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Abstract

The increase in global economic volatility due to the ongoing crisis in developed countries and its
spillovers to the rest of the world has brought renewed relevance to external shocks as a source of
business cycles in emerging market economies. This paper analyzes changes in the impact of
external shocks in Chile since the 1990s. A novel aspect of our analysis is the use of structural vector
autoregressions with time-varying parameters in the context of a small open emerging economy such
as Chile. Our main finding is that external shocks have had smaller effects on local economic output
at relevant policy horizons after the 1990s. The timing of the estimated changes coincides with major
monetary and fiscal policy reforms conducted around 1999-2001, suggesting that those reforms have
played an important role in isolating the Chilean economy from external shocks since that time.

Resumen

El aumento de la volatilidad de la economia mundial debido a la actual crisis en los paises
desarrollados y sus efectos de desborde al resto del mundo ha suscitado una renovada relevancia de
los shocks externos como fuente de los ciclos econdmicos en las economias emergentes. Este trabajo
analiza los cambios en el impacto de los shocks externos en Chile desde los 1990s. Un aspecto
novedoso de nuestro analisis es el uso de vectores autorregresivos estructurales con parametros
cambiantes en el tiempo en el contexto de una economia emergente, pequefia y abierta, como la de
Chile. Nuestra principal conclusion es que los shocks externos han tenido un efecto menor sobre la
produccién econémica local en el horizonte de politica relevante después de la década de 1990. La
temporalidad de los cambios estimados coincide con importantes reformas de politica monetaria y
fiscal realizados en torno a 1999-2001, lo que sugiere que estas reformas han jugado un papel
importante en el aislamiento de la economia chilena de los shocks externos desde entonces.

* We thank Javier Garcia-Cicco, Alberto Naudon, Claudio Soto, and seminar participants at the Central Bank of Chile for
useful comments. The views expressed are those of the authors and do not represent official positions of the Central Bank
of Chile. Kirchner (corresponding author): Research Division, Macroeconomic Analysis Department, Agustinas 1180,
Santiago, Chile, mkirchner@bcentral.cl. Chaumont: Central Bank of Chile, gchaumont@bcentral.cl.




1 Introduction

The increase in global economic volatility due to the ongoing crisis in developed countries and its
spillovers to the rest of the world has brought renewed relevance to external shocks as a source
of business cycles in emerging market economies. Advances in trade integration over the past
decades have made changes in external demand conditions and prices even more important than
in the past, while financial integration has increased the relevance of capital flows and movements
in external financing costs. However, macroeconomic policy reforms conducted in developing
countries over time may have provided better insulation from external shocks compared to past
crises. With this background, the aim of this paper is to analyze two related dimensions for the
case of Chile, that is: (i) the exposure of the local economy to external shocks at different points
of time in terms changes in their volatility and their propagation among external variables; and
(ii) possible changes in the impact of external shocks on local economic output.

Chile is a particularly interesting case study. As many other developing countries, Chile has
become increasingly open to international trade and financial flows over time. Trade integration
has strengthened since the early 1990s with the implementation of several free trade agreements
that led to a rise in the share of exports in GDP from 28% during 1990-1999 to 39% during
2000-2011. Financial integration has also accelerated over time due to gradual capital account
liberalization and a surge in foreign direct investment and portfolio investment during the 1990s,
and additional capital inflows concentrated in derivative financial instruments especially since
the mid-2000s. While this integration process may have brought important benefits to the
Chilean economy, the main downside risk of international economic integration is a potentially
enhanced vulnerability to external shocks. However, major reforms were also conducted over
the past two decades to limit this downside risk by isolating the Chilean economy at least
partially from external shocks. Financial integration was accompanied by an institution-building
process to achieve an adequate level of regulation and supervision of the domestic financial
system. In addition, a monetary regime based on inflation targeting and a floating exchange
rate was introduced in 1999, where the latter is supposed to provide automatic adjustment to
external shocks. Finally, a structural balance fiscal rule was applied from 2001 onwards to isolate
government spending from transitory changes in commodity export revenues.!

The overall balance of the impact of external economic integration and macroeconomic re-
forms in Chile is not yet clear. On the one hand, one may suspect that external shocks are

amplified in a financially and comercially highly integrated economy. On the other hand, macro-

! For historical perspectives of financial integration and monetary policy in Chile, see Cifuentes and Desormeaux
(2005) and Cowan and De Gregorio (2007). For discussions of Chile’s fiscal rule, see Marcel, Tokman, Valdés,
and Benavides (2001) (in Spanish); Medina and Soto (2007); Pedersen (2008) (both in English).



economic reforms and instituition-building may have reduced the impact of external shocks on
local business cycles, as argued in previous work (see Céspedes, Goldfajn, Lowe, and Valdés,
2006). Altogether, our analysis may therefore contribute to point out possible priorities not
only for domestic policy but also for similar emerging countries that might consider the type of
integration process or reforms conducted in Chile.

Our analysis is based on structural vector autoregressions (VARs) with time-varying pa-
rameters, following the work of Cogley and Sargent (2002, 2005) and Primiceri (2005). The
time-varying VAR framework allows for drifting coefficients a changing covariance matrix of
the reduced-form innovations, which makes it possible to capture non-linearities and changes in
the simultaneous and lagged relationships between macroeconomic variables as well as possible
stochastic volatility in the underlying structural shocks. Due to this flexibility, this framework
has become increasingly popular in the recent macroeconomic literature.? One can conclude
from this literature and other contributions, e.g. Sims and Zha (2006) and Stock and Watson
(1996), that evidence of structural breaks such as changes in persistence and stochastic volatility
abounds in aggregate time series for developed countries. The available evidence for developing
countries is however still relatively scarce.

Given our focus on a small open economy, we allow for related restrictions in the empirical
model through additional overidentifying cross-equation exclusion restrictions on lagged rela-
tionships. It is well-known that the use of such restrictions can have critical implications for a
VAR-based assessment of the effects of external shocks in a small open economy, as highlighted
by Zha (1999). However, this possibility, where (over)identification relates to lag structure, has
not always been acknowledged in time-varying VAR studies for small open economies.? Cross-
equation restrictions are also useful to address the problem that time-varying VARs tend to be
heavily parameterized, because adding time variation of the coefficients and stochastic volatil-
ity significantly enlarges the dimension of the model’s parameter space which easily exhausts
available degrees of freedom and may therefore lead to imprecise estimates. The use of cross-
equation restrictions reduces the number of parameters by a multiple of the number of imposed
restrictions and thus partially eases this critical dimensionality problem.

The main aspects of our empirical application are as follows. We use monthly data from
December 1990 to April 2012, where the higher frequency of the data set than in most previous
applications of time-varying VARs helps to further address the dimensionality issue discussed

above. The data includes interest rate spreads to measure external financial conditions, the real

2A sample of recent studies with applications of time-varying structural VARs includes Bianchi, Mumtaz,
and Surico (2009), Canova and Ciccarelli (2009), Canova and Gambetti (2009), Gali and Gambetti (2009), and
Kirchner, Cimadomo, and Hauptmeier (2010).

3The only exception that we are aware of is a recent study by Liu, Mumtaz, and Theophilopoulou (2011).



price of copper to capture terms of trade changes and an indicator of economic activity /output
to gauge the response of the local economy to external shocks. The copper exports sector is the
traditional pillar of Chile’s economy and has gained additional importance over the past decades:
the share of copper in total exports has increased from 30% (85% of mining exports) during the
1990s to 44% (92% of mining exports) during 2000-2011.* Copper price fluctuations are thus an
ever more important factor of Chile’s terms of trade vulnerability. Additional interest in copper
price fluctuations stems from the application of Chile’s copper-price-related fiscal rule since 2001
as well as high commodity price volatility since the mid-2000s.

We conduct formal model comparisons based on estimated marginal likelihoods to select our
preferred model for the empirical analysis. In particular, we compare models with (i) fixed pa-
rameters, (ii) drifting coefficients but a fixed covariance matrix of the innovations, (iii) drifting
coefficients and univariate stochastic volatility in the innovations, (iv) drifting coefficients and
multivariate stochastic volatility that allows for changing impact responses to (standardized)
shocks. This model identification step allows to gauge the importance of changes in macroeco-
nomic dynamics and to let different elements of time variation compete with each other. (For
instance, changes in business cycle fluctuations in Chile may be driven by changes in the volatil-
ity of shocks or also changes in the propagation of shocks, provided that there were any such
changes at all). This is an important step, because misspecification of time variation such as
omitting relevant elements may imply that time variation is instead erroneously attributed to
elements that are allowed to change over time. We also use marginal likelihood comparisons to
select the (cross-)lag structure for the empirical model.

Our findings show that, first, an increase in the joint volatility of financial and copper price
shocks since the mid-2000s has augmented external uncertainty towards levels observed during
earlier emerging market crises. Second, the propagation of financial shocks into copper prices and
the associated “pass-through”of financial volatility has increased over time. Third, despite these
changes that have enhanced Chile’s external exposure, external shocks have had smaller effects
on local economic output since the 2000s compared to the 1990s, in particular at horizons above
one year. The timing of the estimated changes coincides with the above-mentioned monetary and
fiscal policy reforms conducted in 1999-2000, which suggests that those reforms have contributed
to isolating the Chilean economy from external shocks since that time.

The remainder of the paper is organized as follows. Section 2 describes the econometric
models and the main aspects of their estimation. Section 3 discusses the empirical application

in detail. Section 4 presents the empirical results. Section 5 concludes.

*Source: Central Bank of Chile’s SIETE database (http://sieteweb.bcch.local/siete/secure/cuadros/
home.aspx) and authors’ own calculations.



2 Econometric models

2.1 General form of the models

We consider a general form of VAR models that permits time-varying parameters and exclusion
restrictions on the autoregressive lag structure. Thus, let y; ; denote the observation of variable ¢
at time ¢ and let ; ¢ be a k; X 1 vector of explanatory variables for equation ¢ that includes lagged
values of the observed variables and any exogenous variables. Further, let 3, ; be a conformable
vector of coefficients, and let u;; denote an unobserved additive and non-autocorrelated inno-
vation in equation ¢ whose remaining distributional properties are stated below. With these

definitions, the model includes a system of observation equations given by
yi’t:x;’tﬁi7t+ui7t, Z: 1,...,717 t = 17...7T’ (1)

An unrestricted VAR of lag order p with an intercept includes p lags of each endogenous variable
as right-hand side terms in each equation, that is:

Tit = T2t =" = Tnt = [17 Ylt—1ys- 5 Ylt—ps Y2,t—155- - -y Y2t—py -+ - s Ynt—1,-- -, yn,t—p}l-
The model with (1) is however flexible in the sense that coefficient exclusion restrictions can be
imposed through different right-hand side terms across individual equations. For example, if 1
is block exogenous with respect to the remaining endogenous variables, we have instead z1; =
(L y1-1s-- - Y1t—p, | and xoy = 234 = -+ = Tpy = [xﬁ,uyzt—l, e Y2t—ps - YBii—15 -5 YBt—ps

oy Ungt—1y-- s Unt—p)- Let k= >"" , k; and define an n x 1 vector of endogenous variables y;,
an n X k matrix of explanatory variables X/, a k x 1 vector of coefficients /3,, and an n x 1 vector

of innovations wu;, as follows:

/
Y1t Ly ¢ 01><k:2 e lekn ﬁl,t Uit
/ . :
Y2,t , O1xky  Toy : : Bt U2t
Yt = . ) Xt = ’ /Bt = y Ut =
: 01><kn
/
L Yn,t | L 01><k1 T 01><kn_1 :L‘n,t i L Bn,t i L Un, t |

Then the matrix form of system (1) is given by

ye = Xy + us. (2)



The vector of innovations u; is assumed to have a multivariate normal distribution with mean
zero and covariance matrix €, i.e. u; ~ N(0,€;). This matrix can be decomposed using a
triangular factorization, i.e. A QA = %43, where A; and X; are n x n matrices that have the

following structure:

10 0] (o1 0 0 ]
o 1 : 0 o
A= ; =]
. . . 0 : 0
L @nlt - Qnpn—1t 1 | L 0 ce 0 On,t |

Then, assuming that u; = A, 13e;, where ¢; is an n x 1 vector whose components have inde-

pendent univariate standard normal distributions, (2) can be re-written equivalently as follows:

ye = X{B; + A; ' Sier, et ~ N(0, ). (3)

2.2 Specification of time variation

In this section, we specify alternative sources of dynamics according to four versions of the
general model described above. The first three versions include time-varying parameters, and
thus allow for changes in the distributional properties of economic shocks and their propagation,
but the different versions differ in the sources of time variation that they consider. The first
version (labeled model A) has drifting coefficients and a “fully” time-varying covariance matrix of
the observation innovations as in Primiceri (2005), permitting changes in variances and changes
in the contemporaneous responses to standardized shocks (according to the lower triangular
structural VAR representation considered below). Hence, this model allows to capture non-
linearities and changes in the simultaneous and lagged relationships between the variables, as
well as stochastic volatility in the structural shocks. The second version (model B), which follows
Cogley and Sargent (2005), has drifting coefficients but only allows for changing variances. This
model thus permits stochastic volatility of the shocks but the contemporaneous responses to
shocks do not change over time. The third version (model C) has drifting coefficients but a
fixed covariance matrix of the innovations, as in Cogley and Sargent (2002). This version rules
out any changes in the variances or contemporaneous responses to shocks. In addition to the
models with time-varying parameters, we also consider a version with fixed parameters (model
D), where the observation innovations are the only source of time variation in the data. This
model does not permit stochastic volatility, non-linearities, or other types of changes in the

relationships between the variables.



Model A. This model is based on the system of observation equations (3). To complete the
specification, stack the elements below the main diagonal of A; by rows into an n(n —1)/2 x 1
vector o = [@21,¢y -+ Qnlty - - -, Onn—1,4¢)'. Define also an n x 1 vector wy = [log o1y, ..., log oy,
With these definitions, the dynamics of the time-varying parameters are determined by the

following system of state equations:

By = Bi1+v, vy ~ N(0,Q), (4)
Q. = o1+ Ct) Ct ~ N(()) S)a (5)
Wy = wi—1+ 1y, n, ~ N0, W). (6)

The commonly applied random walk structure of the time-varying parameters in (4)-(6) is
computationally convenient and, more importantly, allows various different dynamics of the
parameters such as smooth shifts or abrupt jumps, and also permanent or temporary changes.

A conventional set of assumptions on the distributions of the various innovations in the
observation and state equations is adopted. The covariance matrices Q and W of the vectors of
state innovations v; and 7, are left unrestricted but the covariance matrix .S of the vector of state
innovations ¢, is assumed to be block diagonal with blocks corresponding to the different rows
of A;. Furthermore, the joint distribution of the innovations is postulated as [, vy, () ~
N(0,Vy4), where the matrix Vy is assumed to be block diagonal with blocks I,,, @, S, and W.
These assumptions facilitate the estimation of the model and also allow to attempt a structural

interpretation of the various innovations; see Primiceri (2005) and Appendix A.

Model B. This model is also based on the system of observation equations (3). The coeffi-
cients and the log standard deviations of the observation innovations are assumed to follow the

processes (4) and (6), respectively, but it is assumed that

The joint distribution of the innovations is postulated as [e, v, m;) ~ N(0,Vp), where the

matrix Vg is assumed to be block diagonal with blocks I, @, and W.

Model C. This model is based on the system of observation equations (2). The coefficients

are assumed to follow (4) but the covariance matrix of the observation innovations is constant:

Q= Q, t=1,...,T.



The joint distribution of the innovations is postulated as [ug, 4] ~ N (0, V), where the matrix

Ve is assumed to be block diagonal with blocks 2 and Q.

Model D. This model is described by the system of observation equations (2) with
Bt:Ba Q =Q, t=1,...,T.

Under these assumptions, the system takes the form of the seemingly unrelated regressions model

with fixed parameters as originally described by Zellner (1962).

2.3 Estimation of the models

We provide a brief description of the estimation of the above models at this stage; details are
discussed in Section 3.5 and Appendix A. The estimation of the time-varying VARs follows
Cogley and Sargent (2002, 2005) and Primiceri (2005) and is conducted by Bayesian Gibbs
sampling methods. A Bayesian approach is appropriate in the context of time-varying VARs
for two main reasons. First, as discussed by Primiceri (2005), the likelihood function of a time-
varying VAR typically has peaks in multiple dimensions, some of which correspond to implausible
and uninteresting regions of the parameter space that are not representative for the model’s fit
on a wider parameter region. The use of Bayesian methods allows to address this problem by
adding probability mass to representative regions through the specification of an informative
prior. Second, the computations are greatly facilitated by the use of Bayesian simulation/Gibbs
sampling methods. We also use Bayesian methods to estimate the VAR with fixed parameters,
in order to make the results as comparable as possible to the time-varying VAR results and to
allow for straightforward marginal likelihood comparisons of this model with the other models.
However, we use a very diffuse prior for this model, such that classical methods would give
similar results.” The estimation under a Normal-Wishart prior can also be conducted by Gibbs

sampling and is quite standard; see e.g. Koop (2003).

3 Empirical application

3.1 Data description

We use monthly data from December 1990 to April 2012 in the empirical application. The vari-

ables included in the data set are the average monthly JPMorgan Emerging Markets Bond Index

®(Classical estimation of the model with fixed parameters can be conducted by iterated feasible generalized
least squares (GLS), which yields consistent and asymptotically efficient maximum likelihood estimates of the
parameters; see Magnus (1987).



Global (EMBIG) Performing Sovereign Spread (spreads), the average monthly price of refined
copper at the London Metals Exchange, deflated by the U.S. Consumer Price Index for All Urban
Consumers to obtain a measure in real terms and transformed into natural logarithms (pcur),
and a monthly and seasonally adjusted indicator of total economic activity /output (IMACEC)
regularly published by the Central Bank of Chile (yr). The EMBIG spreads are only available
from December 1993 onwards; for the period December 1990-November 1993 we use instead
chain-linked values of the JPMorgan EMBI+ Brady Sovereign Spread. The spreads were ob-
tained from the Bloomberg database (series JPEGPSSD and JPSSPRD). The nominal price of
copper and the IMACEC indicator are available from the SIETE database of the Central Bank
of Chile (http://sieteweb.bcch.local/siete/secure/cuadros/home.aspx). The U.S. price
index was obtained in seasonally adjusted form from the ALFRED database of the St. Louis
Fed (http://alfred.stlouisfed.org; series CPTAUCSL). In an extension discussed below, we
add the TED spread to the data set, i.e. the difference between between the interest rates for
3-month U.S. Treasury contracts (T-Bill rate, monthly averages of business days) and 3-month
Eurodollars contracts according to the London Interbank Offered Rate (LIBOR, monthly aver-
ages of business days). Both interest rate series were obtained from the Bloomberg database

(series US0003M Index and GB03 Govt).

3.2 Identifying restrictions on contemporaneous relations

Consider the vector of observed variables y; = [spreads;, pcury, Ayry]’, where Ayry denotes the
annual rate of change of yr;. Following Primiceri (2005), a structural VAR model based on the

system of observation equations (3) for models A and B is given by
Yt :Xéﬁt—i_atgta €t NN(07]H)7 = 17"'7T7 (7)

with u; = Z;g;, and where the n X n matrix Z; contains at least n(n — 1)/2 zero or cross-
element restrictions, which guarantees identification. The vector &; then collects the identified
structural shocks. The system (7) is equivalent to (3) when the matrix =, is lower triangular,
such that A;'¥; = Z;. Hence, under a lower triangular scheme, estimation of (3) with the
corresponding state equations is equivalent to direct estimation of a structural VAR with time-
varying parameters, where the structural shocks have time-varying standard deviations given by
the diagonal elements of the matrix 3;. When, on the other hand, the estimation is based on
(2) as for models C and D, identification can be achieved by taking u; = Z;&; and solving the
system of equations

—_ =/
:t:t:Qta tzl,,T



We assume in the empirical application that =; is lower triangular, and we define the rela-
tionship between the reduced-form innovations in each observation equation and the structural

shocks in the following way:

spreads external financial shock
U e O 0 €t
_ pcur _ copper price shock
Ut = Uy =1 a1t 220 O o
Ayry local shock
Uy E316 E32¢ 334 €t

External financial shocks are defined as unpredictable innovations to EMBI spreads that can
have an instantaneous impact on the real price of copper and the growth rate of local economic
output. The spreads are however assumed not to respond to innovations to the copper price
and local economic output within a month. The latter restriction is justified by the fact that
the weight of Chilean bonds in global EMBI spreads has historically been small. The first
restriction is based on the implicit assumption that the risk assessment of market participants
and rating agencies is not instantaneously affected by other shocks that may affect commodity
prices, for instance due to learning behavior by market participants or periodic revisions of
ratings conditional on past information. We make similar identifying assumptions when we add
the TED spread to the model in the extension described below (see Section 4).

Copper price shocks are defined as innovations to the real price of copper that cannot be
explained by external financial shocks. These are movements in the real price of copper that do
not originate in the local economy, and which may capture both external demand and supply-
related factors. As Chile’s overall trade profile has traditionally been dependent on copper,
trade-related factors should be suitably captured by such shocks (see the discussion in the
introduction). The effects of oil shocks and other external factors that affect the Chilean terms
of trade are also subsumed in those shocks through their impact on demand and supply for
commodities, such that those shocks could also be interpreted in a wider sense as general terms
of trade shocks. The real price of copper is assumed not to respond to local economic output
within a month. This restriction reflects small-country features.

Local shocks are defined as innovations to the growth rate of local economic output that
cannot be explained by either external financial shocks or copper price shocks. Hence, the
structural VAR model postulates that all relevant external shocks that affect the Chilean econ-
omy also affect external financial spreads or the real price of copper or, equivalently, that all
relevant external factors are incorporated in the spreads and the price of copper. These identi-
fying restrictions seem to strike an acceptable balance between the reasonability of the assumed

structural relations and the necessary parsimony of the empirical model.



3.3 Regression specification and cross-equation restrictions

For the above vector of observed variables y;, the following regression specification is adopted:

spreads; 1, 05 07 Bt
Yt = peury =1 05 l‘IQ,t 07 Boy | T
Ayry 03 05 a3, B3
where
1y = [1,spreads;_1,...,spreads;_p ]’
zor = [1,spreadsi_i, ..., spreadsi_p, pcuri_i, ..., pcuri_p|’,
z3; = [1,spreads;_1, ..., spreads;_p,, PCUT_1, ..., PCUT—p, DNYT1_1, .oy Dyr_p]'

The VAR thus includes a time-varying intercept term in each equation and p lagged terms
of the variables, but overidentifying cross-equation restrictions are imposed on the lagged terms.
The cross-equation restrictions reflect two different exogeneity assumptions. First, external
variables are assumed to be block exogenous with respect to local economic output such that past
local shocks do not affect external financial spreads and the price of copper. This assumption
reflects small-country features. Second, in addition to the small-country restriction, external
financial spreads are assumed to be exogenous for the price of copper such that past copper
price shocks do not affect the contemporaneous movements of the spreads.

Under these assumptions, overidentification strengthens the identifying restrictions made
above and projects those restrictions onto lagged relationships. However, unlike the identifying
restrictions, the overidentifying restrictions are testable. Marginal likelihood comparisons are
a way to conduct a corresponding test. Hence, in the next section we compare estimated
marginal likelihoods for the model with those restrictions against estimated marginal likelihoods
for unrestricted models and models with alternative restrictions, in order to support the imposed
restrictions. We also use marginal likelihood comparisons to choose the lag length. Details on

the calculation of the marginal likelihoods are provided in Appendix B.

3.4 Priors

The strategy used to calibrate the priors for the time-varying VARs (models A-C) follows Prim-
iceri (2005) and also Cogley and Sargent (2002, 2005), suitably adopted for the estimation of
those models under coefficient exclusion restrictions. In particular, the priors are specified based

on iterated feasible GLS results from a fixed parameters VAR estimated on an initial sample

10



that runs from December 1990 to May 1993. The size of the initial sample (30 observations) is
scaled to size of the initial sample used by Primiceri (40 observations) by the smaller number
of regression parameters in our model when we use the same number of lags as in Primiceri’s
model (around 75%). The initial sample used to calibrate the priors is discarded for the actual
estimation of models A-C. For the fixed parameters VAR (model D), which is only estimated

on the actual sample, we adopt a very diffuse prior.

Model A. Let 841¢ denote the GLS estimates of the VAR coefficients from the initial sample
and let V(Bgrg) denote their asymptotic covariance matrix. Further, denote the GLS estimate
of the covariance matrix of the observation innovations as Qgrg. We apply a triangular decom-
position to this matrix, i.e. Qgrs = AélLSEGLSZ’GLS(AalLS)’, and collect the logarithms of the
diagonal elements of Ygrg in the vector wgrg. The non-zero off-diagonal elements of Agyrg,
ordered by rows, are collected in the vector agrs with asymptotic covariance matrix V(agrs).
The prior for the initial states of model A (drifting coefficients and fully time-varying covariance

matrix of the observation innovations) is then specified as follows:

Bo ~ N(Bars:4xV(Bars)), (8)
apg N(OKGLS,4 X V(QGLS)); (9)
wo N(WGLSaIn)- (10)

This is a relatively diffuse prior for the initial states, specified as in Primiceri (2005), but which
in our context is centered around the GLS estimates for the initial stretch of data. As that
stretch of data is quite short, the data is only weakly informative on the initial parameters and
the prior variance therefore allows for a wide range of outcomes. The priors for the covariance

matrices of the state innovations take the inverse-Wishart form:

Q ~ IW(Tyx kg x V(Bars), To), (11)
S1 ~ IW(2x k% xV(aiers),2), (12)
Sy ~ IW(3x k% xV(aacrs),3), (13)
W~ IW(4x k¥ x I,,4), (14)

where S7 and Sy stand for the two blocks of S, while oy ¢rg and g g1 correspond to the blocks
of agrs. The specification of those priors also follows Primiceri (2005). The degrees of freedom
for the blocks of S and the matrix W are set to the dimension of each matrix plus 1, which

implies that the inverse-Wishart priors are proper (i.e. they integrate to 1) but do not have

11



finite moments (cf. Cogley and Sargent, 2005). As in Primiceri (2005), the degrees of freedom
of the prior for ) are set to the size of the initial sample, i.e. Ty = 30, since a slightly tighter
prior is necessary to avoid implausible behaviors of the time-varying coefficients, comparable as
reported by Primiceri. The factor kg is set to 0 - 01 and the factors ks and ky are both set
to 0 - 1. Specified in this way, the priors are diffuse and relatively conservative in terms of the
variation attributed to parameter changes, but they put somewhat more weight on changes in
the covariance matrix of the observation innovations relative to coefficient changes. We have

experimented with alternative choices, but our results were robust to those choices.

Model B. The prior for model B takes (8), (10), (11), and (14), together with

a~ N(agrs,4 x V(agrs)),

such that the prior for the initial states cg from model A is projected onto « for this model.

Model C. The prior for model C takes (8) and (11), together with

Q~ IW(QGL57 TO)a

which is comparable to the prior used in Cogley and Sargent (2002).9

Model D. An independent Normal-Wishart prior is adopted for model D. Thus, a normal

prior is placed on the regression coefficients:

B ~ N(Ok,4 X Ik).

This prior implies that the regression coefficients are centered around points which imply that
the explanatory variables have no effect on the dependent variables, but with a relatively large
prior standard deviation of 2 that allows for a substantial range of outcomes.” Further, a Wishart
prior with scale matrix A and degrees of freedom 7 is placed on the inverse of the covariance

matrix of the observation innovations:

H~W(H ,v).

S We experimented with an IW (4 x Qars,To) prior for Q, which did however not affect the results in any
significant way and the estimated marginal likelihoods only changed by a few decimal points.

"We also experimented with a prior where /3 is centered on GLS estimates for the initial sample used for the
time-varying VARs, i.e. 8 ~ N(Bgrs,4 X V(Bars))- The outcomes were hardly affected and the estimated
marginal likelihoods again changed very little.
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We set H~1 = 0,, and 7 = 0 to achieve non-informativeness (see Koop, 2003).

3.5 Posterior simulations

We briefly outline the main aspects of the posterior simulations and refer to Appendix A for
details on the estimation procedure. For each model that was estimated, we generated 25,000
draws using Gibbs sampling, of which we discarded the first 5,000 to let the Markov chain
converge to its ergodic distribution. Of the remaining 20,000 draws, we kept every 10th draw to
break the autocorrelation of the draws. This left us with 2,000 draws from the joint posterior
distribution of the model parameters from which we computed statistics of interest (moments
of the time-varying parameters, impulse responses, error bands, etc.).

Following Cogley and Sargent (2002) and Cogley and Sargent (2005), we imposed a reflect-
ing barrier on the autoregressive coefficients saying that explosive draws are discarded.® This
restriction reflects an a priori belief about the implausibility of explosive representations for
external interest rate spreads, real copper prices, and local economic output in Chile. While we
allow for possible stochastic volatility and also unit-root changes in the trends of those variables
through a time-varying intercept term, we do not believe that those variables have explosive
cyclical components. The stability restriction mainly helped to avoid explosive dynamics for
the real copper price, which is also consistent with the findings of previous empirical studies on
copper price dynamics; see e.g. Garcia-Cicco and Montero (2011).

We conducted various convergence checks as discussed in more detail in Appendix A. We
used the prior means of the parameters as initial values for the Markov chain, but the posterior
simulator quickly added time variation in the parameters and the convergence of the chain to
its ergodic distribution was quite fast. We experimented with different starting points of the

Markov chain, which did however not affect our results in any significant way.

4 Estimation results

4.1 Model comparison

We begin the discussion of the estimation results by describing the outcomes of the model
comparison procedure that we used to select our preferred model. In particular, we conducted

a formal Bayesian comparison of the models described in the previous section, both across

8The reflecting barrier works as follows. The process (4) characterizes the unrestricted conditional den-
sity fu(B4|B,_1,@Q). Following Cogley and Sargent (2002), introduce an indicator function I(3,) that rejects
draws that do not satisfy standard eigenvalue stability conditions on the autoregressive coefficients and en-
forces non-explosiveness at each point of time. The coefficients are thus postulated to evolve as f(53,|8,_1,Q) =
I(B,) fu(B,|B;_1, Q). Formal results are provided in Cogley and Sargent (2005). A similar argument can be made
for the Bayesian VAR with fixed parameters.
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alternative models and for different specifications of individual models. Assuming that the set
of specified models is exhaustive (i.e. the posterior model probabilities sum to 1), the model
with the highest estimated marginal likelihood obtains the highest posterior model probability
(see Koop, 2003). Model comparison is a useful step for various reasons. First, it allows to test
the importance of changes in macroeconomic dynamics by testing VARs with fixed parameters
against VARs with time-varying parameters. Second, it allows to test different elements of time
variation in the model parameters against each other to reduce the risk of model misspecification
such as omitting relevant elements and thereby falsely attributing time variation to elements
that are allowed to change over time. Third, it allows to compare different specifications of
the lagged relationships among the variables to address the problem of overfitting, while again
reducing the risk of generating a potential bias by misspecifying the lag structure.

The estimated marginal likelihoods are reported in Table 1. The columns of the table
correspond to different models and the panels and rows to different lag specifications. We
now analyze the results with a particular view of the importance of time variation in the VAR

parameters and different elements of parameter variation.

[Insert Table 1 here.]

Importance of heteroskedasticity. The model with drifting coefficients but a fixed covari-
ance matrix of the observation innovations (C) obtains smaller marginal likelihoods than the
model with fixed parameters (D). However, the time-varying VARs with heteroskedastic innova-
tions (A and B) fit the data better than the fixed parameters VAR. According to these results,
heteroskedasticity of the underlying shocks is a critical element of the data and may for instance

be required to capture occasional spikes in EMBI spreads.’

Relevance of variation in simultaneous relations. Regarding variations in the contempo-
raneous responses to standardized shocks, which we take as the simultaneous structural relations
among the variables according to (7), the results in Table 1 show that the model with a fully
time-varying covariance matrix of the innovations (A) obtains the highest marginal likelihoods,
in particular compared to the model with heteroskedastic innovations but fixed simultaneous

structural relations (B). The differences are large, more than 100 log points on average, which

As model D obtains a higher marginal likelihood than model C, one may wonder whether a model with a
changing innovation covariance matrix would not be preferred over models A and B. A simple way to test this
hypothesis is to estimate models A and B with a tightly restricted prior for the covariance matrix of the innovations
to the coefficients (Q) that resembles such a specification. When we did this, setting @ ~ IT/(0.0000001 x
V(Bars),100), we found that the estimated marginal likelihoods decreased for model A but increased for model
B, without changing the ordering of those models.
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implies that model A has a posterior model probability close to 1. Hence, changes in the simul-

taneous structural relations among the variables seem to be a salient feature of the data.

Testing cross-equation restrictions. The different panels of Table 1 contain marginal likeli-
hoods for alternative cross-equation restrictions. Panel 1 corresponds to the baseline specification
discussed in Section 3.3, i.e. EMBI spreads are exogenous for the remaining variables and the
copper price is exogenous for local output; Panel 2 corresponds to an alternative specification—
commonly used in VAR studies for small open economies—that takes external variables as block
exogenous for local output but where the VAR is otherwise unrestricted; and Panel 3 corre-
sponds to a completely unrestricted VAR. According to the estimated marginal likelihoods, the
first type of specification is preferred over alternative types by a fairly large margin. We are

therefore confident that the imposed cross-equation restrictions are useful to describe the data.

Testing the lag length. The different rows in the panels of Table 1 contain estimated mar-
ginal likelihoods for alternative choices of the VAR lag length, i.e. p = 1,2 for each specification
of cross-equation restrictions. The model with the highest marginal likelihood is model A with
the regression specification discussed in Section 3.3 and p = 1. Hence, we select this model to

proceed with the empiricial analysis.

4.2 Time-varying external volatility and propagation of shocks

This section characterizes the time-varying volatility of the external shocks based on the esti-
mated VAR. It also describes the propagation of those shocks into external variables by analyzing

time-varying impulse responses of those variables.

Measuring external volatility. We attempt to characterize the external volatility relevant
for Chile through a measure in the spirit of Cogley and Sargent (2005), who suggest to measure
the total amount of noise hitting a system of variables by the log determinant of the innovation
covariance matrix of a time-varying VAR with stochastic volatility estimated for that system.
Analogously, we define the measure EXV; = %log Mi3.9)+, where M), is the second leading
principal minor of the innovation covariance matrix €2;, which corresponds to the innovations to
external variables. Appendix C shows that this measure has the following structural interpre-
tation:

EXV,=logo1 +1ogoay, t=1,...,T,
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such that the evolution of external volatility is completely determined by the time-varying stan-

dard deviations of the two external structural shocks.!?
[Insert Figure 1 here.]

Figure 1 shows the median and the 16-th and 84-th percentiles of the posterior distribution
of EXV, for each month in the effective sample (i.e. June 1993 to April 2012). Several results
stand out. First, the volatility of external shocks was largest in the 1990s until around 2003,
a period that was characterized by several emerging market crises. Second, external volatility
reached a minimum of relatively short duration during the mid-2000s. Third, the volatility of
external shocks increased again from 2006 onwards towards the levels of the 1990s and early
2000s, and spikes occurred around the subprime crisis and the European debt crisis. Measured
by historical standards, the average level of external volatility was relatively high since around
2007. As high volatility signals frequent shocks, large shocks or both, we may conclude that
in terms of the frequency and/or the size of external shocks the recent financial crisis episodes

originating in developed countries were comparable to earlier episodes.

Contribution of individual shocks. Figure 2 shows the posterior medians and 16-th and
84-th percentiles of the time-varying standard deviations of the two external shocks. The upper
charts show the standard deviation of the financial shock to EMBI spreads (1) and the lower
charts show the standard deviation of the copper price shock (o24). The left-hand side charts
show the standard deviations in percent while the right-hand side charts show the standard

deviations in log percentages to make the scale comparable to Figure 1.
[Insert Figure 2 here.]

The upper charts in Figure 2 show that the 1990s were years of high average and quickly
changing volatility of shocks to emerging market spreads, with hikes in volatility during the
Mexican peso crisis in 1994-1995, the Asian financial crisis that started in July 1997 and the
1998 Russian financial crisis. However, after the peak of the Argentine crisis in late 2001, the
volatility of shocks to emerging market spreads started to decline. A period of low and stable
volatility followed that was almost uninterrupted from 2003 until late 2008 when the effects of
the subprime financial crisis spilled over into emerging market spreads. Nevertheless, according
to the point estimates, the identified financial volatility was lower than during the earlier crises,

which is consistent with the fact that this crisis originated (and impacted most) in developed

1% Appendix C also shows that EXV; can be generalized for time-varying VARs of the form in (3).
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countries. Finally, financial volatility increased mildly during the last quarter of 2011 when the
European debt problems also affected emerging market spreads.

The lower charts in Figure 2 show that the volatility of copper price shocks was moderately
high during 1994-1996, a period that was associated with a short boom in copper prices. After
around 1996, the volatility of copper price shocks decreased towards relatively low levels during
2000-2004. After that calm period, the volatility increased rapidly with the 2005-2006 boom in
commodity prices. Volatility levels remained high until the end of 2009. The volatility of copper
price shocks then decreased markedly towards the levels of the early 1990s.

In summary, the volatility of both types of external shocks have shown significant changes
over the sample period and periods of high volatility are assigned to well-known events. Changes
in the standard deviation of shocks to EMBI spreads (o1 4) drive changes in the external volatility
measure KXV, due to their relatively large magnitude. However, the point estimate of EXV;
during the subprime financial crisis was higher than during the Argentine crisis and comparable
to the level of the Mexican crisis, whereas this is not the case for o1;. The reason is that
the standard deviation of copper price shocks (02+) increased already before 2007, with effects
on EXV,; that are observable from the right-hand side charts in Figure 2. We may therefore
conclude that, while changes in external volatility in the 1990s and early 2000s were dominated
by exogenous changes in the volatility of emerging market spreads, exogenous changes in copper
price volatility have also had a significant role since 2005.

The results in Figure 2 are comparable to results of a related recent study by Garcia-Cicco,
Naudon, and Heresi (2012), who inter alia estimate the time-varying volatility of EMBI spreads
and a price index for mining exports (mainly copper) based on univariate autoregressive models
with stochastic volatility but fixed coefficients. The time profile of their estimated volatility of
innovations to the spreads is similar to the profile of o1, which is explained by the fact that
o1, is also the standard deviation of the reduced-form VAR innovations to the spreads.!! The
average profile of oo is also quite similar to the estimated profile of the volatility of innovations
to mining export prices of Garcia-Cicco, Naudon, and Heresi, but with important differences in
short-run dynamics. In particular, we do not find the rise in volatility reported by Garcia-Cicco,
Naudon, and Heresi in major financial crises, which may be explained by the propagation of

financial shocks into copper prices; this hypothesis is explored next.

Propagation of copper price shocks. We now analyze the time-varying propagation of the

two external shocks into external variables. For this purpose, we report time-varying generalized

1n addition, our model also implies a univariate specification for the spreads. The only important difference to
the specification for EMBI spreads of Garcia-Cicco, Naudon, and Heresi (2012) is that in our model time variation
in the VAR coefficients competes with stochastic volatility, but our estimated variation in the coefficients is small.
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impulse responses in the spirit of Koop, Pesaran, and Potter (1996) to address the uncertainty
originating from future time variation in the VAR, coefficients and its covariance matrix (i.e.
future changes in the structure of the economy).'?> The posterior distribution of the generalized
impulse responses is computed by Monte Carlo integration methods. The computation follows

Benati (2008) and is described in Appendix D.
[Insert Figure 3 here.]

Figure 3 shows the median time-varying impulse responses (with 16-th and 84-th percentiles)
of the real copper price to copper price shocks at selected horizons up to 36 months and for each
date in the sample. The shocks are normalized to 10% at each date. Under that normalization,
the shocks fall within the bands of the posterior standard deviation during the high volatility
period of 2006-2009. The results show that the propagation of the shocks into the price of copper
has been relatively stable over the sample period. The peak response of 13 to 14 percent occurs
within half a year and then falls to around 4 to 5 percent after 36 months. At longer horizons
of more than 12 months after the shock, a somewhat more persistent response is estimated for

the second part of the sample, but the differences are not probabilistically significant.

Propagation of external financial shocks. Regarding the propagation of external financial
shocks into EMBI spreads, Figure 4 shows that the response of the spreads to those shocks has
remained almost unchanged over the sample period. The shocks are normalized to 100 basis
points (b.p.) at each date, this being the order of magnitude of their volatility estimated for the
last major episode, i.e. the subprime financial crisis. The estimated responses decline steadily

over the horizons considered, being almost nil already 36 months after the shock.
[Insert Figure 4 here.]

However, it is interesting to note that the estimated (negative) impact of external financial
shocks on the level of the real price of copper has changed significantly over the sample period.
Figure 5 shows that the median response decreases notoriously from the late 1990s onwards.
The impact response is close to zero for the early 1990s but close to -5 percent for the period
2008-2012. The differences are even larger at the l-year horizon, and also at longer horizons a

declining response can be noted.

2 Generalized impulse responses take the response at horizon ¢ 4+ h to an exogenous shock €i,t to variable ¢ at
time ¢ is defined as the difference between two conditional expectations:

iri0en = B(yeanly' ™, By, Quy it = €) — E(yeanly' ™", By, Qu), t=1,...,7T, h=0,...,H,

where y~! is the history of observations up to time ¢ — 1. The first term is the forecast of ;4 conditional on

the current state of the economy and a shock of size e. The second term is the forecast conditional on the same
state but without conditioning on the shock.
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[Insert Figure 5 here.]

Figure 6 further supports the statements of the previous paragraph. The upper left chart
shows the trajectories of the copper price responses for four selected months. The months
considered are March 1995 (identified peak contagion of the Mexican peso crisis), August 1998
(peak contagion of Asian crisis), December 2008 (peak contagion of subprime crisis), and April
2012 (last sample point). The remaining charts shows various percentiles of the differences
between the impulse responses for Mar-95 and the other months. As it can be seen from the
upper right chart, there are no significant differences between the Mar-95 response and the Aug-
98 response. However, the differences are significant for the comparison of Mar-95 with Dec-08
and Apr-12, as it can be noted in the lower charts. The differences are significant with at least
90 percent posterior probability at horizons less than a year, but with less probability at longer

horizons.
[Insert Figure 6 here.]

The larger copper price response to external financial shocks is a very important finding
for the Chilean economy, an economy that is highly exposed to copper price fluctuations. This
finding implies that, in present times, an unexpected tightening of external financial conditions,
when measured by exogenous increases in EMBI spreads, will produce a larger fall of real copper

prices in comparison to what would have happened a decade ago.

Pass-through of financial volatility into the price of copper. We show next how the
larger detected response of the real price of copper to financial shocks implies a larger “pass-

through” of financial volatility into copper price volatility. To do this, we split up the variance of

the reduced-form copper price innovations (u/" = ug;) according to its structural components:

var(ugy) = (yva014)°  + 03,
— —

financial volatility = own volatility

This relation is derived in Appendix C. The first term is the squared contemporaneous innovation
to the price of copper due to a one-standard deviation financial shock at time ¢. The second
term is the variance of structural shocks to the price of copper at time t. We may define the
first component as the “financial”component of copper price volatility, which shows how the
volatility of financial shocks (o7 ,) is passed on through the response to such shocks (v3; ;). The
second component corresponds to autonomous or “own” structural copper price volatility.
Figure 7 shows the posterior median and the 16-th and 84-th percentiles of the financial

component of var(ug;). A significant effect can be noted during the Mexican peso crisis, the
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Asian/Russian crisis, and the Argentine crisis, which are associated with hikes in the estimated
o1, (see Figure 2). However, the financial component is much larger during the subprime crisis
and the European debt crisis. As the estimated oy ; are lower for these recent episodes compared
to the earlier crises, the additional volatility is explained by the larger estimated response of the
price of copper to financial shocks. Hence, the recent crises seem to have been associated with

a significant pass-through of financial volatility into copper price volatility.
[Insert Figure 7 here.]

In summary, the results reported in this section show that an overall increase in financial
volatility in the last couple of years has been amplified by a larger response of the price of copper
to financial shocks. We may therefore conclude that the Chilean economy has become (i) more
exposed to external financial shocks; and (ii) potentially more vulnerable to such shocks through
their larger impact on the price of copper. In the face of this evidence, the following section

explores the local transmission of external shocks in depth.

4.3 Time-varying local impact of external shocks

In this section we study the response of the Chilean economy to shocks to the price of copper
and external financial conditions, focusing on the response of the growth rate of local economic

output to such shocks.

Local impact of copper price shocks. We start by analyzing the local impact of copper
price shocks. Figure 8 shows the evolution of the response of output growth to 10 percent
copper price shocks at different time horizons. A downward trend can be observed for all
horizons displayed. At shorter horizons (0, 3, 6 months), the responses decrease monotonically.
At longer horizons more relevant for policy purposes (12, 24, 36 months), the estimates indicate
a transition from an initial state to another. The transition seems to start around 1999-2001,
a period that coincides with the years in which the monetary policy reform and the fiscal rule
were officially implemented in Chile, which points towards an important impact of those reforms

on the output response to copper price shocks.
[Insert Figure 8 here.]

To assess the statistical significance of the estimated changes, Figure 9 shows selected tra-
jectories of the output growth responses and the differences between the responses in March
1995 versus August 1998, December 2008, and April 2012. The response of output growth is
much lower for Dec-08 and Apr-12 than for Mar-95 and Aug-98. However, the differences for
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Dec-08 and Apr-12 in comparison to Mar-95 are only significant with a posterior probability
between 50 and 68 percent. Although this evidence is not very strong from a statistical point
of view, the changes in point estimates are economically quite important: the average reduction
in output growth is more than 1/4 percentage points. At the end of the sample, the differences
reach almost 1/2 points. The differences in the impact responses are relatively unimportant;

instead, the largest differences are observed at horizons of around 1 year.

[Insert Figure 9 here.]

Local impact of financial shocks. To analyze the local impact of external financial shocks,
Figure 10 shows the evolution of the response of output growth to 100 b.p. shocks to the EMBI
spreads for different time horizons. The charts show that the magnitude of the output responses
to those shocks has also decreased over time (increased in effective values). The economic policy
reforms of 1999-2001 could also be responsible for part of this effect since especially at longer

horizons a state transition is estimated to have started around that time.
[Insert Figure 10 here.]

Figure 11 shows the trajectories of the responses of output growth and the differences between
the responses for Mar-95 versus Aug-98, Dec-08, and Apr-12. As it can be seen, the differences
are not significant at conventional probability levels. However, the point estimates are again
economically important. The estimates show that 24 months after a 100 b.p. shock to EMBI
spreads, up to a 1/4 percentage point decrease in output growth would have been observed in
the 1990s while the change in output growth would have been close to zero in the last couple
of years. It is also interesting to note that, according to the estimates reported in the previous
section, external financial shocks have an increasingly negative impact on the price of copper in
more recent years, but this change has had no discernible impact on the response output growth.
Instead, the point estimates reported here point into the opposite direction, towards a smaller

impact of external financial shocks on output growth in recent times.
[Insert Figure 11 here.]

In summary, the evolution of the output response to external shocks (to the price of copper
and external financial conditions measured by emerging market spreads) shows that the Chilean
economy has been relatively resilient to the higher external volatility observed during the last
five years, in comparison to the 1990s and early 2000s. The most striking aspect of the results

reported in this section is that, despite an increasingly negative estimated impact of a worsening
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of external financial conditions on price of copper, there is no stronger effect on output growth.
According to our results, part of the explanation to this finding is a change in regimes around
1999-2001 that has reduced the response of the local economy particularly to copper price shocks,

and that coincides with the implementation of major monetary and fiscal policy reforms in Chile.

4.4 TImpact of “global” financial shocks

In this section we analyze the robustness of our main results to the use of a broader mea-
sure of external financial conditions. In particular, we analyze whether the distinction between
“emerging-market-specific” financial shocks and “global” financial shocks matters for the results.
Recall that the VAR discussed above uses EMBI sovereign spreads to measure changes in the
external financial conditions facing the Chilean economy. We now combine the information con-
tained in EMBI spreads with the information contained in the TED spread. By subtracting the
interest rate on risk-free U.S. Treasury securities (the T-Bill rate) from the main reference rate
on interbank loans (the LIBOR), the TED spread allows to measure changes in perceived credit
risk in the interbank market. Since the volatility of this spread has increased significantly after
2007, the use of this variable allows to explicitly capture the tightening of financial conditions in
the international financial system observed during the recent crisis. The results discussed above
might be affected by adding this information to the VAR.

We add the information in the TED spread to the VAR by replacing the EMBI spreads
by the first principal component of the EMBI spreads and the TED spread. The first princi-
pal component accounts for approximately 98% of the total variance of the two variables and
should therefore suitably capture external financial conditions facing the Chilean economy due
to both “emerging-market-specific” financial shocks and “global” financial shocks. The identify-
ing assumptions that we make under this extension are similar to the ones discussed in Section
3. In particular, external financial shocks are now defined as unpredictable innovations to the
first principal component of the EMBI spreads and the TED spread that are orthogonal to

innovations to the real price of copper and the growth rate of local economic output.
[Insert Figure 12 here.]

Figure 12 shows the estimated median time-varying impulse responses to 100 b.p. external
financial shocks and 10% copper price shocks according to both versions of the VAR. The
outcomes show that the previous results are robust to the use of the combined measure of
external financial conditions, as the estimated responses are quite close to each other. The main
conclusions from our analysis are therefore not affected by the distinction between emerging-

market-specific financial shocks and global financial shocks.
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5 Conclusions

In this paper we have analyzed the evolution of Chile’s external macroeconomic vulnerability
over the past decades, with a focus on (i) the exposure to external financial shocks (measured by
exogenous changes in external interest rate spreads) and copper price shocks at different points of
time; and (ii) changes in the impact of such shocks on domestic output. The analysis has been
based on structural small-country VARs with drifting coefficients and multivariate stochastic
volatility. The results show that despite an increase in the exposure to external shocks since the
mid-2000s, local output nevertheless exhibits a smaller response to external shocks than in the
past in particular due to smaller estimated effects of copper price changes.

The above result is in line with previous empirical work by Franken, Fort, and Parrado
(2006), who found that external shocks had historically been responsible of a significant portion
of output volatility in Chile but that the effects of external shocks on output had decreased
between the 1990s and the early 2000s. According to our estimations, this finding extends
to the more recent period since the mid-2000s and the latest crisis episodes. Other work by
Céspedes, Goldfajn, Lowe, and Valdés (2006) argues that desirable economic policies to lower
the volatility of output growth are (i) a floating exchange rate, (ii) a credible inflation targeting
regime, (iii) a sustainable and credible fiscal policy, and (iv) the creation of liquid and well-
developed financial markets. All of these policies were implemented in Chile towards the end of
the 1990s and beginning of the 2000s. According to our findings, structural changes affecting the
response of output to external shocks have taken place at that time. The timing and persistence
of the estimated changes suggests a particularly important role of policies (i)-(iii) in isolating
the Chilean economy from external shocks, in particular to the price of copper.

An additional result of the paper is a larger estimated response of the price of copper to
external financial shocks. Although other explanations are possible, this result is in line with an
increasing role of commodities as financial assets over time, as emphasized by Caballero (2006)
and Caballero, Farhi, and Gourinchas (2008). According to the latter, an increasing shortage
of liquid financial assets since the 1980s has contributed to higher demand for commodities and
helped to fuel the commodity price boom starting in the mid-2000s. However, the real economic
slowdown initiated by the subprime financial crisis worked to reverse the tight commodity market
conditions. The estimated (significantly) stronger reaction of the price of copper to financial
conditions since the mid-2000s seems to be consistent with this explanation.

Given these findings, it would be interesting to conduct a cross-country study of time varia-
tion in the effects of external shocks for a larger set of emerging market economies or commodity-

exporting countries where similar policy reforms as in Chile have been implemented over the
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past decades. This type of study would be useful to further investigate the role played by such
reforms in isolating local economies from external shocks. It would also be interesting to comple-
ment the analysis in this paper by an analysis of changes in the effects of global financial shocks
on a wider range of commodity prices (other industrial metals, oil, etc.), in order to provide
a more detailed empirical assessment of the asset shortage perspective mentioned above. This

type of research is left for future work.
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Appendix

A Details of the estimation

This appendix provides details on the estimation of the models that were described in Section
2. We adopt the notational conventions that v™ = [v,...,v.]" denotes the history of a generic
vector v up to a generic time 7 and that M7 = [my,...,m}]" denotes the history of a generic
matriz M; up to generic time 7, where m; = vec(M;) and vec(-) is the column stacking operator.
Further, v7 = [v],...,v.] and MT = [m],...,m/]" are histories that exclude time 0 values.
Finally, f(-) denotes a generic distribution function. The estimation is conducted by Gibbs

sampling (Gelfand and Smith, 1990; Geman and Geman, 1987). We first provide a general

description of Gibbs sampling before explaining the details of the estimation of each model.

Gibbs sampling

Gibbs sampling is useful to obtain a sequence of random samples from an intractable joint dis-
tribution of two or more random variables by sampling sequentially from tractable conditional
distributions of individual variables.'®> The obtained sequence approximates the joint distribu-
tion. Our aim is to sample from the joint posterior of the parameters of each model, collected in 6.
Gibbs sampling is based on a blocking scheme, i.e. a partitioning of the parameters into ¢ differ-
ent sets 0 = {01,...,0,}. Sampling starts with an initial sub-set 8(0) = {#2(0), ..., 0,(0)} and the
first block #1(1) is sampled from the conditional distribution f(6]y”,8(0)) in the first iteration.
The remaining blocks are then sampled sequentially from their conditional distributions. These
are f(0;lyT,01(1), ..., 0,-1(1),0;11(0),...,04(0)) for i = 2, ...,g— 1 and f(O,ly",01(1), ..., 0,-1(1)).
The set of parameters obtained in the first iteration (1) = {61(1),...,6,4(1)} is a sample from
f(@ly",6(0)). Tterating for j = 2,..., M produces a sequence {6(j) jj‘il. It can be shown that,
as M — oo and under relatively mild additional conditions, the sequence {G(j)}j]‘/il converges in
distribution to the posterior f(0|y”) for any feasible initial set 6(0). To lessen the dependence
on initial values, an initial sequence {0(5) s discarded from the final sequence, with m < M
but large enough. Standard convergence checks and tests can be used to ascertain whether the
empirical distribution of 6(j) has converged.'* Since the samples in {9(])}31‘1m 41 will generally

be dependent it is also advisable to apply thinning, which means that only every r-th sample

'3 An intractable distribution is here understood to be either a distribution whose analytical form is unknown
or a distribution with known analytical form that is difficult to sample from directly. Conversely, a tractable
distribution is a distribution that has a known analytical form and that is easy to sample from directly.

"We used recursive mean plots and codes from James LeSage’s econometrics toolbox (http://www.
spatial-econometrics.com) to assess the convergence of the Gibbs sequence used for posterior inference.
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from {G(j)}j]\imH is used for the inference, with r large enough.!”

Estimation of Model A

Model A has parameters 64 = {BT, ol w”,Q, S, W}. The observed data y” is linked to the para-
meters through the likelihood function f(y* |37, ™, w”, Q, S, W). Letting f(8g, a0, wo, Q, S, W)
denote a joint prior for the initial states and the covariance matrices of the state innovations,
the object of interest is the joint posterior distribution of the states BT, T, and w? and the

covariance matrices ), S, and W conditional on the observed data:

FOAlT) = F@T104)f(04) _ f@T104) F(BL, o, wT|By, a0, wo, Q, S, W) f (B, o, wo, @, S, W)
fh) fh) :

The Gibbs sampling algorithm that is used to approximate that joint posterior follows Prim-
iceri (2005). A natural blocking scheme consists of the blocks BT, T, T, Q, S, and W.
Those blocks have known individual conditional distributions given by f(8[y”,a”,w”,Q),
f@TyT, gT,WT,8), f(WllyT, BT, aT, W), £(QIBT), f(S|aT), and f(W|wT), where condition-
ing variables that are redundant for the individual distributions are omitted. A complication
arises because f (wT\yT, BT, al, W) is intractable in the sense that exact sampling techniques
cannot be used to sample w?!. The procedure therefore takes a tractable, approximate dis-
tribution f (wT|yT,ﬂT,aT,sT,W) that depends on auxiliary parameters s’ that have them-
selves a tractable conditional distribution f(s”|y”, 5T, a”,w”). An additional block is then
included for the parameters s”. In addition, the block diagonal structure of S allows to sam-
ple from the conditional distributions f(S;|al) instead of f(S|a’), where i = 1,...,n — 1 and
@it =1ty @rm_14]’, 7 =i+ 1. The latter implies n — 1 additional blocks for the S; instead
of the block for S. Accordingly, the blocks ol are sampled from f(a! |y7, BT wWT,S).

The joint prior is then given by f(8g, ®o,wo, @, S1, .-y Sn—1, W). It is convenient to use an
independent Normal-Wishart prior, i.e. normal for 3, agp, and wg, and inverse-Wishart for @),

W, and the S;, i = 1,...,n — 1.1 Thus, the joint prior is specified as

f(Bo, 0, w0, @, 51, -0 Sn1, W) = f(Bo) f(@0) f(wo) f(Q)f(S1) X -+ X f(Sn1) f(W),

where the marginal priors are specified as described in Section 3.4. In particular, the prior

means and variances for the normal distributions of 8, ap, and wg and the scale matrices

"See Casella and George (1992) for a discussion of several of those points and further references. For a detailed
discussion of the Gibbs sampler in a Bayesian context, see e.g. Geweke (1999).

16 This type of prior is convenient because it is the natural conjugate prior in a time-varying VAR model as the
one considered, i.e. the posterior of 37, o, and w7 is normal, by linearity of the state equations and normality
of the state innovations, and the posterior of @, W, and the S; is of the inverse-Wishart form.
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for the inverse-Wishart distributions ¢, W, and the S; are calibrated based on maximum-
likelihood estimates for an initial sample of observations.!” The algorithm then consists of the

following steps to generate the desired sequence of random samples from the joint posterior

f(ﬁTa aT7wT7 Q? Sla ey Sn*h W|yT)

Initialization of o', w”, @, S;, i =1,....,n—1, and W. The individual blocks are initialized
by their respective prior means. Other starting points could be used but, after convergence, the

final sequence of random samples will be independent of the initial conditions.

Sampling from f(87 ]y, a”,w”,Q). Given a’ and w”, we obtain a history Q7. Conditional
on yT', QT and @, and by linearity of the equations and normality of the marginal prior f(3,)
and the respective innovations, the system of equations (3) and (4) has a linear Gaussian state-
space form, which allows to use the Kalman filter and a backward recursion to sample from

F(BY YT, a”,wT, Q). The conditional posterior distribution of 57 is factored as follows:

71T 97.Q) = F(Brly™ 0T QTT . F(BilBrr .07, Q). (15)

where the individual conditional distributions are given by

Brly", Q" Q ~ N(Bryr, Prir), BilBia v, 2, Q ~ N(Byjrs1 Pri1)s

with means and variances

Bierr = B(BilBr1.v", 27, Q), Pyjip1 = var(P|Piy1,y", 07, Q).

The means and variances are computed using a standard Kalman filter and simulation smoother
described by Carter and Kohn (1994); see also Cogley and Sargent (2005) and Primiceri (2005).

As the prediction f,_; is equal to 3,_;;_; under (4), the Kalman filter recursions are given by

Py = Pp1+Q, Ky = Py Xy (X{ Py Xo + Q)7

B = B+ Ki(ye — thﬁtfl\tfl)v Py = Pyp—1 — KtXépt\t—l-

The initial point B¢ for this recursion is the mean of the prior f(8), and Py is the variance of
f(Bp). The Kalman filter delivers as its last point Spp with Ppjp. Samples from (15) are then

obtained by a backward recursion. The first point S in the backward recursion is a sample

'"Exact asymptotic results are available for this purpose (see Hamilton, 1994, chap. 11).
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from N(Bpp, Prir). The remaining points 8, ¢ = T'—1, ..., 0, are samples from N (8,1, Pe1),

where the means and variances are calculated recursively as follows:

Bijer1 = By + Pt\tpt:_ll‘t(ﬁt-i-l = Byje)s Pyiy1 = Py — Pt\tPt:rll‘tPﬂt'

T

Sampling from f(aiT|yT,ﬂT,wT7Si), i=1,...,n—1. Given w”, we obtain a history X7,

allowing to re-write the system of equations (3) as follows:
Ayr = e, (16)

where 7; = y; — X}, is observable given 3! and BT. The matrix A; is lower triangular with

ones on the main diagonal such that, recalling the definition of oy, we can write
Yt = Ziay + Ly (17)

The n x n(n — 1)/2 matrix Z; has the following structure:

[0 0 -
iy 0 0
Ze=1 0 [~Uit, V2]
: 0
_ 0 0 [—/y\Lt,...,—@\n—l,t}_

By normality of the marginal prior f(cap) and the innovations, the system of equations (17)
together with (5) has a Gaussian but non-linear state-space form. However, as suggested by
Primiceri (2005), under block diagonality of S the problem becomes linear because the individual
equations in (17) are then independent. Hence, the algorithm of Carter and Kohn (1994) can

be applied equation by equation to sample ol from
T oT T T T
airly, 8,55, Si ~ N(e e, Niryr), aitlaizr, vt BT 5T, S~ N(igger1, Miger)s

fori=1,...,n—1, where a;; is the block of a; corresponding to the (i + 1)-th equation in (17)
and S; is the associated block of S. The means «; p7 and «; ;41 and the variances A; 77 and

A; ¢jt41 are calculated similarly as in the previous step.
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Sampling from f(w” |y, 87, a”, s, W). Given y7, T, and o, we can write
Ut = Lget,
where g, = Ai(y: — X[B;). By diagonality of ¥, taking logs of the squares of both sides yields
log(g,%yt) =2logops + log(e,%i), h=1,...,n.

The evolution of wy is then also characterized by a state-space model, and samples of w” can
be obtained by a stochastic volatility algorithm described by Kim, Shephard, and Chib (1998).
Define y;; , = log(gz’t +c¢), wpy =logony, and ey = log(afht). The value c is an offset constant
(set to 0-001) whose purpose is to improve the numerical robustness of the algorithm when gfm
becomes very small. Stack the individual elements y;;,t’ Wht, and ey in the n x 1 vectors y;,

wy, and e;. The state-space model is then formed by the system of observation equations
yr = 2wt + e, (18)

and the state equations (6). This model is linear but not Gaussian because the individual
disturbance terms ey, ¢, being logs of the squares of the standard normal random variables ¢y, 4,
are distributed as log x?(1). Thus, y; has a non-Gaussian distribution, which implies that the
evolution of wy is intractable in the sense that exact techniques cannot be used to sample w’.
To obtain a tractable representation of the evolution of w;, Kim, Shephard, and Chib (1998)
suggest to approximate the log x? distribution by a mixture of seven normal distributions with
component probabilities ¢;, means m; — 1 - 2704, and variances vjz, j =1,..,7.18 Define as
s = [$1,...,s7]" an n x T matrix of indicator variables, whose elements s;¢ can take values

from 1 to 7 and indicate which of the seven normal distributions is active in period ¢ for each

disturbance term e; ;. The mixture of normals approximation assumes that
. 2 . .
eh,t|8h,t:] NN(mj’Uj)7 Pr(sh,t:j):qjv hzla"'y”? J =1,..,7.

Conditional on y”, BT, a”, W, and sT, and by normality of the marginal prior f(wp) and
the innovations, the system formed by (18) and (6) now has an approximate linear Gaussian

state-space form, and we use the algorithm of Carter and Kohn (1994) to sample from

T T T T t T T T
OJT|Z/ 75 , .S 7WNN(wT\T7TT|T)7 wt|wt+17yvﬂ , o, S 7WNN(wt\t+17’rt\t+1)7

"Kim, Shephard, and Chib (1998) choose these values for g;, m; and v to make the mixture approximation
for the density log x*(1) sufficiently good. Notice that the mean of the log x?(1) distribution is equal to —1-2704.
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where the means wpr and wy;1 and the variances Tpip and Ty, are calculated similarly as

in the previous steps.

Sampling from f(s”|y", 7, a”,w"). Given 37, 8T, a”, and w7, the indicator variables in

sT are sampled from the discrete density defined by

Pr(sns = jlyp o whit) < a5 N (U5 o[ 2wne +mj — 12704, 073), h=1,..,n, j=1,..,1,
where fn(-) denotes the normal density function (see Kim, Shephard, and Chib, 1998).

Sampling from f(Q|31), f(W|w"), and f(S;|a”),i=1,...,n—1. Conditional on T, w7,
and o, respectively, samples of Q, W, and the n— 1 blocks of S are obtained using the following
standard procedure (see e.g. Gelman, Carlin, Stern, and Rubin, 2003). Consider a generic w x 1
vector v; that is distributed as N (0, R), and assume an inverse-Wishart prior for R with scale
matrix R and degrees of freedom r, i.e. R ~ IW(R,r). If we have T observations grouped in

the w x T matrix V' = [v1, ..., vr], then the conditional posterior of R is given by
RIVT ~ IW(R,7), R=R+VIvT, F=r+T.

Therefore, using respectively v = 8, —B8;_1, vy = wi—wi—1,and vy = aj;—; -1, =1,...,n—1,
for the cases of @, W, and Sj;, we can sample each of these matrices as follows. Conditional on
VT, the inverse of R has a Wishart distribution with scale matrix R~' and degrees of freedom
7. Therefore, we first sample a random matrix from W (R™!,7) and obtain a random matrix
from IW(R,7) by taking the inverse of that matrix. The random matrix from W(R™!,7) is
obtained by sampling w random vectors a;, [ = 1,...,w, each of which has size 7 x 1, from a
multivariate normal distribution with mean zero and variance R~!. Then one forms the matrix

A =a1,...,a,) and calculates (A’ A)~1, which has the desired inverse-Wishart distribution.

Algorithm model A. In summary, the Gibbs sampling algorithm for model A consists of the

following steps:

1. Initialize o, W™, Q, S, and W.
2. Sample 7 from f(BT|yT, o, W, Q).
3. Sample a! from f(oz;fp|yT,ﬁT,wT, Si),fori=1,...,n—1.

4. Sample w” from f(wT|y”, BT, ", sT, W).
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5. Sample s from f(sT|y?, al,w?h).

6. Sample Q from f(Q|y”, 7), sample W from f(W|y”,wT), and sample S; from f(S;|y”, al),

fori=1,...,n—1.

7. Go to step 2.

Estimation of Model B

Model B has parameters 0 = {87,a”,w”,Q, W} with o = « for t = 0,...,T. The in-
dividual blocks have conditional distributions given by f(87|y7, o, w”,Q), f(aly®,s",wT),
FTyT, B, a, W), £(QIBT), and f(W|wT). The estimation procedure again takes an addi-
tional block 57 with f(s”|y”, 87, a,w”) and uses f(w”|y”, BT, a,s”,W). The joint prior for
the initial states, the «, and the covariance matrices of the state innovations is then given

by f(Bg,,wo, @, W) = f(By)f()f(wo)f(Q)f(W), where the marginal priors are specified as

described in Section 3.4.

Algorithm model B. The Gibbs sampling algorithm for model B is as follows:

1. Initialize o, W™, Q, S, and W.

2. Sample 7 from f(BT|yT, o, w”, Q).

3. Sample o; from f(oy|y”, BT, wT), fori=1,...,n— 1.
4. Sample w” from f(w”|y”, BT, a, sT, W).

5. Sample s7 from f(s”|y?, a,w?).

6. Sample Q from f(Q|y”,3T) and sample W from f(W|y”, 7).

7. Go to step 2.

Steps 1-2 and 4-6 are identical to the steps described for model A, replacing a; by « for ¢t =
1,...,T. Step 3 follows Cogley and Sargent (2005).

Sampling from f(o4|y”, 87, wT), i =1,...,n —1. Given 37, T, and w”, the system (17)

can be expressed as a system of seemingly unrelated regressions with standard normal residuals:

Ut = Zyo + Et, (19)
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o 1~ —1~ v
where ¢, = [Ul’tyl,ta cee Un,ty”:t] and

[ 0 . . 0 |
—Uitlgl,t 0 . 0
7= 0 [—U;;}??Lt, —Uigﬂz,t]
0
o o 0 [~0niles- s —0piln-14]

The prior for the regression coefficients is specified as follows:

a; ~ N(ay, V), i=1,...,n—1

where «; is the block of a corresponding to the (i + 1)-th equation in (19). Then, given the

seemingly unrelated regressions form, the posterior is given by

T oT T _ 5
Oéi|y aﬁ , W NN(O%,V;'), (20)
with means and variances
_ 1 Siea1 B o S
Vi=(V; +ZZ), ai = Vi(V; o + Zii),
where
—_ _1 A- J— _1 F .. —_— _1 A-
Oit1,1¥i+1,1 Oit1,191,1 Oit1,1%i1
Ui = : ; Z; = : :
—_ _1 /\. J— _1 7 “ .. —_— _1 A~
011, 7Yi+1,T Oi11,7Y1T Oi11,17Y,T

collect the variables corresponding the (i41)-th equation. With these transformations, the n—1

blocks of v can be sampled from (20).

Estimation of Model C

Model C has parameters fc = {47, Q7, Q}, with Q; = Q for t = 0, ..., 7. The individual blocks
have conditional distributions given by f(37[y",Q,Q), f(Q|y",8T), and f(Q|FT). The joint
prior for the initial states, 2, and @ is then given by f(5y,Q, Q) = f(By)f(2)f(Q), where the

marginal priors are specified as described in Section 3.4.

Algorithm model C. The Gibbs sampling algorithm for model C is as follows:
1. Initialize 2 and Q.
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2. Sample 7 from f(57|y",Q, Q).
3. Sample Q from f(Q|y”, 81).

4. Sample Q from f(QlyT, 57T).

5. Go to step 2.

Steps 1-2 and 4 are identical to the steps described for model A, replacing Q; by Q fort =1,...,7T.
Step 3 follows Cogley and Sargent (2002), modified to take into account independence of the
VAR innovations and the state innovations, which is assumed in models A-C and also in Cogley

and Sargent (2005) and Primiceri (2005) but not in Cogley and Sargent (2002).

Sampling from f (Q|yT, ﬂT). Under an inverse-Wishart marginal prior for 2 with scale matrix

Q and degrees of freedom r, the conditional posterior distribution of €2 is given by
Qlyt, BT ~ IW (R, 7), R=Q+YTy", F=r+T,

with Y7 = [U1,..,yr]. Samples from this distribution can be obtained by the same procedure

as used to sample from f(Q|S7); see the discussion for model A.

Estimation of Model D

The estimation of model D (the seemingly unrelated regressions model with fixed parameters)
under an independent Normal-Wishart prior is standard textbook material and is therefore only

briefly discussed here.

Algorithm model C. The associated Gibbs sampling algorithm is as follows:

1. Initialize Q.
2. Sample § from f(57|y", Q).
3. Sample Q from f(QyT, 57).

4. Go to step 2.

See, for instance, Koop (2003, chapter 6) for further details.
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B Calculation of marginal likelihoods

This appendix describes the calculation of the marginal likelihoods reported in the main text.
The calculation is based on Newton and Raftery (1994). Throughout, fx collects the parameters
of a specific model z with the joint likelihood function fx(y”|0x) and a joint prior distribution
for the parameters f(fx); for instance, model A has 04 = {87, a”,w”,Q,S,W}. The calcu-
lation of the marginal likelihoods requires likelihood evaluations that are conducted as follows.
Conditional on the matrices Q; (or ) and @, models A-C have a normal linear state space

representation

o = X;ﬁt—i_uta Uy ~ N(O,Qt),

By = Bioqt v, vy~ N(0,Q), t=1,...,T,
with By ~ N (B, P3). With = € {A, B, C}, the log likelihood satisfies
0 B

log f(y"|0x) = log f(y1l0x) + > 1_slog fyely' ™, 0x),

and

yt‘yt717 0X ~ N(Xgﬁt‘tfh Xépt‘t—lXt + Qt)a t= 27 cee 7Ta

and y1|0x ~ N(X{B1jg, X1 P X1+ ), where B,,_; and Py, _; are calculated from the Kalman

filter recursions:

Bii—1 = Bi—ij—1

Py = Pap1+Q,
Ky = Pt|t71Xt(Xt/Pt|t71Xt +)7
Bue = Byp—r + Kilye — XiByi1),
Py = Py_1— K X;Py s,

starting at 60‘0 = and Pojo = }_’5. The log likelihood is then given by

Tn 1
log f(y"|0x) = 5 log 2 — B >y log |XtIPt\t71Xt +

1 _
3 S (e — X{Bre—1) (X{Py—1 Xo + Q) (ye — X{Bypi1)-
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The log likelihood of the fixed-parameters model D is given by
T T
log f(y"[6p) = ——~(1 +log 27) — 7 log |92

An estimator of the marginal likelihood for model z, i.e. fx(y?) = [fx(y"|0x)f(0x)d0x, is
then given by the harmonic mean of the sampled likelihood values, as described by Newton and
Raftery (1994): An importance sampling method for evaluating the integral [ fx (y7]0x)f(0x)d0x
is to generate a sample {0x (])};Vzl from an importance function f*(6x). In particular, since

[ f(0x)dix =1 we can write

JIF0x)/F(0x)fx (y"10x) f*(0x)dOx
JUFOx)/f*(0x)]f*(0x)dOx ’

fxyh) =

such that an importance sampling based estimate of fy(y') is given by

S w(i)fx (T 10x (7))
Z]‘]\i1 w(j)

fxy") =

, (21)

where w(j) = f(0x(4))/f*(0x(j)) are the importance weights. Let {fx(j) ;V:1 be a sample
from the posterior density fx(0x|y?) = fx(yT|0x)f(0x)/fx(y"). As suggested by Newton
and Raftery (1994), the posterior fx(6x|y’) is well suited as an importance function for the
prior f(fx). Thus, using f*(6x) = fx(Ox|y’) in (21) yields the harmonic mean estimator of

Ix(y") based on the sample {Hx(j)}éyzlz

1 .y 1 -t

chmy T\ _ | =
BV = | N 2 TGy >

which converges almost surely to fx(y?) as N — oo under weak conditions.'® It is convenient
from a numerical point of view to calculate the log marginal likelihood log f}m(yT) from the

sampled log likelihood values log fx (y*|0x(5)), as follows:
log X" (y") =log N — k — log 27, exp[—log fx (y" [0x () — xJ,

where the constant £ = max;[—log fx (y|0x(j))] is added/subtracted for numerical stability.

"The relevant conditions are that the support of f*(6,) includes the support of f(6.), which is the case when
F*(02) = f+(0:|yT), and that f.(y") exists. See Geweke (1989) for a proof.
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C Derivation of external volatility measure

In this appendix, we provide a derivation of the external volatility measure that was defined
in Section 4 for model A. Consider first the 3-variate case. Take the triangular decomposition

A Ay = 3,5 for that case and define a 3 x 3 matrix I'; as follows:

1 0 0
Iy =A7! = Youg 10, t=1,...,T.
Y31t V32t 1

The parameters of I'; are linked to the parameters of A; through the relations

Y21, = —Q21t, V33, = Q21,tQ32¢ — Q31 ¢, V32,6 = —Q32¢-
Thus, the matrix € is equivalently defined as

2 2 2
014 V21,601 ¢ V31,691t

_ o 2 ) 2 2 2
Q=IN35 = V21,601 ¢ V21,401, T 024 V21,4731,401,t T V32,402, : (23)

2 2 2 2 9 2 2 2
V31,601 V21,4731,601 ¢ T V32,4024 V31,401, T V32,4024 T O3,

Now define as M o) ; the determinant of the upper left 2 x 2 block of €, or the second leading

principal minor of ;. Taking the natural logarithm of My, ; and multiplying by % yields

1
3 log M[Q,Q}’t =logois +logoay.

Hence, the log of the first leading principal minor of €2, is equal to the sum of the log standard
deviations of the first two structural shocks. This result generalizes to n-variate (time-varying)
VARSs of the form (3) under a lower triangular identification scheme. That is, % times the log of
the k-th leading principal minors of the innovation covariance matrix is equal to the sum of the

log standard deviations of the first k structural shocks:

1 i .
§IOgM[k,k],t = ) logoky, i=1,...,n.
k=1
The external volatility measure is defined as EXV; = %log Mi; )+, ordering the j external

variables first in the VAR.
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D Computation of generalized impulse responses

This appendix describes the Monte Carlo integration procedure that is used to compute the
generalized impulse responses reported in Section 4. The implementation follows Benati (2008)
under some minor modifications. We consider a structural shock €;; of size € for model A. The

following procedure is performed for f =1,...,Fand t=1,...,T":

1. Draw the current structure of the economy S, and € from the posterior.

2. Given 3, and €, repeat the following steps for g =1,...,G:

(a) Draw n independent standard normal variables, the structural shocks ;.

(b) Based on =,Z) = €, compute the reduced-form innovations u; = Zey.

(c) Based on the state equations (4)-(6), simulate sequences {5t+h}hH:1 and {Qt+h}hH:1~
(d) Based on the sequence {Qt+h}hH:1, draw a sequence {Ut+h}hH:1-

e) Based on the system of observation equations (2) and the sequences {usp T and
Y q q +h S h=0

H . : H
{Biin} 1 Simulate a sequence of observations {yin }j,—o-

3. Call the obtained simulated paths of observed variables {yt+h(g)}hH:0 .

4. Simulate G additional paths of observed variables as in step 2 based on the same {ut+h}hH:1,
the same {3, +h}hH:1 and the same =, but replace the reduced-form innovations at time ¢
using as structural shocks e; + ¢;, where ¢; is an n x 1 vector whose i-th element is equal

to € and whose remaining elements are 0.

5. Denote the simulated paths obtained in step 4 as {gjt+h(g)}hH:0.
6. Compute iriz4n(f) = & Z?:1(th+h(9) — Ur+n(g)) for h=0,.... H.

Each ir; 1, (f) is a sample from the posterior distribution of generalized impulse responses. We
use F' = 1,000 posterior draws of 3, and §; and generate G = 100 simulated paths of observed
variables for each draw. These values of F' and G are the same as used by Benati (2008). The

impulse response horizon is set to H = 36 months.
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Table 1: Marginal model likelihoods.

Model A Model B Model C Model D

Drifting coefficients, Drifting coefficients, Drifting coefficients,  Fixed coefficients,

time-vary. cov. matrix  time-varying variances fixed covar. matrix  fixed covar. matrix

Panel 1: Bond spreads exogenous, price of copper exogenous for local output (baseline)

Lag 1 280.1 176.6 110.2 126.4
Lag 2 278.2 136.3 124.3 151.8

Panel 2: Bond spreads and price of copper block exogenous for local output

Lag 1 273.6 173.6 106.4 129.5
Lag 2 223.2 117.7 118.8 150.2

Panel 3: Unrestricted VAR

Lag 1 268.7 153.3 103.6 128.6
Lag 2 264.5 134.9 114.7 148.2

Note: The table entries are harmonic mean estimates of marginal model likelihoods; see Appendix B for
a description of the estimation.
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