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Abstract 

An unobserved components model with stochastic volatility is used to decompose aggregate Euro 
area HICP inflation into a trend, seasonal and irregular components. Estimates of the components 

based only on aggregate data are imprecise: the width of 68% error bands for the seasonally adjusted 

value of aggregate inflation is 1.0 percentage points in the final quarter of the sample. Estimates are 

more precise using a multivariate model for a 13-sector decomposition of aggregate inflation, which 
yields a corresponding error band that is roughly 40% narrower. Trend inflation exhibited substantial 

variability during the 2001-2018 period and this variability closely mirrored variation in real activity. 

 

Resumen 

Utilizamos un modelo de componentes no observados con volatilidad estocástica para descomponer 

la inflación agregada medida por el índice armonizado de precios al consumidor (HICP) de la 
Eurozona en componentes tendenciales, estacionales e irregulares. Las estimaciones de los 

componentes basadas únicamente en datos agregados son imprecisas: la amplitud de las bandas de 

error de 68% para el valor desestacionalizado de la inflación agregada es de 1 punto porcentual en el 

último trimestre de la muestra. Las estimaciones son más precisas si se utiliza un modelo 
multivariado para la descomposición de la inflación agregada en 13 sectores, lo que da como 

resultado una banda de error que es cerca de 40% más estrecha. La inflación tendencial mostró una 

variabilidad sustancial durante el período 2001-2018 y esta variabilidad reflejó fielmente la variación 
de la actividad real. 

                                                             
 This paper was prepared for the conference volume of the XXII Annual Conference of the Central Bank of Chile, Changing 
Inflation Dynamics, Evolving Monetary Policy, organized by Jordi Gali, Diego Saravia and Gonzalo Castex. 

 James H. Stock 

Harvard University 

Mark W. Watson 

Princeton University 
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1. Introduction 

 

A central focus of monetary policy is the underlying rate of inflation that might be 

expected to prevail over a horizon of one or two years. Because inflation is estimated from noisy 

data, the estimation of this underlying rate of inflation, which we refer to as trend inflation, 

requires statistical methods to extract the inflation “signal” from the noise. The task of measuring 

trend inflation is further complicated by the large seasonal fluctuations in many prices, so that 

attempts to estimate core or trend inflation at a frequency higher than annual must additionally 

either use seasonally adjusted data or undertake seasonal adjustment as part of the effort to 

measure trend inflation. 

The challenge of estimating trend inflation is particularly acute for Euro area HICP 

inflation, official values of which are only reported seasonally unadjusted. Figure 1 plots 

quarterly values of Euro area HICP inflation (in percentage points at an annual rate) from 2001-

2018. The quarter-to-quarter variation in inflation is large: the standard deviation of quarterly 

changes in inflation is 2.5 percentage points. HICP inflation is also highly seasonal: over the 

entire sample period, inflation averaged 1.6 percent, but averaged 4.8 and 2.2 percent in the 

second and fourth quarters respectively and -0.1 and -0.3 over the first and third quarters. While 

some long-run, low-frequency variation in HICP inflation is evident, that variation – the “signal” 

– is small compared to the seasonal variation and what appears to be transient, one-off 

movements in the rate of inflation. The question, “What is the value of trend inflation today?”, is 

an important one for monetary policy, but the answer to that question arguably requires more 

than just staring at Figure 1. 

One approach to estimating trend inflation is to exploit variation across the components 

of inflation (across sectors) to reduce noise. The most prominent such estimates are "core" 

measures (e.g., Gordon (1981), Eckstein (1981)) that exclude inflation from the volatile food and 

energy sectors. Alternative core measures include trimmed mean or median of sectoral inflation 

rates (for example, see the early work by Bryan and Cecchetti (1994) or the paper in this volume 

by Ball and Mazumder (2018)). Ehrmann et al (2018) provide an an up-to-date summary of work 

at the ECB involving underlying and sectoral inflation. 

The HICP has 12 second-tier components, which we modify to create 13 components by 

pooling the energy components of housing and transportation into a separate “energy” 

component. These 13 inflation components are plotted in Figure 2. The heterogeneity of the time 
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series properties of these components is striking. Some sectors exhibit large seasonal variation 

(for example, clothing), others exhibit large non-seasonal quarterly variation (energy) or outliers 

(healthcare), and relative price movements impart different lower-frequency trends in each 

sector. Almost as striking is the apparent variation over time in those time series properties, for 

example the seasonal components of furnishing, clothing, and transportation have increased 

markedly over this period. The heterogeneity of these components suggests that there could be 

considerable gains from using a multivariate approach that allows the components to have 

distinct time series properties and uses both time series smoothing and cross-sectional weighting 

to estimate aggregate HICP trend inflation.  

This paper makes three contributions towards measuring trend HICP inflation. First, we 

estimate an unobserved components model with stochastic volatility (UCSV), which extends the 

UCSV model in Stock and Watson (2007) to include a seasonal component. This univariate 

model is an extension of the textbook unobserved components (UC) model1 to incorporate 

stochastic volatility to capture the time-varying importance of the trend, seasonal and irregular 

components.2 

Second, we extend the multivariate unobserved components/stochastic volatility model of 

Stock and Watson (2016) to allow each component to have separate seasonals, also with 

stochastic volatility. We apply this extended model to the 13 HICP components in Figure 2 to 

obtain multivariate estimates of the trend. We find that doing so produces trend estimates that are 

more precise than those based on the univariate model of aggregate HICP. We also find that this 

measure of core inflation moves cyclically with real economic activity. 

Third, as a byproduct, we also obtain quarterly estimates of seasonally adjusted HICP. 

Another approach to handling seasonals is simply to use the four-quarter average of quarterly 

inflation, however that measure tends to respond sluggishly. Compared with four-quarter rolling 

inflation, the new seasonally adjusted HICP series has the potential to provide more timely 

insights into movements of inflation. 

                                                 
1 Chapter 1 of Nerlove, Grether, and Carvalho (1979) offers a historical survey of UC models in economics. The 

textbook by Harvey (1989) is a classic reference on analyzing UC models using Kalman filter methods. 
2 Several papers have used related univariate UC models to study the evolution of prices and inflation. Examples 

include Ball and Cecchetti (1990), Cecccheti et al (2007), Cogley and Sargent (2015), Cogley, Sargent and Surico 

(2015), and Kang, Kim and Morley (2009). 
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Section 2 presents the univariate and multivariate model that we use for aggregate and 

sectoral inflation. Section 3 uses these models to estimate trend and seasonal factors for Euro 

area HICP inflation. Section 4 examines the relation between seasonally-adjusted inflation and 

real activity 

 

2: Seasonal UCSV Models 

 

Unobserved component (UC) models have a long history in economic time series and 

have been used for, among other things, data description, forecasting, structural analysis, and 

seasonal adjustment. Here we present versions of the UC model that can be used to seasonally 

adjust aggregate inflation and to estimate its trend value. One version of the model is univariate 

and uses only aggregate inflation; the other is multivariate and models the joint dynamics of 

sectoral inflation. Both models incorporate stochastic volatility and are known by their acronym 

UCSV. 

 

2.1 Univariate seasonal UCSV model 

Inflation is observed quarterly and is denoted by t. The UC model decomposes t into 

three unobserved components: trend (t), seasonal (st), and irregular (t). 

 

t = t + st + t         (1) 

 

The components are separately identified because they follow distinct stochastics processes. Let 

,t, s,t and ,t denote three martingale-differences processes; the trend component follows a 

martingale: 

 (1 − L)t = ,t        (2) 

 

so is dominated by low-frequency, or “trend”, variation; st follows the quarterly seasonal 

process: 

 

(1 + L + L2 + L3)st = s,t       (3) 
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so is dominated by variation at the seasonal frequencies with periods 2 and 4 quarters; and the 

irregular component is unforecastable: 

 

t = ,t .         (4) 

 

The unobserved components model (1)-(4) is a version of Harvey’s (1989)  “local-level” 

model, augmented by the seasonal component st. Versions of the model (often with more flexible 

models for the components) are the backbone of model-based seasonal adjustment methods (e.g., 

Hillmer and Tiao (1982), Hausman and Watson (1985), and Maravall (1995)).  

In the non-seasonal version of the local-level model, the estimate of t based on 

observations of  through date t is the forecast of the future rate of inflation: 

 

( ) ( ) ( )1 1 1 |E { } E { } E { }t t t

t h i i t h t h i i t i i t t       + = + + = == + = = ,     (5) 

 

where the final equality follows from the martingale assumption for t and the martingale 

difference assumption for t. 

The seasonal model (3) is specified so that this definition of the trend as the long-run 

forecast continues to be hold, for annual averages. Specifically, Harvey (1989, Section 6.2) 

defines a seasonal process to be any time series process with predicted values that (i) repeat 

seasonally and (ii) sum to zero over a one-year period. The seasonal process (3) satisfies these 

two conditions, specifically (i) | 4|T j T T j Ts s + + +=  and (ii) 
4

|1
0T j Tj

s +=
= , where |r Ts  is the 

predicted value of sr made using data through time T, for any T´ ≥ T. The seasonal model (3) 

yields a similar interpretation of t|t, but now for annual averages of future values of  : letting 

:i jx  denote the sample average of an arbitrary variable x between time i and j, 

 

( ) ( ) ( ): 3 1 : 3 : 3 : 3 1 1 |E { } E { } E { }t t t

t j t j k k t j t j t j t j t j t j k k t k k t ts       + + + = + + + + + + + + + = == + + = =   (6) 
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for j > 0, where the penultimate equality follows from the random walk model for τ, 

4

|1
0T j Tj

s +=
= , and the unpredictability of future ε’s. Thus, as in the model without 

seasonality,t|t measures the (non-seasonal) forecastable level of inflation. 

Examination of the inflation series in Figures 1 and 2 highlights the need for two 

modifications of the basic UCSV model. The first modification allows for time variation in the 

variances of the unobserved components, and the second allows for outliers. We discuss these in 

turn. 

Time varying variances are added to the model by allowing the t shocks in (2), (3), and 

(4) to follow stochastic volatility processes, say t = tet, where et ~ i.i.d N(0,1) and 2

t evolves 

through time as a logarithmic random walk: (1− L)ln( 2

t ) = vt with vt ~ i.i.d N(0, 2

v ). Kim, 

Shephard, and Chib (1998) show how this stochastic volatility model can be estimated using 

Gibbs sampling methods using a mixture of normal densities to approximate the log- 2

1 density 

together with standard Kalman smoothing recursions; Omori et al (2007) provide improved 

approximations. Stock and Watson (2007) incorporate these methods together with ideas in 

Carter and Kohn (1994) and Kim and Nelson (1999) to estimate a non-seasonal version of the 

UCSV model.  

Outliers are incorporated in the model through additional random multiplicative factors 

linking the t innovations to the i.i.d. N(0,1) shocks et. As in Stock and Watson (2016), we use a 

formulation with t = ottet where ot is an i.i.d. outlier term with ot = 1 with probability 1−p and 

ot ~ U(2,10) with probability p. When ot = 1, there is no outlier, and when ot ~ U(2,10) there is 

an outlier with a standard deviation that is between 2 and 10 times larger the no-outlier case. In 

the model for Euro area inflation we allow outliers only in the irregular component t as this 

seems consistent with outliers evident in Figure 2; in other applications outliers might also be 

appropriate for t and/or st. 

In summary, the complete UCSV model is (1)-(4) and  

 

,t = ,te,t ; s,t = s,tes,t ;  ,t = ot,te,t      (7)  

 (1 − L)x,t = vx,t for x = , s,  ,       (8) 
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where (e,t, es,t, e,t, v,t, vs,t, v,t) are mutually independent i.i.d. normal random variables with 

mean zero, the e terms have unit variance, and each of the v terms has a component-specific 

variance, say v(), v(s), and v(). 

 

2.2 Multivariate seasonal UCSV model 

The multivariate model is a generalization of the univariate that includes common and 

sector-specific versions of the three unobserved components. For each of the i = 1,…, n sectors, 

the rate of price inflation in sector i, i,t, follows: 

 

i,t = i,c,t + i,ssc,t + i,c,t + i,t + si,t + i,t     (9)   

 

where (c,t, sc,t, c,t) are common to all sectors, (i,t, si,t, i,t) are sector specific and (i, i,s, i,) 

are time-invariant coefficients (factor loadings). The , s,  components follow processes as in 

the univariate model, with component/sector-specific parameters. The components are mutually 

independent, so that dependence across sectors comes from the common components c, sc, and 

c. Outliers are allowed in each of the sector-specific i,t components and in the common c,t 

component. 

The multivariate sectoral model is designed so that it (approximately) aggregates to 

univariate UCSV model. Because of its symmetric structure, aggregation in the multivariate 

model is straightforward: letting wi,t denote the share weight for sector i at time t 

 

, ,

1

n
a a a

t i t i t t t t

i

w s   
=

= = + +        (10) 

 

where 

, , , , ,

a

t c t i t i i t i tw w   = +         (11) 

 

and similarly for the other components. When the share weights are time invariant, a

t evolves as 

a martingale, a

ts  follows the seasonal process in (3) and a

t  is a martingale difference. And, as in 
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the univariate model, filtered values of , ,, , )( c

a

tt i t   constructed from the multivariate model 

summarize the forecastable levels in both sectoral and aggregate inflation:  

   

( ), : , 3 , 1 , , | , |E { } , 1,...,t

i t j i t j l k k i c t t i t tl n     + + + = = = +     (12) 

and 

( ): 3 , 1 |E { } , 1,...,t a

t j t j l k k t tl n  + + + = = = .      (13) 

 

2.3 Estimation and inference 

We estimate the univariate and multivariate UCSV models using Bayes methods that are 

generalizations of the methods outlined in online appendix to Stock and Watson (2016). We 

provide an overview here.  

The univariate UCSV model is characterized by four sets of parameters: (i) the stochastic 

volatility innovation standard deviations, v(), v(s), and v(); (2) the outlier probability 

parameter p; (3) the initial values for the standard deviations ,0, s,0, and ,0; and (4) the initial 

values of the components 0 and (s0, s-1, s-2, s-3). We used independent priors for the parameters: 

 

• v ~ U(0,0.10). (A value of v() = 0.10 implies that the standard deviation of 

ln(,t+40/,t)  is approximately 0.3, that is a standard deviation of 30% over 40 

quarters.) 

• p ~ Beta(a,b) with a = 2.5 and b = 37.5. (This implies that an outlier is expected to 

occur every four years.) 

• ln(,0), ln(s,0), ln(,0) and 0 follow independent diffuse Gaussian priors. 

• (s0, s-1, s-2, s-3) follow a diffuse singular Gaussian distribution, where the 

singularity enforces s0+s-1+s-2+s-3 = 0. 

 

The multivariate model requires two normalizations. First, the factor structure requires a 

normalization to separately identify the scales of the factor loadings (, s, ) and the common 

factors (c, sc, and c). We normalize the standard deviations of the common factors to be unity 

for t = 0. The second normalization is needed because the initial values of the common and 
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idiosyncratic factors (e.g., c,0 and i,0) are not separately identified. To identify the model we 

normalize the common factors to be zero for t = 0; that is c,0 = 0 and (sc,0, sc,-1, sc,-2, sc,-3) = 0.  

The multivariate model also requires a prior distribution for the factor loadings. Let  

denote the n×1 vector of factor loadings for c,t; we use the prior  ~ N(0,102' + 0.42In), where 

 is an n×1 vectors of ones. This prior is essentially uninformative about the average value of i, 

(the first term in the variance) but shrinks the factor loadings toward a common value (the 

second term in the factor variance). Independent priors of the same form were used for s and . 

The empirical results in the next section are based on 60,000 MCMC draws from the 

posterior (discarding the first 10,000 draws) using the algorithm outlined in Stock and Watson 

(2016), modified to incorporate the seasonal factor. Error bands are from 68% equal-tailed 

credible sets. The 95% error bands, which are unreported, are approximately twice as wide as the 

reported 68% bands. 

 

3. The Data and Estimation Results 

 

3.1 Data 

There are twelve tier-two components for the Euro area HICP. These consumer spending 

components are organized by purpose (transportation, housing, recreation, etc.) rather than by 

type of product (motor vehicles, gasoline, recreational goods, etc.), which is the organizing 

principle used in the U.S. PCE and CPI data. Because the Euro area sectors are organized by 

purpose, they contain a mix of both goods and services. For example, the transportation 

component contains both motor vehicles (a good) and airline transport (a service). Energy is not 

a separate sector in the HICP tier-two categorization. Because energy prices historically behave 

differently from other prices, including large outliers and different seasonal patterns, we 

extracted the major energy components from housing (electricity, gas, liquid fuels, solid fuels, 

heat energy) and transportation (fuels and lubricants for personal transportation equipment) to 

form a separate energy component. Thus the 13 components we analyze are energy, housing 

excluding energy, transportation excluding fuels and lubricants for personal transportation, and 

the ten remaining unaffected components of the HICP. These are the thirteen sectors shown in 

Figure 2. 
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The data are available monthly; we temporally aggregated the monthly price indices to 

quarterly averages, and computed sectoral inflation rates as i,t = 400×ln(pi,t/pi,t−1), where pi,t is 

the quarterly prices index for sector i in quarter t. Data are available for all sectors from 2001, 

and the first quarterly inflation value is for 2001:Q2. Our sample ends in 2018:Q1. 

Spending shares for each sector are available annually. We interpolated the annual 

average shares to construct quarterly shares using a random walk interpolator.3 Table 1 lists the 

13 sectors, shows the average share weights over the entire sample period and over the first- and 

second- subsamples. Shares vary little over the sample period; the largest sector is food (16%) 

and smallest is education (1%); the energy share is 10%. 

 

3.2 Results 

Univariate HICP. The univariate model produces estimates of the volatilities ,t, s,t, ,t 

and the components t, st, and t. Table 2 shows the estimated values (posterior medians) and 

68% credible sets for these variables at the beginning, middle, and end of the sample. 

The estimated standard deviations of the innovations in , s and  are relatively constant 

over the sample period. The level of trend inflation is estimated to have fallen from 2.5% in 2001 

to 1.5% in 2018. The estimated seasonal component shows that aggregate HICP inflation tends 

to be low in the first and third quarters and high in the second; the seasonal amplitude increased 

over the sample period. 

Figure 3 shows estimated values of t and seasonally adjusted inflation, t – st. The upper 

panels show the posterior estimates based on the full sample (the smoothed estimates) and the 

lower panel shows estimates based on data through date t (the filtered estimates).4 As desired, the 

estimates of seasonally adjusted inflation evidently eliminate the largest seasonal swings. The 

68% error bands for seasonally-adjusted inflation are wide (1.0 percentage points at the end of 

the sample). The time path of trend inflation is also uncertain, but (as shown below) the estimates 

closely track real activity in the Euro-area. 

                                                 
3 That is, we modelled the unobserved quarterly shares as a random walk, the observed annual shares as the annual 

average of the quarterly shares and estimated the quarterly shares using the Kalman smoother.  
4 For computational simplicity, the filtered estimates are based on the full-sample estimates of the variance 

parameters, and are therefore approximations the true one-sided estimates. The filtered estimates are plotted 

beginning in 2004 because of the diffuse prior for the t = 0 values. 
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The estimates of t and st are weighted averages of the t+j. For example, the full-sample 

posterior estimates of t are given by t|T = 
,1

T t

t j t jj t
a 

−

+=− + where the weights at,j depend on the 

parameters , , , 1{ , , }T

i s i i i    = . When these parameters are time-invariant and t is not close to the 

beginning or end of the sample, the weights are time invariant, that is at,j ≈ aj. Figure 4 plots 

these weights constructed using the sample average of , , , 1{ , , }T

i s i i i    =  for both the one-sided 

(filtered) and two-sided (smoothed) estimates of t. By construction, these weight sum to unity 

(because the zero-frequency pseudo-spectrum of  is determined solely by variation in ), and 

the figure indicates that nearly of the weight is placed on values of t+j for | j | ≤ 4. These short 

moving average weights are optimal because of the relatively high signal-to-noise ratio for the 

trend (/ ≈ 0.80).  

Multivariate. The univariate model implicitly applies the same time series filter to each 

of the 13 sectors making up the aggregate, with the component-wise results aggregated using 

share weights. Yet it is clear from Figure 2 that the components follow highly heterogeneous 

time series processes. For example, the clothing sector appears to be dominated by seasonality, 

healthcare by a few large outliers but little seasonality, energy by large irregular variation; and 

the housing sector by components with roughly equal variation. Thus, there plausibly is 

considerable variation in the UCSV parameters across the 13 components. 

These visual impressions are confirmed by the posterior estimates for 13-sector model. 

Table 3 summarizes some key results. Consider the standard deviations of the innovations in the 

idiosyncratic components: the estimated values of the / signal-to-noise ratios range from a 

high of 1.8 (furnishing) to a low of 0.2 (food and energy). Seasonal signal-to-noise ratios (s/) 

vary from nearly 4 (clothing) to .05 (energy). Most of these standard deviations are reasonably 

stable over the 2001-2018 sample, but there are exceptions: for example, seasonal fluctuations 

have become larger in recreation, and irregular fluctuations have become smaller in alcohol and 

tobacco. 

The multivariate model captures the covariance across sectors through the common 

factorsc, sc, and c. The estimated standard deviation of the innovations in these factors fell by 

roughly 40% from 2001-2018; this implies a reduction in the co-variability across the sectors. 

The estimated factor loadings suggest that much of comovement arises from the common trend 

component, less from common seasonals, and very little from common irregular variation. 
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The multivariate model produces a rich set of results. Figures 5 and 6 illustrate a few of 

these results. The first four panels of Figure 5 show selected results for the transportation sector: 

the raw data and seasonally adjusted values (i,t − si,t) plotted in the panel (a), the trend and 

seasonally adjusted values plotted in panel (b), the seasonals are shown panel (c) and the 

estimated seasonal standard deviations, i,s,t, are shown in panel (d). Evidently, the multivariate 

UCSV model accommodates the increased dispersion in the seasonal evident in panel (c) with 

increases in i,s,t in panel (d) and provides a reasonably sharp decomposition into trend, seasonal 

and irregular components (panel (b)). Panels (e)-(h) show the same results for the clothing sector. 

From panel (e), seasonal variation in clothing price inflation is so large that it is difficult to 

discern any variation in the seasonally adjusted series. A change of scale in panel (f) makes the 

variation in the seasonally-adjusted series visible and shows an outlier in 2011. Panel (g) shows 

that the variance of the seasonal component increases in the first half of the sample, but remains 

large and approximately constant, in the second half of the sample. The estimates of i,s,t shown 

in panel (h) are consistent with this changing seasonal variability. Panel (i) plots healthcare 

inflation and shows two large outliers. Panel (j) shows the posterior mean estimates of the outlier 

factor oi,t for healthcare, which successfully pinpoints the outliers in the panel (i). Panels (k) and 

(l) show the analogous results for the energy sector, where outliers are also an important source 

of variability. 

Figure 6 shows the trend estimates for each of the 13 sectors. The sectoral trends differ, 

but comovement is apparent, most notably during the cyclical downturns in 2008-10 and 2014-

15. 

As discussed above, the estimates of t from the univariate model are constructed using 

weighted averages of aggregate inflation, where the weights sum to unity; the one- and two-sided 

weights were plotted in Figure 4. In the multivariate model, estimates are t are also weighted 

averages of leads and lags of inflation for each of the sectors. When shares weights and variances 

are time invariant, lead-lags weights on each sector sum to that sector's share weight. For sectors 

with low signal-to-ratios substantial weight is placed on distant leads and lags, but for sectors 

with high signal-to-ratios most of the weight is concentrated near the contemporaneous value of 

i,t. Figure 7 plots the sector-specific optimal weights from the 13-sector model, and compares 

these to the weights for the 1-sector model (which are identical for all sectors). Relative to the 

13-sector weights, the 1-sector model puts too much weight on contemporaneous values of food, 
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alcohol and energy inflation (which have a low signal-to-noise ratio) and too little weight on 

sectors like furnishing and restaurants (which have relatively high signal-to-noise ratios). An 

implication is that the estimates of the aggregate seasonal and trend components constructed 

from the sectoral model and data are more precise than the estimates using only the aggregate 

data.  

This improved precision from the multivariate model can be seen in Table 4 and Figure 8, 

which show aggregate estimates constructed as share-weighted averages of the sectoral 

components. Comparing the error bands in Table 4 with the corresponding error bands for the 

univariate model in Table 2 shows a tightening of the bands for the multivariate model. For 

example, the multivariate errors bands for 2018:Q1 are roughly 80% as wide as the univariate 

bands, and the multivariate error bands for s2018:Q1 are roughly 60% as wide as the univariate 

bands.  

 

3.3 Different levels of disaggregation 

The results presented thus far show that the 13-sector multivariate trend and seasonal 

estimates are more accurate than estimates that only use aggregate inflation. A natural question 

to ask is how much of these gains could be achieved using a courser disaggregation scheme, for 

example by using a three-sector decomposition of food, energy, and the aggregate of all of the 

other sectors. Using data for the U.S., Stock and Watson (2016) found that much of gain from 

using a 17-sector decomposition of U.S. PCE inflation could be achieved using this three-sector 

decomposition. Can similar gains be achieved from the Euro-area HICP? 

To answer this question, we estimated three additional multivariate UCSV models. The 

first is a two-sector model composed of energy and HICP-excluding energy. The second is a 

three-sector decomposition composed of food, energy, and HICP-excluding food and energy. 

The third is a four-sector decomposition that uses third-tier components to further decomposes 

the non-food and energy HICP into goods and services. The two- and three-sector models are 

special cases of the 13-sector model; the four-sector model is not: as discussed above the second 

tier decomposition in the 13-sector model includes goods and services jointly in many of the 

sectors.  

Figure 9 plots the estimates of trend inflation computed for each model. The estimated 

trends are generally similar, although there are noteworthy differences between the one- and 
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multi-sector trends during 2009 and 2015.5 Table 5 summarizes the accuracy of these alternative 

models by showing the final quarter (2018:Q1) width of the 68% and 90% error bands for trend 

and seasonally-adjusted inflation. Each decomposition yields marginal improvements, but much 

of the gain can be achieved using the three-sector decomposition; this is consistent with the 

results for the U.S. reported in Stock and Watson (2016). 

 

4. Inflation and Real Activity 

 

The multivariate estimates of trend inflation suggest large variation in the trend level of 

inflation over the 2001-2018 sample period. Figure 10 shows how this variation in inflation was 

related to variation in real economic activity, where real activity is measured as an average of 

three coincident indicators for the Euro-area: the unemployment gap (inverted), capacity 

utilization, and the logarithm of industrial production, each band-passed filtered to isolate 

business-cycle variation (6-32 quarters) and standardized to have zero mean and unit variance. 

Over 2001-2018 changes in trend inflation closely mirrored changes in real activity: trend 

inflation increased to nearly 3% in early 2008 as activity was near its cyclical peak, fell by 1.5% 

during the 2009 recession, returned to 2% during the recovery, but fell again to under 1% as real 

activity weakened during 2013-2016.   

Table 6 presents correlations between the cyclical activity index and various measures of 

HICP inflation. The lowest correlation is with seasonally unadjusted quarterly inflation, and the 

highest (0.55) is with four-quarter inflation. As can be seen in Figure 10, 4-quarter inflation falls 

sharply with economic activity in the 2009 recession, whereas trend inflation falls less, hence has 

a somewhat lower correlation with the cyclical activity index. These correlations are all 

substantial and are consistent with a Phillips relation being present in Euro area inflation. 

  

                                                 
5 This paper has taken a multivariate approach to trend (and seasonal adjustment) of aggregate inflation using 

sectoral inflation rates. Other series, beyond sectoral inflation rates may also help identify trend inflation. Mertens 

(2016) provides an interesting application using inflation expectations and nominal interest rates as additional 

indicators. 
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Tables and Figures 

Figure 1: HICP Inflation for the Euro Area 
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Figure 2: 13 HICP Sectors  

 

Notes: These are the 12 HICP tier-two sectors, with energy excluded from the housing and transportation 

sectors and shown separately as the 13th sector. 
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Figure 3: Smoothed and filtered estimates from univariate UCSV model for trend (τt) and 

seasonally-adjusted (πt – st) HICP inflation  

 
 

Notes: The values shown are the posterior median and 68% equal tail posterior credible intervals for the dates 

shown. 
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Figure 4: Weight placed on t+j for estimating t. 

 

Notes: The weights are computed from the Kalman filter and smoother for a univariate trend + seasonal + 

irregular model with constant variances computed as the average values of the UCSV model variances.  
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Figure 5: Selected results from the 13-sector UCSV model 

 

 
 

Notes: See text for description of the panels. Error bands are 68% posterior credible intervals. 
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Figure 6: Trend estimates from the 13-sector UCSV model  

 
Notes: The values plotted are the full-sample posterior medians and 68% posterior credible intervals. The scale for 

Communications and Energy differ from the scale used for the other sectors. 
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Figure 7: Weight placed on i,t+j for estimating aggregate t 
 

 
 

Notes: Values shown are the sum of the Kalman smoother weights on i,t+j for estimating t. The 

results in the first row are from the univariate model for aggregate inflation. Weights are 

normalized by expenditure shares (so the weights for all sectors sum to unity over all leads and 

lags). 
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Figure 8: Smoothed and filtered estimates from 13-sector multivariate UCSV model for 

aggregate HICP inflation 

 

 
Notes: The values shown are the posterior median and 68% equal tail posterior credible intervals for the dates 

shown. Aggregate values are computed as share-weighted averages of the sectoral values. 
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Figure 9: Estimates of trend inflation from the various UCSV models. 

 
Notes: Values shown are full-sample posterior medians. 
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Figure 10: Inflation and Real Activity 

 
 

 

Notes: The trend and seasonally adjusted inflation values are the full-sample posterior medians from the 13-sector 

UCSV model. The cyclical activity index is the average of standardized band-pass filtered values of the 

unemployment gap (inverted), the capacity utilization rate, and the logarithm of industrial production, for a pass 

band of 6-32 quarters). 
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Table 1: The 12 tier-two sectors of the Euro area HICP plus the energy sector 

 

Sector Average expenditures shares 

2001-2018  2001-2009 2010-2018 

Food 0.16  0.16 0.15 

Alcohol & Tobacco 0.04  0.04 0.04 

Clothing 0.07  0.07 0.06 

Housing (excl. energy) 0.10  0.10 0.10 

Furnishings 0.07  0.08 0.07 

Healthcare 0.04  0.04 0.04 

Transportation (excl. energy) 0.11  0.11 0.11 

Communications 0.03  0.03 0.03 

Recreation 0.10  0.10 0.09 

Education 0.01  0.01 0.01 

Restaurants & Accommodations 0.09  0.09 0.09 

Miscellaneous 0.08  0.08 0.09 

Energy 0.10  0.09 0.10 
 

Notes: Energy components of housing (electricity, gas, liquid fuels, solid fuels, heat energy) and transportation 

(fuels and lubricants for personal transportation equipment) were removed from those components and collected into 

the separate “Energy” category, given in the final row. 
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Table 2: Parameter estimates for the univariate UCSV model for aggregate inflation 

 

Posterior medians and 68% equal-tail posterior credible intervals 

 

(a) Estimated volatilities and trends from the univariate model 

 2001:Q2 2009:Q4 2018:Q1 

Standard deviations of shocks to components 

 0.44 (0.25, 0.70) 0.55 (0.34, 0.85) 0.52 (0.32, 0.81) 

s 0.29 (0.18, 0.45) 0.26 (0.17, 0.40) 0.26 (0.15, 0.43) 

 0.61 (0.32, 0.90) 0.67 (0.36, 0.99) 0.65 (0.35, 0.98) 

Estimates of trend component  

t 2.54 (2.01, 3.12) 1.39 (0.96, 1.84) 1.45 (0.94, 2.03) 

 

 

(b) Estimates of seasonal factors 

 Q1 Q2 Q3 Q4 

2002 -0.06 (-0.67, 0.48) 2.16 (1.74, 2.62) -1.76 (-2.12, -1.39) -0.14 (-0.50, 0.22) 

2009 -1.78 (-2.20, -1.34) 3.24 (2.85, 3.63) -2.23 (-2.59, -1.86) 0.81 (0.43, 1.19) 

2017 -2.42 (-2.91, -1.97) 3.45 (2.95, 3.95) -2.22 (-2.64, -1.78) 1.19 (0.77, 1.64) 
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Table 3: Parameter estimates from the 13-sector multivariate UCSV model 

 
(a) Standard deviation of shocks to common components (c, sc, c)  

 2001 2018 

 0.99 (0.91 1.04) 0.57 (0.30 1.00) 

s 0.98 (0.89 1.03) 0.62 (0.32 1.00) 

 0.99 (0.91 1.03) 0.67 (0.36 1.00) 

 

 

(b) Sector-specific parameters 

Sector Factor loadings  Standard deviation of shocks to sector-specific components (i, si, i) 

 s a    s   

 2001 2018  2001 2018  2001 2018 

Food 0.72 

(0.41, 1.04) 

0.29 

(0.17, 0.42) 

0.05 

(-0.32, 0.42) 

 0.30 

(0.12, 0.94) 

0.28 

(0.12, 0.74) 

 0.17 

(0.10, 0.31) 

0.17 

(0.09, 0.31) 

 1.60 

(1.15, 2.16) 

1.54 

(1.19, 1.92) 

Alcohol  

& Tobacco 

0.06  

(-0.15, 0.34) 

0.03  

(-0.06, 0.14) 

0.05  

(-0.29, 0.41) 

 0.28 

 (0.14, 0.53) 

0.29 

 (0.15, 0.50) 

 0.50  

(0.17, 0.89) 

0.40  

(0.16, 0.69) 

 1.41  

(0.69, 2.60) 

0.92 

(0.53, 1.34) 

Clothing 0.29  

(0.12, 0.47) 

0.12  

(0.05, 0.19) 

0.03  

(-0.28, 0.36) 

 0.13  

(0.07, 0.23) 

0.12 

 (0.07, 0.20) 

 1.56  

(1.11, 2.13) 

1.14  

(0.79, 1.60) 

 0.31  

(0.15, 0.51) 

0.31 

(0.15, 0.49) 

Housing (xE) 0.03  

(-0.03, 0.12) 

0.01  

(-0.01, 0.05) 

-0.01  

(-0.12, 0.09) 

 0.13  

(0.09, 0.18) 

0.13 

 (0.09, 0.18) 

 0.10 

 (0.07, 0.14) 

0.11  

(0.08, 0.15) 

 0.13  

(0.08, 0.19) 

0.13  

(0.08, 0.19) 

Furnishings 0.24  

(0.11, 0.45) 

0.10  

(0.04, 0.18) 

0.02  

(-0.15, 0.19) 

 0.21  

(0.14, 0.27) 

0.22  

(0.17, 0.30) 

 0.15  

(0.11, 0.20) 

0.15  

(0.11, 0.20) 

 0.12 

 (0.07, 0.20) 

0.12  

(0.07, 0.20) 

Healthcare 0.28  

(0.16, 0.45) 

0.12  

(0.06, 0.18) 

-0.02 

 (-0.22, 0.21) 

 0.12  

(0.07, 0.20) 

0.11  

(0.07, 0.19) 

 0.13  

(0.08, 0.21) 

0.13 

 (0.08, 0.21) 

 0.77  

(0.60, 1.02) 

0.47  

(0.32, 0.66) 

Transportation 0.36  

(0.24, 0.53) 

0.15  

(0.10, 0.22) 

-0.04 

 (-0.40, 0.33) 

 0.11  

(0.07, 0.19) 

0.11  

(0.07, 0.20) 

 0.26  

(0.15, 0.39) 

0.28 

 (0.17, 0.40) 

 0.37  

(0.21, 0.52) 

0.39  

(0.22, 0.55) 

Communications -0.13  

(-0.38 0.23) 

-0.05  

(-0.16, 0.09) 

0.02  

(-0.37, 0.39) 

 0.69  

(0.46, 1.01) 

0.69  

(0.48, 1.01) 

 0.14 

 (0.08, 0.26) 

0.14 

 (0.08, 0.25) 

 0.93 

 (0.59, 1.21) 

0.87 

 (0.53, 1.15) 

Recreation 0.35  

(0.18, 0.54) 

0.14  

(0.07, 0.22) 

0.03  

(-0.51, 0.53) 

 0.17  

(0.10, 0.27) 

0.17  

(0.10, 0.26) 

 0.35  

(0.21, 0.54) 

0.68  

(0.46, 1.00) 

 0.28  

(0.14, 0.50) 

0.32 

 (0.15, 0.65) 

Education 0.26  

(0.11, 0.46) 

0.11  

(0.04, 0.19) 

-0.01  

(-0.23, 0.21) 

 0.15  

(0.09, 0.24) 

0.15  

(0.09, 0.24) 

 0.23  

(0.11, 0.38) 

0.22  

(0.11, 0.39) 

 0.71  

(0.51, 0.89) 

0.77  

(0.61, 0.97) 

Restaurants &  

Accommodations 

0.47 

 (0.32 0.69) 

0.19  

(0.13, 0.28) 

-0.04  

(-0.41, 0.40) 

 0.15  

(0.09, 0.23) 

0.14  

(0.09, 0.22) 

 0.23  

(0.14, 0.37) 

0.38  

(0.22, 0.57) 

 0.24  

(0.16, 0.35) 

0.22  

(0.13, 0.36) 

Miscellaneous 0.18 

 (0.08, 0.30) 

0.07  

(0.03, 0.12) 

0.01  

(-0.20, 0.23) 

 0.16  

(0.11, 0.22) 

0.17  

(0.12, 0.25) 

 0.17  

(0.11, 0.25) 

0.16  

(0.10, 0.26) 

 0.22  

(0.14, 0.34) 

0.27  

 (0.18, 0.43) 

Energy 0.39  

(-0.02, 0.78) 

0.16 

 (-0.01, 0.32) 

-0.01  

(-0.45, 0.42) 

 1.38  

(0.43, 2.63) 

1.47  

(0.45, 2.77) 

 0.40 

 (0.14, 1.03) 

0.41 

 (0.15, 1.08) 

 7.15 

 (4.78, 9.28) 

8.12  

(6.25, 10.32) 

 

Notes: The values shown are the posterior median and 68% equal tail posterior credible intervals for the dates shown. 
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Table 4: Selected results for aggregate inflation from the 13-sector UCSV model 

 

(a) Estimated trends from the multivariate model 

 

 

 

 

 

(b)  Estimated seasonal factors 

 Q1 Q2 Q3 Q4 

2002 -0.44 (-0.75 -0.14) 1.95 (1.69  2.22) -1.48 (-1.71 -1.24) 0.07 (-0.18  0.32)  

2009 -1.65 (-1.89 -1.40) 2.94 (2.69  3.17) -2.13 (-2.37 -1.89) 0.89 (0.66  1.13)  

2017 -2.42 (-2.71 -2.13) 3.87 (3.53  4.18) -2.09 (-2.38 -1.81) 0.52 (0.19  0.88) 

 
Notes: The values shown are the posterior median and 68% equal tail posterior credible intervals for the dates 

shown. Aggregate values are computed as share-weighted averages of the sectoral values. 

 

 

 

 2001:Q2 2009:Q4 2018:Q1 

t 2.43 (1.95  2.92) 1.35 (1.05  1.66) 1.32 (0.91  1.73) 
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Table 5:  Width of credible intervals, final quarter 

 

 

 

 

 

 

 

 

 

Notes: The values are the widths of 68% and 90% credible intervals for  and  − s for the final quarter in the 

sample (2018:Q1). 

 

 

 

 

Table 6:  Correlation between cyclical activity index  

and various measures of HICP inflation 

 

 

 

 

 

 

 

 

 

Notes: Seasonally-adjusted HICP is the smoothed estimate of πt - st computed using the univariate UCSV model. 

The three trend estimates are computed using the UCSV model (univariate or multivariate, depending on the 

estimate). The cyclical activity index is the average of standardized band-pass filtered values of the unemployment 

gap (inverted), the capacity utilization rate, and the logarithm of industrial production, for a pass band of 6-32 

quarters). 

 

Model 68% credible interval  90% credible interval 

   − s    − s 

Univariate 1.09 1.00  1.89 1.77 

2 sectors  0.96 0.81  1.63 1.39 

3 sectors  0.87 0.68  1.53 1.19 

4 sectors  0.82 0.67  1.48 1.19 

13 sectors  0.82 0.62  1.45 1.09 

Inflation measure Correlation 

Quarterly inflation 0.20 

4-quarter inflation (100Δln(Pt/Pt-4)) 0.55 

Seasonally adjusted HICP 0.42 

Univariate trend  0.43 

3-sector trend estimate  0.47 

13-sector trend estimate  0.44 
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