le

s
a
re

u
se

d
a
s

in
st

ru
m

en
ts

fo
r

ea
ch

o
th

er
.

R
o
b

u
st

st
a
n

d
a
rd

er
ro

rs
in

p
a
re

n
th

es
es

.
*
*
*

S
ig

n
ifi

ca
n
t

at
th

e
1

p
er

ce
n
t

le
ve

l,
**

si
gn

ifi
ca

n
t

at
th

e
5

p
er

ce
n
t

le
v
el

,
*

si
g
n

ifi
ca

n
t

a
t

th
e

1
0

p
er

ce
n
t

le
ve

l.

58



Cross-Sectional Determinants of Sectoral Price Response
(1) (2) (3) (4) (5) (6) (7)

log Kurtosis
Frequency

-.199*** -0.193

(0.074) (0.132)
Log Frequency .334*** .346*** .441** .266**

(0.087) (0.108) (0.189) (0.131)
Log Kurtosis 0.172 -0.037 -0.185 -0.091

(0.114) (0.132) (0.135) (0.129)
Log Avg. Size -0.064 0.0362 -0.287

(0.234) (0.207) (0.210)
Log S.D. 0.288 0.061 0.290

(0.210) (0.195) (0.304)
Log Frac. Small 0.007 0.012 -0.001

(0.105) (0.095) (0.092)
Log Frac. Pos. 0.941 0.801 0.763

(0.696) (0.685) (0.720)
Log S.D. Duration -0.064

0.191
Log Profit -0.058 -0.078

(0.228) (0.236)
SD(ek) 14.600 16.340

(11.169) (10.758)
ρ(ek) .536*** .562***

(0.157) (0.150)
constant 2.757*** 2.666*** 1.908*** 2.741*** 4.362*** 2.988* 2.585

(0.243) (0.186) (0.221) (0.352) (1.408) (1.787) (1.907)

R2 0.113 0.234 0.062 0.234 0.265 0.411 0.397

adj. R2 0.107 0.228 0.0551 0.224 0.228 0.372 0.362
log likelihood -127.546
BIC 299.944

H0 : βf = −βkurt

F-stat 8.56 2.02 2.21
p-value 0.004 0.158 0.140
LR test 1 18.36 32.14

< 0.0000 < 0.0000
LR test 2 67.77 49.3 79.48 49.14

< 0.000 < 0.000 < 0.000 < 0.000
δ 0.117 0.095 -0.017

δ 0.153 -0.032

δ(R2
max = 0.8) 0.175 0.141 -0.026

δ(R2
max = 0.8) 0.195 -0.043

NAICS 3 FE X X X X X X X

N 149 149 149 149 147 146 146

Table 17: Drivers of Monetary Non-Neutrality - Log Cumulated Price Response (FAVAR
Approach)

Note: This table replicates Table 2, columns (1)-(3), (9), (12) and (13). The only difference is that
the dependent variable is given by the cumulated impulse price response, CIRPh,k, as defined in Alvarez
et al. (2021), over h = 48 months, for each six-digit NAICS sector k. We thus estimate a specification
in logs using log(CIRPk,h) = a+ αj,h + β′Mk + εk,h where Mk contains the log of the ratio of frequency
over kurtosis, or the log of one of our industry-level pricing moments: frequency, kurtosis, average size,
standard deviation of price changes, fraction of small price changes, fraction of positive price changes, or
standard deviation of price duration.
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Cross-Sectional Determinants of Sectoral Price Response
(1) (2) (3) (4) (5) (6)

Kurtosis
Frequency

-1.494*** -.906*

(0.445) (0.471)
Frequency 2.387*** 2.624*** 1.828**

(0.608) (0.679) (0.880)
Kurtosis 0.464 -0.782 -1.084

(0.702) (0.686) (0.713)
S.D. 0.933 0.604

(1.553) (1.655)
Avg. Size -2.260 -2.015

(1.654) (1.645)
Frac. Small 0.002 -0.264

(0.713) (0.744)
Frac. Pos. 5.521** 5.342**

(2.478) (2.626)
Profit -1.399 -2.006

(1.476) (1.504)
SD(ek) 1.638 2.201*

(1.207) (1.135)
ρ(ek) -.120*** -.119***

(0.033) (0.032)
constant 11.786*** 5.751*** 9.554*** 6.463*** 2.466 5.138

(1.299) (1.479) (1.767) (1.513) (3.978) (4.188)

R2 0.48 0.52 0.44 0.53 0.60 0.59

adj. R2 0.292 0.433 0.253 0.464 0.554 0.404
log likelihood -393.983 -376.808 -398.07 -371.975 -350.266 -373.576
BIC 888.706 854.355 896.878 849.726 846.414 882.973

H0 : βf = −βkurt

F-stat 8.29 1.17
p-value 0.005 0.282
LR test 1 1.79 46.55

(0.1814) (< 0.0000)
LR test 2 74.42 108.72 102.06 55.51

<(0.0000) <(0.0000) <(0.0000) <(0.0000)
δ 0.175 -0.260
δ 0.136 0.265 -0.403

δ(R2
max = 0.8) 0.152 -0.132

δ(R2
max = 0.8) 0.206 0.19‘ -0.181

NAICS 3 FE X X X X X X
N 154 154 154 154 153 153

Table 18: Drivers of Monetary Non-Neutrality - Cumulated Price Response (FAVAR
Approach)

Note: This table replicates Table 2, columns (1)-(3), (9), (11) and (13) in levels. There are only two
differences: First, the dependent variable is given by the cumulated impulse price response, CIRPh,k, as
defined in Alvarez et al. (2021), over h = 48 months, for each six-digit NAICS sector k. Second, our
pricing moments are normalized by their cross-sectional means. For example, kurtosis is divided by the
cross-sectoral mean of kurtosis. We thus estimate a specification using (CIRPk,h) = a+αj,h+β′Mk + εk,h
where Mk contains the ratio of frequency over kurtosis, or the log of one of our industry-level pricing
moments: frequency, kurtosis, average size, standard deviation of price changes, fraction of small price
changes, fraction of positive price changes, or standard deviation of price duration.
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Cross-Sectional Determinants of Sectoral Price Response
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Log Kurtosis
Frequency

-0.250***

(0.074)

Log Avg. Size
Frequency

-0.293***

(0.051)
Log S.D.

Frequency
-0.306***

(0.055)
Log Frac. Small

Frequency
-0.198***

(0.067)
Log Frac. Pos.

Frequency
-0.373***

(0.068)
Log S.D. Duration

Frequency
-0.249***

(0.040)
Log Frequency 0.476*** 0.422*** 0.418*** 0.452*** 0.433*** 0.332***

(0.074) (0.087) (0.076) (0.086) (0.077) (0.126)
Log Kurtosis -0.151

(0.112)
Log Avg. Size -0.004

(0.149)
Log S.D. -0.045

(0.105)
Log Frac. Small -0.083

(0.073)
Log Frac. Pos. 0.171

(0.355)
Log S.D. Duration -0.144

(0.129)
Constant -0.854*** -1.960*** -1.918*** -1.764*** -1.262*** -0.796*** -0.652** -0.974* -1.084*** -1.115*** -0.844*** -0.852***

(0.246) (0.156) (0.150) (0.146) (0.154) (0.186) (0.265) (0.545) (0.371) (0.198) (0.309) (0.180)
R2 0.429 0.485 0.482 0.422 0.493 0.503 0.509 0.502 0.502 0.493 0.503 0.505
NAICS 3 FE X X X X X X X X X X X X
N 148 148 148 146 148 148 148 148 148 146 148 148

Kurtosis
Frequency

-1.494***

(0.445)
Avg. Size
Frequency

-0.452*

0(0.238)
S.D.

Frequency
-0.386

(0.275)
Frac. Small
Frequency

-0.603**

(0.245)
Frac. Pos.
Frequency

-0.685*

(0.357)
S.D. Duration

Frequency
-0.420**

0(0.196)
Frequency 2.624*** 2.294*** 2.370*** 2.383*** 2.567*** 1.963**

0.679 0.647 0.617 0.628 0.600 0.751
Kurtosis -0.782

0.686
Avg. Size -1.141

1.559
S.D. -0.255

1.156
Frac. Small 0.039

0.805
Frac. Pos. 4.643

2.884
S.D. Duration -1.521

1.011
Constant 11.786*** 10.678*** 10.618*** 10.848*** 10.891*** 10.654*** 6.463*** 6.964*** 6.0367*** 5.719*** 1.314 7.521***

(1.299) (1.243) (1.256) (1.272) (1.261) (1.226) (1.513) (2.171) (1.796) (1.651) (3.035) (2.165)
R2 0.462 0.464 0.452 0.461 0.463 0.467 0.529 0.528 0.525 0.524 0.535 0.530
NAICS 3 FE X X X X X X X X X X X X
N 154 154 154 154 154 154 154 154 154 154 154 154

Table 20: Drivers of Monetary Non-Neutrality - Placebo Test (FAVAR Approach)

Note: This table conducts placebo tests for the ratio of kurtosis over frequency of price changes and its
effects on monetary non-neutrality, based on the FAVAR specification. We estimate the following two
specifications: First, a specification in logs using log(IRFk,h) = a+αj,h+β′Mk + εk,h where log(IRFk,h)
denotes the response of prices at a horizon h of 24 months in six-digit NAICS sector k from our FAVAR
analysis. Mk contains the log of frequency plus the log of one of our industry-level pricing moments:
kurtosis, average size, standard deviation of price changes, fraction of small price changes, fraction of
positive price changes, and standard deviation of price duration, or the log ratio of any one moment
to frequency. Second, we estimate the specification in levels and use the CIRP measure of monetary
non-neutrality from Alvarez et al. (2021), at a 48-month horizon, as the dependent variable. αj,h denote
three-digit NAICS industry j fixed effects and are included in all specifications. Robust standard errors
in parentheses. *** denotes significance at the 1 percent level, ** significance at the 5 percent level, *
significance at the 10 percent level.
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Figure 12: Nakamura-Steinsson HFI Monetary Policy Shock Impulse Responses

Note: In the above figures, we plot the respectively estimated coefficients θA,h and θB,h from the
following specification: Log(ppij,t+h) = βh + IPS>M [θA,h ∗MPshockt + ϕA,hzj,t] + (1 − IPS>M )[θB,h ∗
MPshockt + ϕB,hzj,t] + εj,t+h where ppij,t+h is the price level for industries in the “Above Median” or
“Below Median” set according to the pricing moment of interest, at time t measured at monthly frequency,
h months into the future. MPshockt is the Nakamura and Steinsson high-frequency identified monetary
shock. Controls include two lags of the high-frequency identified shock, two lags of the fed funds rate,
and current and two lags of the unemployment rate, industrial production, and price level. Standard
errors are constructed using the Newey-West correction for serial autocorrelation. Dashed lines present
68% standard error bands.
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Figure 13: High-Frequency Monetary Policy Shock Firm-Level Impulse Responses

Note: In the above panels, we plot the respectively estimated coefficients θh from the following
specification: Log(salesj,t+h) = αth +αjh + θh×Mj ×MPt + controlst + εj,t+h where salesj,t+h denotes
firm j real sales at time t measured at quarterly frequency, h months into the future. Controls further
include four quarters of lagged log real sales. Monetary policy shocks are measured by the Nakamura and
Steinsson high-frequency identified series. Mj contains the log of one or more of the firm-level pricing
moments: frequency, kurtosis, kurtosis over frequency, average size, or the standard deviation of price
change. In panel (f), the solid blue line is the frequency interaction coefficient and the dash-dot red
line is the kurtosis interaction coefficient with only those pricing moments included. Standard errors are
two-way clustered by firms and month. Dashed lines present 90% standard error bands.
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Figure 14: Gertler and Karadi HFI Monetary Policy Shock IRF

Note: In the above figures, we plot the respectively estimated coefficients θA,h and θB,h from the
following specification: Log(ppij,t+h) = βh + IPS>M [θA,h ∗MPshockt + ϕA,hzj,t] + (1 − IPS>M )[θB,h ∗
MPshockt + ϕB,hzj,t] + εj,t+h where ppij,t+h is the price level for industries in the “Above Median”
or “Below Median” set according to the pricing moment of interest, at time t measured at monthly
frequency, h months into the future. MPshockt is the Gertler and Karadi high-frequency identified
monetary shock. Controls include two lags of the high-frequency identified shock, two lags of the fed
funds rate, and current and two lags of the unemployment rate, industrial production, and price level.
Standard errors are constructed using the Newey-West correction for serial autocorrelation. Dashed lines
present 68% standard error bands.
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Figure 15: Romer and Romer Monetary Policy Shock IRF

Note: In the above figures, we plot the impulse response functions calculated from the following

specification: πj,t = αj +
11∑
k=1

βj,kDk +
24∑
k=1

ηj,kπj,t−k +
48∑
k=1

θj,kMPt−k + εj,t where πj,t is the inflation

rate for industries in the “Above Median” or “Below Median” set according to the pricing moment of
interest, at time t measured at monthly frequency. Dashed lines present 68% bootstrapped standard
error bands.
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Figure 16: Romer and Romer Monetary Policy Shock Impulse Responses 1976-2007

Note: In the above figures, we plot the respectively estimated coefficients θA,h and θB,h from the following
specification: Log(ppij,t+h) = βh+IPS>M [θA,h ∗MPshockt+ϕA,hzj,t]+(1−IPS>M )[θB,h ∗MPshockt+
ϕB,hzj,t]+εj,t+h where ppij,t+h is the price level for industries in the “Above Median” or “Below Median”
set according to the pricing moment of interest, at time t measured at monthly frequency, h months into
the future. Data are from 1976.1 to 2007.12. Controls include two lags of the RR shock, two lags of the
fed funds rate, and current and two lags of the unemployment rate, industrial production, and price level.
Standard errors are constructed using the Newey-West correction for serial autocorrelation. Dashed lines
present 68% standard error bands.
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Figure 17: FAVAR Monetary Policy Shock IRF - Robustness to Small Price Changes

Note: In the above panels, “Above Median” and “Below Median” refer to the impulse response function
of industries whose pricing moment is above or below the median value of that statistic for all industries.
Data are trimmed as in Case 1 in Table 9. Different from our baseline sample, small price changes are
trimmed when they are less than 0.1 percent in absolute value. FAVAR estimated impulse responses of
sectoral prices in percent to an identified 25-basis-point unexpected federal funds rate decrease are shown.
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Figure 18: FAVAR Monetary Policy Shock IRF - Robustness to Large Price Changes

Note: In the above panels, “Above Median” and “Below Median” refer to the impulse response function
of industries whose pricing moment is above or below the median value of that statistic for all industries.
Data are trimmed as in Case 3 in Table 9. Relative to our baseline sample, large price changes are
trimmed when they are greater than log(2) in absolute value. FAVAR estimated impulse responses of
sectoral prices in percent to an identified 25-basis-point unexpected federal funds rate decrease are shown.
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Figure 19: FAVAR Cross-Sectional Regression Coefficients

Note: In the above panels, we plot the respectively estimated coefficients βh based on the FAVAR
estimated price level response to an expansionary shock from the following specification: log(IRFk,h) =
ah + αj,h + β′hMk + γ′hXk + εk,h where the horizon h is varied from 1 to 48 months after the monetary
shock. Panels (a) through (h) show specifications with only one pricing moment included. Panel (i)
controls for frequency and kurtosis separately. Three-digit NAICS fixed effects are included in all panels.
Dashed lines present 90% standard error bands.

69



0
.2

.4
.6

P
ric

e 
C

ha
ng

e 
F

re
qu

en
cy

1998 2000 2002 2004
Year

(a) Frequency

0
2

4
6

8
10

P
ric

e 
C

ha
ng

e 
K

ur
to

si
s

1998 2000 2002 2004
Year

(b) Kurtosis

0
20

40
60

80
10

0
P

ric
e 

C
ha

ng
e 

K
ur

to
si

s/
F

re
qu

en
cy

1998 2000 2002 2004
Year

(c) Kurtosis/Frequency

0
.1

.2
.3

.4
P

ric
e 

C
ha

ng
e 

F
re

qu
en

cy

1998 2000 2002 2004
Year

High Bin Low Bin

(d) Frequency

2
3

4
5

6
7

P
ric

e 
C

ha
ng

e 
K

ur
to

si
s

1998 2000 2002 2004
Year

High Bin Low Bin

(e) Kurtosis

0
20

40
60

80
P

ric
e 

C
ha

ng
e 

K
ur

to
si

s/
F

re
qu

en
cy

1998 2000 2002 2004
Year

High Bin Low Bin

(f) Kurtosis/Frequency

Figure 20: Annual Average Pricing Moments, Aggregate and by Bin

Note: Each monthly pricing moment is calculated at the industry-month, averaged within an industry
at an annual frequency, and then presented as a cross-sectional average either for all moments pooled,
or within our above and below median subsets of moments. The dotted lines are the 25th and 75th
percentiles of each moment either in the full set of moments or the respective subset.
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