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Abstract  
 
The use of different time-series models to generate forecasts is fairly usual in the 
forecasting literature in general, and in the inflation forecast literature in particular. When 
the predicted variable is stationary, the use of processes with unit roots may seem 
counterintuitive. Nevertheless, in this paper we demonstrate that forecasting a stationary 
variable with driftless unit-root-based forecasts generates bounded Mean Squared 
Prediction Errors errors at every single horizon. We also show via simulations that 
persistent stationary processes may be better predicted by unit-root-based forecasts than by 
forecasts coming from a model that is correctly specified but that is subject to a higher 
degree of parameter uncertainty. Finally we provide an empirical illustration in the context 
of CPI inflation forecasts for three industrialized countries. 
 
 
 
 
 
 
Resumen 
 
El uso de diferentes modelos de series de tiempo para generar pronósticos es usual en la 
literatura predictiva en general, y en la literatura de predicción de inflación en particular. 
Cuando la variable a predecir es estacionaria, el uso de procesos con raíz unitaria puede 
parecer contraintuitivo.  No obstante, en este artículo nosotros demostramos que la 
predicción de variables estacionarias con pronósticos basados en procesos con raíz unitaria 
sin intercepto,  genera Errores de Predicción Cuadrático Medios acotados en todo 
horizonte.  También mostramos con simulaciones, que procesos estacionarios persistentes 
pueden ser pronosticados de mejor manera por predicciones generadas a partir de un 
modelo con raíz unitaria que por  predicciones generadas a partir de un modelo 
correctamente especificado pero sujeto a un grado mayor de incertidumbre paramétrica.  
Finalmente mostramos una ilustración empírica en el contexto de proyecciones de inflación 
del IPC para tres países industrializados.  
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1 Introduction

Some of the univariate models used to predict macroeconomic time-series, as inflation, involve the
explicit presence of a unit root. Under the assumption of stationarity of the target variable, this
may seem counterintuitive. In principle, one could think that unit-root-based forecasts may not be
appropriate to predict a stationary process. This is so for a number of reasons. First, unit-root-
based forecasts would have been generated from a model that is misspecified and overdifferenced.
Second, unit-root-based forecasts may have a deterministic trend approaching to infinity (or minus
infinity) as the forecasting horizon lengthens, which is in clear conflict with a stationary process.
Third, the optimal forecasts of a unit root process display a divergent Mean Squared Prediction
Error (MSPE) as the forecasting horizon approaches to infinity. This may lead to think that
a similar property might hold true when forecasting a stationary process with unit-root-based
forecasts.

Despite these arguments, results in Atkeson and Ohanian (2001), Giacomini and White (2006),
Capistrán, Constandse and Ramos-Francia (2010), Groen, Kapetanios, and Price (2009), Elliot
and Timmermann (2008), Stock and Watson (2008), among others, show that unit-root-based
forecasts perform well when forecasting inflation or GDP growth, variables that may be considered
stationary in a number of countries. It is in the context of these findings that we pose the two
following questions: (i) when predicting a stationary variable with unit-root-based forecasts, does
the MSPE diverge as the forecasting horizon lengthens? and (ii) is it possible that unit-root-based
forecasts for a persistent stationary process perform better than forecasts generated from a correctly
specified model in finite samples? In this paper we aim at answering these two questions.

In order to do so, in section 2 we analyze the behavior of the MSPE of unit-root-based forecasts for
stationary variables as the forecast horizon lengthens. In section 3 we report Monte Carlo simula-
tions evaluating the ability of unit-root-based forecasts to predict a stationary process. An empirical
illustration based on year-on-year (YoY) Consumer Price Index (CPI) inflation for Canada, Sweden,
and the United States is presented in section 4. Finally, section 5 concludes.

2 Forecasting inflation with a unit root process

To set some preliminary ideas, let us consider that the true model of a variable Yt is the following
Gaussian stationary AR(1) process, Yt+1 = α+ρYt+εt+1, where εt+1 is a white noise with variance
σ2ε, α 6= 0, and 0 < ρ < 1. By iterating forward it is possible to show that for an arbitrary horizon
h ∈ N we have:

Yt+h = α

[
1− ρh
1− ρ

]
+ ρhYt +

h−1∑
i=0

ρiεt+h−i

The best linear h-step ahead forecast Y f
t (h) and its corresponding error e

f
t (h) are given by:

Y f
t (h) = α

[
1− ρh
1− ρ

]
+ ρhYt

eft (h) = Yt+h − Y f
t (h) = εt+h +

h−1∑
i=1

ρiεt+h−i

Suppose now that we forecast Yt+h assuming that the true Data Generating Process (DGP) is
a driftless random walk (RW) that delivers the following forecast, Y RW

t (h), and forecast error,
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eRWt (h):

Y RW
t (h) = Yt

eRWt (h) = Yt+h − Yt = α

[
1− ρh
1− ρ

]
− (1− ρh)Yt +

h−1∑
i=0

ρiεt+h−i

The MSPE thus is given by:1

MSPE(h) = E(Yt+h − Y RW
t (h))2

MSPE(h) = E
[
α

[
1− ρh
1− ρ

]
− (1− ρh)Yt

]2
+ E(

h−1∑
i=0

ρiεt+h−i)
2

MSPE(h) = (1− ρh)2V(Yt) + σ2ε(
1− ρ2h
1− ρ2 )

then:
lim

h −→∞
MSPE(h) = 2V(Yt)

Thus, because Yt is stationary, forecast errors coming from a RW-based forecast do not display an
explosive behavior as the forecasting horizon lengthens. Note that for this implication, the “no-
drift” assumption (denoted as δ = 0) plays a key role. In fact, if we had assumed that the true
DGP is a RW with drift, Yt+1 = δ + Yt + εt+1, we would have ended with forecasts Y RWD

t (h) and
corresponding forecast errors eRWD

t (h) according to:

Y RWD
t (h) = δh+ Yt

eRWD
t (h) = α

[
1− ρh
1− ρ

]
− δh− (1− ρh)Yt +

h−1∑
i=0

ρiεt+h−i

In this case, the MSPE is given by:

MSPED(h) = E(Yt+h − Y RWD
t (h))2

MSPED(h) = E
[
α

[
1− ρh
1− ρ

]
− δh− (1− ρh)Yt

]2
+ E(

h−1∑
i=0

ρiεt+h−i)
2

MSPED(h) = (1− ρh)2V(Yt) + (δh)2 + σ2ε
h−1∑
i=0

ρ2i

MSPED(h) = MSPE(h) + (δh)2

then,

lim
h −→∞

MSPED(h) = lim
h −→∞

[
MSPE(h)+ (δh)2

]
= 2V(Yt)+ lim

h −→∞
(δh)2 = +∞

and it is clear that the drift will generate a divergent MSPE.

Now, let us assume that the true DGP of the process is the same AR(1) process but with ρ = 1.
Accordingly:

Yt+1 = α+ Yt + εt+1

1Through this paper we denote the expected value, variance, covariance, and autocovariance with E(·), V(·), C(·, ·),
and γt, respectively.
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By iterating forward it is possible to show that for an arbitrary horizon h ∈ N we have:

Yt+h = αh+ Yt +
h−1∑
i=0

εt+h−i

The best linear h-step ahead forecast Y f
t (h) and its corresponding error e

f
t (h) are given by:

Y f
t (h) = αh+ Yt

eft (h) = Yt+h − Y f
t (h) = εt+h +

h−1∑
i=1

εt+h−i

and the optimal MSPE diverges as the horizon lengthens:

MSPE(h) = E(Yt+h − Y f
t (h))

2

MSPE(h) = E

[
h−1∑
i=0

εt+h−i

]2
= σ2εh −→

h→∞
∞

This last result is general to unit root processes. Their optimal forecasts have increasing confidence
bands (see Box, Jenkins, and Reinsel, 2008). Nevertheless, when used to predict stationary vari-
ables, driftless unit-root-based forecasts display a bounded MSPE(h) sequence as the forecasting
horizons goes to infinity. The next proposition generalizes the previous AR(1) example to a broader
class of stationary processes.

Proposition 1 Let Yt be a stationary process, then driftless RW-based forecasts display a bounded
MSPE as the forecasting horizon goes to infinity.

Proof. Suppose that we forecast Yt+h assuming that the true DGP is a driftless RW that delivers
the following forecast Y RW

t (h) and forecasting errors eRWt (h):

Y RW
t (h) = Yt

eRWt (h) = Yt+h − Yt

The MSPE is given by:

MSPE(h) = E(Yt+h − Y RW
t (h))2 = E(Yt+h − Yt)2

MSPE(h) = V(Yt+h) + V(Yt)− 2C(Yt+h, Yt)
MSPE(h) = 2V(Yt)− 2γh

So,

MSPE(h) = |2V(Yt)− 2γh| ≤ 2V(Yt) + 2|γh|
MSPE(h) ≤ 2V(Yt) + 2

√
V(Yt+h)V(Yt) = 2V(Yt) + 2

√
V(Yt)V(Yt)

MSPE(h) ≤ 4V(Yt)

and
lim
h→∞

MSPE(h) ≤ 4V(Yt) <∞

and then MSPE(h) is a bounded sequence.
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Remark If in addition to stationarity we assume that the process Yt has absolutely summable
autocovariances, that is to say,

∞∑
i=0

|γi| <∞ (1)

where γi = E [Yt − E [Yt]] [Yt−i − E [Yt−i]], and µ = E [Yt] = E [Yt−i], for all i ∈ Z, then we can
reach tighter bounds, because (1) implies

lim
h→∞
|γh| ≤ lim

h→∞

∞∑
i=h

|γi| = 0

therefore
lim
h→∞

MSPE(h) = lim
h→∞

2V(Yt)− 2 lim
h→∞

γh = 2V(Yt) <∞

and the sequence MSPE(h) is not only bounded but also convergent.

Unit-root-based forecasts are commonly used in the literature. For instance, Atkeson and Ohanian
(2001) show that a simple RW model for inflation in the United States is very competitive when
predicting 12-months ahead. Giacomini and White (2006), also for the United States, present
an empirical application in which several CPI forecasts are compared to those generated by a
RW with drift and an autoregression (AR) whose lag length is selected according to the Bayesian
Information Criteria (BIC). Another article using simple univariate benchmarks for the United
States is Ang, Bekaert, and Wei (2007). Among the many methods the authors use, they include
a RW. In addition, Croushore (2010) makes use of an integrated moving average IMA(1,1) model
as a benchmark when evaluating survey-based inflation forecast for the United States.

In other countries the use of unit-root-based forecasts is also fairly usual. Groen, Kapetanios,
and Price (2009), for instance, evaluate the accuracy of the Bank of England inflation and GDP
growth forecasts using several univariate models, including an AR(p) and the RW as benchmarks.
Capistrán, Constandse, and Ramos-Francia (2010) make use of seasonal unit root models to forecast
inflation in Mexico. Similarly, Pincheira and García (2012) also consider seasonal ARMA models
with unit root to construct forecasts for Chilean CPI inflation. Finally, Pincheira and Medel (2012)
also make use of unit-root-based forecasts to predict YoY CPI inflation for twelve countries both
at short and long horizons.

We proceed next to show another proposition that goes in the same line as Proposition 1. The
novelty is that now we allow for more general types of unit-root-based forecasts coming from the
ARIMA(p,1,q) family.

Proposition 2 Let Yt be a stationary process as in Proposition 1. Let also consider a white noise
process {εt+1}∞t=−∞ with variance σ2ε, such that the moments C(Yt+j , εt+i) for all i, j ∈ Z are well
defined. Then, forecasts coming from a driftless ARIMA(p,1,q) process with 0 ≤ p, q < ∞ will
display a bounded MSPE sequence as the forecasting horizon approaches to infinity.

Proof. In appendix A we provide a proof for the particular case in which forecasts comes
from an ARIMA(0,1,q) model. In appendix B, however, we consider forecasts coming from an
ARIMA(p,1,0 ) model. At last, in appendix C we give a more general proof for the case ARIMA(p,1,q).
A way to proceed is to proof only the last case that obviously encompasses the others. Nevertheless,
as we have used different approaches in the proofs, we think it is worth showing them all.
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So far we have shown that the construction of unit-root-based forecasts for stationary variables
does not imply an explosive behavior of the MSPE as the forecast horizon lengthens. In the next
section we will show with simulations that parameter uncertainty in combination with persistence
may generate a large noise in the ordinary least squares (OLS) estimates of simple stationary
processes. Under this scenario, we will provide evidence that unit-root-based forecasts may offer
more accuracy than correctly specified forecasts in small and moderate samples due to their relative
parsimony. This is particularly relevant at long horizons.

3 Monte Carlo simulations

We generate 10,000 replications of two stationary processes: an AR(1) and an AR(2) model, first
setting the drift to zero and later setting it to one. We generate these four processes from inde-
pendent zero-mean homoskedastic Gaussian shocks with variance equals to σ2ε = 0.25. Thus, the
models look as follows:

AR(1) : Yt+1 = α+ ρYt + εt+1

σ2ε = 0.25 and 0 < ρ < 1

AR(2) : Yt+1 = α+ φ1Yt + φ2Yt−1 + εt+1

σ2ε = 0.25 and 0 < φ1 + φ2 < 1

We will be interested in the persistence of the processes. We will use ρ and φ1 + φ2 as measures of
persistence in the AR(1) and AR(2) models respectively.

In each replication we generate a total of R+P + l observations, where R represents the estimation
sample size used in our simulations. We consider different exercises with R taking three different
values: 50, 100, and 200. The parameter l varies between 1 and 2 depending on the process we are
considering, an AR(1) or AR(2). We do this because we drop one observation to estimate an AR(1)
model and we drop two observations when estimating the AR(2) model. P represents the number
of 1-step ahead predictions we construct. In all our simulations we set P = 500. We are not only
interested in 1-step ahead forecasts, so we engage in an out-of-sample h-step ahead evaluation, with
h = {1, 12, 24, 36}, where the parameters of the processes are estimated with rolling OLS.

For each of the processes we construct forecasts using two different methodologies. First, we
generate optimal forecasts assuming that we know the specification of the models, but also assuming
that the parameters of these models are unknown and must be estimated with rolling OLS.2 Second,
we generate optimal forecasts under the assumption that the processes are driftless RW. In each
replication we compute the sample MSPE of the forecasts. Then, using the 10,000 replications we
compute the average across all the sample-MSPE to get a good estimate of the population MSPE.
In table 1, under the columns "AR(1)" and "AR(2)", we report the MSPE-ratio defined as

MSPERW (h)

MSPEAR(h)

We report these ratios for the three values of R = {50, 100, 200}, and several choices of the para-
meters that defines the AR(1) and AR(2) models. In particular, we consider AR(1) specifications

2We always estimate the processes including a constant in our regressions.
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with the following parameter values:

ρ ∈ {0.5; 0.9; 0.95; 0.975; 0.99}

For the AR(2) model we consider the following parameter values3

(φ1, φ2) ∈ {(0.4, 0.1); (0.5, 0.4); (0.50, 0.45); (0.500, 0.475); (0.50, 0.49)}

A MSPE-ratio below one implies that the RW-based-forecasts outperform those coming from the
correctly specified model.

Results in table 1 show three salient features that are worth mentioning:

1. First, as the sample size gets larger, all the ratios become larger as well. This is easy to under-
stand, because larger estimation samples implies more precise parameter estimation. With
small estimation noise, we should expect a better performance of correctly over incorrectly
specified forecasts.

2. Second, as the persistence of the processes increases, all the ratios show a tendency to decrease.
In fact, most of the ratios are below one when persistence equals 0.99 in table 1. In the case
of the AR(1) process we detect two major drives behind these results. Firstly, as ρ gets
larger the process approaches to a RW. Therefore, the RW becomes closer and closer to be
the correct specification. It also happens that as ρ gets larger, the small sample bias of the
OLS estimates of ρ gets worse and worse. These two forces point to the same direction and
helps to explain the good behavior of RW based forecasts over correctly specified forecasts
when ρ is close to one and sample sizes are not large. For the AR(2) process the first reason
stated above might not be very compelling, as the RW is not nested in the AR(2) process.
Nevertheless, the second reason holds perfectly well in this scenario. These two salient features
are relatively well known in the literature. Actually, Stock and Watson (2007) and Hamilton
(1994) provide interesting discussions regarding OLS estimation of parameters from persistent
process. Furthermore, the development of out-of-sample tests of Granger causality as those
in Clark and West (2006, 2007) are based on the problems that not vanishing parameter
uncertainty may generate when carrying out out-of-sample inference.

3. Third, table 1 shows an interesting interaction between persistence, sample size and forecast-
ing horizon. We can see that given a sample size of R, there is a persistence threshold after
which the MSPE-ratios are decreasing with the forecasting horizon. For instance, for R = 50
and the AR(1), when ρ is greater or equal to 0.95 we get these decreasing pattern. Of course
as R gets larger this decreasing pattern is smoother. All this means that the problem of noisy
estimates may be much more serious when forecasting persistent series at long horizons than
at short horizons. Under these circumstances a parsimonious RW-based-forecast may be a
much more profitable strategy to use in the long run. To our knowledge, this third salient
feature has not been covered by the literature thus far.

3These values belong to the stationarity region for an AR(2) process, which is characterized by the following
expressions

φ1 + φ2 < 1,

φ2 − φ1 < 1, and

−1 < φ2 < 1.

6



Results in table 2 reinforces the argument given above. In this table we show the ratio between
the MSPE of the optimal forecasts constructed with estimated parameters, and the MSPE of the
optimal forecasts constructed with the true parameters. All figures in table 2 are above unity,
indicating that estimation noise inflates the MSPE. As expected, table 2 shows higher ratios the
smaller the sample size is. Similarly, higher ratios are obtained when the persistence of the processes
is higher. Interestingly, higher ratios are also achieved when forecasting at longer horizons. This
pattern is more striking with higher levels of persistence.

Results from tables 1-2 are important. They provide evidence in favor of using unit-root-based
forecasts to predict stationary variables when the parameters of the correctly specified models are
not properly estimated due, for instance, to data restrictions. Interestingly, this recommendation
may also be convenient in the need of long run forecasts.
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Table 1: MSPE-ratio estimates

AR(1) AR(2)

ρ 0.500 0.900 0.950 0.975 0.990 φ1 0.400 0.500 0.500 0.500 0.500

- - - - - φ2 0.100 0.400 0.450 0.475 0.490

α = 0

R=50

h=1 1.277 0.996 0.908 0.900 0.897 1.311 1.208 1.209 1.218 1.228

h=12 1.884 1.213 0.676 0.611 0.586 1.877 0.904 0.907 0.832 0.804

h=24 1.885 1.300 0.023 0.013 0.034 1.880 0.787 0.799 0.669 0.630

h=36 1.884 1.256 0.000 0.000 0.000 1.880 0.476 0.523 0.255 0.342

R=100

h=1 1.306 1.027 0.997 0.982 0.973 1.356 1.262 1.262 1.269 1.274

h=12 1.941 1.374 1.094 0.946 0.867 1.936 1.034 1.032 0.928 0.876

h=24 1.943 1.573 1.205 0.960 0.825 1.940 1.077 1.073 0.899 0.812

h=36 1.941 1.643 1.271 0.955 0.777 1.938 1.099 1.091 0.863 0.750

R=200

h=1 1.320 1.041 1.013 0.998 0.989 1.378 1.276 1.290 1.296 1.300

h=12 1.970 1.463 1.190 1.031 0.932 1.969 1.343 1.123 1.006 0.938

h=24 1.971 1.708 1.364 1.095 0.920 1.969 1.556 1.224 1.018 0.897

h=36 1.971 1.792 1.488 1.158 0.918 1.965 1.674 1.313 1.041 0.877

α = 1

R=50

h=1 1.278 0.996 0.965 0.951 0.946 1.312 1.200 1.209 1.219 1.227

h=12 1.885 1.216 0.954 0.837 0.788 1.878 1.099 0.906 0.831 0.802

h=24 1.889 1.283 0.906 0.723 0.633 1.882 1.089 0.778 0.674 0.627

h=36 1.884 0.696 0.660 0.480 0.330 1.881 0.724 0.326 0.388 0.301

R=100

h=1 1.306 1.027 0.997 0.981 0.973 1.355 1.251 1.262 1.269 1.276

h=12 1.939 1.372 1.095 0.944 0.867 1.935 1.254 1.033 0.925 0.880

h=24 1.941 1.573 1.206 0.959 0.827 1.938 1.412 1.075 0.895 0.818

h=36 1.940 1.642 1.270 0.956 0.778 1.938 1.493 1.096 0.860 0.755

R=200

h=1 1.320 1.041 1.013 0.998 0.989 1.378 1.277 1.290 1.297 1.300

h=12 1.969 1.458 1.190 1.032 0.931 1.967 1.347 1.122 1.006 0.939

h=24 1.970 1.701 1.366 1.096 0.918 1.969 1.558 1.221 1.016 0.898

h=36 1.974 1.790 1.488 1.158 0.914 1.968 1.673 1.308 1.038 0.878

Source: Authors’elaboration.
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Table 2: The impact of noisy estimation on MSPE

AR(1) AR(2)

ρ 0.500 0.900 0.950 0.975 0.990 φ1 0.400 0.500 0.500 0.500 0.500

- - - - - φ2 0.100 0.400 0.450 0.475 0.490

α = 1

R=50

h=1 1.044 1.056 1.064 1.065 1.062 1.066 1.082 1.086 1.086 1.082

h=12 1.060 1.280 1.364 1.374 1.347 1.063 1.317 1.367 1.361 1.332

h=24 1.060 1.438 1.711 1.711 1.769 1.062 1.577 1.818 1.807 1.753

h=36 1.060 2.796 2.624 2.624 3.568 1.062 2.574 4.813 3.368 3.772

R=100

h=1 1.020 1.026 1.029 1.033 1.032 1.034 1.038 1.040 1.042 1.042

h=12 1.030 1.136 1.184 1.226 1.220 1.035 1.156 1.194 1.223 1.215

h=24 1.030 1.178 1.285 1.361 1.352 1.035 1.222 1.311 1.362 1.342

h=36 1.030 1.191 1.366 1.506 1.513 1.036 1.256 1.426 1.524 1.504

R=200

h=1 1.010 1.013 1.012 1.015 1.014 1.016 1.017 1.018 1.020 1.019

h=12 1.015 1.072 1.094 1.117 1.140 1.014 1.073 1.103 1.128 1.133

h=24 1.015 1.092 1.137 1.182 1.224 1.014 1.102 1.161 1.201 1.210

h=36 1.015 1.098 1.163 1.233 1.294 1.014 1.116 1.204 1.265 1.277

Source: Authors’elaboration.

4 Empirical evidence

In this section we illustrate the benefits of unit-root-based forecasts from the point of view of a
practitioner in which different models are used to generate inflation forecasts. We first describe the
used dataset, and then the models. Finally, we evaluate the relative accuracy between the forecasts
using out-of-sample MSPE pairwise comparisons and a superior predictive ability test based on
Giacomini and White (2006).

4.1 Data

We use monthly CPI inflation data for Canada, Sweden, and the United States. The source of the
dataset are country-specific central banks and the Federal Reserve Bank of St. Louis. This implies
that despite some CPI basket changes experimented in some countries during the sample period,
we only use offi cial inflation data for each country. Our models work with YoY CPI inflation rates,
defined as

πt = (CPIt/CPIt−12) · 100− 100

Table 3 shows results of traditional unit root tests for these three series for the sample period
covering from September 1995 to December 2011. At standard significance values, these traditional
tests rejects the presence of a unit root in the data for Canada and the United States. For Sweden
the evidence is mixed: the Augmented Dickey-Fuller tests rejects the null of a unit root, but the
Phillips-Perron test is not able to reject it at 10% significance level.
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Table 3: Unit root testing —full sample

Level (πt)
Aug. Dickey-Fuller Phillips-Perron

Canada -3.903 -3.680

(p-value) (0.013) (0.025)

Sweden -4.219 -2.760

(p-value) (0.004) (0.213)

United States -3.523 -3.683

(p-value) (0.039) (0.025)

The null hypothesis is that the series have a unit root.

Source: Authors’computations.

Figure 1 shows the series of YoY CPI inflation for these three countries. Some descriptive statistics
for different subsamples are available in appendix D.

Figure 1: CPI Inflation of Canada, Sweden, and the United States

Vertical line: Evaluation sample startpoint (Feb-1999). Source: Country-specific central banks.

Under the plausible assumption of stationarity we will use the following models to generate out-of-
sample forecasts for these three series:

1. AR(1): πt = α+ ρ1πt−1 + εt

2. AR(6): πt = α+
6∑
i=1
ρiπt−i + εt

3. AR(12): πt = α+
12∑
i=1
ρiπt−i + εt

We will also construct unit-root-based forecasts based upon two commonly used models in the
forecasting literature: the driftless RW and the airline model introduced by Box and Jenkins
(1970):4

4As Ghysels, Osborn, and Rodrigues (2006) point out, this specification has proved to be very useful to forecast
monthly time series with seasonal patterns.
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1. Random walk: πt − πt−1 = εt
2. Airline model: πt − πt−1 = εt − θ1εt−1 − θ12εt−12 + θ1θ12εt−13

We estimate the models with a fixed-size rolling window of length R′. We consider two values
for R′: 40 and 100 observations. The first estimation sample with R′ = 40 covers the period
from September 1995 to January 1999, while the first estimation sample with R′ = 100 covers the
period from September 1990 to January1999. The remaining sample is used for the evaluation of
the forecasts, covering from February 1999 to December 2011. This means that we consider 155
one-month ahead forecasts, 144 twelve-, 132 two-, and 120 three-years ahead forecasts.

4.2 Forecast evaluation

We focus on comparing the predictive performance of unit-root-based forecasts versus forecasts
coming from models in which no unit roots are imposed a priori. In table 4 we report estimates of
the sample-RMSPE for all the forecasts under consideration. This sample estimate is calculated as
follows

R̂MSPEh =

 1

T (h)

T (h)∑
t=1

(πt+h − πt(h))2
 1
2

where πt(h) is the h-step ahead forecast of πt, and T (h) represents the total number of out-of-sample
forecast errors available for a given methodology and forecasting horizon.

Table 4: Multi-horizon RMSPE estimates

Rolling-window size: 40 Rolling-window size: 100

h=1 h=12 h=24 h=36 h=1 h=12 h=24 h=36

Canada

1. AR(1) 0.493 1.275 1.191 1.060 0.487 1.231 1.106 1.086

2. AR(6) 0.522 1.336 1.213 1.251 0.497 1.140 1.098 1.064

3. AR(12) 0.552 1.703 2.092 1.307 0.518 1.307 1.271 1.047

1. RW 0.493 1.560 1.476 1.130 0.493 1.560 1.476 1.130

2. Airline model 0.403 1.208 1.143 1.045 0.368 1.114 1.075 0.957

Sweden

1. AR(1) 0.417 2.182 2.900 2.841 0.398 1.601 1.660 1.357

2. AR(6) 0.462 2.392 3.466 5.124 0.414 1.499 1.448 1.265

3. AR(12) 0.522 4.019 4.977 18.620 0.430 1.511 1.342 1.338

1. RW 0.400 1.742 2.088 1.863 0.400 1.742 2.088 1.863

2. Airline model 0.338 1.481 1.591 1.438 0.322 1.299 1.351 1.319

United States

1. AR(1) 0.534 1.855 2.119 1.604 0.519 1.634 1.619 1.519

2. AR(6) 0.508 1.837 1.956 1.715 0.474 1.614 1.516 1.512

3. AR(12) 0.550 3.499 6.828 2.585 0.483 2.040 2.259 1.646

1. RW 0.521 2.125 2.050 1.842 0.521 2.125 2.050 1.842

2. Airline model 0.373 1.652 1.569 1.578 0.331 1.501 1.474 1.499

Source: Authors’computations.

Results in table 4 indicate that the airline model outperforms the rest of the forecasting methods
at every single forecasting horizon and for every country with only two exceptions: the case of
Sweden when forecasting two and three years ahead, when estimation is carried out with R=100
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observations. If we assume that YoY inflation for Canada, Sweden, and the United States are
stationary, then our empirical findings are consistent with our simulation results. The two excep-
tions mentioned above are also consistent with the evidence shown in our simulations because the
airline model outperforms all of the benchmarks when 40 observations are used for estimation. It
is only when we increase the number of observations that the airline model is outperformed at long
horizons for the case of Sweden.

Table 5 shows the p-values of the Giacomini and White (2006) test of superior predictive ability
between each AR(p) model and the models with unit roots we are considering in this application
(RW and airline model). The null hypothesis is that of superior predictive ability of the AR(p)
models, while the alternative is that our unit root models perform better. Therefore we carry out
a one-sided test. As usual, low p-values are associated with the rejection of the null hypothesis in
favor of the alternative. We see that the null hypothesis is rejected in favor of the airline model
in a number of occasions. This happens both at short and long horizons. In particular, the airline
model beats all of the AR(p) specifications for Canada, at the longest forecasting horizon, when
the parameters are estimated with 100 observations.

Table 5: Giacomini-White test results —p-value

Rolling-window size: 40 Rolling-window size: 100

AR(1) AR(6) AR(12) AR(1) AR(6) AR(12)

Canada

Random walk h=1 0.519 0.085 0.039 0.711 0.416 0.174

h=12 0.998 0.959 0.267 0.999 0.998 0.956

h=24 0.999 0.984 0.077 0.979 0.970 0.948

h=36 0.777 0.181 0.175 0.627 0.697 0.750

Airline model h=1 0.000 0.000 0.000 0.000 0.000 0.000

h=12 0.163 0.091 0.025 0.005 0.257 0.065

h=24 0.287 0.236 0.044 0.257 0.238 0.038

h=36 0.369 0.050 0.059 0.021 0.017 0.025

Sweden

Random walk h=1 0.006 0.013 0.002 0.706 0.179 0.075

h=12 0.007 0.023 0.029 0.998 0.999 0.972

h=24 0.013 0.047 0.026 1.000 1.000 1.000

h=36 0.066 0.048 0.132 1.000 1.000 1.000

Airline model h=1 0.007 0.002 0.000 0.014 0.001 0.000

h=12 0.019 0.027 0.025 0.062 0.147 0.079

h=24 0.005 0.024 0.011 0.007 0.133 0.586

h=36 0.025 0.038 0.131 0.263 0.869 0.402

United States

Random walk h=1 0.061 0.653 0.314 0.593 0.925 0.786

h=12 0.978 0.985 0.095 0.999 1.000 0.589

h=24 0.344 0.764 0.068 0.992 0.987 0.243

h=36 0.977 0.898 0.010 0.989 0.990 0.915

Airline model h=1 0.001 0.000 0.005 0.001 0.000 0.000

h=12 0.043 0.015 0.058 0.002 0.039 0.080

h=24 0.062 0.073 0.065 0.069 0.053 0.023

h=36 0.266 0.072 0.003 0.187 0.323 0.020

Source: Authors’computations.
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5 Concluding remarks

The use of different time-series models to generate forecasts is usual in the forecasting literature.
When the target variable is stationary, the construction of forecasts coming from processes with
unit roots may seem counterintuitive. Nevertheless, in this paper we demonstrate that forecasting
a stationary variable with driftless unit-root-based forecasts generates bounded Mean Squared
Prediction Errors at every single horizon.

We also show via simulations that persistent stationary processes may be better predicted by unit-
root-based forecasts than by forecasts coming from a model that is correctly specified but that is
subject to a higher degree of parameter uncertainty.

Our simulations also provide evidence indicating that the benefits of using unit-root-based forecasts
is not only confined within the boundaries of short horizons. In fact, the benefits may be sizable
at long horizons as well. Future research might explore if the results we have found here may still
hold true in more general environments. A natural extension would be the analysis with vector
autoregressions and nonlinear processes.
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A Proof of Proposition 2: ARIMA(0,1,q)

Let us consider {Xt+1}∞t=−∞ following an ARIMA(p,d,q) process, where Wt+1 = (1 − B)dXt+1

represents a stationary and invertible ARMA(p,q) process, with B a backshift operator (BjZt =
Zt−j). Thus,

Wt −
p∑
j=1

φjWt−j = δ + εt −
q∑
i=1

θiεt−i

φ(B)(1−B)dXt+1 = δ + θ(B)εt

We are concerned with the particular case in which d = 1 and p = 0. Therefore, we have that
{Xt+1}∞t=∞ satisfies Wt+1 = (1−B)Xt+1, implying that:

Wt+1 = δ + εt+1 −
q∑
j=1

θjεt+1−j

We notice that:

Xt+h −Xt = Wt+h +Wt+h−1 + ...+Wt+1 =

h∑
i=1

Wt+i

Xt+h −Xt = δh+
h∑
i=1

εt+i −
h∑
i=1

q∑
j=1

θjεt+i−j

so

h = 1 : Xt+1 = δ +Xt + εt+1 −
∑q

j=1 θjεt+1−j
h = q : Xt+q = qδ +Xt +

∑q
j=1 εt+j −

∑q
j=1 θjεt+1−j −

∑q
j=1 θjεt+2−j −

∑q
j=1 θjεt+3−j−

−...−
∑q

j=1 θjεt+q−j
h = q + l : Xt+q+l = (q + l) δ +Xt +

∑q+l
j=1 εt+j −

∑q
j=1 θjεt+1−j −

∑q
j=1 θjεt+2−j −

∑q
j=1 θjεt+3−j−

−...−
∑q

j=1 θjεt+q−j − ...−
∑q

j=1 θjεt+q+l−j
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For l > 0 we have that the best linear forecast based upon information available until time t is
given by:

Xf
t (q + l) = (q + l) δ +Xt −

q∑
j=1

θjεt+1−j −
q∑
j=2

θjεt+2−j −
q∑
j=3

θjεt+3−j − ...−
q∑
j=q

θjεt+q−j

Let us use the following notation:

κt(q) ≡
q∑
j=1

θjεt+1−j +

q∑
j=2

θjεt+2−j +

q∑
j=3

θjεt+3−j + ...+

q∑
j=q

θjεt+q−j

Note that κt(q) is a zero-mean stationary process that does not depend on h or l. Thus, the optimal
forecast Xf

t (q + l), and the corresponding forecast error e
f
t (q + l) are given by:

Xf
t (q + l) = (q + l) δ +Xt + κt(q)

eft (q + l) =

q+l∑
j=1

εt+j −
1∑
j=1

θjεt+2−j −
2∑
j=1

θjεt+3−j − ...−

−
q−1∑
j=1

θjεt+q−j −
q∑
j=1

θjεt+q+1−j − ...−
q∑
j=1

θjεt+q+l−j

If the econometrician mistakenly assumes that the stationary process Yt+1 follows an ARIMA(0,1,q)
process with 0 ≤ q < ∞, innovations given by εt ∼ iidN (0, σ2ε), and moving average parameters
θj , then he or she would construct the following optimal forecast for Yt+q+l:

Y f
t (q + l) = (q + l) δ + Yt + κt(q)

In a driftless manner (δ = 0) the MSPE is given by:

MSPE(q + l) = E(Yt+q+l − Y f
t (q + l))

2

MSPE(q + l) = E(Yt+h − Yt − κt(q))2

Notice also that under stationarity assumptions for Yt we will have that:

E(Yt+h − Yt) = 0

implying that:
E(Yt+h − Yt − κt(q))2 = V(Yt+h − Yt − κt(q))

With this in mind, we have that:

MSPE(q + l) = E(Yt+q+l − Y f
t (q + l))

2

MSPE(q + l) = E(Yt+h − Yt − κt(q))2

MSPE(q + l) = V(Yt+q+l − Yt − κt(q))
MSPE(q + l) = V(Yt+q+l − Yt) + V(κt(q))− 2C(Yt+q+l − Yt,κt(q))
MSPE(q + l) = V(Yt+q+l) + V(Yt)− 2γq+l + 2C(Yt,κt(q))− 2C(Yt+q+l,κt(q))

= 2V(Yt)− 2γq+l + 2C(Yt,κt(q))− 2C(Yt+q+l,κt(q))
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Therefore:

|MSPE(q + l)| ≤ 2
[
|V(Yt)|+ |γq+l|+ |C(Yt,κt(q))|+ |C(Yt+q+l,κt(q))|

]
≤ 2

[
|V(Yt)|+ |γq+l|+ |C(Yt,κt(q))|+

√
V(Yt+q+l)

√
V(κt(q))

]
≤ 2

[
2|V(Yt)|+ |C(Yt,κt(q))|+

√
V(Yt)

√
V(κt(q))

]
hence,

lim
l→∞

MSPE(q + l) ≤ lim
l→∞

2
[
2|V(Yt)|+ |C(Yt,κt(q))|+

√
V(Yt)

√
V(κt(q))

]
= 2

[
2V(Yt) + |C(Yt,κt(q))|+

√
V(Yt)

√
V(κt(q))

]
≤ 2

[
2V(Yt) + 2

√
V(Yt)

√
V(κt(q))

]
implying that the MSPE(q + l) is a bounded sequence.

B Proof of Proposition 2: ARIMA(p,1,0)

Let us consider {Xt+1}∞t=∞ following an ARIMA(p,d,q) process, where Wt+1 = (1 − B)dXt+1

represents a stationary and invertible ARMA(p,q) process, with B a backshift operator (BjZt =
Zt−j). Thus,

Wt −
p∑
j=1

φjWt−j = δ + εt −
q∑
i=1

θiεt−i

φ(B)(1−B)dXt+1 = δ + θ(B)εt+1

We are concerned with the particular case in which d = 1 and q = 0. Therefore, we have that
{Xt+1}∞t=∞ satisfies Wt+1 = (1−B)Xt+1, implying that:

φ(B)(1−B)Xt+1 = δ + εt+1

φ(B)Wt+1 = δ + εt+1

Wt −
p∑
j=1

φjWt−j = δ + εt+1

Let us define

Zt =Wt − µ; µ ≡ δ

1−
p∑
j=1

φj

then

Zt −
p∑
j=1

φjZt−j = Wt − µ−
p∑
j=1

φj (Wt−j − µ)

Zt −
p∑
j=1

φjZt−j = Wt −
p∑
j=1

φjWt−j − µ

1− p∑
j=1

φj


Zt −

p∑
j=1

φjZt−j = Wt −
p∑
j=1

φjWt−j − δ = εt+1
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Consequently, we could write

Wt −
p∑
j=1

φjWt−j = δ + εt+1

or equivalently as

Zt −
p∑
j=1

φjZt−j = εt+1

Let us write down the previous process as the following VAR(1):

ξt = Fξt−1 + vt

where

ξt =



Zt
Zt−1
.
.
.

Zt−p+1


p×1

and vt =



εt
0
.
.
.
0


p×1

F =



φ1 φ2 φ3 ... φp−1 φp
1 0 0 ... 0 0
0 1 0 0 0 0
. . . . . .
. . . . . .
. . . . . .
0 0 0 0 1 0


p×p

with
EvtvTτ =QI{t=τ}

Q =



σ2ε 0 0 ... 0 0
0 0 0 ... 0 0
. . . . . .
. . . . . .
. . . . . .
0 0 0 0 0 0


p×p

We notice that the first equation in
ξt = Fξt−1 + vt

will capture the initial process
φ(B)Wt+1 = δ + εt+1

perfectly well. We notice that:

ξt+1 = Fξt + vt+1

ξt+2 = F (Fξt + vt+1) + vt+2 = F 2ξt + Fvt+1 + vt+2

ξt+3 = F 2ξt+1 + Fvt+2 + vt+3 = F 2 (Fξt + vt+1) + Fvt+2 + vt+3 = F 3ξt + F
3vt+1 + Fvt+2 + vt+3

So, in general we have

ξt+h = F hξt + F
h−1vt+1 + F

h−2vt+2 + F
h−3vt+3 + ...+ Fvt+h−1 + vt+h
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Let us consider the first component of the vector
∑h

i=1 ξt+i. This first component is equal to[
h∑
i=1

ξt+i

]
1

=

h∑
i=1

Zt+i =

h∑
i=1

(Wt+i − µ) =
h∑
i=1

(Yt+i − Yt+i−1)− µh = Yt+h − Yt − µh

therefore

Yt+h = µh+ Yt +

[
h∑
i=1

ξt+i

]
1

In other words

Yt+h = µh+ Yt +

[
h∑
i=1

F iξt + F
i−1vt+1 + F

i−2vt+2 + F
i−3vt+3 + ...+ Fvt+i−1 + vt+i

]
1

or

Yt+h = µh+ Yt + [Fξt + vt+1]1 +
[
F 2ξt + Fvt+1 + vt+2

]
1
+ ...

...+
[
F hξt + F

h−1vt+1 + F
h−2vt+2 + F

h−3vt+3 + ...+ Fvt+h−1 + vt+h
]
1

The best linear forecast of Yt+h with information available at time t would be:

Y f
t (h) = µh+ Yt + [Fξt]1 +

[
F 2ξt

]
1
+ ...+

[
F hξt

]
1

but

[Fξt]1 +
[
F 2ξt

]
1
+ ...+

[
F hξt

]
1
=

[(
F + F 2 + ...+ F h

)
ξt

]
1
=
[(
I + F + F 2 + ...+ F h − I

)
ξt

]
1

=
[(
I − F h+1

)
(I − F )−1ξt − ξt

]
1

=
[(
I − F h+1

)
(I − F )−1ξt

]
1
− [ξt]1

=
[(
I − F h+1

)
(I − F )−1ξt

]
1
− Zt

=
[(
I − F h+1

)
(I − F )−1ξt

]
1
−Wt + µ

=
[(
I − F h+1

)
(I − F )−1ξt

]
1
− Yt + Yt−1 + µ

hence

Y f
t (h) = µh+ Yt + [Fξt]1 +

[
F 2ξt

]
1
+ ...+

[
F hξt

]
1

Y f
t (h) = µh+ Yt +

[(
I − F h+1

)
(I − F )−1ξt

]
1
− Yt + Yt−1 + µ

Y f
t (h) = µ (h+ 1) + Yt−1 +

[(
I − F h+1

)
(I − F )−1ξt

]
1

Y f
t (h) = µ (h+ 1) + Yt−1 +

[
(I − F )−1ξt

]
1
−
[
F h+1(I − F )−1ξt

]
1

But [
(I − F )−1ξt

]
1
=

p−1∑
j=0

aj+1Zt−j =

p−1∑
j=0

aj+1Wt−j − µ
p−1∑
j=0

aj+1

=

p−1∑
j=0

aj+1Yt−j −
p−1∑
j=0

aj+1Yt−j−1 − µ
p−1∑
j=0

aj+1

18



where a1, ..., ap represents the components of the first row of the invertible p× p matrix (I −F )−1.
We are interested in the case in which the drift is zero, thus, δ = µ = 0. In this case, the MSPE is
given by

MSPE(h) = E(Yt+h − Y f
t (h))

2

MSPE(h) = E(Yt+h − Yt−1 −
[
(I − F )−1ξt

]
1
+
[
F h+1(I − F )−1ξt

]
1
)2

MSPE(h) = V(Yt+h − Yt−1 −
[
(I − F )−1ξt

]
1
+
[
F h+1(I − F )−1ξt

]
1
)

MSPE(h) = V(Yt+h − Yt) + V(
[
(I − F )−1ξt

]
1
) + V(

[
F h+1(I − F )−1ξt

]
1
)− 2C(Yt+h − Yt,

[
(I − F )−1ξt

]
1
)

+2C(Yt+h − Yt,
[
F h+1(I − F )−1ξt

]
1
)− 2C(

[
(I − F )−1ξt

]
1
,
[
F h+1(I − F )−1ξt

]
1
)

MSPE(h) = V(Yt+h) + V(Yt)− 2γh + V(
[
(I − F )−1ξt

]
1
) + V(

[
F h+1(I − F )−1ξt

]
1
)

−2C(Yt+h − Yt,
[
(I − F )−1ξt

]
1
) + 2C(Yt+h − Yt,

[
F h+1(I − F )−1ξt

]
1
)

−2C(
[
(I − F )−1ξt

]
1
,
[
F h+1(I − F )−1ξt

]
1
)

Therefore:

|MSPE(h)| ≤ 2V(Yt) + 2|γh|+ V(
[
(I − F )−1ξt

]
1
) + V(

[
F h+1(I − F )−1ξt

]
1
) +

+2

[√
V(Yt+h − Yt)

√
V( [(I − F )−1ξt]1)

]
+ 2

[√
V(Yt+h − Yt)

√
V( [F h+1(I − F )−1ξt]1)

]
+

+2

[√
V([(I − F )−1ξt]1)

√
V( [F h+1(I − F )−1ξt]1)

]
hence,

|MSPE(h)| ≤ 2V(Yt) + 2
√
V(Yt+h)V(Yt) + V(

[
(I − F )−1ξt

]
1
) + V(

[
F h+1(I − F )−1ξt

]
1
) +

+2

[√
2V(Yt) + 2

√
V(Yt+h)V(Yt)

√
V( [(I − F )−1ξt]1)

]
+

+2

[√
2V(Yt) + 2

√
V(Yt+h)V(Yt)

√
V( [F h+1(I − F )−1ξt]1)

]
+

+2

[√
V([(I − F )−1ξt]1)

√
V( [F h+1(I − F )−1ξt]1)

]
Finally,

MSPE(h) ≤ 4V(Yt) + V(
[
(I − F )−1ξt

]
1
) + V(

[
F h+1(I − F )−1ξt

]
1
) +

+4

[√
V(Yt)

√
V( [(I − F )−1ξt]1)

]
+ 4

[√
V(Yt)

√
V( [F h+1(I − F )−1ξt]1)

]
+2

[√
V([(I − F )−1ξt]1)

√
V( [F h+1(I − F )−1ξt]1)

]
and given that the AR(p) operator is stationary, all the eigenvalues of the F matrix will have ab-
solute value less than one. Furthermore, Hamilton (1994) uses the following Jordan decomposition
for F :

F =MJM−1
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Here M is a p× p matrix and J has the following Jordan structure:

J =


J1 0 0 ... 0
0 J2 0 ... 0
. . . . .
. . . . .
0 0 0 0 Js


s×s

where

Ji =


λi 1 0 ... 0
0 λi 1 ... 0
. . . . .
. . . . 1
0 0 0 0 λi


s×s

and λi corresponds to one of the s different eigenvalues of F. From the Jordan decomposition follows
that F h satisfies

F h =MJhM−1

where

Jh =


Jh1 0 0 ... 0
0 Jh2 0 ... 0
. . . . .
. . . . .
0 0 0 0 Jhs


s×s

where s < p denotes the number of linearly independent eigenvectors. Each one of the terms Jhi
has the following shape

Jhi =



λhi

(
h
1

)
λh−1i

(
h
2

)
λh−2i ...

(
h

ni − 1

)
λh−ni+1i

0 λhi

(
h
1

)
λh−1i ...

(
h

ni − 2

)
λh−ni+2i

. . λhi . .

. . . . .
0 0 0 0 λhi


s×s

where (
h
n

)
=
h(h− 1)(h− 2)...(h− n+ 1)
n(n− 1)(n− 2)...3 · 2 · 1 (2)

and ni is the multiplicity of the eigenvalue λi. We notice that the terms in (2) are polynomial in
h of order n. None of these polynomial have the divergence speed required to beat the exponential
speed of the the terms λh−ji .Therefore, as the forecasting horizon lengthens:

lim
h→∞

Jhi = 0

lim
h→∞

Jh = lim
h→∞

F h = 0

implying that

lim
h→∞

V(
[
F h+1(I − F )−1ξt

]
1
) = 0
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therefore

lim
h→∞

MSPE(h) ≤4V(Yt) + V(
[
(I − F )−1ξt

]
1
) + 4

[√
V(Yt)

√
V( [(I − F )−1ξt]1)

]
and the MSPE(h) is a bounded sequence.

C Proof of Proposition 2: ARIMA(p,1,q)

Let us consider {Xt+1}∞t=∞ following an ARIMA(p,d,q) process, where Wt+1 = (1 − B)dXt+1

represents a stationary and invertible ARMA(p,q) process, with B a backshift operator (BjZt =
Zt−j). Thus,

Wt −
p∑
j=1

φjWt−j = δ + εt −
q∑
i=1

θiεt−i

φ(B)(1−B)dXt+1 = δ + θ(B)εt+1

Following Box, Jenkins, and Reinsel (2008), let us define the generalized autoregressive operator as

Q(B) ≡ φ(B)(1−B)d = (1− φ1B − φ2B2 − ...− φpBp)(1−B)d

= (1− ϕ1B − ϕ2B2 − ...− ϕp+dBp+d)

Hence, we could write the process Xt+1 as follows:

Q(B)Xt = δ + θ(B)εt

For every single forecasting horizon h, the optimal forecast satisfies

Xf
t (h) =


p+d∑
i=1

ϕiX
f
t (h− i) + δ −

∑q
i=l θiεt+h−i if h ≤ q

p+d∑
i=1

ϕiX
f
t (h− i) + δ if h > q

 (3)

The general solution for the homogeneous difference equation (3) when h > q is given by

Xf
t (h) =

p∑
i=1

ci(t)m
h
i + (b0(t) + b1(t)h+ b2(t)h

2 + ...+ bd−1(t)h
d−1)

where c(t) and b(t) represents adaptative coeffi cients, that is, coeffi cients that are stochastic and
functions of the process at time t, and the terms mi corresponds to the roots of the following
expression

mp − φ1mp−1 − φ2mp−2 − ...− φp = 0

Expression (3) is not homogeneous, so we need to add a particular solution, which is given by

bdl
d

where bd is a deterministic coeffi cient.
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Thus, the eventual or explicit forecast function is given by

Xf
t (h) =

p∑
i=1

ci(t)m
h
i +(b0(t)+ b1(t)h+ b2(t)h

2+ ...+ bd−1(t)h
d−1)+ I(δ 6=0)bdhd; h > q−p−d (4)

The previous expression characterizes long forecast horizons from ARIMA(p,d,q) models. It is
interesting that the moving average terms only play a role in the determination of the adaptative
coeffi cients. Besides, stationary roots of the autoregressive operator will vanish while the forecasting
horizon lengthens as they have an absolute value less than one. Finally, the influence of unit roots
determines the presence of a polynomial of order d in the forecast horizon, in which some of the
coeffi cients are adaptative. If the econometrician mistakenly considers that the Yt process follows
an ARIMA(p,1,d) then he or she will compute the forecasts according to (4). When δ = 0, and for
large values of h we will have that the MSPE is given by

MSPE(h) = E(Yt+h − Y f
t (h))

2

MSPE(h) = E(Yt+h −
p∑
i=1

ci(t)m
h
i − b0(t))2

MSPE(h) = V(Yt+h −
p∑
i=1

ci(t)m
h
i − b0(t)) +

[
E(Yt+h −

p∑
i=1

ci(t)m
h
i − b0(t))

]2

MSPE(h) = V(Yt+h −
p∑
i=1

ci(t)m
h
i ) + V(b0(t)) + 2C

(
Yt+h −

p∑
i=1

ci(t)m
h
i , b0(t)

)
+

+

[
E [Yt]−

p∑
i=1

mh
i E [ci(t)]− E [b0(t)]

]2
We notice that

lim
h→∞

[
E [Yt]−

p∑
i=1

mh
i E [ci(t)]− E [b0(t)]

]2
+ V(b0(t)) = [E [Yt]− E [b0(t)]]2 + V(b0(t))

Therefore we will place attention on the following terms

V(Yt+h −
p∑
i=1

ci(t)m
h
i ) + 2C

(
Yt+h −

p∑
i=1

ci(t)m
h
i , b0(t)

)

First notice that

V(Yt+h −
p∑
i=1

ci(t)m
h
i ) = V(Yt+h) + V

[
p∑
i=1

ci(t)m
h
i

]
− 2C

(
Yt+h,

p∑
i=1

ci(t)m
h
i

)

= V(Yt) + V

[
p∑
i=1

ci(t)m
h
i

]
− 2

p∑
i=1

C
(
Yt+h, ci(t)m

h
i

)
≤ V(Yt) +

p∑
i=1

m2h
i V [ci(t)] + 2

p∑
i=1

p∑
j 6=i

C(ci(t)mh
i , cj(t)m

h
j )−2

p∑
i=1

C
(
Yt+h, ci(t)m

h
i

)
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Therefore

V(Yt+h −
p∑
i=1

ci(t)m
h
i ) ≤ V(Yt) +

p∑
i=1

|m2h
i |V [ci(t)] +

p∑
i=1

p∑
j<i

√
V(ci(t)mh

i )V(cj(t)mh
j )+

+2

p∑
i=1

|C
(
Yt+h, ci(t)m

h
i

)
|

≤ V(Yt) +
p∑
i=1

|m2h
i |V [ci(t)] +

p∑
i=1

p∑
j<i

√
V(ci(t)mh

i )V(cj(t)mh
j )+

+2

p∑
i=1

√
V(ci(t)mh

i )V(Yt+h)

= V(Yt) +
p∑
i=1

|m2h
i |V [ci(t)] +

p∑
i=1

p∑
j<i

|mh
i ||mh

j |
√
V(ci(t))V(cj(t))+

+2

p∑
i=1

|mh
i |
√
V(ci(t))V(Yt)

so

lim
h→∞

V(Yt+h −
p∑
i=1

ci(t)m
h
i ) ≤ V(Yt)

provided that
lim
h→∞
|mh

i | = 0

Now,

|C
(
Yt+h −

p∑
i=1

ci(t)m
h
i , b0(t)

)
| = |C (Yt+h, b0(t))− C

(
p∑
i=1

ci(t)m
h
i , b0(t)

)
|

= |C (Yt+h, b0(t))−
p∑
i=1

C
(
ci(t)m

h
i , b0(t)

)
|

≤ |C (Yt+h, b0(t)) |+
p∑
i=1

|C
(
ci(t)m

h
i , b0(t)

)
|

≤
√
V [Yt+h]V [b0(t)] +

p∑
i=1

√
V
[
ci(t)mh

i

]
V [b0(t)]

=
√
V [Yt]V [b0(t)] +

p∑
i=1

|mh
i |
√
V [ci(t)]V [b0(t)] →

h→∞

√
V [Yt]V [b0(t)]

Finally,
lim
h→∞

MSPE(h) ≤V(Yt) +
√
V [Yt]V [b0(t)] + [E [Yt]− E [b0(t)]]2 + V(b0(t))

implying that the MSPE(h) is a bounded sequence.
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D Descriptive statistics of the series

Descriptive statistics —three samples

Larger estimation sample Evaluation sample Full sample

Sep-1990 —Jan-1999 Feb-1999 —Dec-2011 Sep-1990 —Dec-2011

Mean St. Dev. Max. Min. Mean St. Dev. Max. Min. Mean St. Dev. Max. Min.

Canada 2.00 1.70 6.90 -0.20 2.10 0.90 4.70 -0.90 2.10 1.30 6.90 -0.90

Sweden 3.00 3.40 12.60 -1.20 1.50 1.20 4.40 -1.60 2.10 2.40 12.60 -1.60

United States 2.90 1.10 6.40 1.40 2.50 1.30 5.50 -2.00 2.70 1.20 6.40 -2.00

Source: Authors’computations.
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