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Abstract 

The dynamic version of the Nelson-Siegel model has shown useful applications in the investment 

management industry. These applications go from forecasting the yield curve to portfolio risk 

management. Because of the complexity in the estimation of the parameters, some practitioners are 

unable to benefit from the uses of this model. This note presents two approximations to estimate the 

time series of the model’s factors. The first one has a more technical aim, focusing on the 

construction of a representative base to work, and uses a genetic algorithm to face the optimization 

problem. The second approximation has a practitioner spirit, focusing on the easiness of 

implementation. The results show that both methodologies have good fitting for the U.S. Treasury 

bonds market. 

 

 

 

 

Resumen 

La versión dinámica del modelo Nelson-Siegel ha mostrado útiles aplicaciones para la industria de 

gestión de inversiones. Estas extensiones van desde proyectar la curva de rendimientos, hasta la 

gestión de riesgo de un portafolio de bonos. Dado que la complejidad en la estimación de los 

parámetros es significativa, algunos practicantes no son capaces de beneficiarse de los usos de este 

modelo. En esta nota se presentan dos aproximaciones para estimar las series de tiempo de los 

factores del modelo. La primera tiene un enfoque más técnico, concentrándose en la construcción de 

una base de trabajo representativa, y usa un algoritmo genético para enfrentar el problema de 

optimización. La segunda aproximación conserva un espíritu práctico, enfocándose en la facilidad de 

su implementación. Los resultados muestran que ambas metodologías poseen un buen ajuste para el 

mercado de bonos del Tesoro Estadounidense. 
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1 Introduction

Over the last decades, modelling the yield curve has become a major interest
for both academics and investment practitioners. Jones (1991) indicates that
approximately 95% of the total return of a US Treasury bonds portfolio can
be explained by three type of movements. These movements include parallel
shifts (86%), slope twists (9.8%) and butterfly type movements (3.6%). Litter-
man and Sheinkman (1991) find similar results and expose the benefits of a
three-factor approach (level, slope, curvature) on bond portfolio hedging.

There are many techniques and models to fit a yield curve, but very few
of them end up being as popular as the model proposed by Nelson and Siegel
(1987). Diebold and Rudebusch (2013) attribute this success to three main fea-
tures. Firstly, the model respects the restrictions imposed by the economic and
financial theory (e.g. discount factor tends to zero as maturity grows). Sec-
ondly, its parsimonious approximation avoids in-sample overfitting, improv-
ing its forecasting capacity. Finally, it can take any yield curve form, empiri-
cally observed in the market.

Thanks to the great versatility shown by the Nelson-Siegel model and the
recent interest of researchers, many extensions of the model have emerged.
Some of them include additional variables (Svensson, 1995), and no-arbitrage
conditions (Christensen, Diebold and Rudebusch, 2011). Diebold, Ji and Li,
(2006) extend the use of the model and show that managing interest rate risk
with a three-factor approach (level, slope and curvature durations), can be
more reliable than a one-factor approach (modified duration and convexity).

Although this model could be a powerful tool in the hands of portfolio
managers, estimation techniques can result somewhat unfamiliar and techni-
cal. This study is organized as follows: the second section introduces, briefly,
the Nelson-Siegel model. The third section develops a model calibration for the
US market. The fourth section proposes a practitioner version of the exercise,
more pragmatic and replicable. The fifth section concludes.

2 Modelling the yield curve

Nelson and Siegel (1987) modelled the yield curve using three components.
The first one remains constant when the term to maturity (τ) varies. The sec-
ond factor has more impact on short maturities. The impact of the third factor
increases with maturity, reaches a peak and then decays to zero. The authors
conclude that each one of these three factors governs the part of the yield curve
where they have more impact; long (β1), short (β2) and medium term (β3), re-
spectively. There is a fourth factor (not entirely described), λ, that can be inter-
preted as a decay factor. The value of λ affects the fitting power of the model
for different segments of the curve.

y (τ) = β1 + (β2 + β3)

(
1− e−λτ

λτ

)
− β3e−λτ (1)
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Diebold and Li (2006) propose a dynamic version of the model. Firstly, they
reinterpret the three components of the original model as level (lt), slope (st)
and curvature (ct), at period t. Secondly, they realise that if the yield curve
evolves in time, so do the factors explaining it. This allows the potential use of
the model for forecasting purposes.

yt (τ) = lt + st

(
1− e−λtτ

λtτ

)
+ ct

(
1− e−λtτ

λtτ
− e−λtτ

)
(2)

λ introduces a non-linearity in the equation (2). Nelson and Siegel (1987)
note that by fixing this parameter, the problem assumes a lineal form, and it can
be solved by OLS. Following this, Diebold and Li (2006) propose the two-step
estimation. The first step of the procedure consists of fixing the decay factor to
estimate the parameters. The second step consists of fitting a dynamic model to
the factors

{
l̂t, ŝt, ĉt

}
with a VAR or other relevant model. Diebold and Rude-

busch (2013) analyse various methodologies to estimate the parameters of the
model. The authors note that although more complex methodologies are supe-
rior, in principle, they have only slightly better fitting results than the two-step
estimation.

This study has the objective of providing tools to estimate the first part
of the two-step methodology. In other words, we intend to fix λ, so we can
estimate the time series of level, slope and curvature. We will present two
approaches. The first one will be a more rigorous approach, from the academic
point of view. The second one will be more pragmatic, focusing on the easiness
of implementation. Both methodologies will focus on the US Treasury market,
due to its high liquidity and data availability.

3 Rigorous approach

This approach works on a rich price base, an ideal scenario to calibrate the
model. Though its representation of the bond market is the best and its re-
sults are very good, the construction of the price base is time consuming and
the estimation is computationally demanding. The rigorous methodology is
described as follows:

• Using a secondary market price base of bills, notes and bonds issued by
the US Treasury, over a determined window, we construct a panel of yield
curves.

• Bootstrapping the yield curve of each period, we find the spot rates.

• We fit the model on each observation, without fixing the decay factor. As
a result, we get a distribution of λ over the estimation window.

• Finally, we choose the one λ that shows the best fitting power over the
whole window. Then, we can construct the time series for the factors of
level, slope and curvature.
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3.1 Data

Choosing the securities to be included in the estimation is no trivial task. Gürkay-
nak, Sack and Wright (2007) estimate the parameters of the Nelson-Siegel-
Svensson model for the US Treasury yield curve from 1961 to 20061. Although
the authors intend to work on a rich sample that, ideally, includes every avail-
able security at every observation, they recognise that not all Treasuries are
comparable in terms of liquidity, and specific features (e.g. callable bonds).
To address this issue they set a few rules to filter these undesirable securities.
Even though our work has a different aim than the cited study (the authors fo-
cus on a cross-sectional fit), the treatment of the data under this approach will
be similar.

We set a daily frequency window between December 1999 and December
2013. This gives us 3,523 observations. For each period we gather the prices
and features of the securities that had been part of the Barclays U.S. Treasury
Index and the Barclays U.S. Treasury Bill Index during that day2. The first
includes notes and bonds issued by the U.S. Government, excluding TIPS and
STRIPS. The second index contains bills with less than a year of maturity. The
less populated observation has 112 bonds and bills, while the most populated
has 268. On average, we have 166 securities in each yield curve, making this
an almost ideal price base to work with.

For each observation we bootstrap the yield curve, to obtain the spot rates.
The roll-down effect and new issuances make it impossible to compare each
curve directly. To face this problem, Diebold and Li (2006) interpolate the terms
to maturity 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108 and 120 months.
Using cubic splines, we extend their work adding maturities up to 25 years,
spaced 12 months from each other. We do not reach the 30 years because there
are some periods when the Treasury stopped issuing 30-year bonds. Addition-
ally, and following market practices, we express term to maturity in years. As
a result we obtain a spot rate surface with 32 constant maturities, shown in
figure 1.

3.2 Estimation

Our next objective is to find a fixed value of λ that provides the best fit for every
observation along the window. On each observation we seek to minimize the
root mean squared error (RMSE) between the yields generated by the model
and the spot rates bootstrapped on the previous section. Although this think-
ing appears to be straight forward, it is necessary to impose some restrictions
on the excercise. By doing this, we can improve the economic interpretation of
the factors and use less resources solving the optimization problem.

1The resulting yields and the estimated parameters are being constantly updated, and can be
accessed on the website http://www.federalreserve.gov/econresdata/feds/2006/.

2Using both indexes we leave the Treasury notes with maturity less than a year out of the
sample. Gürkaynak et al. (2007) argue that short maturity notes often behave oddly, probably due
to the lack of liquidity, and segmented demand.
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Figure 1: Spot yield surface
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After bootstrapping each yield curve in the estimation window, we interpolate constant maturities
from 1/4 to 25 years. Each one of these spot rates are comparable over time.

lim
τ→∞

yt (τ) = lt

While the term to maturity (τ) increases, the equation (2) tends to the level
factor. According to data published by the United States Treasury, the highest
level recorded for a 30-year bond is 15.2% (September 1981), and has not ex-
ceeded levels over 10% since October 1985. Consistenly with this, we cap lt at
15. Negative values for the level factor will imply a negative long term rate,
which is inconsistent with the financial theory. For this reason, we set the lower
limit to zero. By construction, this restriction affects the values that st and ct
can assume. Both can take positive and negative values, so we set their limits
at -15 and 153.

A higher correlation between the slope and curvature factor loadings will
affect the identification of the factors. Gilli, Grobe and Schumann (2010) state
that a lower identification will translate in factors exchanging their values over
time. Figure 2 shows that correlation between the level and slope loadings
tends to be perfectly inverse when λt is close to zero. The correlation rapidly
increases with the decay factor, becoming near perfect for values over 30. In
order to address the collinearity and identification problem, we will set limits
for λt between 0 and 30.

3If the instantaneous rate (yt(0)) is zero, the maximum value that the slope (yt(∞)− yt(0)) can
assume is the level factor. Analogously, if the instantaneous rate is 15, the slope will be -15, thanks
to the restriction of positive long term rate. Similar logic can be applied to set the limit of the
curvature, so they will share the same limits.
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Figure 2: Correlation between level and slope loadings
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We graphed the correlation between the level and slope loadings (vertical axis), for each value of
λt. The figure shows that the correlation tends to -1 when the decay factor tends to 0. On the other
hand, the correlation tends to be perfect for λt over 30.

lim
τ→0

yt (τ) = lt + st

When the term to maturity tends to zero (instantaneous interest rate), the
yield provided by equation (2) approximates to the sum of the level and slope
factors. With the objective of having a positive overnight rate, the sum of both
factors must be positive.

Grouping all restrictions, we are going to resolve the following optimiza-
tion problem:

min
θ

Z =
1√
m
‖yt − ŷt‖2 (3)

θ = {lt, st, ct, λt}

s.t.



0 < lt ≤ 15
−15 ≤ st ≤ 15
−15 ≤ ct ≤ 15

0 < λt ≤ 30
0 < lt + st

where yt is a vector containing the observed spot yields at period t, while
ŷt is a vector that contains yields provided by the equation (2), for each of the
m terms of the curve.

Gilli et al. (2010) identify three major problems with estimating this model.
Firstly, the optimization problem is nonconvex, showing multiple local optima.
Secondly, the model is badly-conditioned for a certain range of parameters,
thus the estimates are unstable before small price movements. Finally, the
value of the decay factor directly affects the correlation between the loadings of
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Figure 3: Optimal values for Lambda
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The histogram shows the optimal values for λt over the window. We define a search range between
0.2 and 1.

the slope and curvature factors. This could be a problem for the forecasting use
of the model. Additionally, if the model was correctly specified, the parameters
would have a clear economic interpretation, making restrictions unnecessary.

The authors expose the benefits of an evolutionary algorithm to address
the nonconvex optimization. Following this, we use a stochastic optimization
based on a genetic algorithm. This method takes inspiration from the evo-
lutionary process. The algorithm starts with a given initial population that
evolves with every iteration (generation). It can do this by elitism (natural se-
lection), mutation, and cross-over. This way, the algorithm has the capacity to
face complex optimization problems and approach a global optima more eas-
ily. In order to reduce the average number of iterations and make the exercise
less computationally demanding, we will use a hybrid approach. This tech-
nique uses the stochastic optimization to get rid of local optima, and applies a
gradient based optimization. For this problem, we will use the SQP method,
after the genetic algorithm.

For each one of the 3523 observations we estimate the set {lt, st, ct, λt}that
best fit market spot rates. Figure 3 shows a histogram with optimal values
for λt, along the estimation window. Analizing the results, we define a search
space between 0.2 and 1, for two reasons. Firstly, the left region is too close to
the minimum limit for λt. Secondly, and more importantly, these values give a
high negative correlation between the factor loadings of slope and curvature.
Alfaro, Becerra and Sagner (2011) use a search grid to define the decay factor.
On each point of the grid, they fix λt at that value and estimate the other pa-
rameters linearly. Then, they choose the fixed value of lambda that gives the
best fitting in terms of the RMSE, BIC, AIC and R2. We follow a similar pro-
cedure over our search space, but choosing the value for the decay factor that
gives the lowest mean absolute error (MAE), over the entire sample.

In a daily window between December of 1999 and December of 2013, the
value for λt that produces the best fit, in terms of MAE, is 0.4835. This value
generates close to 8.97 basis points of mean absolute deviation from the market
rates, and it can be seen in Figure 4. If we follow Diebold and Li (2006) and fix
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Figure 4: Mean absolute error
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the value of the decay factor at 0.73084, we get 12.12 basis points of error. We
recognize two possible reasons for this. Firstly, the authors do not perform an
optimization excercise to find this value. Instead, they fix λt at the value that
maximizes the loading on the curvature factor at exactly 30 months. Secondly,
their excercise considers maturities up to 10 years. Because we fit the model on
rates up to 25 years, there could be a loss of fit on the longer maturities. Because
the methodology proposed on this study is able to deliver better results than
using the decay factor of the original work, we are content with it.

4 Practitioner Approach

Although the methodology described in the previous section shows a strong
goodness of fit, the amount of time required to construct the base to work with
is high, and the optimization procedure can become computationally demand-
ing. Now we present a more pragmatical methodology that can be replicated
by investment analysts. The practitioner methodology is described as follows:

• Using public and free data, we construct a spot rates surface.

• Then, we find a fixed value for λ, without a resource consuming calibra-
tion. This way, the methodology remains as simple as possible.

• Finally, we estimate the time series for the factors of level, slope and cur-
vature. We use the restricted least squares (RLS) method, so we can in-
corporate restrictions imposed in the previous section.

4.1 Data

We use the information provided by the United States Treasury, and the Federal
Reserve of Saint Luis Economic Data (FRED). On a daily basis, they publish
yields to maturities for Government securities with 1/12, 1/4, 1/2, 1, 2, 3, 5, 7,
10, 20 and 30 years to maturity. These are commonly referred to as Constant

4The authors propose 0.0609. Because they measure term to maturity in terms of months, we
annualize their value.
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Maturity Treasury rates (CMT)5, and are a result of an interpolation on the
closing market bid yields of actively traded securities. We define an estimation
window with the same features specified in the previous section. Using the
time series of the CMT we bootstrap every observation. Using cubic splines,
we interpolate the same terms defined in the other approach, then we construct
the spot yield surface. As a result, we have a rates base completely comparable
with the one generated in the previous section.

4.2 Estimation

Diebold and Li (2006) noted that λt determines the maturity where the factor
loading reaches its highest value. They fixed the decay factor at 0.0609, placing
the maximum loading at 30 months, which is consistent with the empirical ev-
idence about the curvature. The main advantage of this analysis is that it does
not depend on the base you work on. This makes the model easily adaptable
to other economies and windows.

Gilli et al (2010) find that for a certain range of values for λt the factor load-
ings of slope and curvature become highly correlated. This problem could
translate in collinearity within the model, allowing parameters to exchange
with each other at their estimation. If we fit a cross-section model, collinearity
is not a problem itself6. It becomes an issue when using the model with fore-
casting purpose, because of the need for stable and identifiable time series of
factors.

min
λ

R = ρ2
FS ,FC

(4)

FS =


(
1− e−λτ1

)
(λτ1)

−1(
1− e−λτ2

)
(λτ2)

−1

...(
1− e−λτn

)
(λτn)

−1

 , FC =


(
1− e−λτ1

)
(λτ1)

−1 − e−λτ1(
1− e−λτ2

)
(λτ2)

−1 − e−λτ2

...(
1− e−λτn

)
(λτn)

−1 − e−λτn


We intend to fix λt using a similiar logic described in the previous para-

graph. Instead of focusing on the curvature maximization, we try to work on
the correlation problem, exposed by Gilli et al. (2010). In the excercise (4) we
look for the λ that minimizes the squared correlation between the slope (FS)
and curvature (FC) factor loadings. To evaluate the correlation, we create a
vector τ containing daily terms to maturity between 30 days up to 30 years.
After running the optimization, the decay factor that nullifies the correlation is
0.2262. In order to linearize the estimation of the model, and face its collinearity
problem, we fix λt at this value7.

5These securities assume a semiannual payment. In case of maturities below a year, the Trea-
sury uses recently issued bills and estimates their bond equivalent yield.

6Actually, fitting the model without fixing the decay factor will increase its degrees of freedom.
7It is not necessary for the practitioner to repeat this process. This value can be used to linearize

the model for any 30-year yield curve, of any economy.
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Figure 5: Time series of factors
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The time series of the factors of level, slope, and curvature are graphed with a thick line. The
practial representations of the factors are graphed with a thin line.

min
θ

G =
1
2
‖yt − ŷt‖2

2 (5)

θ = {lt, st, ct}

s.t.


0 < lt ≤ 15

−15 ≤ st ≤ 15
−15 ≤ ct ≤ 15

0 < lt + st

In order to measure the performance of the chosen value, we run a historical
simulation, over the same window defined in the previous section. We fix λt

at 0.2262 and solve the problem (5) by the restricted least squares (RLS)
method. Working over the FRED base, constructed previously, the results show
that the mean absolute error (MAE) over the whole sample is 8.92 basis points.
Figure 5 shows that the estimated time series are highly correlated with the
empirical factors, over the estimation window. The level factor has a correla-
tion of 0.85 with the 30-year spot rate. The slope factor shows a correlation

9



of 0.97 with the negative of the slope (measured with the difference between
the 3-month and the 30-year spot rates). The curvature factor has a correlation
of 0.55 with a butterfly constructed with the 3-month, 2-year and 30-year spot
rates. Using the value proposed by Diebold and Li (2006), we obtain a MAE
of 12.47 basis points. Our results are satisfactory because by using the decay
factor proposed in this section, we are able to achieve a better fit, in contrast
to using the value suggested by the original study. Additionally we are able to
face the collinearity problem.

5 Conclusions

Modelling the yield curve has never been a trivial process. This is the principal
reason it is still one of the most prominent focuses of fixed income research
over the decades. Few models have shown the success and popularity of the
Nelson-Siegel model. This could be attributed to its parsimonious and intuitive
interpretations of its factors (level, slope, and curvature).

The extension that transforms it in a dynamic model has allowed other uses
to be discovered. The most known application is the ability to forecast the
factors, and hence, the entire yield curve.

This note has described two methodologies to estimate the time series of
the factors. The first uses a very rich Treasury securities price base and fits
the model using a hybrid optimization method with a genetic algorithm to
face the optimization problem. The second methodology presented has a more
practitioner approach. It works on a publicly available base, and linearizes the
problem fixing the decay factor at the value that minimizes the correlation be-
tween the slope and curvature factor loadings. Over an estimation window,
with daily frequency, between December of 1999 and December of 2013, both
approaches provide a good fit, in terms of mean absolute error (MAE). The
rigourous approach gives an average deviation of 8.97 basis points, from mar-
ket rates. The practitioner approach deviates 8.92 basis points, on average. As
a reference point, we estimated the deviaton for both methodologies, fixing λ
at the value proposed by Diebold and Li (2006). Our results are satisfactory
because both methodologies proposed to fix the decay factor show better fit, in
comparison with the original study.
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A Matlab Code

%% P a r a m e t e r s .
c lear , c l c
s e r i e s = { ’DGS3MO’ ’DGS6MO’ ’DGS1 ’ ’DGS2 ’ ’DGS3 ’ ’DGS5 ’ ’DGS7 ’ . . .

’DGS10 ’ ’DGS20 ’ ’DGS30 ’ } ;
cmt_terms = [3/12 6/12 1 2 3 5 7 10 20 3 0 ] ;
spot_terms = [3/12 6/12 9/12 12/12 15/12 18/12 21/12 24/12 3 0 / 1 2 . . .

36/12 4 : 1 : 3 0 ] ;
window ={ ’ 12/31/1999 ’ ’ 12/31/2013 ’ } ;
t o l = 3 ; % T o l e r a n c e f o r m i s s i n g d a t a from FRED .
lambda = 0 . 2 2 6 2 ;

%% CMT y i e l d s b a s e c o n s t r u c t i o n .
% C o n e c t i o n with FRED .
conect ion = fred ( ’ h t tps :// research . s t l o u i s f e d . org/fred2/ ’ ) ;
n s e r i e s = length ( s e r i e s ) ; % We count t h e number o f s e r i e s .
for i = 1 : n s e r i e s

get = f e t c h ( conect ion , s e r i e s ( i ) , window ( 1 ) , window ( 2 ) ) ;
i f i == 1

cmt_dates = get . Data ( : , 1 ) ;
cmt_ytm = zeros ( length ( get . Data ) , n s e r i e s ) ;

end
cmt_ytm ( : , i ) = get . Data ( : , 2 ) ;

end
close ( conect ion )
c l e a r i get n s e r i e s conect ion s e r i e s window

% We c l e a n t h e b a s e o f m i s s i n g d a t a o b s e r v a t i o n s .
index = sum( isnan ( cmt_ytm ) , 2 ) > t o l ;
count = 0 ;
for i = 1 : length ( cmt_dates )

i f index ( i ) == 1
cmt_ytm ( i − count , : ) = [ ] ;
cmt_dates ( i − count , : ) = [ ] ;
count = count + 1 ;

end
end
c l e a r i count index t o l

%% B o o t s t r a p p i n g t h e y i e l d s u r f a c e .
spot_sur f = zeros ( length ( cmt_dates ) , length ( spot_terms ) ) ;
for i = 1 : length ( cmt_dates )

aux = [ cmt_ytm ( i , : ) ’ / 1 0 0 zeros ( length ( cmt_terms ) , 1 ) ] ;
for j = 1 : length ( cmt_terms )

aux ( j , 2 ) = addtodate ( cmt_dates ( i , 1 ) , . . .
cmt_terms ( j )∗1 2 , ’month ’ ) ;

end
aux = aux (~any ( isnan ( aux ) , 2 ) , : ) ;
[ z , t ] = pyld2zero ( aux ( : , 1 ) , aux ( : , 2 ) , cmt_dates ( i ) ) ;
t = y e a r f r a c ( cmt_dates ( i ) , t ) ;
spot_sur f ( i , : ) = spline ( t , z , spot_terms )∗1 0 0 ;

end
clc , c l e a r i j z t aux

%% Curve F i t t i n g .
loadings = zeros ( length ( spot_terms ) , 3 ) ;
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loadings ( : , 1 ) = 1 ;
loadings ( : , 2 ) = (1−exp(−lambda .∗ spot_terms ’ ) ) . / . . .

( lambda .∗ spot_terms ’ ) ;
loadings ( : , 3 ) = (1−exp(−lambda .∗ spot_terms ’ ) ) . / . . .

( lambda .∗ spot_terms ’)−exp(−lambda .∗ spot_terms ’ ) ;
l s c = zeros ( length ( cmt_dates ) , 3 ) ; % Time s e r i e s v e c t o r .

% O p t i m i z a t i o n .
bounds = [0 −15 −15; 15 15 1 5 ] ; % P a r a m e t e r s b o u n d r i e s .
r e s t = [−1 ,−1 ,0]; % ( b1 + b2 ) > 0
opt = optimoptions ( @lsql in , ’ Display ’ , ’ o f f ’ , ’ Algorithm ’ , ’ ac t ive−s e t ’ ) ;
for i = 1 : length ( cmt_dates )

l s c ( i , : ) = l s q l i n ( loadings , spot_sur f ( i , : ) , r e s t , 0 , [ ] , [ ] , . . .
bounds ( 1 , : ) , bounds ( 2 , : ) , [ ] , opt ) ;

end
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