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Abstract 

We describe several events in Argentina between 2012 and 2018 in which public utilities or the 

exchange rate increase by a large amount in a single month. During these months the nominal 

increase in our measure of the cost of the goods included in the core CPI was as high as 10%. 

Motivated by these events, we use a menu cost model of price adjustment to derive the theoretical 

pass-through of large cost shocks to consumer prices for an economy with an underlying inflation 

rate of the order of 25% per year, as well as the impact of these shocks on the size and on the 

frequency of price changes. Using a comprehensive, never used in the price adjustment literature, 

micro-data set underlying the construction of the core CPI for the city of Buenos Aires we compare 

the theoretical effect of the cost shocks to the empirical one. As predicted by the theory we find that 

despite the high level of underlying inflation, the large frequency of both price increases and 

decreases points to the importance of idiosyncratic firm shocks, such as the ones we use in our 

model. Right after large increases in costs, both the fraction of price increases and the average size of 

price increases dramatically rises, while the size of price decreases stays approximately the same, 

just at the simple model predicts. On the other hand, the model predicts a small decrease in the 

fraction of price decreases which we don't observe in the data. We conclude that for large sudden 

changes in cost, consumer prices behave almost as if they were fully flexible. On the other hand, for 

small shocks the short-term pass-through will be smaller and its half-life larger. 

 

Resumen 

Describimos varios eventos ocurridos en la Argentina entre 2012 y 2018 cuando los servicios 

públicos o el tipo de cambio muestran grandes aumentos en un solo mes. Durante esos meses, el 

incremento nominal según nuestra medición del costo de los bienes que componen la canasta básica 

del IPC llegó hasta el 10%. Motivados por estos hechos, utilizamos un modelo de costo de menú de 

ajuste de precios para derivar el traspaso teórico de grandes shocks de costos hacia los precios al 

consumidor en una economía cuya tasa de inflación subyacente es del orden del 25% anual, y el 

impacto de estos shocks en la magnitud y la frecuencia de las variaciones de precios. Utilizando un 

conjunto integral de microdatos, nunca antes utilizado en la literatura de ajuste de precios, que 

subyace a la construcción del IPC básico de la ciudad de Buenos Aires, comparamos los efectos 

teórico y empírico de los shocks de costos. Tal como predice la teoría, encontramos que, a pesar del 

alto nivel de inflación subyacente, la alta frecuencia tanto de las alzas como de las bajas de precios 

apunta a la importancia de los shocks idiosincrásicos en la empresa, como los que utilizamos en 
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nuestro modelo. Inmediatamente después de un gran aumento de costos, tanto la fracción del alza de 

precios como su magnitud promedio aumentan drásticamente, mientras que la magnitud de las bajas 

de precios se mantiene casi igual, tal como predice el modelo simple. El modelo también predice una 

pequeña disminución en la fracción de las bajas de precios que no observamos en los datos. 

Concluimos que, ante un gran cambio repentino en los costos, los precios al consumidor se 

comportan casi como si fueran totalmente flexibles. Por otro lado, si el shock es pequeño, el traspaso 

a corto plazo será menor y su duración será mayor. 

 



1 Introduction

This paper surveys and modestly extends the theory of menu cost models for the behavior

of the aggregate price level after large cost shocks. It does so in the context of an economy

with a high underlying rate of inflation. It concentrates on the effect of large permanent

unexpected increases in the nominal price of inputs on the price level at different horizons.

We use a simple theoretical model where increases in nominal cost will increase aggregate

prices one for one in the long run. We study how the nominal rigidities implied by a menu

cost distribute the increases in the price level between the impact effect immediately after

the cost shock and the subsequent price adjustment until the price catches up with its long

run increase. In other words, we study the pass-through of large cost shocks at different

horizons. We pay particular attention to the role of the underlying inflation rate as well as

to the role of the size of the cost shock, since both elements are important to determine the

dynamics of aggregate prices.

Our interest in that question comes both from interest in testing aspects of price setting

theories and from a practical monetary policy point of view. On the theoretical side, the

differential effect of large versus small shocks is the hallmark difference between menu cost

models and time dependent models of price adjustment. Hence, the characterization of

the model’s behavior is important to be able to discern between theories with observed

experiences. On the monetary policy side, we are interested in this particular question

because of the recent experience in Argentina, an economy where inflation has been quite high

for international standards in the last decade, and where due to changes in macroeconomic

policies in the last four years there have been large cost shocks. In particular, there have been

large changes in exchange rates as well as extremely large changes in the price of regulated

prices, mainly inputs related to energy. In this context we ask the question of whether the

response to these large cost shocks is close to one of an economy with fully flexible prices or

to one with time dependent price setting, such as the Calvo model.

We give a short narrative of instances where in a single month there have been very
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large cost changes in the inputs for goods that make up the core CPI for Argentina between

2012 and 2018. We also use a comprehensive, never used in the price adjustment literature,

micro-data set underlying the construction of the core CPI for the city of Buenos Aires to

compute the objects analogous to the ones we describe in the theory. From the comparison

between statistics in the model and in the data we conclude that either full price flexibility

or time dependent rules are quite counterfactual. Nevertheless, in the cases of very large

positive cost shocks in an economy with an underlying high inflation, the pass-through of

the shock to prices is quite fast. In the most extreme case, when the exchange rate jumped

25% (from 38.73 pesos per dollar to 30.95) in the last three days of August, the fraction of

firms changing prices which is 24% in normal times rose to almost 60% between August and

September 2018.

We believe that through this narrative approach we can make a plausible case that reg-

ulated prices can be thought as exogenous changes in cost, and that the same will be true

for some of the large changes in exchange rates. The change in regulated prices followed a

period of many years during which despite the fact that inflation was very high for inter-

national standards, regulated prices were frozen in nominal terms. The situation became

untenable both from the fiscal point of view, costing at least 3% of GDP, and also due to the

distortions that this policy generated. The normalization of prices occurred in steps due to

the very large increases that it implied, as well as due to challenges in the courts. To get an

idea of the magnitude of the change in relative prices, during the sample period the price of

natural gas relative to the core CPI was mutiplied by a factor of five and the relative price

of electricity by a factor of three. On the exchange rate changes there were different reasons

for the observed large changes. In 2014 there was a devaluation within a regime with severe

capital controls and dual exchange rates. At the end of 2015 and beginning of 2016 there

was a large devaluation when the multiple exchange rate system was abandoned essentially

overnight. The sharp depreciation of the exchange rate throughout the period April-August

2018 is probably the result of a mix of a reaction to a change in economic policies (perhaps
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larger than what policymakers anticipated) and of exogenous shocks within the framework

of a dirty floating exchange rate regime. In our model cost shocks are once and for all

unexpected changes, which may not be completely accurate for some of the episodes.1

We use the micro data underlying the construction of the consumer price index (CPI) in

the city of Buenos Aires to compare the predictions of the model with actual observations after

several of the large cost increases that occurred between 2014 and 2018. Some readers may

be aware that the national statistical agency produced price indices that are widely regarded

as underestimating the inflation rate between 2008 and 2015, see for instance Cavallo (2013).

The price index of the city of Buenos Aires has the advantage that it was independent of the

national statistical agency and produced figures very similar to the privately produced price

indexes.

We propose a theoretical model where firms have both idiosyncratic as well as aggregate

changes in costs. We assume that firms are monopolistic competitors and that they face a

fixed menu cost for changing prices. The solution to the firms’ price setting problem gives

rise to a classical sS rule for price changes, which postulates price increases as well as price

decreases. The optimal decision rule, as well as the response of the aggregate price level

depend crucially on the ratio of the inflation rate to the variance of the idiosyncratic shocks.

While idiosyncratic shocks make the analysis more complicated, we think that they are

essential to the answer of the problem for two reasons. First, they are required to reproduce

the large fraction of price decreases that are observed even when inflation rate is above

25% per year. Second, the behavior of the pass-through depends on the magnitude of these

shocks relative to the level of inflation. In the theoretical section we compare the effect of

cost increases in three cases: the case of very low inflation rate, which is the case of most

economies, high inflation rates of the order of Argentina during this period (say 25% per

1For instance, the normalization of the exchange rate system and removal of capital controls is a policy
that was to a large extent announced by the two main parties before the election at the end of 2015. Indeed
there is an unsettled debate in the Argentine economic circles on whether the effect of the likely increase in
the exchange rate that the unification of the exchange rate markets will entail was anticipated and included
in price changes months before it happened. We discuss these episodes in more detail in section 2.
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year), and very high inflation. The degree of pass-through depends on both the size of the

steady state inflation rate as well as the size of the shocks. It turns out that even for inflation

rates as large as 25% per year, still one can see clear effects of price stickiness. Yet for large

cost increases, of the magnitude that occurred in Argentina, the pass-through occurs in an

extremely short time period. In particular, there is a very large impact effect, so most of the

adjustment occurring at the time of the shock, and a very short half life, smaller than two

months, for the remaining adjustment. Indeed this matches what we see during the months

of large cost increases in Argentina: a very sharp increase in the fraction and in the size of

price increases, almost no change in the fraction and in the size of price decreases, and a

jump on the inflation rate close to the size of the cost increase.

It is well known that cost shocks explain a large fraction of the variance of inflation

in standard estimates of medium size new-keynesian models. Nevertheless, these costs are

typically a residual in the standard specification. On the other hand, there is a literature

that tries to use identified cost shocks to evaluate different price setting mechanism. Our

paper adds to the literature that studies the effect of large cost shocks in price setting models

with menu costs of price adjustment. Early examples of this literature are Gagnon (2009)

and Gagnon, López-Salido, and Vincent (2013). These papers consider the experience of

Mexico in the mid 90’s where there was both a large step devaluation (about 40%) as well

as changes in the VAT (from 10% to 15%). Another similar recent exercise is the one in

Karadi and Reiff (2018), which uses changes in the VAT in Hungary. In both cases, a version

of a menu cost model is used to interpret the micro data underlying the construction of

CPI and to compare the predictions of this class of models with the data. A related, yet

different evidence is the study of the exchange rate pass-through to export and import prices

in customs data in Bonadio, Fischer, and Saur (2016) comparing small changes in the Swiss

franc’s value with the large change that occurred when the Swiss National Bank abandoned

its ”peg” to the euro in January 2015. Finally, Alvarez, Lippi, and Passadore (2016) estimates

panel regressions of the short term pass-through of exchange rate changes to consumer prices
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that include non-linear terms in the size of the exchange rate changes. Differently from

the previous studies, these panel regressions do not use micro price statistics. Relative to

Gagnon (2009), Gagnon, López-Salido, and Vincent (2013), and Karadi and Reiff (2018),

and motivated by the levels of inflation in Argentina during the period of interest, this paper

has a more systematic treatment of the role of the running (or steady state) inflation and of

the size of the cost shocks on the level of short term pass-through, and on the overall speed

of adjustment. Finally, relative to Alvarez et al. (2019) we study a different period of time

for Argentina, but more importantly, in this paper we concentrate on the effect that large

unexpected cost shocks have on price dynamics, as opposed to the effect of different steady

state inflation levels which is the main point of Alvarez et al. (2019).

The remainder of the paper is organized as follows. In section 2 we provide a brief

narrative of macroeconomic events in Argentina in the period 2012-2018 as they pertain to

nominal cost shocks and inflation. The theoretical analysis is in section 3. The firm’s problem

is described in section 3.1, section 3.2 describes the steady state distribution of price markups

over nominal marginal costs, section 3.3 explains how inflation affects optimal decision rules,

section 3.4 derives analytically expressions for the impulse responses of consumer prices to

cost shocks and section 3.5 contains numerical simulations of how cost shocks affect consumer

price dynamics for small and for large cost shocks, and for three different inflation rates (low,

high, and extremely high). Finally, section 4 compares the predictions of the model with the

evidence emerging from city of Buenos Aires consumer price micro-data.

2 Nominal Cost Shocks and Inflation, Argentina 2012-

2018

In this section we provide some background on the evolution of inflation and the nominal

value of some key inputs during our sample period, July 2012 to September 2018. We first

comment on the monetary policy framework and exchange rate developments and later on

regulated price policies for energy inputs.
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We divide the analysis of the monetary policy framework in three periods: the dual

exchange rate regime prior to December 2015, the inflation targeting regime between March

2016 and December 2017, and the abandonment of the inflation targeting regime throughout

2018.

During the first period the monetary policy framework was a dual exchange rate regime.

The central bank fixed the Argentine peso price of the US dollar for transaction related to

international trade as well as for some limited financial ones. Capital controls were binding

and a shadow exchange rate market that carried a premium over the official one developed.

We believe that this was caused by the high rate of money growth due to the monetary

financing of deficits. Part of the monetary financing of deficits was sterilized with central

bank debt that reached close to 6% of GDP in March 2016. The average rate of core inflation

between July 2012 and December 2015 in the City of Buenos Aires was 31% (with a median

of 28%).2 The official exchange rate crawled at a median rate of 17% (annualized median

monthly rate of devaluation). Between November 2013 and March 2014 a succession of jumps

in the exchange rate resulted in a cumulative increase of 32% in the exchange rate. Core CPI

prices in those months rose by 15%.

On December 15th, 2015 exchange rate controls were removed and the exchange rate

started to float with limited central bank intervention. The unification of the foreign exchange

market entailed a depreciation of the peso of over 50% between December 2015 and February

2016 (see table 1 and figure 1). In March 2016 the central bank adopted an interest rate

peg as its policy instrument in the context of an incipient inflation targeting regime which

was formally adopted in September. The national inflation targets were 12–17% for 2017,

10% ± 2% for 2018, and 5% ± 1.5% for 2019. The actual core inflation rates in the city of

Buenos Aires were 35% in 2016, 24% in 2017, and 43% in 2018. Wages increased 34% in

2016, 24% in 2017, and 21% in the first nine months of 2018 (prices increased by 30% in this

period).3

2Average and median of annualized monthly inflation.
3Core inflation for the city of Buenos Aires. Wages are from Ministerio de Trabajo (2018)

6



Starting in December of 2017 there was a gradual abandonment of the inflation targeting

framework. On December 28th 2017 the inflation target for 2018 was raised from 10% to

15% and in January the central bank lowered interest rates by 150 basis points from 28.75%

to 27.25%. The market perception was that this interest rate move was motivated by po-

litical pressure. A speculative run on the central bank’s debt unraveled between April and

September 2018. In the period between April and September (end of period) the central

bank paid (did not rollover) 529 billion pesos of short term debt (40% of its debt and 53%

of the monetary base in April) and the monetary base increased by 250 billion pesos in the

same period (see Bassetto and Phelan (2015) for a related theoretical model).4 This led to a

sharp depreciation of the Argentine peso. The peso-dollar exchange rate quivered around 17

pesos per dollar in the period July-December 2017, then around 20 pesos per dollar between

late January and the end of April, and reached reached 41 pesos per dollar in late September.

The evolution of the (log) exchange rate is depicted in figure 1.

Public utilities prices were also an important source of large nominal cost shocks during

our sample period. The nominal price of regulated goods such as electrical power, natural

gas, water, and public transportation was practically frozen for a decade up to 2014. With

the price level rising, the relative price of regulated goods, especially energy items, steadily

eroded. The gap between the nominal marginal cost of these regulated goods and their

sale prices was covered with government subsidies that in 2015 are conservatively estimated

around 3% of GDP. A small attempt at normalizing these prices resulted in large nominal

increases in the price of natural gas during 2014. A more ambitious normalization started

2016.

Figure 1 provides an overview of the evolution of the nominal variables described in

the preceding paragraphs. All prices are from the City of Buenos Aires CPI.5 The solid

4Establishing the reasons behind this run is difficult and goes beyond the purpose of this paper. Several
explanations have been proposed in local economic circles ranging from the importance of current account
deficits, the effect of negative productivity shocks on agriculture (a very large drought), the size and maturity
of the central bank debt, changes in local taxation of capital flows, the fear of fiscal dominance in the near
future, and the adverse international financial circumstances, to cite few of them.

5We work with data for the City of Buenos Aires as the reliability of national statistics between 2007 and
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lines depict the natural logarithm of the core CPI, regulated prices in the CPI, the price of

electricity, the price of natural gas, and the exchange rate. Core inflation excludes seasonal

products and regulated prices. All five are normalized to their July 2012 value.

Figure 1: Cost shocks and Inflation
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Note: Prices on the left axis are the natural logarithm of the price index published by the
City of Buenos Aires normalized . The exchange rate is the natural logarithm of the monthly
average published by the central bank. Core inflation is the monthly log difference of the
core price level (resto) which, excludes seasonaland regulated goods and services.

The black solid line is the price level for core goods and services while the doted black

line represents its rate of change (in log differences). The blue line represents the exchange

rate expressed as pesos per dollar. There are three major devaluations. During the dual

exchange rate period the exchange rate exhibits a rate of growth below that of core prices

2016 has been severely questioned. For example, on February 2013 the International Monetary Fund issued
a declaration of censure against Argentina in connection with the inaccuracy of CPI data from the national
statistical office (INDEC). Also see Cavallo (2013) for a comparison of national statistics and online prices
across several Latin American countries, including Argentina.
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except for the period of the devaluation around January of 2014. There is a second sharp

depreciation of the peso between December of 2015 and February 2016 after the removal of

capital controls. The last episode of depreciation of the peso, about 80%, occurred between

April and September of 2018.

Regulated consumer prices in the city of Buenos Aires are represented by the green line

in figure 1. As it was the case for the exchange rate, prior to December 2015 these prices

grow at a slower pace than core prices and there are two important relative price corrections,

one in 2014 and another one in 2016. The main drivers of regulated prices are the prices of

energy, especially electricity and gas. The red line represents the price of electricity. It is a

step function with jumps of 253% in February 2016, 92% in January–March 2017, 68% in

December–February 2018 and 25% in August 2018. The price of natural gas follows a similar

pattern (see table 1).6

We summarize the behavior of nominal cost shocks in a proxy variable the we refer to as

cost proxy of cost shock. We assume that consumer goods are produced with labor, tradable

inputs, and regulated goods. In our model we assume that there is a consolidated sector

that produces and retails consumption goods. It purchases an aggregate input in a flexible

price competitive market and sells its output to consumers in a monopolistically competitive

market. To construct our intermediate input measure, we assume following Jones (2011)that

the share of intermediate inputs in the production of the final consumption goods is 50%, and

that the remaining is a labor share of 50%. The weights of energy and tradable intermediate

goods are 10% and 40%, respectively. Hence, our measure of cost shocks is obtained by

computing first a geometric price index for this aggregate input as p0.1
R E0.4W 0.5, where pR

denotes regulated prices, E is the peso/US dollar exchange rate, and W are nominal wages.

Figure 2 depicts the cost shock proxy variable, wholesale prices and core inflation.7 The proxy

6The price of natural gas fell 68% in August 2016 because the Supreme Court stayed the April price
increase on procedural grounds. The price increases were resumed after the executive remedied the judicial
objection to the previous price increase.

7There is no official reliable data on wholesale prices prior to December 2015.
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Table 1: Large Nominal Cost Shocks

Electric- Natural Exchange Electric- Natural Exchange
ity Gas Rate ity Gas Rate

Oct-12 9 Feb-17 48
Nov-12 15 18 Mar-17 30
Jan-14 12 Apr-17 31
Feb-14 11 Jul-17 7
Apr-14 57 Dec-17 43 42
Jun-14 32 Jan-18 8
Aug-14 29 Feb-18 17
Dec-15 19 Apr-18 36
Jan-16 19 May-18 17
Feb-16 253 8 Jun-18 12
Apr-16 184 Aug-18 25 9
Jul-16 5 Sep-18 28
Aug-16 -68 Oct-18 27
Oct-16 134 Nov-18 6
Nov-16 14

Note: We report the percentage change between prices in month t and t − 1. Price data for
electricity and gas is from the Consumer Price Index for the City of Buenos Aires. Exchange rate
is the change in the monthly average exchange rate.
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for nominal cost shocks tracks closely wholesale prices with a correlation of 0.92. Observe

that spikes in nominal cost shock inflation are associated with spikes in core inflation.

Figure 2: Cost shocks proxy and wholesale prices
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are from the City of Buenos Aires Statistical Office. Wholesale prices (IPIM)
from INDEC. Exchange rates from the central bank. Wages from Ministe-
rio de Trabajo (2018). Regulated prices from the sub-component of the
CPI.

In the next section we present a theoretical model of the pricing decision of a retail firm

in order to study the speed and the magnitude of the pass-through of these cost shocks to

consumer prices.

3 Pass-through of cost shocks to prices: theory

In this section we study the nominal pass-through to consumer prices of the nominal cost

shocks in a menu cost model of price adjustment. We consider the problem of a monop-

olistically competitive firm that faces idiosyncratic demand and productivity shocks in an
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environment in which the cost of an aggregate input grows at a constant inflation rate. We

study how the aggregate consumer price level reacts to an unexpected jump in nominal

marginal costs in this environment.

We first describe the firm’s price setting problem in section 3.1 and then look at the cross

sectional distribution of prices in section 3.2. We then proceed to describe how steady state

inflation affects decision rules in section 3.3 that refers to Alvarez et al. (2019). Finally,

in section 3.4 we report the impulse response of price distributions to cost shocks and in

section 3.5 we compare the reaction of prices to small and large cost shocks and find interesting

nonlinear effects.

3.1 Price setting problem for the firm

We consider an economy where firms’ marginal nominal cost have a common and an idiosyn-

cratic component. The common component is given by a nominal cost, which we will assume

that after an initial value is realized will grow at a deterministic constant rate. The (log of

the) idiosyncratic component follows driftless Brownian motion, with innovation variance σ2.

Firms face a downward slopping demand, and act as monopolistic competitors and must pay

a fixed menu cost to adjust their price. The firm’s marginal (and average) cost will then be

W (t)x(t), where W (t) is the nominal cost of the aggregate input and x(t) is an idiosyncratic

shock. We assume that x(t) = exp (σB(t)), where B(t) is a standard brownian motion, inde-

pendent across firms. We will start the firms at a steady state, where Wt has been growing

a constant inflation rate π, so that W (t0 + T ) = W (t0)eTπ.

We will use g to describe the logarithmic deviation of the firm’s current markup relative

to the one that maximizes instantaneous profits. We refer to this variable as the “price gap”.

The price gap is positive, g > 0, if the price of the product is relatively high or if the firm’s

cost is relatively low. We will assume that the optimal markup is independent of the level of

the costs and of the demand, as it will be the case with an iso-elastic demand function and

constant marginal cost. Note that during a period where the firm does not change prices,
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its markup changes only because it cost changes, i.e. dg(t) = −d logW (t) − d log x(t). For

instance, at steady state we have that dg = −πdt−σdB during the period at which the price

of the good does not change. At the times when the firm decides to pay the fixed cost and

change prices g(t) changes discretely and in equal proportion (equal in log points) than the

change in price.

The firm problem can be summarized by the Bellman equation:

V (g) = max
τ

E
[∫ τ

0

e−ρtF (g(t)) dt+ e−ρτ
[
ψ + max

g̃
V (g̃)

]
| g(0) = g

]
(1)

subject to dg(t) = −πdt− σdB(t) for all 0 ≤ t ≤ τ and g(0) = g (2)

In this problem ψ is the fixed cost, ρ is the (real) discount rate, π is the inflation rate

(of the aggregate input), σ is the idiosyncratic volatility of the cost shocks, and F (·) is

the instantaneous profit function, written as a function of the price gap. The expectation

in the objective function is with respect to the cost shocks, the values of the path for B(t).

Mathematically speaking the object of choice τ are stopping times. A stopping times indicates

the time and circumstances under which prices will be adjusted. In this kind of problem

the optimal rule is that τ occurs the first time that g(t) is outside a range of inaction.

After paying the cost and deciding the optimal price we find the optimal return point as

g∗ = arg maxg̃ V (g̃), or V (g∗) = maxg̃ V (g̃). In Appendix B we write the o.d.e. and

boundary conditions which simultaneously determines the function V (·) and the values of

g, g∗, ḡ. In Appendix C we given an alternative way to formulate and compute a discrete

time and discrete state problem that approximates it.

The optimal policy for the firm is an sS rule described by three numbers g, g∗ and ḡ. We

refer to g < ḡ as the boundaries of the range of inaction, and to g∗ ∈ (g, ḡ) as the optimal

return point. The inaction region is thus described by the interval [g, ḡ]. If the price gap g

is in the inaction region, the price of the firm stays constant and the price gap changes with

the cost changes—with opposite sign. If the price gap is lower than g, so that the markup is
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very low, then the firm will pay the fixed cost ψ and increase prices so that right after the

price change the price gap will be g∗. Likewise, if the price gap is higher or equal than ḡ,

so that the markup is very high, the firm will pay the fixed cost ψ and decrease its price, so

that right after the price change the price gap becomes g∗.

Note that we are writing the profit function F as a function of the price gaps exclusively.

In general, even at steady state, it should be a function of both the price and the cost, so

that profit equal markup times quantity demanded, which itself depends on relative prices.

We explain below the conditions under which this simplification can be obtained. We choose

units so that F is measured in either terms of units of the aggregate input, or as deviations

of maximized steady state profits –our preferred choice. Of course, the fixed cost ψ has to

be measured in the same units as F . The optimal decision rule depends only on the ratio

ψ/B, since the value function is homogeneous of degree one in ψ and B. Intuitively, the

fixed cost matters only through the relative advantages of changing prices, captured by the

curvature of F , rather than on each of them separately. Furthermore, the discount factor ρ is

a real interest rate, measuring the intertemporal price of the aggregate input. The inflation

rate π is also the nominal change in the price of the aggregate input. Since ρ, π and σ2 are

rates per unit of times, the optimal decision rule depends, besides on ψ/B, only on the ratios

{ρ/σ2, π/σ2}.

Derivation of the profit function F . We have written the profit function F having the

price gap g as its only argument. This is a simplification which provides lots of tractability.

In Alvarez et al. (2019) we work without this simplifying assumption, obtaining essentially

the same results.8 We describe here the assumptions so that we can use the simplified version.

Let Q(p/W )z be the quantity demanded as a function of p/W , the ratio of the nominal price

of the good p and the nominal price of the generic input W . In steady state we can write

this relative price or the relative price with respect to some aggregate good without loss of

8See the section on the model with random walk shocks and CES demands, which we refer to Kehoe and
Midrigan (2015) version of the Golosov and Lucas’s (2007) model.
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generality. It also turns out that in the set-up described by Golosov and Lucas (2007), which

is in no way pathological, this is a consequence of the general equilibrium structure. The

variable z is a multiplicative shifter of the demand, which we use for two different illustrations.

The nominal marginal cost is xW . We will proceed by steps. First we will derive the profit

function F̃ with (g, z, x) as arguments. Then we will add assumptions to eliminate (x, z)

from it.

Let’s use m for the log of the optimal markup, i.e. let the nominal price that maximize

instantaneous profits be: P ∗ = em xW . Thus g is defined as

g ≡ log

(
P/(Wx)

P ∗/(Wx)

)
= log

(
P

Wx
/M

)
= log

(
P

Wx

)
−m or P = Wxeg+m (3)

Now we are ready to write the profit function. The units of profits will be first in term of

the real value of the aggregate input. Profits in nominal terms are [P − xW ]Q (P/W, z), i.e.

nominal markup times quantity. Dividing this expression by W we obtain profits in time t

units of the aggregate input.

F̃ (g, x, z) =

[
P

xW
− 1

]
Q

(
P

Wx
x

)
z x =

[
eg+m − 1

]
Q
(
eg+mx

)
z x (4)

Furthermore, assuming that Q is iso-elastic, with elasticity equal to η, so that Q(P/W ) =

A (P/W )ηz for some constant A, then the optimal markup M , or its log m, will be constant

and equal to m = log(η/(η − 1)). In this case profits will be:

F̃ (g, x, z) =
[
eg+m − 1

]
e−η(g+m)Ax1−η z

It should be clear that, by definition, F is maximized when g = 0.

Adding the extra assumption that the demand shifter satisfy z = xη−1, then we obtain

that F̃ does not depend on (x, z). To be honest, this is a strange assumption; it requires the

shock that increase cost shock to simultaneously push the demand up, so that the maximized
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profit remains the same for any value of x. On the other hand it simplifies the algebra a lot!

As mentioned above, in Alvarez et al. (2019) we work out both version of the models finding

very small differences.

An alternative is to use a second order approximation of the function F̃ (g, x, z) and to

retain only the leading terms on g. In particular, we use a second order approximation of

F̃ (g, x, z) around around g = 0, x = x̄ and z = z̄. Using that g = 0 maximizes profits, and

the multiplicative separable nature of the profit function in three terms, ignoring the terms

that are higher than second order, and the terms not involving g we have

F (g) ≡ −(η − 1)η

2
g2 = −Bg2 so that B ≡ η(η − 1)/2 (5)

where we are measuring profits relative to the maximized profit at x = x̄ and z = z̄, which

equals F̃ (0, x̄) =
(

η
η−1

)−η [
Ax̄1−η z̄
η−1

]
. Of course, we can combine these assumptions too.

Lack of First order strategic complementarity. Finally, the result in equation (5)

is useful because it states that in the model we focus on, there is no first order strategic

complementarity. This is because we can summarize the behavoiur of the rest of the firms

in z. This will be the case in the standard neokeynesian model, where there will be at least

two effects on the profit function coming from aggregate consumption: one is that with CES

demand for each firm, higher output of each of the other firms shifts the demand up, and the

other, in opposite sign, that higher output decreases the Arrow-Debreu price of the good in

the current period. But as we have seen, these effects –captured by z– are of third order in

the profit function in the current set-up.9

Interestingly, this means that we can use as an accurate approximation the firm’s decision

rules characterized by {g, g∗, ḡ} even if the rest of the economy is not at an steady state,

as long as the firm expects constant growth rate of the aggregate input prices. We will rely

heavily in this property to characterize the impulse response of prices to a one-time common

9The general equilibrium version in Golosov and Lucas (2007) also makes the value of the nominal aggre-
gate input, labor in their case, depending only on the path of nominal money.
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shocks to their cost.

3.2 Steady state distribution of price gaps and price changes

We let f(g) be the steady state density of the distribution of price gaps. This density has

support [g, ḡ]. It solves a simple ordinary differential equation, balancing the flows in and

out when a price change occurs. Its shape depends on the parameters {g, g∗, ḡ, π/σ2}. Of

course, g, g∗, ḡ depend on all the parameters that define the steady state problem of the

firm described above, namely {ψ/B, ρ/σ2, π/σ2}, or using the simplification described in

Appendix B it is described by just {ψ/B, π/σ2}. The equations that determine the steady

state density given the decision rules and parameters are:

0 = πf ′(g) +
σ2

2
f ′′(g) for all g ∈ [g, g∗) ∪ (g∗, ḡ] with boundary conditions:

0 = f(g) = f(ḡ) and

∫ ḡ

g

f(g)dg = 1 (6)

The first line is the Kolmogorov forward equation, and the second line has the three relevant

boundary conditions. The solution is given by the sum of two exponential functions. The

boundary conditions on the extreme of the inaction regions indicate that there is zero density

in those points. Intuitively, this is because they are exit points, so it is “hard” to accumulate

density near them. This result will be important for some of the results below.

The shape of the density f depends on the inflation rate relative to the idiosyncratic

variance π/σ2, both through their direct effect, as seen in equation (6) and indirectly through

their effect on g, g∗, and ḡ. For finite π/σ2, the distribution has zero density in its two

boundaries, it is strictly increasing in (g, g∗), non-differentiable at g∗, and strictly decreasing

in (g∗, ḡ). In particular for π/σ2 = 0 the distribution is symmetric around g∗ = 0, and

has a tent-shape, with f ′′(g) = 0. As π/σ2 increases, the value of g∗ becomes positive, and

the shape of f becomes concave from [g, g∗) and convex between (g∗, ḡ]. As π/σ2 → ∞,

the distribution converges to a uniform distribution between [g, g∗] and to a zero density
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everywhere else, as in the model of Sheshinski and Weiss (1979), which has σ2 = 0 and finite

π.

The change on the shape of the invariant distribution f reflects, in a very intuitive way,

the different strength of the idiosyncratic shocks (measured by σ2), which are symmetric, and

the effect of inflation (measured by π), which is asymmetric. As inflation increases, the price

gaps g naturally tend to piled up in the left side, since the cost increase in expected value

as the nominal price remains fixed. Indeed, as π/σ2 →∞ this effect is so strong, that price

gaps essentially march deterministically from g∗ to g, and hence the distribution is uniform,

as stated above. Lastly, the drastic change in shape of f around g∗ is also intuitive, since

after a price is changed the new price of the product is set so that g = g∗, which explains

why the mass is highest at this point, and why it is not differentiable since the behaviour of f

around this point is governed by mass coming from the boundaries of the range of innaction.

In steady state the size of price changes is given by a very simple formula of the thresholds

of the sS rule. Price increases are given by g∗− g, since the firm increases its price when the

markup is very low, i.e. the first time g reaches g. Likewise, price decreases occur when the

markup has reached the value ḡ, and are of size ḡ − g∗. Denoting the size price increases by

∆+
p and the size price decreases by ∆−p we have that: ∆+

p = g∗ − g and ∆−p = ḡ − g∗.

We denote the average number of price changes per unit of time by λa. This can be easily

computed as the reciprocal of the time between price changes, by the fundamental theorem

of renewal theory. The expected time until a price change T (g) for a firm with current price

gap g solves the following Kolmogorov backward equation:

0 = −πT ′(g) +
σ2

2
T ′′(g) for all g ∈ [g, ḡ] with boundary conditions: 0 = T (g) = T (ḡ)

The boundary conditions are quite natural, at either g or ḡ there will be a price change,

and hence the expected time to reach them is zero! Since right after a price change g = g∗,

then the expected time until the next price change is T (g∗), and hence the frequency of price

changes λa = 1/T (g∗). Using a similar procedure we can find the frequency of price increases
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λ+
a and the frequency of price decreases λ−a . For instance, letting T +(g) be the expected

time until a price increase, it is easy to see that it satisfies the same Kolmogorov backward

equation than T . The difference is in the boundary conditions, which are T +(ḡ) = T +(g∗),

since a price decrease will occur at ḡ but we need to keep counting; we also have T +(g) = 0,

since a price increase occurs at g . The frequency of price increases is thus: λ+
a = 1/T +(g∗).

A similar argument holds for the expected time until a price decrease T −, i.e. it solves

the same o.d.e. than T with boundary conditions T −(g) = T −(g∗) and T −(ḡ) = 0. The

frequency of price decreases is thus: λ−a = 1/T −(g∗).

We note that the length of the range of inaction equals the sum of the average size of price

increases plus the average size of price decreases: ḡ − g = ∆+
p + ∆−p . This observation will

become useful because these average sizes can be measured, and the length of the range of

inaction is important to understand when a cost shock is large. Finally, the second moment

of price changes is given by E[∆2
p] = λ+a

λa

(
∆+
p

)2
+ λ−a

λa

(
∆−p
)2

.

In Appendix C we give a simple alternative numerical procedure using a discrete time

and discrete state version of the model to compute the steady state distribution and the

frequency of price changes per unit of time.

3.3 Optimal decision rules and inflation

This subsection analyzes how optimal pricing decisions vary with the rate of normalized

inflation, π/σ, keeping the normalized fixed cost, ψ/B, constant.10

For π/σ2 ≈ 0, then the decision rules are approximately symmetric, with g∗ = 0 and

ḡ = −g. 11 This implies that around zero inflation the price increases and price decreases

have approximately the same size ∆+
p = ∆−p . Moreover, the frequency of price increases and

price decreases is the same around zero inflation, so λ+
a = λ−a .

For higher inflation rates relative to idiosyncratic volatility π/σ2, the optimal return

10In Appendix B shows that, fixing the fixed cost relative to the curvature of profits ψ/B, the optimal
decision rules depend on the normalized level of inflation π/σ2, as discussed in Appendix B.

11We say approximately because under the quadratic approximation at exactly π/σ2 = 0 the decision rules
are symmetric.
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markup g∗ becomes larger. This is because, due to inflation, during inaction markups decrease

in expected value, and thus this expected effect is compensated by starting with a higher

markup. In Alvarez et al. (2019) we show that for small inflation the main adjustment is

not in the frequency of price changes λa, but instead in the difference between the frequency

of price increases and decreases, i.e. the derivative of λa(π) with respect to inflation is

zero at π/σ2 = 0, but the derivative of λ+
a (π) − λ−a (π) is strictly positive. We also show

analytically that it accounts for 90% of the change in inflation at low inflation, the other

10% is explained by changes in ∆+
p −∆−p . Summarizing, as we move from zero steady state

inflation (where frequency and size of price increases and decreases are symmetric) to positive

steady state inflation, the model predicts that the frequency of price increases λ+
a (π) will be

higher than the one of decreases λ−a (π), and that the size of price increases and decreases

will be approximately the same, i.e. ∆+
p ≈ ∆−p . Nevertheless, while while we show that

the average size is similar, we also show that as we move from zero steady state inflation,

∆+
p > ∆−p .12

For very large inflation, λ+
a (π)→ λa(π) and λ−a (π)→ 0, as π →∞, so most price changes

are increases, and the model converges to Sheshinski and Weiss (1979), in the sense made

precise in Alvarez et al. (2019).

3.4 Impulse response of the price level to unexpected cost shocks

In this section we characterize the impulse response of the aggregate (log of the) price level

to a once and for all increase in the nominal price of the aggregate input of size δ, measured

in logs. We will consider different inflation levels π and different sizes of the shock δ.

We start with an economy that is in the steady state distribution of price gaps. This

economy is characterized by parameters {ψ/B, ρ, σ2} and π. Firms will face a once and for

all jump on the nominal price of the aggregate input, and believe that after this jump the

price of the inputs will rise at the same inflation rate π as before the jump. We are interested

12For a precise statement see Propositions 1 and 3 in Alvarez et al. (2019). Numerically we find the changes
given by these derivatives at zero inflation to be accurate even up to inflation rates of 30% per year.
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in computing the effect on the (log of the) aggregate price level of the goods produced by

these firms. We will distinguish between the impact effect on the price level, i.e. the effect

on the moment that the unexpected jump occurs, and the subsequent effects which lead the

price level to adjust up to the full amount δ of the shock.

We can think of the price level just before the shock as the limit: P̄ ≡ limt↑0 P (t; π).

Likewise, we can let the value of the (log of the) price of the aggregate input just before the

shock to be W̄ ≡ limt↑0W (t). Of course, for the price of the aggregate input we have that the

jump is δ = limt↓0W (t) − limt↑0W (t) ≡ limt↓0W (t) − W̄ . As mentioned above, we assume

that d logW (t)/dt = π for t 6= 0. Throughout the exercise the parameters {B,ψ, ρ, σ2} and

the invariant distribution implied by the optimal decision rules, {g, g∗, ḡ} are fixed.

We will denote the price level t periods after the shock P (t; δ, π) for an economy that is

hit by the shock of size δ when the inflation rate of the aggregate input before and after the

cost shock is π. We will let the price level right before the shock to be denoted by P̄ . We

distinguish between the impact effect, which we denote by Θ(δ, π), and the subsequent rate

of change of the (log of the) price level, denoted by θ(t; δ, π). Thus

P (t; δ, π) = P̄ + Θ(δ, π) +

∫ t

0

θ(s; δ, π)ds (7)

Whenever it is clear, we omit δ and π from the expression for P , Θ and θ. Also, while P is

the log of the aggregate price level, whenever it is clear we will refer to it as just the price

level.

Since we are measuring P in logs, then θ(s; δ, π) is the inflation rate of the CPI s periods

after the shock δ has occurred in an economy with steady state inflation rate π. In particular,

after the impact effect at time t = 0, the term θ(s; δ, π)ds gives the contribution to the

average (log) price of the firms that are adjusting prices at times between s and s + ds.

This contribution is equal to θ(s; δ, π) =
[
∆+
p λ

+
a (s)−∆−p λ

−
a (s)

]
, where ∆+

p and ∆−p are the

same as in steady state, but the frequency of price increases and decreases, λ+
a (s) and λ−a (s),

are time varying. The reason these frequencies are time varying is that the density of the

21



distribution of firms indexed by their price gap g, denoted also by f(g, t), is time varying.

This density changes through time because the cost shock δ and the price changes that occur

right after the cost shock have displace it from its steady state. Thus, even following the

same time invariant decision rules as in steady state, it takes time for the density to return

to its steady state level described by equation (6). See the Appendix C for the discrete time

and discrete state space analog computation of the path of the distribution and of λ’s, or in

Alvarez and Lippi (2019) for the continuous time characterization of the impulse response

using an eigenvalue-eigenfunction decomposition.

We will compare the path of the log of the aggregate price level P (t; δ, π) against the path

for the price level of the aggregate input. Recall that the aggregate input growths at rate π

before and after the shock, and jumps by δ log points at time t = 0. In the long run prices

will increase by as much as the shock to the aggregate input, so that

δ = lim
t→∞

[P (t; δ, π)− πt]− P̄ = lim
t→∞

[W (t)− πt]− W̄ (8)

Impact effect. We define the impact effect Θ as the jump in the price level at t = 0, i.e.

Θ(δ, π) = lim
t↓0

P (t; δ, π)− P̄ (9)

To be clear, if prices will be fully flexible, we will have P (t) = W (t) + µ for some constant µ

at all times. With menu costs, after the jump in the aggregate input prices, we expect that

Θ ≤ δ and that overt time the price level P (t) catches up with the increases in the path of

W (t). Later we show that this is true for values of δ and π/σ2 that are not too large.

The impact effect is simple to compute following this two steps procedure. First we shift

the distribution of price gaps from the steady state to the one right after the shock, but

before the prices adjust, so the new density is f(g+ δ) with support [g− δ, ḡ− δ]. This is so

because with the common increase in cost, the price gap of each firm decreases by δ. Second,

using the lack of first order strategic complementarity, all the firms that end up with price
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gaps g below g will increase their prices from their new value for g to ḡ∗. Thus:

Θ(δ, π) =

∫ g

g−δ
(g∗ − g) f (g + δ) dg (10)

This gives the following derivatives:

∂

∂δ
Θ(δ, π) =

(
g∗ − g + δ

)
f
(
g
)

+

∫ g

g−δ
(g∗ − g) f ′ (g + δ) dg

∂2

∂δ2
Θ(δ, π) = f

(
g
)

+
(
g∗ − g + δ

)
f ′
(
g
)

+

∫ g

g−δ
(g∗ − g) f ′′ (g + δ) dg

Evaluating these expressions at δ = 0, and using that, by definition Θ(0, π) = 0, and that at

the exit points of the invariant density we have f(g) = 0, we obtain the following expansion

of Θ on δ:

Θ(δ, π) =
1

2
∆+
p f
′(g) δ2 + o(δ2) (11)

As argued elsewhere, see Alvarez and Lippi (2014), Alvarez, Le Bihan, and Lippi (2016) and

Alvarez, Lippi, and Passadore (2016), if the shock δ is small the impact effect Θ is very small,

mathematically speaking Θ is of second order in δ. We can also see that the leading coefficient

of δ increases with inflation since, as explained above, as π/σ2 increases, the density becomes

more concave in the lower segment, until in the limit f ′(g) → ∞ as π/σ2 → ∞. Thus the

impact effect is of smaller order than δ, but the coefficient of δ2 increases with inflation.

Whether this is an important effect for the level of inflation rates for the period of Argentina

under consideration is an important issue that we will discuss below.

Two extreme examples help to organize ideas. First, consider the case where π/σ2 = 0,

then f ′(g) = 1/(∆+
p )2 is constant, and thus for δ ≤ ∆+

p , equation (10) becomes

Θ(δ, π) =
1

(∆+
p )2

∫ g

g−δ
(g∗ − g)

(
g − g + δ

)
dg =

δ2

2

1

∆+
p

(
1 +

1

3

δ

∆+
p

)
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As in the general case, for small δ, the value of Θ is very small. Yet when δ is large, say

in the order of magnitude of ∆+
p , the impact effect can be large. For instance, if δ = ∆+

p

we have Θ(δ, π) = 2
3
δ which is smaller than δ, but of the same order of magnitude than δ.

Second, consider the other extreme case, where π/σ2 → ∞. In this case f converges to a

uniform distribution between [g, g∗] and thus equation (10) becomes

Θ(δ, π) =
1

∆+
p

∫ g

g−δ
(g∗ − g) dg = δ

(
1 +

δ

2

1

∆+
p

)

which is of order δ. Note that for small δ this gives the same answer as the case of full price

flexibility, i.e. Θ ≈ δ, and indeed it converges to a version of Caplin and Spulber’s (1987)

neutrality case. Interestingly, when δ is not infinitesimal, then Θ > δ. In this case, since

P (t)− P̄ −πt→ δ as t→∞, there must be an overshooting in the short run, and thus prices

should have an eco and oscillate as they converge to their path. Indeed if δ = ∆+
a we have

Θ(δ, π) = 3
2
δ > δ.

The stark difference between the cases with π/σ2 ≈ 0 and π/σ2 → ∞ calls for an

evaluation in the case of Argentina during the period of interest where inflation rate is quite

high, but far away from hyper-inflationary levels, say on the order of 25% per year, when

we exclude the peaks. Is this closer to the π/σ2 → ∞ limit, or is it closer to the π/σ2 → 0

limit. Additionally, are the size of the cost changes for δ for this period in Argentina large

enough that we have to go beyond the approximation in equation (11)? Note that a relevant

theoretical comparison is how large is δ relative to ∆+
p . Motivated by these considerations

we will evaluate the relevant expressions for calibrated parameters values and compare them

with the “observed” impact effects.

Initial slope of the impulse response. We now characterize the initial inflation rate,

just after the impact effect. For this we consider a very short time interval right after the

shock, which we denote by ∆. On the one hand, we note that immediately after the shock,

there is no density near the upper bound ḡ. On the other hand, there is a strictly positive
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density at the lower bound g. Recall that price increases will occur for the firms in the lower

bound of the inaction region which get an idiosyncratic increase in cost, and hence a decrease

in g. Using the assumption of the brownian motion for the idiosyncratic shocks, it can be

shown that about 1/2 the firms at the lower bound will increase prices in the very small

interval of time following the aggregate cost shock. This means that for a very short interval

immediately after the impact effect there is an extremely large number of price increases,

and almost no price decreases.

In particular, after the shift due to the common cost shock, the density is zero in the

upper interval g ∈ [ḡ − δ, ḡ]. Thus, λ−a (∆) → 0 as ∆ → 0. On the other hand, after the

impact effect, and differently from what happens at steady state, there is a positive density

at g = g. This density is equal to 0 < f(g + δ) < f ′(g)δ, where the inequality holds due

to the concavity of the steady state density f in [g, g∗]. Consider the discrete time discrete

state approximation developed in Appendix C where each step of the process for g and of

the discretized steady state distribution are of size
√

∆σ. The number of firms changing

prices per unit of time λ+
a (∆) equals the density at the boundary times the step size

√
∆σ

times the probability that those firms have an increase in cost, denoted by pd, divided by

the length of the time period ∆. For a diffusion, as ∆ → 0 then pd → 1/2. Thus the

fraction of firms changing prices per unit of time is f(g + δ)σ/
(

2
√

∆
)

. This implies that

λ+
a (∆)→∞ as ∆→ 0. We have then θ(∆)→ λ+

a (∆)∆+
p →∞ as ∆→ 0. Yet, θ(∆)∆→ 0,

as ∆ → 0, so the integral for P (t) is still well defined. An alternative more general way to

show that the slope of the impulse response is infinite is in Alvarez and Lippi (2019) using a

eigenvalue-eigenfunction decomposition of the relevant linear operator.

3.5 Comparative static of cost shocks

In this section we compare the effect of a small and a large cost shock, say δ = 0.01 and

δ = 0.1 for three economies: a low inflation one π = 0.025, a large inflation one, π = 0.25

and one close to the hyperinflationary range, π = 2.5. Recall that cost shocks are measured
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in logs, so we are trying 1% and 10% once a for all shocks. Inflation rates are measured as

annually continuously compounded, so we are trying 2.5%, 25% and 250%, but in the last two

cases recall that continuously compounded and annually compounded can be meaningfully

different.13

Calibration. We use the same parameters for all cases. The parameters for the firm

problem are chosen so that at π = 0.25, i.e. 25% annual continuously compounded inflation,

the steady state statistics resemble the same statistics in Argentina for the period under

study. We use η = 7, which has a markup of just above 15% and a fixed cost of ψ = 0.012

yearly frictionless profits. We use an annual discount rate ρ = 0.04 and an annual volatility

of idiosyncratic shock of σ = 0.20.

With these parameters the model implies ∆+
p = 0.12 and ∆−p = 0.097. The average

number of price changes per year are λ+
a = 2.88 and λ−a = 0.89.14 These figures are similar

to the averages for Argentina, when we omit periods of abnormal cost increases. The size

of cost changes in the data is around 10%–11% (see figure 8). The annual number of price

changes measured as the fraction of outlets changing prices in a “normal” month times 12

are λ+
a ≈ 0.24× 12 = 2.88 and λ−a ≈ 0.073× 12 = 0.88 (see figure 7).

We will discuss the effect of small (δ = 0.01 or 1%) and large (δ = 0.10 or 10%) cost

shocks for each of the three continuously compounded annualized inflation rates we consider:

π = 0.025, π = 0.25 and π = 2.5. The plots corresponding to each of the inflation rates are

in figure 3, figure 4, and figure 5, respectively. The small shock is of a size we consider in the

upper bound of what a normal monetary shock is. The large cost shocks are similar of the

type of shocks we argue had occurred in Argentina during the period under consideration,

which we view as extremely large. The three inflation rates correspond to: (i) a “common”

inflation rate for a developed economy (π = 0.025 or 2.5% c.c. per year), (ii) a high inflation

13Continuously compounded yearly inflation at rate π implies that the ratio of prices (or cost) at the end
of the year relative to prices at the beginning of the year is eπ. For example, with π = 0.25, this ratio is
e0.25 ≈ 0.28, and for π = 2.5, this ratio is e2.5 ≈ 12.2!

14We use a time period ∆ = 1/365/12, so two hours.
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rate which is about the average running inflation during the period of study for Argentina

when we exclude the spikes we associate to the jumps in cost (π = 0.25 or 25% c.c. per

year), and (iii) a very large inflation on the hyperinflation range of almost 23% monthly

compounded inflation (π = 2.5 or 250% c.c. per year).15 For each of the inflation rates we

present three panel of plots: the first for the path of the log of the aggregate CPI level and

for the path of the log of the price of the aggregate input, the second panel with the density

of the invariant distribution right before and right after the cost shock, and the third panel

with the path for the (monthly moving average of the) frequency of price increases and price

decreases. Each panel displays two cases, corresponding to the small cost change (1%) in the

left side of the panel, and corresponding to the large cost change (10%) in the right side of

the panel. In total there are nine subplots for each of the three inflation rates.

Some general comments on the objects of figure 3, figure 4, and figure 5 are in order.

First, in the top panel for each figure we have the path of the log of the nominal price for the

CPI and of the path of the log of the nominal price of the aggregate input. We normalize the

price of the nominal input so that at the time of the cost shock, both the core CPI and the

price of the aggregate input are equal. The time of the cost shock is labeled t = 1, and time is

measured in years for the first and third panels. Second, in the middle panel for each figure

we have the invariant distribution for the price gaps at steady state and its version right

after the cost shock, but before the price changes. In the horizontal axis we have indicated

the values of g, g∗, ḡ. The price gap is measured in log point deviations, so that g = 0.1

represent 10% log point difference between the static maximizing markup and the markup

corresponding to that value of g. We have shaded in red the distribution of price gaps right

after the cost shocks. This shaded area measures the fraction of firms (or products) that

change prices on impact, i.e. at the time of the cost shock. Third, the bottom panel displays

the average number of price changes per year. This is defined as follows: we take the fraction

of firms (or products) that change prices per model period and then we divided it by the

15To be clear, for π = 2.5 annual continuously compounded rate, we have that the monthly compounded
rate is

(
e2.5/12 − 1

)
× 100 ≈ 23.

27



Figure 3: Pass-through of nominal cost shocks for low inflation (π = 2.5% c.c.)

(a) (b)

(c) (d)

(e) (f)
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length of the model period. In the plot we display a centered monthly moving average of this

number.16 We take a monthly moving average for comparability with the Argentine data,

which uses monthly frequency, and also to smooth out the large jump. Note that at the time

of the increase of the cost, these frequencies increase smoothly for about a month due to the

fact that we use a centered moving average.

We finish this section with a brief discussion on how the pattern of the different statistics

in these figures illustrates the analytical properties derived above. First we discuss the

difference between the impact effect of the jump in the cost of the aggregate input on the

price level, as well as rate of converge of the price to the cost. Let’s first concentrate on the

case of low (π = 0.025) and high inflation (π = 0.25), i.e. figure 3 and figure 4 respectively.

Even though the inflation rate that roughly corresponds to Argentina is large case (π = 25%

c.c. per year), the pattern for the pass through is similar in figure 3 and figure 4. For both

inflation rates, the instantaneous pass-though is larger for the large cost shock (as can be

seen comparing the left and right subplots). Nevertheless, as expected, in the case of high

inflation (π = 25%) the pass-through is higher and the convergence is faster, i.e. the half

life of the shock with high inflation is one half relative to low inflation one. The convergence

rates in the figures with large shocks are so high, with half-lives below two months, that we

are very close to full price flexibility.

The case of very large inflation of figure 5 with a continuously compounded inflation

π = 250% per year is different. As anticipated in the theoretical section, large shocks in

an inflationary economy induce an overshooting of the price level on impact as shown in

figure 5b. As inflation is very high, firms that adjust prices (and paid the menu cost) find

it optimal to save on future menu costs by raising prices by more than the cost shock. The

case of a small shock depicted in figure 5a instead, is similar to Caplin and Spulber (1987),

also as expected.

16The centered moving average at time t takes an average of half of (1/∆)/12 model periods before the
date t, and half of (1/∆)/12 model periods after the date t, where ∆ is the length –measured in years– of
the model period. See section C for details on the computations.
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Figure 4: Pass-through of nominal cost shocks for high inflation (π = 25% c.c)

(a) (b)

(c) (d)

(e) (f)
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Figure 5: Pass-through of nominal cost shocks for very high inflation (π = 250% c.c.)

(a) (b)

(c) (d)

(e) (f)
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Now we turn to the middle panel of each of the three figures, which itself is useful to

understand the instantaneous pass-through of the top panel just discussed. Note that for

low inflation (π = 2.5% c.c. per year) the invariant distribution is almost a tent-map, as it

should be for exactly zero inflation. Indeed it is known theoretically, that the effect of steady

state inflation around zero inflation is very small. For high inflation (π = 25% c.c. per year)

the invariant distribution is convex-concave, as explained in the theoretical section above.

Also, as explained in the theory section, comparing the small (δ = 0.01) and large cost shocks

(δ = 01) corresponding to the left and right panels respectively, it is seen that the number of

firms (or products) that change prices (i.e. the size of the red shaded area) increases more

than proportionally as the shock increases from 1% to 10%. Alternatively, we can see that

the approximation that the impact effect on prices is proportional to the square of the cost

shock δ is accurate for this range of shocks. Moreover, the size of the red shaded area for the

10% shock in the low inflation rate π = 2.5% case is smaller than in the high inflation rate

π = 25% case, due to the convex-concave nature of the invariant distribution for the higher

inflation rates. Again, the case of very large inflation (π = 250% c.c. per year) is different.

The share of firms changing prices in impact is much closer to be proportional to δ than in

the cases of lower inflation, as can be seen in figure 5d.

Lastly we turn to the behavior of the frequency of price increases and decreases, the

bottom panel of the figures for each inflation rate. First, note that that for low inflation

(π = 2.5% c.c. per year or figure 3) while the rise on the frequency of price increases is

moderately larger than the decline on the frequency of price decreases for small cost shocks

(δ = 0.01 or left panel), this difference is much larger for the case of high cost changes

(δ = .10 or right panel). The pattern is similar in the case of high inflation (π = 25% c.c.

per year, or figure 4), except that the differences between increase and decreases are a bit

more stark. Instead, again, the situation for vey large inflation (π = 250% c.c. per year, or

figure 5) is different. Since there are almost no price decreases, there is no detectable change

on them. On the expected number of price decreases, the behavior is very different from
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small cost shocks (δ = 0.01 or left panel) than from large cost shocks (δ = 0.1 or right panel).

For small cost shocks we have the one time blip that is characteristic of the mechanism in

Caplin and Spulber (1987). Instead, as explained in the theory above, for large cost shocks,

there is overshooting which leads to a subsequent echo effect, which is seen in the damped

oscillations in the path of the frequency of price increases.

4 Argentina’s Evidence on Large Cost Shocks and Price

Dynamics

In the previous section we studied how firms facing menu costs of price adjustments react

to unexpected shocks to nominal marginal costs. We then studied the aggregate behavior

of prices paying particular attention to the effect of these shocks on the average price level,

on the size of price changes, and on the frequency of price adjustment, both on impact and

over time. In this section we look at how prices in the City of Buenos Aires reacted to the

large nominal shocks described in section 2 and draw conclusions on the applicability of the

model.

Figure 6 provides an overview of the behavior of our proxy of the nominal cost and of

core prices. We prefer to look at core inflation because as it excludes seasonal and regulated

goods, this measure of prices avoids the mechanical direct impact that changes in regulated

prices have on the CPI.

There are three large jumps in costs: one in early 2014, a second one in early 2016, and a

third one in May-September 2018. The first one is mainly due to a 23% devaluation that took

place in the second half of January. As our measure of costs is based on monthly averages,

our cost proxy jumps in December 2013 and in January 2014. The 40% weight of tradable

goods in our cost measure implies that the jump in cost is slightly above 9%, roughly in sink

with the size of price changes in the data (see figure 8) and in the simulated examples in

section 3.5. Figure 6 also shows that there is a spike in inflation associated to each spike in

nominal costs. Between November and February 2013 the cost proxy increased 12% while
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Figure 6: Nominal costs and price levels
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the price level increased by 8%. The second shock took place in the first half of 2016. It

consisted of a sequence of cost shocks stemming from the impact of the removal of capital

controls on the exchange rate, and from the change in the relative price of regulated energy

prices as shown in table 1. The impact effect relative to the size of the shock is smaller than

in the first shock. The persistence of the shocks is reflected in the persistence of the high

inflation. Finally, in the first quarter of 2018 there are nominal shocks of about 4% related

to regulated prices and starting in May there are two exchange rate lead spikes in nominal

costs with peaks of 7% in May and 12% in September.

Several issues prevent us from using the data underlying figure 6 to estimate the impulse

response of core prices to cost shocks analyzed in section 3.4. (i) At the time a shock hits prices

might still be adjusting to previous shocks. (ii) The cost shock might have been partially
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anticipated.17 (iii) An aggregate shock might change the relative price between consumer

goods and wholesale goods. (iv) There might be other aggregate cost or productivity shocks

not captured by our cost proxy. Nevertheless, we can check if the frequency and if the size

of price changes in the data are consistent with the theoretical analysis in 3, illustrated in

figures 3 to 5.

Figures 7 and 8 show the frequency and the size of price changes. The figures are based

on the data underlying the City of Buenos Aires core consumer price index (IPCBA-resto).

The city collects approximately 70,000 prices per month for 628 goods and services.18 The

frequency of price changes is computed as the fraction of prices that either increased or

decreased between two consecutive observations within the goods and services included in

the core measure of inflation. The size of price changes is the geometric equally weighted

average of the absolute value of price increases/decreases. The methodology for computing

these statistics is described in Alvarez et al. (2019) where we discuss the property of this

simple estimator and perform robustness checks.

Figure 7 shows the fraction of outlets changing price each month, our proxy for costs and

the core inflation level. Observe first, that the average level of the fraction of price increases

in “normal” times is 0.24 and the one for price decreases is 0.073. The magnitude of the

frequency of price decreases is interesting because it indicates that for the levels of underlying

inflation during 2012-18 in Argentina the benchmark menu cost model of Sheshinski and Weiss

(1979) is unlikely to be the appropriate one–something that we will also see as we examine

other statistics. It rules out the case of π/σ → ∞ in figure 5, pointing out the importance

of idiosyncratic shocks that induce some firms to lower prices even when costs are rising at

a cruising speed of 2% per month.

Second, the three cost shocks identified in our narrative in 2014, 2016, and 2018 are large

in the sense that their size is similar to the size of the price changes in normal times. In the

17 This issue is especially relevant for the devaluation of December 2015. See for example Neumeyer (2015)
and Levy-Yeyati (2015)

18 The instructions to the enumerators and other methodological issues are described in Direccion General
de Estadistica y Censos (2013).
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Figure 7: Cost shocks and the frequency of price changes
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three cases, the reaction of the frequencies of price changes is consistent with the predictions

of the model for the case of a large shock with high inflation, illustrated in figure 4f. The

shock at the beginning of 2014 is short lived and of a similar magnitude to the δ = 0.1 in

the simulated example. As suggested by the theory, the data shows a contemporaneous spike

of the fraction of outlets raising prices to 0.45. The transitory decrease in the fraction of

outlets lowering prices seems to be in the data but it is hard to distinguish it from noise.

The second episode corresponds to the sequence of cost shocks that took place in the first

half of 2016. These shocks also induced an increase in the fraction of outlets raising prices

that is less pronounced and more persistent than the one in 2014. The frequency of price

increases peaks at 0.38 in January 2016 and at 0.35 in May 2016. There seems to be a fall
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in the fraction of outlets lowering prices in the period leading to the devaluation but, again,

it is hard to distinguish it from noise in the data. Finally, the fraction of outlets raising

prices rises throughout 2018 reacts to the cost shocks, with peaks of 0.43 in June and 0.57

in September, coinciding with important jumps in the exchange rate.

Figure 8: Cost shocks and the Size of Price Changes
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Figure 8 describes the absolute size of price changes conditional on a price change taking

place. In “normal” times the absolute size of positive and negative price changes are similar,

around 10-11%. This is consistent with the theory. However, the fact that the absolute

value of price decreases is sometimes higher than the one for price increases after 2014 is

inconsistent with the theory.19

19These differences may just be noise.
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The reaction of the size of price changes to the cost shocks also gives empirical support

to the menu cost model. In the theory, when there is a large cost shock many firms end

up with a markup that is outside the inaction range as shown is figure 4d. This implies

that the magnitude of price increases has to increase in the presence of large unanticipated

shocks. The magnitude of price decreases on the other hand, should not change as a result of

increases in nominal marginal costs as no firm’s markup are pushed above the upper band,

ḡ. These two predictions of the theory are observed in the data. For the three shocks, we

observe significant increases in the magnitude of price increases in figure 8, which reach 50%

in 2018 and 2018. Also, the magnitude of price decreases does not show abnormal patterns

around the time of cost shocks.

We conclude this section by saying that the behavior of the frequency and the size of

price changes supports the pass-through of costs shocks to prices prices predicted by the

menu cost model of price adjustment. In “normal” times with small shocks, the frequency

and the size of price changes are consistent with the simulations for π = 0.25 and δ = 0.01

in section 3.5, supporting the choice of parameter values for ψ/B and π/σ used in the

simulations. The frequency of price decreases of 0.073 and the fact that the size of price

increases and decreases implies that idiosyncratic firm shocks are important. The expected

duration of prices, computed as (λ+ + λ−)−1, is 3.2 months supporting the importance of

price rigidities. For the episodes that we interpret as large unanticipated cost shocks, the

frequency and the size of price adjustment react as the theory predicts with large increases

in the size and in the frequency of price increases and with no discernible effects on these

variables for the case of price decreases. This leads us to conjecture that the fast pass-through

of costs to prices, predicted by the theory but hard to estimate in our dataset, is likely to be

present in the data.
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A Derivation of the profit function

Define

F̃ (g, x, z) = Π(g)Ax1−ηz where Π(g) =
[
eg+m − 1

]
e−η(g+m)

Thus

Π′(g) = e(1−η)(g+m) (1− η) + ηe−η(g+m) and evaluating it at g = 0

Π′(0) = e−ηm [em (1− η) + η] =⇒ em =
η

η − 1

Likewise

Π′′(g) = e(1−η)(g+m) (1− η)2 − η2e−η(g+m) and evaluating it at g = 0

Π′′(0) = e(1−η)m (1− η)2 − η2e−ηm =

(
η

η − 1

)1−η

(1− η)2 − η2

(
η

η − 1

)−η
=

(
η

η − 1

)−η [(
η

η − 1

)
(1− η)2 − η2

]
=

(
η

η − 1

)−η [
η (η − 1)− η2

]
= −

(
η

η − 1

)−η
η = −

(
η − 1

η

)η
η

The level of the optimized value of Π is:

Π(0) = [em − 1] e−ηm = e(1−η)m − e−ηm =

(
η

η − 1

)(1−η)

−
(

η

η − 1

)−η
=

(
η

η − 1

)−η [
η

η − 1
− 1

]
=

(
η

η − 1

)−η [
1

η − 1

]
A second order expansion of F̃ (g, x, z) around (0, x̄, z̄) gives:

F̃ (g, x, z) = Π′(0)Ax̄1−ηg + Π(0)(1− η)Ax̄−ηz̄(x− x̄) + Π(0)Ax̄1−η(z − z̄)

+
1

2
Π′′(0)Ax̄1−ηz̄g2 +

1

2
Π(0)A(1− η)(−η)x̄−η−1z̄(x− x̄)2 + 0

1

2
(z − z̄)2

+ Π′(0)(1− η)Ax̄−ηz̄(x− x̄)g + Π′(0)Ax̄1−η0(z − z̄)g + Π(0)Ax̄1−η0(z − z̄)(x− x̄)

+ o
(
||(x− x̄, g)||2

)
Since Π′(0) = 0 we have:

F̃ (g, x, z) = Π(0)(1− η)Ax̄−η(x− x̄) +
1

2
Π′′(0)Ax̄1−ηg2 + Π(0)Ax̄1−η(z − z̄)

+
1

2
Π(0)A(1− η)(−η)x̄−η−1(x− x̄)2 + o

(
||(x− x̄, g)||2

)
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Finally, ignoring the terms that are smaller than second order, or that do not involve g, and
dividing by F̃ (0, x̄, z̄), the maximum profit at x̄, we have:

F (g) = −1

2
η(η − 1)g2 ≡ Bg2 .

B Value function and optimal decision rules

The value function V (·) and the optimal decision rules {g, g∗, ḡ} solves the following system
of o.d.e. and boundary conditions:

ρV (g) = F (g)− πV ′(g) +
σ2

2
V ′′(g) for g ∈ [g, ḡ]

as well as value matching and smooth pasting at the boundary of the range of inaction as
well as optimality of g∗:

V (g) = V (g∗)− ψ , V (ḡ) = V (g∗)− ψ , and V ′(g) = V ′(ḡ) = V ′(g∗) = 0

As explained in Alvarez et al. (2019), the decision rules depend on ψ/B, π/σ2 and ρ/σ2.
One can further simplify the problem by considering the case in which ρ → 0, the so called
“ergodic” control case. Indeed the solutions are very insensitive to ρ when it takes small
values –one can show that the derivative of them with respect to ρ is zero when evaluated
at ρ = 0. The appendix in Alvarez et al. (2019) describes the limit that defines the ergodic
control case and characterizes its solutions. One can also compare the solutions obtained
numerically with the method described in Appendix C, which requires ρ > 0; they are
almost identical. Hence, to simplify, we will parametrized the solutions by two ratios: ψ/B
and π/σ2.

C Numerical solution of value function and simulated

statistics

An alternative way to compute both the value function and optimal policies, as well as the
effect of cost shocks of the price level is to discretize time as well as the state space. We
consider there a discrete time and discrete state version of the problem. We let ∆ be the
length of the time period. We will let

√
∆σ the distance between any two points in the state

space. For this we represent the Brownian motion during the range of inaction as:

g(t+ ∆)− g(t) =

+σ
√

∆ with probability pu = 1
2

(
1− π

√
∆
σ

)
−σ
√

∆ with probability pd = 1
2

(
1 + π

√
∆
σ

)
so that E [g(t+ ∆)− g(t)] = −π∆ and E [g(t+ ∆)− g(t)]2 = ∆σ2. Thus we can let the state
space be G = {k

√
∆σ}k=M

k=−M with typical element gk ∈ G. The value function is just a vector
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V ∈ R2M+1. The discretized version solves the following Bellman equation:

Vk = max

{
ψ + max

j
Vj , ∆F (gk) +

1

1 + ∆ρ

[
puVmax{k+1,K} + pdVmin{k−1,−K}

]}
for k = −K,−K + 1, . . . , K − 1, K. The choice of K should be large enough so the range
on inaction is well in the interior of G. The choice of ∆ should be small enough so that
it approximates well the continuous time limit. The solution of this problem will give the
thresholds g and ḡ, as well as k∗ = arg maxk{Vk} so that g∗ = gk∗ .

We let f be a 2K + 1 positive vector containing the fraction of firms with different price
gaps. For instance fk will be the fraction of firms with price gap gk. The law of motion for the
vector with the distribution of firms f(t+1) can be represented by a square stochastic matrix
L of 2K+1×2K+1 dimensions, so f(t+∆) = Lf(t), where we use f(t) for the column vector
of 2K + 1 values of the fractions of firms fk(t) a time t with price gap gk. The matrix L can
be thought as the sum of two matrices. The first matrix has zeros in all the entries, except
in the entires next to the diagonal where it has ether pu or pd, keeping tract of the mass of
firms within the inaction region. The second matrix is also sparse, it has zeros and ones, with
ones indicating that the firms that are outside the range of inaction will transit to optimal
return point k∗ with probability one. Recall that we have: fj(t + ∆) =

∑
k=−K,K Lj,kfk(t).

Let k, k∗ and k̄ the indices of the elements of f that correspond to g, g∗ and ḡ respectively.
The elements Li,j are zero, except in the following cases.

1. For k = −K, . . . , k − 1, then Lk∗,k = 1,

2. For k = k̄ + 1, . . . , K, then Lk∗,k = 1,

3. For k = k + 1, . . . , k̄ − 1, then Lk,k+1 = pd and Lk,k−1 = pu,

4. Lk,k+1 = pd and Lk̄,k̄−1 = pu, and

5. Lk∗,k = pd and Lk∗,k̄ = pu.

As it is well known the invariant distribution can be obtained by computing the powers of
LT for large value of T . Alternatively, the invariant distribution is the eigenvector associated
with the eigenvalue equal to one of matrix L.

The fraction of price changes per period of length ∆ is given a λ+
a (t) = 1

∆
l+ f(t) where

l+ is a vector that adds the components of the vector f(t) with values below g. In particular
the row vector l+ has:

1. l+k = 1 for k = −K, . . . , k − 1,

2. l+k = pd, and

3. l+k = 0 for k = k̄ + 1, . . . , K.

We can define λ−a (t) = 1
∆
l− f(t) in an analogous way. The row vector l− has:

1. l−k = 1 for k = k̄ + 1, . . . , K,
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2. l−
k̄

= pu, and

3. l−k = 0 for k = −K, . . . , k̄ − 1.

Thus, the fraction of firms that change prices between t and t + ∆ per unit of time is
λa(t) = λ+

a (t) + λ−a (t). Note that the definition of λa, λ
+
a and λ−a , divides the fraction of

firms that adjust prices by ∆ so that it is comparable, at least for small ∆, to the continuous
time expressions. Hence, if we multiply the expressions for λa(t), λ

+
a (t) or λ−a (t) by ∆ we will

obtain fraction of firms that change prices during the interval t and t+ ∆.

Discrete time - discrete state impulse response. We can write the equivalent of the
impulse response on prices using the matrix L. We start with f̄ given by the invariant
distribution implied by L. Then we let f̂(0; δ) be the 2K + 1 vector of the displaced initial
conditions. This is a shift of the mass to the left by an amount equal δ. This vector is given
by:

f̂k(0; δ) = f̄k+ν for k = −K, . . . ,K − ν and f̂k(0; δ) = 0 otherwise, (12)

and where ν = δ/
[
σ
√

∆
]

which, for simplicity, we assume to be an integer. Now we can

compute the impact effect Θ:

Θ =

k−1∑
k=−K

(gk∗ − gk) f̂k(0; δ)−
K∑

k=k̄+1

(gk − gk∗) f̂k(0; δ) , (13)

Then we compute the sequence of distribution of firms indexed by the their price gap as:

f (∆) = [L]j f̂(0; δ) for j = 1, 2, . . .

With these elements we compute the rate of increase in prices θ’s:

θ(j∆) = ∆+
p λ

+
a (j∆)−∆−p λ

−
a (j∆) for j = 1, 2, . . . where (14)

λ+
a (j∆) =

1

∆
l+ f(j∆) for j = 1, 2, . . . , and (15)

λ−a (j∆) =
1

∆
l− f(j∆) for j = 1, 2, . . . . (16)

The analog of the continuous time impulse response is:

P (j∆) = P̄ + π∆ + Θ +

j∑
k=1

θ(k∆)∆ for j = 1, 2, . . .

where P̄ is the price level in steady state just before the cost shock, or P̄ = P (−∆).
To simplify the exposition we have not taken into account the regular idiosyncratic shocks

that also occur during the period between t = 0 and t = ∆. To correct for this effect we have
included π∆ to the initial value of P̄ , which is the correct value since we are starting with
the invariant distribution. This has the interpretation that the shock δ occurs at the end the
discrete period, but before the next period. As ∆→ 0 these effects can be neglected.
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