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Abstract 

 

This paper proposes a novel measure to quantify systemic risk from the information contained in asset returns. 

In the context of the external habits formation model of Campbell and Cochrane (1999), and under the 

assumption that stock returns are heteroskedastic, I show that equilibrium risk premium has a factor structure 

where the factors are a monotonic transformation of the surplus consumption ratio, a state variable that 

captures the systemic risk in the structural model. The restrictions implied by the model suppose a setup where 

one of the factors affects the variance of excess returns. Therefore, the factor model is estimated employing an 

adapted version of the Quantile Principal Components estimation procedure proposed by Sagner (2019). 

Simulations of the structural model under alternative parameterizations calibrated for the US show a good 

performance of the proposed systemic risk metric computed at quantiles different than the median. When 

estimated using quarterly post-war data, the proposed measure displays significant hikes that coincide with 

both several US recession periods and episodes of substantial financial market turbulences. Finally, the 

systemic risk estimator can forecast sharp shifts in both economic activity and industrial production up to one 

quarter ahead. 

 

 

Resumen 

Este artículo propone una nueva medida para cuantificar el riesgo sistémico a partir de la información 

contenida en el retorno de activos financieros. Así, en el contexto del modelo de formación de hábitos de 

Campbell y Cochrane (1999), y bajo el supuesto de retornos heterocedásticos, demuestro que el premio por 

riesgo de equilibrio posee una estructura factorial donde los factores son una transformación monotónica del 

ratio consumo excedente; una variable de estado que captura el riesgo sistémico dentro del modelo estructural. 

Las restricciones impuestas por el modelo implican una configuración donde uno de los factores afecta la 

varianza del exceso de retorno. Por lo tanto, el modelo factorial es estimado utilizando una versión adaptada de 

la metodología Componentes Principales Cuantiles propuesta por Sagner (2019). Simulaciones del modelo 

estructural bajo parametrizaciones alternativas calibradas para EE.UU. muestran un buen desempeño de la 

medida de riesgo sistémico propuesta, calculada en cuantiles distintos de la mediana. La medida estimada 

utilizando datos trimestrales de post-guerra muestra aumentos significativos que coinciden con varios períodos 

de recesión en EE.UU. y episodios de turbulencias en los mercados financieros. Finalmente, el estimador de 

riesgo sistémico puede pronosticar cambios bruscos de la actividad económica y producción industrial en un 

horizonte de hasta un trimestre. 
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1 Introduction
After the Great Recession of 2007-2009, there has been a revived and increasing interest by
both the academic community and policymakers on how to model and quantify systemic risk.
Perhaps most of this trend, if not all, can be conceived as a response to two issues closely
related to each other. First, systemic risk is a concept that lacks a unified definition, although
there is agreement that it is related to risks of major dysfunction in financial markets (Hansen,
2013). Second, since systemic risk involves the financial system, it becomes highly desirable
to measure and monitor it to support risk management and macro-prudential policies with
useful information concerning the current and future state of the economy.

The preceding arguments suggest that systemic risk is rather a multifactorial construct,
i.e. more than one notion, and consequently more than one metric, are needed to capture the
complex and dynamic nature of financial markets and the economy before, during, and after
periods of financial distress. To this extent, the related empirical literature has proposed
several measures to quantify systemic risk1. These measures span different dimensions of the
concept, but they typically concentrate around four key aspects that characterize the financial
system in a broad sense, namely leverage, liquidity, linkages between financial institutions,
and asset prices2. Many of these indicators were developed to serve also as an early-warning
tool capable of signaling future episodes of financial distress, conferring thus time to policy-
makers to implement prudential actions towards mitigating the buildup of systemic risk and
its potential losses for the overall economy. On the contrary, Giglio et al. (2016) find that
only a reduced number of the immense variety of systemic risk measures available meets this
objective.

In this paper, I propose a novel metric to quantify systemic risk based on asset returns that
has a structural interpretation. More precisely, I show that in the context of the consumption-
based asset pricing model with external habits of Campbell and Cochrane (1999) and under
the assumption that the volatility of stock returns is counter-cyclical, the equilibrium risk
premium has a two-factor structure. In this setup, factors are a monotonic transformation
of the surplus consumption ratio (i.e., the proportion of consumption above the habit level),
a state variable that contains the systemic risk in the structural model. Despite its con-
nection with conventional measures based on asset returns, my approach departs from the
traditional empirical literature in two key aspects. First, the equilibrium conditions of the
model imply that one of the factors affects the variance of risk premium only. Therefore,
popular econometric techniques for extracting unobserved factors from stock returns, such as
Principal Components (PC), are no longer suitable because this factor is not identified at the
center of the distribution of innovations to excess returns. Second, the unobserved factors

1See Bisias et al. (2012) for a recent and comprehensive survey of quantitative measures of systemic risk.
2Some recent studies related to leverage in this context are Geanakoplos and Pedersen (2011) and Frazzini

and Pedersen (2012). Systemic risk measures related to liquidity are more abundant, e.g. Chordia et al.
(2001), Pastor and Stambaugh (2003), Getmansky et al. (2004), Chan et al. (2007), Brunnermeier et al.
(2011), Khandani and Lo (2011), among many others. Measures based on linkages between financial in-
stitutions generally incorporate new developements of modern network models; some examples are Huang
et al. (2011), Billio et al. (2012), Adrian and Brunnermeier (2016), and Acharya et al. (2017). Systemic
risk measures based on asset returns are among the oldest ones. Chen et al. (1986), Connor and Korajczyk
(1988), Fama and French (1993), Chow et al. (1999), and recently Kritzman and Li (2010) and Kritzman
et al. (2011) are some examples of this class of systemic risk indicators.
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implied by the model are related in a nonlinear fashion. Consequently, nonlinear estimation
methodologies are required to avoid misspecification bias.

To get a systemic risk estimator under this approach, I consider the Quantile Principal
Components (QPC) estimation procedure proposed by Sagner (2019). This methodology
addresses the issues mentioned before by allowing the estimation of both linear and nonlinear
factor models at any quantile of the distribution of excess returns. In addition, the rotation
required by the procedure was adapted so that it meets the restrictions implied by the model.
In particular, I imposed the nonlinear relation between the factors and the sign restrictions
on the factor loadings. In the latter case, one can note that the sign of one loading depends
straightforwardly on the quantile of interest, whereas the sign of the remaining loading is a
function of structural parameters. I show that if the state variable of the model is persistent
enough, then the sign of the corresponding loading is unambiguously negative for all assets.
I refer to the overall estimation procedure as Adapted Quantile Principal Components or
AQPC for short.

I then solve and simulate the external-habit-based model under distinct parameterizations
calibrated for the US economy with the purpose to compute an estimator of systemic risk
from artificial data via the AQPC procedure, and to study its performance both individually
and relative to the PC methodology. I find that, when computing the AQPC-based measure
of systemic risk at a quantile different than the median, the precision of the estimator is high,
which indicates that, on average, the surplus consumption ratio estimated under my approach
can be effectively regarded as the true one. This good performance tends to decline when the
surplus consumption ratio becomes more persistent and the risk-free rate is counter-cyclical.
Intuitively, in the first case, because the long-run value of the state variable turns large, the
stochastic discount factor tends to a constant, which implies that equilibrium returns become
less sensitive to systemic risk and, therefore, more sensitive to idiosyncratic shocks. In the
second case, the dynamic behavior of the risk-free rate induces a weak pro-cyclicality of the
risk premium. Thus, excess returns are, as in the previous case, relatively more sensitive to
idiosyncratic shocks. My simulations also show that when the estimate of systemic risk is
computed with the AQPC procedure at the median of the distribution of returns or using
the PC methodology, misspecification bias is large and severely affects the precision of the
estimators.

Lastly, I compute the AQPC-based systemic risk measure using quarterly US stock data
over the period from 1954 to 2018. The proposed estimator displays significant systemic risk
spikes that coincide not only with several recession periods in the US, but also with some
episodes of financial turbulences that did not trigger a recession in subsequent quarters like
the Flash Crash of 1962, the S&P 500 decline of 22% over eight months in 1966, and Black
Monday of October 1987. Moreover, the estimate of systemic risk can forecast sharp shifts
in macroeconomic activity up to one quarter ahead, with an accuracy that outperforms PC-
based measures. The preceding feature highlights the usefulness of the proposed indicator as
an additional or complementary early-warning signal that policymakers can incorporate into
their monitoring and prudential policy-making process.

This paper is related to the long literature which seeks to identify and estimate one or
more systemic risk factors from a set of asset returns. Most studies in this area build on
arbitrage arguments, as in the Arbitrage Pricing Theory (APT) developed by Ross (1976),
or on equilibrium arguments, as in the Intertemporal Capital Asset Pricing Model (ICAPM)
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developed by Merton (1973). In this sense, one strand of the literature relies on the idea that
systemic risk, because of its lack of specificity, is a concept that cannot be quantified ex-ante.
But, because it becomes evident ex-post, it can be measured in terms of its effects on other
key observable variables. Chen et al. (1986) and Fama and French (1993) are good examples
of this approach. In particular, the first paper assumes that systemic risk is well characterized
by five macroeconomic variables that explain, to some extent, changes in the cash flow of
firms and its relevant discount rate: the term spread of US government bonds, expected
and unexpected inflation, industrial production growth, and the yield premium between
high- and low-grade corporate bonds. The second paper, on the other hand, relies on firm
characteristics to quantify systemic risk, namely the return of the market portfolio, firm size,
book-to-market equity, bond maturity, and default risk. The rest of the related literature
assumes, largely motivated by the APT, that systemic risk can be gauged by portfolios
constructed out of traded assets. Connor and Korajczyk (1988) follow this approach and
model systemic risk through five portfolios represented by five factors that were obtained
using the PC methodology. More recently, Kritzman et al. (2011) propose a systemic risk
metric, named the absorption ratio, which amounts to the fraction of the total variance of a
panel of asset returns explained or “absorbed” by the first factor computed via PC. Intuitively,
the absorption ratio measures how coupled is the financial market, i.e., it captures its fragility
because negative shocks tend to propagate more easily and broadly in highly correlated
markets (see Ang and Chen, 2002; Ang et al., 2002; Hong et al., 2007). Chow et al. (1999)
and Kritzman and Li (2010), on its part, employ a rather different methodology to obtain an
indicator of financial turbulence. In these articles, the authors use the Mahalanobis distance
to determine whether a given asset return is exceptionally away from the cross-section average
according to their historical joint distribution3. Accordingly, the indicator signals a turbulent
financial market if, in a given period in time, the proportion of unusual returns (i.e., returns
that are far away from their historical average) increases.

The rest of the paper is structured as follows. Section 2 briefly reviews the consumption-
based asset pricing model with external habits of Campbell and Cochrane (1999), which
corresponds to the basis of the proposed systemic risk measure. Simulations results under
different parameterizations intended to study the precision of the metric are also reported.
Section 3 presents the systemic risk estimate for the US that was computed using post-war
data. A discussion regarding its in- and out-of-sample properties to evaluate its coherence
with known recession periods and early-warning properties, respectively, is also provided.
Finally, Section 4 concludes. Proofs and data descriptions were left in the Appendix.

2 Model
In this section, I revisit the external habits formation model of Campbell and Cochrane
(1999) over which my measure of systemic risk builds up. Then, I simulate the model
using parameters calibrated for the US economy and compute the systemic risk measure
from artificial data using an adapted version of the high dimensional quantile factor analysis
(QFA) framework proposed by Sagner (2019). Finally, I evaluate the performance of my

3The Mahalanobis distance is a weighted Euclidean distance, where the weights are given by the inverse
of the covariance matrix.
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measure within this context in terms of (i) how well it captures the dynamics of the systemic
risk of the model, and (ii) whether my measure outperforms similar metrics based on PC.

2.1 An External-Habit-Based Asset Pricing Model

There is a representative investor in the economy who has lifetime utility over consumption
Ct relative to a level of habit Xt in the following manner:

Et

[
∞∑
j=0

βj
(Ct+j −Xt+j)

1−γ − 1

1− γ

]
(1)

where 0 < β < 1 represents the subjective discount factor and γ > 0 denotes the risk-
aversion coefficient. The habit formation process Xt is external, also known as “catching
up with the Joneses” following Abel (1990), in the sense that past consumption affects the
habit formation process, but the latter does not affect current consumption. Because the
representative investor derives utility from consumption that is over the level of habit, Xt

cannot be below Ct for (1) to be well defined, and so Xt can be interpreted as a consumption
subsistence level. It is convenient to capture this relation in terms of the surplus consumption
ratio St ≡ (Ct − Xt)/Ct, i.e., the amount of consumption above the subsistence level as a
proportion of total consumption. Thus, if St → 0, the level of habit is close to consumption,
and the economy enters a very bad state of nature (recession). Conversely, if St → 1, then
consumption is very large compared to the level of habit and, consequently, the economy lies
in a good state of nature (boom). Moreover, note that in this model the coefficient of relative
risk aversion is given by

− uCC (Ct, Xt)

uC (Ct, Xt)
Ct =

γ

St
(2)

where u(Ct, Xt) = [(Ct − Xt)
1−γ − 1]/(1 − γ) is the instantaneous utility function, uC(·) =

∂u (Ct, Xt) /∂Ct and uCC(·) = ∂2u (Ct, Xt) /∂C
2
t . Thus, the representative investor becomes

relatively more risk averse during recessions, i.e., when consumption is close to its subsistence
level. During booms, on the contrary, risk aversion is relatively low and close to the risk-
aversion coefficient γ.

Let st ≡ logSt be the log surplus consumption ratio. The authors assume that st has an
autoregressive and heteroskedastic structure, perfectly correlated with innovations to con-
sumption growth, as follows:

st+1 = (1− φ) s̄+ φst + λ(st) (∆ct+1 − E [∆ct+1]) (3)

where |φ| < 1 is a persistence parameter; s̄ < 0 is the steady-state value of st; and ∆ct+1 ≡
log (Ct+1/Ct) is consumption growth, which is assumed to be determined by the following
expression:

∆ct+1 = g + vt+1 (4)

where g > 0 is the growth rate of consumption and vt+1 ∼ iidN (0, σ2). The term λ(st) in
(3), which governs the heteroskedasticity of the log surplus consumption ratio, corresponds
to the sensitivity function. It is parameterized by the following expression:
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λ(st) = S̄−1
√

1− 2 (st − s̄)− 1 (5)

S̄ = σ

√
γ

1− φ− b/γ

In equilibrium, the stochastic discount factor Mt+1 equals the investor’s marginal rate of
inter-temporal substitution. Therefore

Mt+1 = β

(
Ct+1

Ct
· St+1

St

)−γ
or in logarithmic terms by using (3) and (4)

mt+1 = log β − γg + γ (1− φ) (st − s̄)− γ (1 + λ(st)) vt+1 (6)

The above equation is the heart of the Campbell and Cochrane (1999) model. To un-
derstand its implications, note that in the short run, shocks to ct+1 and st+1 move together,
as can be seen from equations (3) and (4). Hence, either of these variables accounts for
practically the same amount of the resulting variation in the stochastic discount factor. At
longer horizons, however, Cochrane (2005) argues that these variables are less and less con-
ditionally correlated, implying that, although st+1 depends on ct+1 relative to its recent past,
the overall level of consumption can be high or low. Consequently, most of the variation in
the stochastic discount factor at longer horizons is driven mainly by shocks to habits. These
observations imply that the surplus consumption ratio is a state variable that captures the
systemic risk of the financial system. More precisely, assets are risky because they have a
bad and volatile performance during occasional deep recessions, and, at the same time, this
risk is unrelated to the uncertainty about the long-run average performance of the economy.

The real return on the risk-free asset of this economy is given by the corresponding log-
linearized Euler equation of the model4, together with equations (5) and (6), as follows

rft+1 = γg − log β − γ (1− φ)− b
2

− b (st − s̄) (7)

The above expression shows that the risk-free rate is a linear function of the log surplus
consumption ratio and that this relationship depends on the sign of the parameter b. If b > 0,
then the risk-free rate is high during recessions and low during booms, suggesting that an
inter-temporal substitution effect is predominant: when the economy faces bad (good) times,
marginal utility of consumption is high (low), so the investor is willing to borrow (lend) to
smooth inter-temporal consumption. Consequently, the equilibrium interest rate is driven
up (down). Wachter (2006) exploits this case to study several features of the term structure
of nominal interest rates in the US. If on the contrary b < 0, then the risk-free rate is pro-
cyclical, meaning that in this case a precautionary savings effect dominates: during recessions
(booms), uncertainty about the future state of the economy increases (decreases), so investors
are more willing to save (spend) and this behavior drives down (up) the equilibrium risk-
free rate. Verdelhan (2010) adopts this case in an external-habit-based model and argues

4For more details on the derivation of the log-linearized optimality conditions of the model, see the
Appendix.
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that pro-cyclicality of interest rates is a necessary condition for the model to account for the
uncovered interest rate parity puzzle. Lastly, if b = 0, then the risk-free rate is constant over
time as in the model of Campbell and Cochrane (1999).

Let ri,t be the real return on the i-th risky asset in this economy. Following the enormous
empirical literature that started with the seminal paper of Engle (1982), I assume that asset
returns are heteroskedastic5. Moreover, following Li (2001) and Li and Zhong (2005), I further
assume that the heteroskedasticity of ri,t is a function of the sensitivity function λ(st). This
last assumption, although strong, has at least two advantages. First, the sensitivity function
given in equation (5) has now an economic interpretation since it corresponds to the price of
risk under this assumption. In addition, because λ(st) is a function of the state variable st,
the price of risk in the model is, therefore, time-varying and counter-cyclical6. Second, and
perhaps more importantly, the last assumption is intended to facilitate the estimation and
interpretation of the systemic risk measure that will be derived from the model. Otherwise,
the aforementioned heteroskedasticity assumption would require the incorporation of a second
state variable that (i) would complicate the estimation of the systemic risk measure, as will
be explained in the next section; and (ii) would extend the systemic risk concept into a
two-dimensional space, hindering in this sense its simplicity in terms of interpretation and
empirical application. Thereby, the real return of the i-th risky asset is given by the following
expression

ri,t+1 = Et [ri,t+1] + (1 + λ(st))ui,t+1 (8)

where the idiosyncratic shocks are such that ui,t+1 ∼ N (0, ζ2i ); CORR[ui,t+1, uj,t+1] = ωij,
for all i 6= j; and CORR[vt+1, ui,t+1] = ρi. Similar to the case of the risk-free rate, the
corresponding log-linearized Euler equation related to risky assets, together with equations
(5) to (8), imply that

Et[ri,t+1]− rft+1 = ζi

(
2γσρi − ζi

2

)
(1 + λ(st))

2 (9)

Thus, equation (9) indicates that the expected excess return or equity risk premium
Et[ri,t+1] − rft+1 is also a function of the log surplus consumption ratio. In particular, the
model predicts a larger risk premium during recession periods, a result that is a direct
consequence of the counter-cyclical nature of risk aversion in the model (i.e., it is high in
recessions and low in booms).

2.2 Measure of Systemic Risk of Simulated Data

The previous equation describing the expected excess return of the i-th asset corresponds to
the basis of my estimations. However, because I do not observe the conditional expectation
of excess returns, I use equation (8) to get a similar expression in terms of realized excess
returns, r̃i,t ≡ ri,t − rft , as follows

5While time-varying volatility of asset returns is a phenomenon that has been known for a long time, the
comprehensive survey of Bollerslev et al. (1992) suggests that most formal statistical models addressing this
stylized fact started to bloom after the publication of the ARCH framework proposed by Engle (1982).

6This is because λ′(st) = −(S̄
√

1− 2(st − s̄))−1 < 0 for all st.
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r̃i,t+1 = ζi

(
2γσρi − ζi

2

)
(1 + λ(st))

2 + (1 + λ(st))ui,t+1

or alternatively

r̃i,t+1 = ηift + htui,t+1 (10)

where ηi = ζi(2γσρi − ζi)/2, ft = (1 + λ(st))
2, and ht = 1 + λ(st). Two aspects of the above

equation are worth highlighting. First, from an estimation point of view, equation (10) has a
factor structure in the sense that every element on the right-hand side is unobserved by the
researcher: ft and ht play the role of the factors, whereas ηi and ui,t+1 can be interpreted as
the factor loading and the idiosyncratic component of the factor model, respectively. Second,
and more importantly, while ft affects the mean of excess returns, ht affects its variance.
This aspect is the key difference between the multi-factor pricing equation derived from
the external-habits formation model and the Arbitrage Pricing Theory developed by Ross
(1976) or the Inter-temporal Capital Asset Pricing Model developed by Merton (1973), where
all factors affect the mean excess returns. So, any estimation procedure that exploits the
information at the center of the distribution of r̃i,t+1, conditional on ηi, ft, and ht is unable
to identify the latter. To understand this last point, define ui,t+1 ≡ σΦ−1(zi,t+1), where
zi,t+1 ∼ U [0, 1] and Φ−1(·) is the inverse of the Normal cumulative distribution function.
Thus, equation (10) can be rewritten in the following manner

r̃i,t+1 = αi(zi,t+1)
′θt(zi,t+1), zi,t+1 ∼ U [0, 1] (11)

where αi(zi,t+1) = [ηi, σΦ−1(zi,t+1)]
′ is the vector of factor loadings and θt(zi,t+1) = [ft, ht]

′ is
the vector of factors. In the jargon of the factor analysis literature, equation (11) corresponds
to a location-scale factor model7.

Note that although both ft and ht do not depend on zi,t+1 directly, the dimension of the
vector θt(zi,t+1) does. In this sense, when the vector of factors is evaluated at the median of
ui,t+1, then Φ−1(0.5) = 0 and, consequently, θt(0.5) = ft is a scalar, i.e., we cannot identify ht
by looking at the center of the distribution of ui,t+1, and hence of r̃i,t+1. For any zi,t+1 6= 0.5,
θt(zi,t+1) = [ft, ht]

′ is a 2-dimensional vector, which means that both factors are identified.
The previous observation implies that any quantile of the joint conditional distribution of
r̃i,t+1, excluding the median, contains additional information about the magnitude and dy-
namics of the systemic risk variable st. This is an important issue because any method aimed
to get an estimate of systemic risk from equation (10) based on the information at the center
of the aforementioned joint conditional distribution will lead to a loss of information that will
ultimately translate into misspecification bias8, thus providing a poor description of both the
level and dynamics of st.

Let τ be a scalar within the (0, 1) interval. Then, the τ -th conditional quantile function
of r̃i,t+1, Qr̃i,t+1

(τ) ≡ inf{r̃i,t+1|Φ(r̃i,t+1/σ|αi(τ), θt(τ)) ≥ τ}, is given by

7For more details about location-scale factor models, see Skrondal and Rabe-Hesketh (2004, pp. 49-93).
8In this context, Onatski (2015) finds that the estimation of factor models where the number of estimated

factors is smaller than the true one (i.e., the estimation model is misspecified), can seriously affect the quality
of both the estimated factors and factor loadings.
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Qr̃i,t+1
(τ |αi(τ), θt(τ)) = αi(τ)′θt(τ), τ ∈ (0, 1) (12)

where now I refer to θt(τ) and αi(τ) as quantile factors and quantile factor loadings, respec-
tively. Given a panel ofN excess returns observed during T periods, equation (12) can be esti-
mated using the QPC procedure proposed by Sagner (2019). Broadly speaking, this method-
ology is a simple iterative procedure, which in this context is based on the minimization of
the average quantile loss (NT )−1

∑N
i=1

∑T
t=1 ρτ (r̃i,t+1 − α′iθt), with ρτ (x) = (τ − 1{x < 0})x,

for a given value of τ ∈ (0, 1). The algorithm returns estimators of αi(τ) and θt(τ) by running
quantile regressions in two iterative steps. At each step, an estimator of one of these objects
is obtained considering a preliminary estimate of the other one. Convexity of the quantile
loss function ρτ (·) when either αi or θt is held fixed ensures the convergence of the algorithm
to a local minimum.

A key ingredient of the QPC procedure is the choice of the identifying restrictions (also
known as rotation) to estimate and, perhaps more importantly, to interpret both the quantile
factors and quantile loadings. The algorithm considers three alternative restrictions for such
purposes: (i) the default rotation of the PC methodology via MLE; (ii) a recursive rotation;
and (iii) an errors-in-variables rotation. In the context of the external-habits formation model
described previously, the first rotation implies that θ̂t(τ) is an orthogonal vector and closely
related to the eigenvectors associated with the two largest eigenvalues of the covariance matrix
of r̃i,t+1. Under the second rotation, θ̂t(τ) is also an orthogonal vector, but the assumptions
on α̂i(τ) imply that there exists one excess return that is affected by ft only. Finally, the
last rotation imposes all restrictions on α̂i(τ) by assuming that there are two excess returns,
say r̃i,t+1 and r̃j,t+1 with i 6= j, that are affected only by ft and ht, respectively. However,
by looking back at equation (12), one can note that none of these rotations adequately
characterize the quantile factor structure implied by the model.

The previous observation highlights the fact that we need to adapt the identifying re-
strictions of the QPC methodology in order to get estimators of αi(τ) and θt(τ) that are
interpretable within the context of the external-habits formation model. Therefore, since the
model has two unobservable factors, the factor analysis literature tells us that we need to im-
pose four restrictions to uniquely identify the parameters of the quantile factor model9. The
first restriction conditions the relationship between the two quantile factors by imposing that
ft(τ) = ht(τ)2 for all t and τ ∈ (0, 1), as derived in equation (10). The remaining rotations
correspond to sign restrictions. So, the second restriction enforces the condition ht(τ) > 0 for
all t and τ ∈ (0, 1), which follows directly from the definition of the sensitivity function λ(st)
in (5). The last two restrictions are related to the sign of the quantile factor loadings αi(τ).
Note that the sign of the second quantile loading α(2)

i (τ) = σΦ−1(τ) depends on the value of
τ , i.e., α(2)

i (τ) < 0 if τ lies within the (0, 0.5) interval; α(2)
i (τ) = 0 if τ = 0.5, in which case

h(τ) is not identified as mentioned previously; and α
(2)
i (τ) > 0 if τ belongs to the (0.5, 1)

interval. The sign of the first quantile loading α(1)
i (τ) = ζi(2γσρi − ζi)/2, however, deserves

more attention. Looking at its definition, it is straightforward to see that the sign of α(1)
i (τ)

depends on whether the difference 2γσρi − ζi is positive or negative, which in turn depends
on the calibration adopted. But in an estimation context, this identifying restriction cannot

9In general, for a given τ ∈ (0, 1), if a quantile factor model has K(τ) factors, then one needs to impose
K(τ)2 restrictions to uniquely identify the quantile factors and quantile loadings.
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be implemented directly, because it requires the knowledge of the magnitude of structural,
unobservable parameters.

Proposition 1 (Sign of First Quantile Factor Loading). Let α(1)
i (τ) be the first quantile

factor loading of the excess returns implied by the external-habit formation model given by
equation (10). Let φ, b, and γ be the persistence of the log surplus consumption ratio, the
parameter governing the cyclicality of the risk-free rate, and the risk-aversion coefficient,
respectively. Thus, if φ→ min {1, 1− b/γ}, then α(1)

i (τ) < 0 for all i and τ ∈ (0, 1).

The above proposition posits that if the state variable of the model is very persistent, then
the first quantile loading is unambiguously negative for all risky assets. While it is true that
the parameter φ is also unobservable, simulations performed by Wachter (2006) show that
this parameter determines the first-order autocorrelation of the price-dividend ratio (P/D)t.
Thus, the knowledge of the persistence of (P/D)t is informative about the magnitude of φ,
and hence of the sign of α(1)

i (τ). The intuition behind this result is as follows. When st is
very persistent, the volatility of stock returns is less sensitive to consumption growth shocks.
As a consequence, the correlation between ri,t+1 and ∆ct+1, which is proportional to ρi, is
small relative to the variance of stock returns, which in turn is proportional to ζi. Therefore,
the difference 2γσρi − ζi is negative for all risky assets.

In summary, the QPC methodology with a rotation (or identifying restrictions) adapted
to the quantile factor model (12), or Adapted Quantile Principal Components (AQPC) al-
gorithm hereafter, consists of the following steps. For a given τ ∈ (0, 1), start by guessing
initial values for the vectors of quantile factor loadings α̂i(τ). Then, using the guessed
quantile loadings, obtain estimates of the quantile factors θ̂t(τ) = [f̂t(τ), ĥt(τ)]′ using the
nonlinear quantile regression procedure proposed by Koenker and Park (1996) across cross-
sections for each t = 1, . . . , T , subject to the restrictions f̂t(τ) = ĥt(τ)2 and ĥt(τ) > 0.
In the next step, fix the estimated quantile factors and get estimates of the quantile load-
ings α̂i(τ) = [α̂

(1)
i (τ), α̂

(2)
i (τ)]′ using nonlinear quantile regressions across periods for each

i = 1, . . . , N , subject to the corresponding sign restrictions. In the final step, compute the
discrepancy between these estimates and the initial guesses, and if the difference is smaller
than a predefined accuracy level, the algorithm ends. Otherwise, repeat the previous steps
until convergence is achieved10.

2.2.1 Calibration

The model described in the previous section was calibrated to the US economy using quarterly
data covering the period from 1954 until the end of 201811. Tables 1 and 2 summarize the
calibrated parameters under nine sets of parameterizations given by three alternative values
of φ and b. Rather than to calibrate these last parameters, I prefer to assign them alternative
values to study the performance of the AQPC estimator of αi(τ) and θt(τ) under different

10As mentioned in Sagner (2019), the convergence of the algorithm is local. To ensure that the AQPC
estimators α̂i(τ) and θ̂t(τ) are a global optimum, one can consider, for example, different initial guesses of
the quantile factors and quantile loadings to start the algorithm, and then keep the corresponding AQPC
estimators that deliver the smallest value for the loss function.

11All data sources and constructed variables are detailed in Section A.3.1 of the Appendix.
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persistence degrees of the log surplus consumption ratio and different cyclicality patterns of
the risk-free rate.

The parameters g and σ were chosen to match the consumption data, i.e., they correspond
to the mean and standard deviation, respectively, of the real per capita consumption growth
rate of non-durables and services. Regarding the preference parameters, I follow standard
real business cycle literature and set the value of the risk-aversion coefficient γ to 2. The
subjective discount factor β matches the inverse of the average real risk-free gross rate. The
last is the difference between the return of the 3-months Treasury Bill and expected inflation,
where the latter variable was approximated by a bivariate VAR(1) model using the risk-free
rate and inflation. My choice for the value of β is above the one in Campbell and Cochrane
(1999) and Wachter (2006) (0.97 and 0.98, respectively), due to the US monetary easing
period between 2011 and 2015, not considered in these papers, where the Fed funds rate
reached virtually the zero lower bound.

As mentioned in Proposition 1, the parameter that governs the dynamics of the log
surplus consumption ratio plays a key role in the estimation of the systemic risk measure.
Thus, instead of assigning a particular value to φ, I consider three alternative magnitudes.
In particular, I consider a case where st is less persistent (φ = 0.50), persistent (φ = 0.90),
and highly persistent (φ = 0.99). Similarly, I consider that the parameter b adopts the values
-0.010, 0, and 0.010, which imply a procyclical, constant, and counter-cyclical risk-free rate,
respectively. Both parameters, along with γ and σ, determine the steady-state value of the
surplus consumption ratio S̄ according to equation (5), and consequently, of the log surplus
consumption ratio s̄ ≡ log S̄. My results indicate that, depending on the parameterization
used, consumption is, on average, between 0.9% to 8.9% above the subsistence level.

I use the Fama and French (1993) portfolios to calibrate the parameters of real stock
returns. More precisely, I consider six portfolios formed by the intersection of two categories of
size and three categories of the book-to-market ratio. In this setup, the volatility parameters
ζi are related to the standard deviation of the corresponding portfolio returns σri through
equations (5) and (8) by noticing that V [ri,t+1] = (ζi/S̄)2, which suggests the calibration
ζi = S̄ · σri . Because this parameter depends on S̄, which in turn depends on φ and b,
its value varies across parameterizations. However, by looking at Table 1, one can see that
differences are negligible when φ is low. On the contrary, when st becomes more persistent,
differences across parameterizations become more apparent when the parameter b turns from
negative to positive. The parameter ρi, on the other hand, is slightly more laborious to
calibrate. In Lemma 2 of the Appendix, I show that this parameter is proportional to the
correlation between returns of the i-th portfolio and consumption growth. Moreover, because
the proportion is a function of σ, and especially of φ and S̄, the value of ρi depends on the
parameterization adopted by showing a decreasing pattern as b goes from negative to positive
values. Nevertheless, as in the case of ζi, the main differences are only noticeable when φ is
close to 1. Finally, the correlation between stock returns ωij were chosen to match the sample
correlation between portfolio returns given that CORR[ri,t+1, rj,t+1] = ωij for all i 6= j, as
implied by the model in equation (8).
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2.2.2 Results

The model was solved numerically and simulated for each of the nine calibrations described
previously to study how different combinations of the structural parameters affect the per-
formance of the systemic risk estimator implied by the model12. In particular, for each cali-
bration, I simulate the model 1,000 times to obtain a total of 250 quarters of artificial data
at each simulation, which is equivalent to have roughly 63 years of data at each simulation.

Next, I standardize the artificial excess returns and extract the measure of systemic
risk using three alternative estimation methodologies: (i) the AQPC estimator with τ =
{0.4, 0.5, 0.6}; (ii) the Adapted PC (APC) estimator, which corresponds to the Principal
Components estimator under the identifying restrictions of AQPC; and (iii) the PC estimator
under the default rotation. For the first two estimators, the calibrations shown in Table
1 entail that when the log surplus consumption ratio is less persistent or persistent (i.e.,
φ = 0.5 or φ = 0.9, respectively), the sign of the first quantile loading is positive, whereas it
is negative when st is highly persistent (φ = 0.99); a result that is in line with the implications
of Proposition 1.

Table 3 shows the average correlation between the simulated log surplus consumption
ratio and the same variable obtained from the three estimators mentioned in the previous
paragraph. Several findings are worth highlighting from this table. First, the AQPC estima-
tor with τ 6= 0.5 has a good performance in terms of extracting the systemic risk measure
implied by the model of stock returns data. In fact, the average correlation, which can be
interpreted as a measure of estimation precision, can be as high as 0.94, suggesting that the
log surplus consumption ratio derived from this estimator can be very close to the true st.
Second, the precision of the AQPC systemic risk measure tends to decrease as st becomes
more persistent, and as rft+1 turns counter-cyclical. For instance, when the log surplus con-
sumption ratio is less persistent, and the risk-free rate is pro-cyclical, the average correlation
is about 0.93 under τ = 0.4. If the latent variable of the model becomes highly persistent
(φ = 0.99), all other things being equal, the correlation decreases to around 0.80. If besides
rft+1 becomes counter-cyclical, then the average correlation falls back to roughly 0.60. Intu-
itively, when φ → min{1, 1 − b/γ}, the log surplus consumption ratio is close to a random
walk, which implies that the stochastic discount factor tends to a constant. Consequently, the
excess returns are less sensitive to st and relatively more sensitive to the idiosyncratic shock
ui,t+1, implying thus a low correlation between the estimated and the true st. Similarly, a
counter-cyclical risk-free rate induces a risk premium that is small during recessions and large
during boom periods. In other words, the co-movement of rft+1 relative to st acts like a buffer
that reduces the sensitivity of the excess returns to variations of the state variable of the
model, resulting in a low correlation between the estimator ŝt and the true st. A pro-cyclical
risk-free rate, on the contrary, amplifies the sensitivity of r̃i,t+1 to st, which translates into a
high correlation. Third, as expected, the AQPC estimator performs poorly when computed
at the median of the joint distribution of excess returns. In particular, my results show
that, when τ 6= 0.5, the average correlation ranges from 0.60 to 0.95, whereas it drops to
values between 0.05 to 0.50 otherwise. This occurs because, as mentioned previously, when

12The model was solved numerically by using Dynare. Alternatively, one can use the numerical algorithm
developed by Wachter (2005), which is based on a grid of values for st to solve for the price-dividend ratio
as the fixed point of the Euler equation of the model.
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τ = 0.5 the second quantile factor ht cannot be identified from the artificial data and, conse-
quently, its estimator is too noisy to be useful: the identifying restrictions f̂t(0.5) = ĥt(0.5)2

and ĥt(0.5) > 0 generate an imprecise measure of systemic risk that dramatically reduces
the average correlation between ŝt and st. Lastly, my simulations show that, within the
context of an external-habit-formation model like the one described, the AQPC estimator
with τ 6= 0.5 outperforms PC-based estimators, where the latter display average correlations
below 0.55 and typically around 0.23. This is an expected result because the APC and PC
estimators exploit the mean of the joint distribution of r̃i,t+1 to extract the factors. How-
ever, this is precisely the part of the distribution where ht cannot be identified. Note that,
despite the low average correlation, the APC estimator has a better performance relative to
the AQPC estimator with τ = 0.5; a finding that can be explained by remembering that
the latter estimator, since it does not have a closed-form solution, has to be approximated
through numerical algorithms such as the interior-point algorithm popularized by Karmankar
(1984)13.

3 Systemic Risk Measure for the US
This section starts by presenting the data that was used to characterize the US stock market
during the post-war period and then explaining how the AQPC methodology described in
the previous section was applied to this data to compute a habit-based systemic risk measure
for the US economy. Next, I discuss the in-sample properties of the proposed indicator
compared to a PC-based index, and in terms of its coherence with several past recession
periods. Finally, I employ the criterion proposed by Giglio et al. (2016) to evaluate the
out-of-sample predictive power of my measure, and thus its usefulness as an early-warning
indicator.

3.1 Data and Estimation

I obtain the US stock market data from the Annual Update database of the Center for Re-
search in Security Prices (CRSP) available from 1954 until 2018 in daily frequency. Specifi-
cally, I consider data on stock prices for all US corporations with 780 trading months record
(i.e., with no missing observations) to construct stock returns in excess of the risk-free rate14.
Alternatively, I consider stock prices from 1990 onwards (348 trading months) as a way to
control for the potential effects of survival bias over my estimations, which could be signif-
icant, especially in those industries that are more subject to firms entry and exit such as
the service and financial-based sectors. Then, in both cases, this variable was expressed in
quarterly frequency with the aim to eliminate high-frequency fluctuations that would be oth-
erwise difficult to explain by a model that contains macroeconomic variables like consumption
growth. These criteria imply a panel of 114 and 977 firms over the period from 1954q1 to
2018q4, and from 1990q1 to 2018q4 respectively15, which accounts, on average, for almost

13For a brief review and recent developments on this topic, see Potra and Wright (2000) and Wright (2004).
14I did not include dividends in the computation of stock returns because this would require to introduce

an additional stochastic process for this variable in the model, thus increasing the number of state variables,
and hence the number of quantile factors of the statistical factor model.

15See Section A.3.2 in the Appendix for more details about the construction of this database.
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16% and 35% of the total yearly amount of shares traded by all firms considered in the CRSP
database (Figure 1a). In terms of the distribution of industries, Figure 1b shows that the full
sample is concentrated mostly in manufacturing (74%), followed distantly by transportation
and public utilities (11%), mining (8%), and retail trade (5%). On the other hand, the most
recent sample (1990 onwards) has also an important, although lower, participation of the
manufacturing sector (49%), but now industries like finance, insurance, and real estate; and
services represent a significant share of this sample (17% and 9%, respectively).

As discussed in the previous section, the sign restriction on the first quantile factor loading,
besides other restrictions, is key for the identification of the AQPC estimator of the systemic
risk measure. In this sense, Proposition 1 indicates that this sign depends crucially on the
magnitude of the persistence parameter φ, where the latter can, in turn, be inferred from the
first-order autocorrelation of the price-dividend ratio of the S&P 500 index, φSP , according
to the findings of Wachter (2006). The estimation of this parameter using an AR(1) model
reveals that the price-dividend ratio of the S&P 500 is very persistent: the point estimate
of φSP is about 0.976 and has a standard error of 0.01316. Moreover, the data also provides
indirect evidence in favor of a counter-cyclical risk-free rate, i.e., in favor of b > 0. To
support this point, I regressed the realized real risk-free rate (rft+1 − πet+1) on the weighted
consumption growth over the past 10 years

∑40
j=1 φ

j
SP∆ct−j that works as a proxy for the log

consumption surplus ratio st using the following model

rft+1 − πet+1 = ν1 + ν2

40∑
j=1

φjSP∆ct−j + εt+1

where φSP = 0.976 in agreement with the previous result. The OLS estimate for ν2 is -
0.035 with a robust standard deviation of 0.007, in line with the hypothesis that b > 0.
Figure 2 shows the historical evolution of both variables. The inverse relationship between
the risk-free rate and past cumulative consumption growth becomes apparent after a visual
inspection of the graph, in particular during the period before 2011. From this year onwards,
when short term nominal interest rates were close to 0% and the Fed announced new rounds
of its large-scale asset purchase program, the relationship becomes rather diffuse, which would
explain the estimated magnitude and standard error of ν217. In this manner, these results
suggest that the persistence parameter φ is close to the upper bound of its support (1− b/γ).
Therefore, by Proposition 1, we can consider that the sign of the first quantile factor loading
is negative for all risky assets i. The sign of the second quantile loading, on its part, depends
straightforwardly on the value of τ employed for the AQPC estimation. Finally, I consider
the non-negativity constraint on the second factor, and the quadratic relationship between
the quantile factors implied by equation (10). In the final step of the estimation, I standardize
all excess returns and apply the AQPC methodology under the four identification restrictions
just discussed, and τ = 0.618.

16This result is in line with the findings of Campbell (1991), and more recently, Chevillon and Mavroeidis
(2018) and Golinski et al. (2018), among many others.

17The OLS estimate and robust standard error of ν2 using data until the last quarter of 2010 are -0.542
and 0.101, respectively.

18In light of the discussion of Section 2.2, the choice of τ is arbitrary, as long as τ 6= 0.5. My results are
robust to alternative values of this parameter (not reported).
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Thus, to recap, the estimated model is the following

Qr̃∗i,t+1
(0.6|αi(0.6), θt(0.6)) = α

(1)
i (0.6) · ft(0.6) + α

(2)
i (0.6) · ht(0.6) (13)

s.t. ft(0.6) = ht(0.6)2, ∀t
ht(0.6) > 0, ∀t
α
(1)
i (0.6) < 0, ∀i
α
(2)
i (0.6) > 0, ∀i

where αi(0.6) = [α
(1)
i (0.6), α

(2)
i (0.6)]′, θt(0.6) = [ft(0.6), ht(0.6)]′, and r̃∗i,t+1 is the standard-

ized realized excess return on the i-th risky asset. Finally, because I do not observe the
structural parameters of the model, the estimated quantile factor ĥt(0.6) is rather a mono-
tonic transformation of st that is proportional to 1 + λ(st). So, given that ∂λ(st)/∂st < 0
for all st, the proposed measure signals high (low) systemic risk when its magnitude is high
(low).

3.2 In-Sample Properties

Figure 3 plots the estimated systemic risk measure for the US under both samples, along
with the recession periods identified by the National Bureau of Economic Research (NBER).
From this figure, we note that the measures are positively correlated (correlation coefficient
around 0.76) and they exhibit significant spikes, i.e., increases that are over 1.96 standard
deviations above its mean, that coincide with several well-documented economic recessions in
the US: the 1960-1961 recession, the 1973 oil crisis coupled with the 1973-1974 stock market
crash that came after the collapse of the Bretton Woods system, the double-dip recession of
the early 1980s, the early 1990 recession that started after the oil price shock by August of
that year, as well as the Great Recession of 2007-2009. The measure under both samples
also displays a dramatic increase during the collapse of the dot-com bubble by the end of the
first quarter of 2000, an event that preceded the 2001 recession.

Interestingly, the AQPC-based measure computed under the full sample signals three
financial episodes that did not trigger a recession in the following periods: (i) the Flash
Crash of 1962, when the stock market dropped 22%, and the recovery came at the end of
that year, after the end of the Cuban Missile Crisis; (ii) the S&P 500 decline of 22% over
eight months during 1966 that occurred after the Fed increased the interest rate to control
inflation; and (iii) the Black Monday of October 1987 that began in Hong Kong and spread
shortly to the west hitting Europe and the US, where the Dow Jones plummeted 23% in one
day.

Table 4 reports summary statistics of the proposed measure, and an alternative measure
obtained via PC under the traditional rotation as in Connor and Korajczyk (1988)19. Several
statistical facts about both estimates of systemic risk stand out in this table. First, the
skewness of the AQPC-based measure is positive and almost 7 to 8 times larger than that
of the PC-based measure. This feature is a direct consequence of the restriction ĥt(τ) >
0 imposed by the habits-formation model through the parameterization of the sensitivity
function λ(st). The PC-based measure, on the contrary, is allowed to take both positive and

19I extracted one factor in order to make both measures comparable.
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negative values as seen in Figure 4 for the case of the full sample and has, therefore, a skewness
close to 0. Second, while it is true that the AQPC-based indicators have larger kurtosis, this
statistic scaled by 1 plus the skewness squared is smaller than the PC-based measure (1.32
and 1.55 versus 3.52)20. This result implies that, there are more extreme values in the latter
measure of systemic risk, consistent with the visual inspection of Figure 4. Third, the AQPC-
based measure under the full sample and the 1990-onwards sample is counter-cyclical and has
a contemporaneous correlation with industrial production and national economic activity of -
0.268 and -0.222, and of -0.334 and -0.323, respectively. This statistical fact is in line with the
definition of the quantile factor ht(τ), in the sense that during recessions, consumption and
habits are close together, i.e., st is small and hence ht(τ) is large. The PC-based indicator,
on the contrary, depicts virtually no correlation with industrial production, and a negative
correlation with the economic activity index. Finally, all measures show a positive correlation
with the national financial conditions index computed by the Chicago Fed. Thus, periods
of high (low) systemic risk signaled by these measures coincide with tighter (looser) than
average conditions in US money, debt, and equity markets.

In summary, the AQPC-based indicators depict interesting features when evaluated in-
sample. In particular, the level and dynamics of systemic risk are coherent with economic
activity altogether with financial conditions, since several recessions and episodes of financial
market turmoils coincide with sharp increases of the proposed measure. Moreover, given
that the in-sample properties of the proposed measure computed under both samples are
very similar, the analysis in the subsequent sections will consider the systemic risk measure
obtained using the full sample only.

3.3 Early-Warning Indicator Properties

To be useful to policymakers, systemic risk measures should also be able to signal, to some
extent, future periods of macroeconomic distress. This additional requirement is aimed to
give policymakers enough time to implement corrective actions towards mitigating the build-
up of downside risks that would otherwise result in broad losses for the overall economy.

In this section, I evaluate the ability of the proposed systemic risk indicator, both stan-
dalone and relative to the PC-based measure, to forecast future adverse macroeconomic
shocks. To this extent, I employ a procedure based on Giglio et al. (2016), which consists of
four basic steps.

In the first step, shocks to macroeconomic variables are proxied by innovations to the
Industrial Production Index (IPI); and the Chicago Fed National Activity Index (CFNAI)
together with its subcomponents personal consumption and housing (PCH); production and
income (PI); sales, orders and inventories (SOI); and employment, unemployment and hours
(EUH). These innovations are merely the residuals of AR(p) models, where the lag order p
is chosen according to the Akaike information criterion21.

Next, in the second step, I forecast future macroeconomic shocks using quantile regressions
of the form

20Rohatgi and Szekely (1989) show that the scaled kurtosis K/(S2 + 1) is bounded below by 1, where K is
the kurtosis and S is the skewness. Thus, a distribution with a relative high scaled kurtosis has fatter tails.

21In my results, most values for the autoregressive order are concentrated around 6 and 4 quarters for the
IPI and CFNAI indices, respectively.
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Q
ỹ
(n)
t+h

(q|ξ(l)t ) = a1(q) + a2(q)ξ
(l)
t , q ∈ (0, 1)

where ỹ(n)t+h is an innovation to the n-th macroeconomic variable, n ∈ {IPI,CFNAI,PCH,PI,
SOI,EUH}, h quarters ahead, ξ(l)t is a measure of systemic risk obtained via either the
Adapted Quantile Principal Components or the Principal Components methodology, i.e,
l ∈ {AQPC,PC}, and a1(q) and a2(q) are quantile-specific parameters to be estimated.
Regarding the values of q, I consider the 5th and 20th quantiles of ỹ(n)t+h to characterize future
adverse shocks to macroeconomic variables, and for the sake of completeness, I also consider
the median (q = 0.5), and the 80th and 95th quantiles to represent benign innovations. These
choices highlight the potential nonlinear relationship between systemic risk and future crisis
and boom periods. Regarding the forecasting horizon h, I focus the attention on out-of-
sample forecasts within a year, i.e., h = {1, 2, 4} quarters. This forecasting exercise using
quantile regressions resembles the vulnerable growth methodology proposed by Adrian et al.
(2019), where future quantiles of GDP growth are forecasted using variables that capture the
actual macroeconomic and financial conditions or, in other words, the systemic risk of the
overall economy.

The third step, on its part, repeats the previous ones in a real-time fashion, starting with
10 years (40 quarters) of data and then adding one new quarter of data at each repetition
until reaching the end of the sample. Note that because the estimations are conducted
using information up to time t at each repetition, the AR(p) model of the first step used to
generate the innovations ỹ(n)t may change when incorporating new observations. Analogously,
the measures of systemic risk are entirely re-computed when new data becomes available at
each repetition.

Lastly, in the fourth step, I evaluate the predictive accuracy of the systemic risk indicators
based on AQPC and PC, and of unconditional quantiles (UQ) using the test of Diebold and
Mariano (1995). Let Q̂

ỹ
(n)
t+h

(q| ξ(l)t ) be the h-quarters ahead forecast of the q-th quantile

function of the innovation to the n-th macroeconomic variable ỹ(n)t+h, conditional on the l-th
systemic risk measure ξ(l)t , and let ê(n)t+h(q| ξ

(l)
t ) ≡ ỹ

(n)
t+h − Q̂ỹ(n)

t+h
(q| ξ(l)t ) be the corresponding

forecast error. The predictive accuracy is measured using the following loss function

L(n)
q

({
ξ
(l)
t

}T−h
t=40

)
=

1

T − (h+ 40)

T−h∑
t=40

(
q − {1}

{
ê
(n)
t+h(q| ξ

(l)
t ) < 0

})
ê
(n)
t+h(q| ξ

(l)
t )

for all n, l, h, and q.
Tables 5 and 6 display statistics about the out-of-sample predictive accuracy of the AQPC

systemic risk indicator versus the unconditional quantile estimate, and versus the PC-based
measure, respectively. In both tables, bold values denote loss functions that are statistically
lower at the 10% significance level compared to those of the competing estimator. Several
findings emerge from this exercise. In particular, when looking at the center of the distribu-
tion of macroeconomic shocks, the proposed measure generates out-of-sample forecasts that
significantly outperform those of PC at various horizons (e.g., the loss function improves
almost 50% on average), although they are in general not better than UQ-based predic-
tions. A possible explanation for this last result could be the fact that my indicator contains
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measurement errors that veil its informational content relative to the unconditional quantile
estimate.

Note, furthermore, that the success of the AQPC-based measure is found at the tails of
the distribution of shocks. More precisely, at short forecast horizons, this index offers better
out-of-sample predictions for extremely adverse or extremely positive shocks compared to
the other measures under evaluation. In fact, under the AQPC-based index, the quantile
loss function is reduced, on average, by around 17% when forecasting periods of economic
expansions and by roughly 5.5% when trying to anticipate future periods of economic dis-
tress. Moreover, this good forecasting performance can also be understood from a historical
perspective by looking at Figure 5, where the estimate of systemic risk predicts, a quarter in
advance, sharp declines in industrial production during four episodes of major market dis-
tress: the double-dip recession of the 1980s, Black Monday in 1987, the burst of the dot-com
bubble at the beginning of the 1990s, and the Great Recession of 2007-2009. Out-of-sample
forecasts on economic activity during these episodes, on its part, arrive somewhat late except
in the case of the recession that followed the collapse of the dot-com bubble.

At longer horizons or less extreme shocks, however, the forecasting power of the AQPC-
based systemic risk tends to dilute, particularly in the upper tail of the distribution of the
macroeconomic shocks, where improvements relative to PC or UQ predictions are now lower
and around 6% on average. Figure 5 also tells us that signals based on out-of-sample forecasts,
although predicting sharp decreases of industrial production and economic activity, arrive 2
to 3 quarters belated.

Thus, to sum up, I find that the proposed systemic risk measure contains useful informa-
tion regarding the future state of the economy, and it can be exploited as an early-warning
indicator. In this sense, the AQPC-based indicator is capable of predicting sharp contractions
and expansions of economic activity and industrial production but only up to one quarter
ahead.

4 Conclusions
In this paper, I propose a novel measure to quantify systemic risk from a set of asset prices.
In particular, I show that in the context of the external-habits-formation model of Camp-
bell and Cochrane (1999), and under the assumption that stock returns are heteroskedastic,
equilibrium excess returns have a factor structure. The restrictions implied by the model
entail the existence of two factors that are simply a monotonic transformation of the log sur-
plus consumption ratio, a state variable that characterizes the systemic risk in the structural
model. However, unlike the traditional asset pricing literature, one of the unobserved factors
affect the variance of excess returns, and both factors are related in a nonlinear fashion. Be-
cause of the preceding restrictions, classical tools for extracting unobserved factors from asset
returns such as Principal Components (PC) are not suitable in this case because one of the
factors cannot be identified at the center of the conditional distribution of the idiosyncratic
component of excess returns. Instead, I use the Quantile Principal Components procedure
proposed by Sagner (2019) for such purpose, where the rotation considered is governed by
the restrictions mentioned before, plus sign restrictions on the loadings that are determined
by the magnitude of a subset of structural parameters.
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Then, I solve and simulate the model using different sets of parameterizations calibrated
from US macroeconomic and financial data to compute the AQPC-based measure of systemic
risk from artificial data. My results show that, when computing the measure at a quantile
different than the median, the precision of the estimator is high, suggesting that, on average,
estimated systemic risk via the AQPC procedure can be regarded as the true one. The
good performance of the AQPC estimator tends to decrease as the log surplus consumption
ratio becomes more persistent or when the risk-free rate is counter-cyclical, because, in both
cases, the risk premium is less sensitive to the underlying state variable and, therefore,
more responsive to idiosyncratic shocks. When systemic risk is computed using the AQPC
estimator at the median, or the PC methodology, misspecification bias can be very large.

Finally, I compute the AQPC-based indicator using actual US post-war data. The pro-
posed systemic risk estimator depicts significant hikes that coincide not only with several
well-individualized US recession periods but also with financial episodes that did not trigger
a recession in subsequent quarters. As expected from the structural model, the estimator of
systemic risk can forecast sharp macroeconomic contractions up to one quarter ahead more
accurately than PC-based indices. This feature highlights the usefulness of the proposed mea-
sure as an additional early-warning indicator that policymakers can incorporate into their
monitoring toolkit.
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A Appendix

A.1 Optimality Conditions of the Model

The representative investor in this economy takes care of consumption and saving by choosing
the sequences {Ct, Bt+1, Ai,t+1}∞t=0, to solve the following optimization problem

max
{Ct,Bt+1,Ai,t+1}∞t=0

Et

[
∞∑
j=0

βj
(Ct+j −Xt+j)

1−γ − 1

1− γ

]
(A.1)

s.t Ct+1 +Bt+1 +
N∑
i=1

Ai,t+1 = (1 + rft )Bt +
N∑
i=1

(1 + ri,t)Ai,t

where Bt+1 denotes the quantity of a one-period, real risk-free discount bond purchased in
period t and maturating in period t+ 1; and, similarly, Ai,t+1 represents the quantity of the
i-th risky asset held by the representative investor that was purchased in period t and that
pays off a capital gain plus a risk premium in period t+ 1.

The first-order conditions are the following

Ct : (Ct −Xt)
−γ − δt = 0 (A.2)

Bt+1 : −δt + Et

[
βδt+1(1 + rft+1)

]
= 0 (A.3)

Ai,t+1 : −δt + Et [βδt+1(1 + ri,t+1)] = 0 (A.4)

where δt is the Lagrange multiplier of the optimization problem (A.1). Let Mt+1 be the
stochastic discount factor defined in Section 2.1. After combining equations (A.2) and (A.3),
together with the definition of the surplus consumption ratio St, we get the following Euler
equation for the real risk-free return

(1 + rft+1)Et [Mt+1] = 1 (A.5)

Using the first-order Taylor approximation log(1 + rft+1) ≈ rft+1, and the property of log-
Normal random variables log(Et[Mt+1]) = Et[mt+1] + Vt[mt+1]/2, the log-linearized version
of (A.5) is given by

rft+1 = −Et [mt+1]−
Vt [mt+1]

2

= γg − log β − γ (1− φ)− b
2

− b (st − s̄)

where in the last equality, I used the log stochastic discount factor given in equation (6).
This result corresponds to the risk-free rate that appears in expression (7).

Similarly, the definitions of St and Mt, together with equations (A.2) and (A.4), result in
the following Euler equations related to risky asset returns

Et [Mt+1(1 + ri,t+1)] = 1 (A.6)
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for all i, or in its log-linear version

Et [ri,t+1] = −Et [mt+1]−
Vt [mt+1]

2
− Vt [ri,t+1]

2
− COVt [mt+1, ri,t+1]

= γg − log β − γ (1− φ) (st − s̄)

+

(
γσρiζi −

ζ2i + γ2σ2

2

)
(1 + λ (st))

2

Et [ri,t+1]− rft+1 = ζi

(
2γσρi − ζi

2

)
(1 + λ (st))

2

where in the second equality, I used the expression for mt+1 and ri,t+1 given by equations (6)
and (8), respectively, and in the last equality, I replaced the expression of the risk-free rate
derived previously. This result corresponds to the expected excess return shown in (9).

To finalize, the log-linearized versions of equations (A.5) and (A.6), together with equa-
tions (3) to (5) and (8), conform the optimality conditions of the model.

A.2 Proof of Proposition 1

We start by providing two Lemmas that will be useful for the proof. The following Lemma
characterizes the unconditional variance of the log surplus consumption ratio st.

Lemma 1. Let st be the log surplus consumption ratio described by equations (3) and (4),
and let λ(st) be the sensitivity function given by equation (5). Then,

V [st+1] =
(S̄−1 − 1)2σ2

1− φ2 − S̄−1σ2
(A.7)

Proof. Let s̃t ≡ st − s̄ be the log surplus consumption ratio expressed as deviations from its
steady-state value s̄. From equations (3) and (4) we have that s̃t+1 = φs̃t + λ(s̃t)vt+1, where
λ(s̃t) = S̄−1

√
1− 2s̃t − 1. Thus, E[s̃t+1] = 0 and

V [s̃t+1] =

(
σ2

1− φ2

)
E[λ2(s̃t)]

where E[λ2(s̃t)] = S̄−2− 2S̄−1E[
√

1− 2s̃t] + 1. To get an expression for the second term, we
take a second-order Taylor expansion of F (s̃t) =

√
1− 2s̃t around s̃t = E[s̃t] = 0 as follows

F (s̃t) = F (0) + F ′(0)s̃t +
F ′′(0)

2
s̃2t + op(s̃

2
t )

= 1− s̃t −
s̃2t
2

+ op(s̃
2
t )

which implies that E[F (s̃t)] = 1− V [s̃t]/2, and therefore E[λ2(s̃t)] = (S̄−1 − 1)2 + S̄−1V [s̃t].
Thus, the unconditional variance of s̃t+1 is finally

V [s̃t+1] =
(S̄−1 − 1)2σ2

1− φ2 − S̄−1σ2

This last result completes the proof. �
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The second Lemma characterizes the unconditional correlation between each asset return
and consumption growth.

Lemma 2. Let ri,t+1 be the real return on the i-th risky asset described by equation (8), and
∆ct+1 be consumption growth given by equation (4). Then, for all i

CORR[ri,t+1,∆ct+1] =
1

2

[
2(1− φ2)− (S̄−2 + 1)σ2

1− φ2 − S̄−1σ2

]
ρi (A.8)

Proof. First, I characterize the unconditional moments of ri,t+1 and ∆ct+1. In the case of the
former, from equation (8) we have that E[ri,t+1] = E[Et[ri,t+1]] and V [ri,t+1] = (ζi/S̄)2, for
all i. In the latter case, from equation (4) we have that E[∆ct+1] = g and V [∆ct+1] = σ2.
Therefore, the unconditional covariance between these two variables is as follows

COV [ri,t+1,∆ct+1] = E[ri,t+1∆ct+1]− E[ri,t+1]E[∆ct+1]

= E[
√

1− 2s̃t]S̄
−1ρiζiσ

where E[
√

1− 2s̃t] = 1− V [s̃t]/2 and V [s̃t] is given by Lemma 1. Hence

COV [ri,t+1,∆ct+1] =
S̄−1

2

[
2(1− φ2)− (S̄−2 + 1)σ2

1− φ2 − S̄−1σ2

]
ρiζiσ

These results imply that the correlation between ri,t+1 and ∆ct+1 is given by

CORR[ri,t+1,∆ct+1] =
1

2

[
2(1− φ2)− (S̄−2 + 1)σ2

1− φ2 − S̄−1σ2

]
ρi

for all i. This last result completes the proof. �

Proof of Proposition 1. As mentioned in the text, the sign of the first quantile factor
loading α(1)

i (τ) depends on the sign of the difference di ≡ 2γσρi − ζi. Hence, from Lemma 2
we have that

ρi = 2 · CORR[ri,t+1,∆ct+1]

[
1− φ2 − S̄−1σ2

2(1− φ2)− (S̄−2 + 1)σ2

]
(A.9)

and

ζi = S̄
√
V [ri,t+1] (A.10)

for all i, where S̄ = σ
√
γ/(1− φ− b/γ) as given in equation (5). So, we consider three cases

depending on the sign of the parameter b.
First, if b > 0, then −1 < φ < 1 − b/γ so that the log surplus consumption ratio st

satisfies the stationary condition. Thus, as φ approaches to the upper bound of its support,
both S̄−1 and S̄−2 becomes very close to 0, and S̄ is a very large positive number. Moreover,
because b� γ in general, 1− φ2 becomes close to 0 as well. Therefore, as φ→ 1− b/γ, then
ρi → 0 and ζi →∞, which implies that di < 0, for all i.
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Second, if b = 0, then |φ| < 1 and as this parameter approaches 1, both S̄−1 and S̄−2

tend to 0, and S̄ → ∞, consequently. Hence, as φ → 1, then ρi → 0 and ζi → ∞, implying
that di < 0, for all i.

Finally, if b < 0, then |φ| < 1 and an argument similar to the previous one applies.
The proof is complete. �

A.3 Data Description

In this section, I provide the sources of all data used in the paper and describe how the
variables of the model were created. In the first part, I describe the data and variables used
in the calibration of the external habit-formation model described in Section 2, whereas in
the second part, I describe the data related to the estimation of the systemic risk measure
for the US of Section 3.

A.3.1 Calibration

Consumption data is from the Bureau of Economic Analysis. The series considered are the
real per capita consumption of non-durables (label A796RX0Q048SBEA), and the real per capita
consumption of services (label A797RX0Q048SBEA). Both time series are seasonally adjusted
and expressed in chained 2012 US dollars. The variable ∆ct in the text is the quarterly log
growth of the sum of these two series.

The 3-month Treasury Bill secondary market rate is from the Board of Governors of the
Federal Reserve System (label DTB3). The original data is expressed in percentage points on
an annual basis and is available in daily frequency. Hence, the quarterly series are averages
of the observations within each quarter. I also transform the units so that the data reads as
quarterly percentage points.

The consumer price index (CPI) is from the Center for Research on Security Prices (label
CPIIND). Quarterly series are averages of monthly observations. Inflation πt is thus the
quarterly growth of the CPI.

The real risk-free rate rft was computed as the difference between the 3-month Trea-
sury Bill rate yTBt and expected inflation πet . The latter variable was constructed using the
following VAR(1) model [

yTBt+1

πt+1

]
= µ+ A

[
yTBt
πt

]
+Wt+1 (A.11)

where Wt+1 is a 2-dimensional vector of innovations. Therefore, πet = Et[πt+1] = π̂t+1 is the
one-period-ahead quarterly inflation rate predicted by model (A.11).

The Fama and French (1993) portfolio returns based on size and book-to-market ratios
are available at Kenneth French’s website22. These portfolios include all NYSE, AMEX, and
NASDAQ stocks for which data on market equity and (positive) book equity is available in
June and December of each year. Two size categories are defined based on the median of
the distribution of market equity: small (below the median) and big (above the median).
Similarly, three book-to-market categories are defined based on the 30th and 70th percentile

22http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html.
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of the corresponding distribution: growth (below the 30th percentile), neutral (between 30th
and 70th percentile), and value (above 70th percentile). Because the data consists of daily
returns, all observations within a quarter were summed to express them into this frequency.
Real portfolio returns are constructed by subtracting πet to each return series.

A.3.2 Measure of Systemic Risk for the US

Stock market data is from the Annual Update daily database of the Center for Research in
Security Prices (CRSP). Stock price (label prc) is the last non-missing closing price or the
bid/ask average in US dollars of a security for a given day. The variable was transformed to
quarterly frequency by considering the average price within each quarter. So, excess returns
r̃i,t are constructed as

r̃i,t = 100 ·
(

prci, t
prci,t−1

− 1

)
− yTBt (A.12)

where prci,t is the price of the i-th stock in quarter t, and yTBt is the 3-month Treasury Bill
rate.

Data on the S&P 500 index was obtained from Bloomberg. Both the last available quote
price (label PX_LAST) and net dividend plus tax credit (label LAST_DPS_GROSS) of the index
were expressed in quarterly frequency by considering the average value of these two variables
within a quarter. The price-dividend ratio of the index (P/D)t was computed as follows

(P/D)t =
PX_LASTt

LAST_DPS_GROSS∗t
(A.13)

where LAST_DPS_GROSS∗t =
∑3

j=0 LAST_DPS_GROSSt−j are the dividends per share
paid during the last year.

The Industrial Production Index (label INDPRO), which corresponds to an indicator that
measures real output for all facilities located in the US manufacturing, mining, and electric
and gas utilities, was obtained from the Board of Governors of the Federal Reserve System
and is available in monthly frequency from 1919 onwards. I consider the annual growth rate
of the variable. Quarterly series corresponds to the average within a quarter.

The National Activity Index (label CFNAI) and its subcategories personal consumption
and housing (label CANDH); production and income (label PANDI), sales, orders and inventories
(label SOANDI); and employment, unemployment and hours (label EUANDH), is from the Federal
Reserve Bank of Chicago. The index, which is achievable in monthly frequency since March
1967, has a zero value when the US economy is growing at its historical trend rate. Thus,
negative (positive) values indicate below-average (above-average) expansions of the economy.
I take monthly averages to transform the data into quarterly frequency.

Data on the National Financial Conditions Index (label NFCI) was obtained from the
Federal Reserve Bank of Chicago database in weekly frequency starting the first week of
1971. This indicator provides a comprehensive outlook of US financial conditions in money,
debt, and equity markets, as well as in traditional and shadow banking systems. Positive
(negative) values indicate tighter (looser) financial conditions relative to its historical mean.
Quarterly observations are averages of weekly data within each quarter.
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The NBER-based US recession index, available from the Federal Reserve Bank of Saint
Louis database at a quarterly frequency (label USREC), corresponds to a dummy variable that
represents periods of expansions (0) and recessions (1), where the latter begins the first day
of the period following a peak and ends on the last day of the period of the trough.

25



References
Abel, A. B. (1990), “Asset Prices under Habit Formation and Catching up with the Joneses”,
American Economic Review 80(2): 38–42.

Acharya, V. V., L. H. Pedersen, T. Philippon, and M. Richardson (2017), “Measuring Sys-
temic Risk”, The Review of Financial Studies 30(1): 2–47.

Adrian, T., N. Boyarchenko, and D. Giannone (2019), “Vulnerable Growth”, American Eco-
nomic Review 109(4): 1263–1289.

Adrian, T. and M. K. Brunnermeier (2016), “CoVaR”, American Economic Review 106(7):
1705–1741.

Ang, A. and J. Chen (2002), “Asymmetric Correlations of Equity Portfolios”, Journal of
Financial Economics 63(3): 443–494.

Ang, A., J. Chen, and Y. Xing (2002), “Downside Correlation and Expected Stock Returns”,
Working paper, Columbia University and University of Southern California.

Billio, M., M. Getmansky, A. W. Lo, and L. Pelizzon (2012), “Econometric Measures of Con-
nectedness and Systemic Risk in the Finance and Insurance Sectors”, Journal of Financial
Economics 104(3): 535–559.

Bisias, D., M. Flood, A. W. Lo, and S. Valavanis (2012), “A Survey of Systemic Risk Ana-
lytics”, Office of Financial Research Working Paper 0001, US Department of the Treasury.

Bollerslev, T. R., Y. Chou, and K. F. Kroner (1992), “ARCH Modeling in Finance: A Review
of the Theory and Empirical Evidence”, Journal of Econometrics 52(1-2): 5–59.

Brunnermeier, M. K., G. Gorton, and A. Krishnamurthy (2011), “Risk Topography”, in
D. Acemoglu and M. Woodford, editors, “NBERMacroeconomics Annual 2011”, volume 26,
pages 149–176, The University of Chicago Press.

Campbell, J. Y. (1991), “A Variance Decomposition for Stock Returns”, The Economic Jour-
nal 101(405): 157–179.

Campbell, J. Y. and J. H. Cochrane (1999), “By Force of Habit: A Consumption-Based
Explanation of Aggregate Stock Market Behavior”, Journal of Political Economy 107(2):
205–251.

Chan, N., M. Getmansky, S. M. Haas, and A. W. Lo (2007), “Systemic Risk and Hedge
Funds”, in M. Carey and R. M. Stulz, editors, “The Risks of Financial Institutions”, pages
235–338, The University of Chicago Press.

Chen, N.-F., R. Roll, and S. A. Ross (1986), “Economic Forces and Stock Market”, The
Journal of Business 59(3): 383–403.

Chevillon, G. and S. Mavroeidis (2018), “Perpetual Learning and Apparent Long Memory”,
Journal of Economic Dynamics & Control 90(2018): 343–365.

26



Chordia, T., R. Roll, and A. Subrahmanyam (2001), “Market Liquidity and Trading Activity”,
The Journal of Finance 56(2): 501–530.

Chow, G., E. Jacquier, M. Kritzman, and K. Lowry (1999), “Optimal Portfolios in Good
Times and Bad”, Financial Analysts Journal 55(3): 65–73.

Cochrane, J. H. (2005), Asset Pricing, Princeton University Press, revised edition.

Connor, G. and R. A. Korajczyk (1988), “Risk and Return in an Equilibrium APT: Applica-
tion of a New Test Methodology”, Journal of Financial Economics 21(2): 255–289.

Diebold, F. X. and R. S. Mariano (1995), “Comparing Predictive Accuracy”, Journal of
Business & Economic Statistics 13(3): 134–144.

Engle, R. F. (1982), “Autoregressive Conditional Heteroscedasticity with Estimates of the
Variance of United Kingdom Inflation”, Econometrica 50(4): 987–1007.

Fama, E. F. and K. R. French (1993), “Common Risk Factors in the Returns on Stock and
Bonds”, Journal of Financial Economics 33(1): 3–56.

Frazzini, A. and L. H. Pedersen (2012), “Embedded Leverage”, Working Paper 18558, Na-
tional Bureau of Economic Research.

Geanakoplos, J. and L. H. Pedersen (2011), “Monitoring Leverage”, in M. Brunnermeier and
A. Krishnamurthy, editors, “Risk Topography: Systemic Risk and Macro Modeling”, pages
113–127, University of Chicago Press.

Getmansky, M., A. W. Lo, and I. Makarov (2004), “An Econometric Model of Serial Cor-
relation and Illiquidity in Hedge Fund Returns”, Journal of Financial Economics 74(3):
529–609.

Giglio, S., B. Kelly, and S. Pruitt (2016), “Systemic Risk and the Macroeconomy: An Em-
pirical Evaluation”, Journal of Financial Economics 119(3): 457–471.

Golinski, A., J. Madeira, and D. Rambaccussing (2018), “Persistence of the Price-Dividend
Ratio in a Present-Value Model of Stock Prices”, Manuscript, University of York and
University of Dundee.

Hansen, L. P. (2013), “Challenges in Identifying and Measuring Systemic Risk”, BFI Working
Paper 2012-012, University of Chicago.

Hong, Y., J. Tu, and G. Zhou (2007), “Asymmetries in Stock Returns: Statistical Tests and
Economic Evaluation”, The Review of Financial Studies 20(5): 1547–1581.

Huang, X., H. Zhou, and H. Zhu (2011), “Systemic Risk Contributions”, Staff Working Paper
2011-08, Board of Governors of the Federal Reserve System.

Karmankar, N. (1984), “A New Polynomial-Time Algorithm for Linear Programming”, Com-
binatorica 4(4): 373–395.

27



Khandani, A. E. and A. W. Lo (2011), “What Happened to the Quants in August 2007?
Evidence from Factors and Transactions Data”, Journal of Financial Markets 14(1): 1–46.

Koenker, R. and B. J. Park (1996), “An Interior Point Algorithm for Nonlinear Quantile
Regression”, Journal of Econometrics 71(1-2): 265–283.

Kritzman, M. and Y. Li (2010), “Skulls, Financial Turbulence and Risk Management”, Fi-
nancial Analysts Journal 66(5): 30–41.

Kritzman, M., Y. Li, S. Page, and R. Rigobon (2011), “Principal Components as a Measure
of Systemic Risk”, The Journal of Portfolio Management 37(4).

Li, Y. (2001), “Expected Returns and Habit Persistence”, The Review of Financial Studies
14(3): 861–899.

Li, Y. and M. Zhong (2005), “Consumption Habit and International Stock Returns”, Journal
of Banking & Finance 29(3): 579–601.

Merton, R. C. (1973), “An Intertemporal Capital Asset Pricing Model”, Econometrica 41(5):
867–887.

Onatski, A. (2015), “Asymptotic Analysis of the Squared Estimation Error in Misspecified
Factor Models”, Journal of Econometrics 186(2): 388–406.

Pastor, L. and R. F. Stambaugh (2003), “Liquidity Risk and Expected Stock Returns”, The
Journal of Political Economy 111(3): 642–685.

Potra, F. A. and S. J. Wright (2000), “Interior-Point Methods”, Journal of Computational
and Applied Mathematics 124(1-2): 281–302.

Rohatgi, V. K. and G. J. Szekely (1989), “Sharp Inequalities Between Skewness and Kurtosis”,
Statistics & Probability Letters 8(4): 297–299.

Ross, S. A. (1976), “The Arbitrage Theory of Capital Asset Pricing”, Journal of Economic
Theory 13(3): 341–360.

Sagner, A. (2019), Three Essays on Quantile Factor Analysis, Manuscript, Boston University.

Skrondal, A. and S. Rabe-Hesketh (2004), Generalized Latent Variable Modeling: Multilevel,
Longitudinal, and Structural Equation Models, Interdisciplinary Statistics, Chapman &
Hall/CRC.

Verdelhan, A. (2010), “A Habit-Based Explanation of the Exchange Rate Risk Premium”,
The Journal of Finance 65(1): 123–146.

Wachter, J. A. (2005), “Solving Models with External Habit”, Finance Research Letters 2(4):
210–226.

Wachter, J. A. (2006), “A Consumption-Based Model of the Term Structure of Interest Rates”,
Journal of Financial Economics 79(2): 365–399.

28



Wright, M. H. (2004), “The Interior-Point Revolution in Optimization: History, Recent De-
velopments, and Lasting Consequences”, Bulletin of the American Mathematical Society
42(1): 39–56.

29



Figure 1: Sample Characterization
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Shares are calculated over the total value of transactions, in US dollars,
reported in the CRSP database. Industries distribution is calculated over
the total value of transactions, in US dollars, of the corresponding sample.
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Figure 2: Risk-Free Rate Cyclicality
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Cumulative consumption growth corresponds to a weighted sum of this vari-
able over the past 10 years and was computed as

∑40
j=1 φ

j
SP ∆ct−j , where

φSP = 0.976 is the estimated persistence of the price-dividend ratio of the
S&P 500 index over the period from 1954q1 to 2018q4. The realized real
risk-free rate corresponds to the difference between the yield on the 3-months
Treasury Bill and the quarterly expected inflation rate, where the latter was
computed using a VAR(1) model. Both variables were standardized.
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Figure 3: Measure of Systemic Risk for the US
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Full Sample Sample 1990 Onwards

Horizontal dashed line indicates 1.96 standard deviations above the corre-
sponding sample mean. Shaded areas represent recession periods, as defined
by the NBER. Data are quarterly and spans the period from 1954q1 to
2018q4 (full sample), and from 1990q1 to 2018q4 (sample 1990 onwards).
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Figure 4: Comparison of Systemic Risk Measures for the US
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AQPC−Based Measure PC−Based Measure

The AQPC-based measure was estimated using an adapted version of the
Quantile Principal Components methodology proposed by Sagner (2019),
whereas the PC-based measure was estimated via PC under the default ro-
tation, i.e., T−1

∑T
t=1 θ̂tθ̂

′
t = 1 and

∑N
i=1 α̂iα̂

′
i > 0. Data are quarterly and

spans the period from 1954q1 to 2018q4. Shaded areas represent recession
periods, as defined by the NBER.
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Figure 5: Adverse Shocks Forecast

(a) Industrial Production
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(b) National Economic Activity
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Forecasts for the 5th quantile of the Industrial Production Index and the
Chicago Fed National Activity Index (Figures (a) and (b), respectively). The
timing was aligned so that forecasts coincide with realized shocks. Shaded
areas represent recessions periods, as defined by the NBER.
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Table 1: Calibrated Parameters

Parameter
Value

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Consumption

g(%) 0.485 0.485 0.485 0.485 0.485 0.485 0.485 0.485 0.485
σ(%) 0.444 0.444 0.444 0.444 0.444 0.444 0.444 0.444 0.444

Preferences

γ 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000
β 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998

Habits

φ 0.500 0.500 0.500 0.900 0.900 0.900 0.990 0.990 0.990
b -0.010 0.000 0.010 -0.010 0.000 0.010 -0.010 0.000 0.010

s̄ -4.730 -4.725 -4.720 -3.944 -3.920 -3.894 -2.971 -2.769 -2.422

Stock Returns

ζ1(%) 0.112 0.112 0.113 0.245 0.251 0.257 0.648 0.793 1.122

ζ2(%) 0.089 0.090 0.090 0.196 0.201 0.206 0.519 0.635 0.898

ζ3(%) 0.093 0.093 0.094 0.204 0.209 0.214 0.539 0.661 0.934

ζ4(%) 0.075 0.075 0.075 0.164 0.168 0.172 0.433 0.530 0.750

ζ5(%) 0.065 0.065 0.066 0.143 0.146 0.150 0.377 0.462 0.653

ζ6(%) 0.078 0.078 0.079 0.171 0.175 0.180 0.452 0.554 0.783

ρ1 0.159 0.159 0.159 0.154 0.152 0.151 0.161 0.150 0.140

ρ2 0.173 0.172 0.172 0.166 0.165 0.164 0.174 0.162 0.152

ρ3 0.175 0.175 0.174 0.169 0.167 0.166 0.177 0.164 0.154

ρ4 0.179 0.179 0.178 0.173 0.171 0.170 0.181 0.168 0.158

ρ5 0.153 0.153 0.153 0.147 0.146 0.145 0.154 0.144 0.135

ρ6 0.171 0.171 0.171 0.165 0.164 0.162 0.173 0.161 0.151

All values are expressed quarterly. Consumption, preferences, and stock return parameters were estimated
using data starting 1954q1 and ending 2018q4.
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Table 2: Correlation Between Stock Returns ωij

i
j

1 2 3 4 5

2 0.943

3 0.875 0.968

4 0.860 0.816 0.739

5 0.814 0.878 0.851 0.865

6 0.774 0.867 0.891 0.782 0.893

All values are expressed quarterly. Correlations were estimated using
stock return data starting 1954q1 and ending 2018q4.
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Table 3: Average Correlation Between Simulated and Estimated st

Estimator
Parameterization

(1) (2) (3) (4) (5) (6) (7) (8) (9)

AQPC (τ = 0.4) 0.928 0.896 0.875 0.816 0.659 0.616 0.795 0.632 0.587

AQPC (τ = 0.5) 0.492 0.453 0.440 0.171 0.099 0.079 0.135 0.101 0.064

AQPC (τ = 0.6) 0.944 0.905 0.867 0.809 0.667 0.606 0.731 0.610 0.573
APC 0.536 0.503 0.473 0.193 0.103 0.089 0.141 0.134 0.071

PC 0.436 0.406 0.385 0.153 0.085 0.072 0.123 0.093 0.056

APC corresponds to the Principal Components estimator with the same identifying restrictions as the
AQPC estimator. PC corresponds to the Principal Components estimator under the default rotation,
i.e., T−1

∑T
t=1 θ̂tθ̂

′
t = I2 and

∑N
i=1 α̂iα̂

′
i is a diagonal matrix, where I2 is the identity matrix of size 2.

Averages were computed from 1,000 simulations.
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Table 4: Systemic Risk Measures Summary Statistics

AQPC-Based PC-Based

Full Sample 1990 Onwards

Skewness 2.708 2.618 0.353
Kurtosis 10.96 12.17 3.958
Corr. Industrial Production -0.268 -0.222 0.040
Corr. National Activity -0.334 -0.323 -0.159
Corr. Financial Conditions 0.386 0.392 0.195

The AQPC-based measure was estimated using an adapted version of the Quantile Principal
Components methodology proposed by Sagner (2019). The PC-based measure was estimated via
PC under the default rotation, i.e., T−1

∑T
t=1 θ̂tθ̂

′
t = 1 and

∑N
i=1 α̂iα̂

′
i > 0. Correlation with

the Industrial Production Index (IPI) annual growth spans the period from 1955q1 to 2018q4.
Correlation with the Chicago Fed National Activity Index (CFNAI) spans the period from 1967q2
to 2018q4. Correlation with the Chicago Fed National Financial Conditions Index spans the period
from 1971q1 to 2018q4.
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