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Abstract  
 
It is well known that weighted averages of two competing forecasts may reduce Mean 
Squared Prediction Errors (MSPE) and may also introduce certain inefficiencies. In this 
paper we take an in-depth view of one particular type of inefficiency stemming from simple 
combination schemes. We identify testable conditions under which every linear convex 
combination of two forecasts displays this type of inefficiency. In particular, we show that 
the process of taking averages of forecasts may induce inefficiencies in the combination, 
even when the individual forecasts are efficient. Furthermore, we show that the so-called 
"optimal weighted average" traditionally presented in the literature may indeed be sub-
optimal. We propose a simple testable condition to detect if this traditional weighted factor 
is optimal in a broader sense. An optimal "recombination weight" is introduced. Finally, we 
illustrate our findings with simulations and an empirical application in the context of the 
combination of inflation forecasts. 
 
Resumen 
 
Es sabido en la literatura predictiva que el promedio ponderado de dos pronósticos puede 
reducir el Error Cuadrático Medio de Proyección (ECMP) y que también puede introducir 
algún tipo de ineficiencia. En este trabajo ahondamos en un tipo específico de ineficiencia 
que podría surgir a través del proceso de combinación de pronósticos. Identificamos 
condiciones testeables bajo las cuales todo promedio ponderado de dos pronósticos 
presenta el tipo de ineficiencia en cuestión. En particular, mostramos que la combinación 
de pronósticos puede ser ineficiente, incluso en el caso en que los dos pronósticos que 
conforman la combinación sean eficientes. Además, mostramos que la combinación que 
tradicionalmente es considerada óptima, podría ser subóptima en un sentido más amplio de 
la palabra. Proponemos también una simple condición testeable para evaluar esta situación 
e introducimos una recombinación óptima en caso que la optimalidad de la combinación 
tradicional sea rechazada. Finalmente, ilustramos nuestros hallazgos con ejemplos 
simulados y con una aplicación empírica en el contexto de la combinación de pronósticos 
de inflación.  
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1 Introduction

It is common to find in practice situations in which decisionmakers are confronted
with two or more forecasts for the same target variable. In this scenario, Elliot &
Timmermann (2008) identify two possible different strategies: the search for the best
possible single forecasting method, and the search for the best possible combination
of the available forecasts. This last strategy has received a lot of attention in the
literature since the seminal work of Bates & Granger (1969). In their article the
authors combined two sets of forecasts coming from airline passenger data. They
conclude that a composite forecast may display lower Mean-Squared-Prediction-Error
(MSPE) than either of the single original projections1.

Since 1969 a number of different papers have been written on topics directly
or indirectly related to the combination of forecasts. During the next two decades
a sample of influential work includes the articles by Newbold & Granger (1974),
Granger & Ramanathan (1984), Clemen (1986) and Diebold (1988). More recent
papers have also been published in the topic, including for instance, Batchelor &
Dua (1995), Harvey, Leybourne & Newbold (1998), Stock & Watson (2004), Aiolfi&
Timmermann (2006), Hansen (2008), Capistrán & Timmermann (2009), Clements &
Harvey (2011), Poncela, Rodriguez, Sánchez-Mangas & Senra (2011), Kolassa (2011)
and Costantini & Kunst (2011).

Despite the huge variety of combination methods available in the literature, two
particular families of combination strategies have attracted special attention. Using
the terms in Diebold (1988), these two families are known as the variance-covariance
method of Bates & Granger (1969) and the regression method introduced by Granger
& Ramanathan (1984). Broadly speaking, the first approach generates the combined
forecast as a weighted average of the pool of single individual forecasts. Notice that
this weighted average need not to be convex. The latter approach is one in which the
combining weights are obtained as the coeffi cient estimates of a regression between
the target variable and the set of available individual forecasts.

1Even when superior predictive ability of one forecast over another is suspected one could test
for forecast encompassing. Granger & Newbold (1973, 1986) claim that the superior accuracy of
one forecast over another does not necessarily mean that the inferior forecast is useless. It could be
the case that the superior forecast could benefit from using some of the information contained in the
outperformed forecast. Granger & Newbold consider the possibility that an average of the superior
and inferior forecasts may yield a new and more accurate forecast. When this is not possible, it is
said that the superior forecast is not only more accurate than the outperformed forecast, but also
encompasses it (see Chong & Hendry, 1986 and Clements & Hendry, 1993).
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In general terms, the combination of forecasts is reported as a successful strategy
to improve forecast accuracy. Elliot & Timmermann show an interesting table in
which the simple average of several methods outperforms either of the individual
forecasts available for US inflation. This is just one example of a pattern that the
literature has been exploring so far. More empirical examples of the good behavior
of combination schemes are found, for instance, in the papers by Newbold & Granger
(1974), Wright (2008) and Clements & Harvey (2011).

Different theoretical approaches aim at explaining the success of combination
strategies. Given a set of forecasts and a loss function, the optimal combination
could be found as the solution of an optimization problem looking for weights to
minimize the expected loss. In many applications such an optimization problem
is well defined and leads to non trivial optimal weights, ensuring reductions in the
loss function, or in other words, ensuring combination gains. Timmermann (2006)
provides an interesting summary of different environments in which combination
gains are possible.

Despite these theoretical efforts, some questions are still unresolved. For instance,
part of the relevant literature investigates what is known as the “Combination Puzzle
”, which, in the version of Aiolfi, Capistrán & Timmermann refers to “...the com-
mon finding that an equal-weighted forecast is surprisingly diffi cult to beat.”Aiolfi,
Capistrán & Timmermann (2011) page 2. More generally, as mentioned by Hansen
(2008) it is still not entirely clear how to build the forecasts weights that will be used
in a combination.

While it is clear that combination gains may exist in a number of applications,
part of literature analyzes the effi ciency of some combination strategies. For instance,
Diebold (1988) indicates that the regression approach is a combination scheme that
leaves room for improvement due to the autocorrelacion in the residuals that is in-
herent to this combination method. Diebold (1988) and Timmermann (2006) also
mentions that the Bates and Granger approach is potentially ineffi cient due to the in-
troduction of the constraint of the coeffi cients summing to unity. The extent to which
these ineffi ciencies are indeed relevant requires a case by case analysis2. Nonetheless
it is striking that in many applications in which a number of different forecasts are
available, the combination of all of them seems to be the last step in the search
of forecast accuracy, and no attempt to take advantage of potential ineffi ciencies
stemming from the combination process is carried out.

2See, for instance, Clemen (1986).
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In sharp contrast with this usual practice, in this article we explore a particular
property of convex linear combination of forecasts. This property is called fore-
cast auto-effi ciency, and refers to the notion of effi ciency analyzed by Mincer and
Zarnowitz (1969). Under mild assumptions we show that linear convex forecast
combinations are auto-ineffi cient with probability one, and therefore room for ac-
curacy improvement is almost surely possible. This implies that greater reductions
in MSPE are possible and has the further implication that the traditional optimal
linear combination weights could be sub-optimal in a broader sense. Furthermore,
this auto-ineffi ciency does not allow for a supplementary interpretation of MSPE as
suggested by Patton & Timmermann (2012). We also show that certain symmetry
condition is suffi cient to ensure that the traditional combination scheme is optimal
in this broader sense.

We focus on linear convex combinations because they are used by practitioners
in many empirical applications. In particular Consensus Economics reports individ-
ual forecasts and their simple averages. Furthermore, many simple linear convex
combinations are considered to be very accurate, which is consistent with the afore-
mentioned combination puzzle. In addition, these combination strategies allow for
an interpretation of the combination as a consensus forecast. Finally, many of these
linear convex combinations do not require previous knowledge of the target variable
to construct the combined forecast, which is a clear advantage of simple methods
against the Granger & Ramanathan (1984) approach.

The rest of the paper is organized as follows. In Section 2 we set the econometric
environment. Section 3 contains the main theoretical results. Section 4 displays
illustrative examples of our findings as well as an empirical application. Finally
Section 5 concludes and presents possible extensions for further research.

2 Econometric Environment

Let us consider {Yt} to be a stationary and ergodic time-series process. We will as-
sume that at time t we want to forecast the random variable Yt+h which is equivalent
to say that we look for a h-step ahead forecast for our target variable. We will drop
the t and h subindexes just for clarity of exposition. At time t we have two forecasts
Y1 and Y2 for the target variable Y . We will further assume that the vector process Y1

Y2
Y


3×1
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is weakly stationary, ergodic and has positive definite variance-covariance matrix V.

2.1 The Combined Forecast

Consider the following combination of forecasts

Y C = λY1 + (1− λ)Y2 = λ(Y1 − Y2) + Y2

λ ∈ [0, 1]

where Y C denotes the combined forecast. The corresponding forecast errors are

uC = λu1 + (1− λ)u2

uC = λ [u1 − u2] + u2

where u1 and u2 represent the errors associated to forecast Y1 and Y2 respectively:

u1 = Y − Y1
u2 = Y − Y2

We will assume, without loss of generality, that the Mean Squared Prediction Error
(MSPE) of forecast 2 is as good as that of forecast 1, that is to say:

MSPE2 ≡ E
[
u22
]
≤MSPE1 ≡ E

[
u21
]

When the combined forecast displays lower MSPE than forecasts Y1 and Y2 we will
say that Combination Gains (CG) do exist3. Proposition 1 next shows conditions
for this happen.

2.2 Combination Gains

Proposition 1 If
E [u1 − u2] [u2] < 0

then combination gains are possible for λ ∈ (0, 1).

3This is an expression used by Timmermann (2006).
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Proof. Notice that

E
[
uC
]2

= E [λ [u1 − u2] + u2]
2

= λ2E [u1 − u2]2 + E [u2]
2 + 2λE [u1 − u2] [u2]

therefore
E
[
uC
]2 − E [u2]

2 = λ2E [u1 − u2]2 + 2λE [u1 − u2] [u2] (1)

Suppose4

E [u1 − u2]2 = 0

In this case

E
[
uC
]2 − E [u2]

2 = 2λE [u1 − u2] [u2] < 0 for all λ > 0

Let us suppose now that
E [u1 − u2]2 > 0

then (1) is a strictly convex quadratic form with at most two different real roots.
One of them is zero, which rules out the possibility of two complex roots. The other
real root is

λu2 =
−2E [u1 − u2] [u2]

E [u1 − u2]2
> 0

Univariate convex quadratic forms with a zero root must fall into one of the three
cases depicted en Figure 1. Given that λu2 > 0, we are in a situation like that depicted
with the blue line. Therefore, combination gains are achieved in the interval

(0, λu2)

which, in particular ensures combination gains in, at least, a subset of the open set
(0,1).

4Notice that this condition is ruled out by the assumption of V being strictly definite-positive.
We include this analysis to show that proposition 1 does not need this assumption to hold true.
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Figure 1
Univariate Convex Quadratic Forms With a Zero Root
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Well acquainted with this analysis, Harvey, Leybourne and Newbold (1998) pro-
pose testing the following null hypothesis of no encompassing

H0 : E [u1 − u2] [u2] = 0

Under this null hypothesis a combination of forecasts is not accuracy improving
because

H0 =⇒ E
[
uC
]2 ≥ E [u2]

2 for all λ ∈ R
and no combination gains are possible.

We will be also interested in analyzing a particular property of forecasts that we
will name auto-effi ciency:

2.3 Auto-Effi ciency

Definition 2 Consider a target variable Y and a forecast Y f . We will say that the
forecast Y f is auto-effi cient as long as

Cov(Y − Y f , Y f ) = 0
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which in the case of Y f being unbiased could be expressed as

E
[
Y − Y f

] [
Y f
]

= 0

This last expression indicates that forecast errors are orthogonal to the forecast itself.
If this condition does not hold true, we will say that the forecast Y f is auto-ineffi cient.
In general, definitions in the same line are originally attributed to the early work of
Mincer and Zarnowitz (1969) and have been called Minzer-Zarnowitz effi ciency.

We notice that auto-effi ciency is one of the conditions satisfied by optimal fore-
casts under quadratic loss. Furthermore, violations of auto-ineffi ciency are relevant
for at least two reasons:

1. They allow for a supplementary interpretation of MSPE when forecasts are
unbiased.

2. They allow for a simple modification of the forecast Y f to produce a new revised
forecast with lower MSPE than Y f .

The first point above relies on a remark made in a recent work by Patton and
Timmermann (2012). Notice that

Y = Y f + u

therefore
E
[
Y 2
]

= E
[
Y f
]2

+ E
[
u2
]

+ 2E
[
Y fu

]
and

Cov(Y, Y ) = Cov(Y f + u, Y f + u)

V(Y ) = Cov(Y f , Y f ) + 2Cov(u, Y f ) + Cov(u, u)

V(Y ) = V(Y f ) + 2Cov(u, Y f ) + V(u)

When forecasts are unbiased we have that

E [Y ] = E
[
Y f
]

so

E(Y − Y f ) = E(u) = 0

Cov(Y f , u) = E
[
Y fu

]
V(u) = E

[
u2
]
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therefore
V(Y ) = V

(
Y f
)

+ 2E
[
Y fu

]
+ E

[
u2
]

so, if auto-effi ciency holds

V(Y ) = V
(
Y f
)

+MSPE

MSPE ≡ Eu2

and there is an inverse relationship between MSPE and the “explained”variance of
the model. Nevertheless, if auto-effi ciency does not hold, we can have reductions in
MSPE that are associated to reductions in the “explained”variance of the model as
well, which is counterintuitive.

The second point above indicates that, when auto-ineffi ciency holds true, the
forecast itself contains information that could be used to predict its own forecast
errors. We could then build a linear model for the forecast errors as follows

u ≡ Y − Y f = α + βY f + u∗

Eu∗ = EY fu∗ = 0

which defines the following coeffi cients

β ≡ Cov(Y f , u)

V (Y f )
;α ≡ Eu− βEY f

We could build a revised forecast Y fr as follows

Y fr = α + (1 + β)Y f

= Eu− βEY f + (1 + β)Y f

= Y f + Eu+ β(Y f − EY f )

= Y f + EY − EY f + β(Y f − EY f )

= (1 + β)(Y f − EY f ) + EY

Notice that
Y f = (Y f − EY f ) + EY f

when forecast are unbiased we have

Y f = (Y f − EY f ) + EY

8



therefore

β ≡ Cov(Y f , u)

V (Y f )

provides information regarding the need of a shrinkage or an upscale adjustment in
the term (Y f − EY f ).

The new forecast error is

Y − Y fr = Y − α− (1 + β)Y f

= Y − Y f − α− βY f

= u− (α + βY f )

= u∗

Interestingly
E [u∗]2 < E [u]2

this is so as long as α 6= 0 or β 6= 0. In fact

E [u∗]2 = E
[
u− (α + βY f )

]2
= E [u]2 + E

[
α + βY f

]2 − 2E
[
u(α + βY f )

]
= E [u]2 + E

[
α + βY f

]2 − 2E
[
(α + βY f + u∗)(α + βY f )

]
= E [u]2 + E

[
α + βY f

]2 − 2E
[
α + βY f ]2 − E[u∗(α + βY f )

]
= E [u]2 − E

[
α + βY f

]2
(2)

Notice that even if the original forecast is unbiased we will have α 6= 0. This is so
because

α ≡ Eu− βEY f

so in the unbiased case
α ≡ −βEY

and α may still be different from zero, due to the auto-ineffi ciency of Y f , as long as

EY 6= 0

2.4 Assumptions

In summary we will be interested in an environment characterized by
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1. One target variable Y.

2. Two forecasts Y1 and Y2 such that

MSPE2 ≡ E
[
u22
]
≤MSPE1 ≡ E

[
u21
]

(3)

E [u1] = E [u2] = 0 (4)

3. Combination Gains do exist in some region of the open set (0,1). In other
words

E [u1 − u2] [u2] < 0 (5)

We will also make use of the following assumption:

4. The vector  Y1
Y2
Y


3×1

is weakly stationary, ergodic and with positive definite variance-covariance ma-
trix V.

We have displayed the basic econometric framework with which we will be working
in this paper. In the next section we show the main results of the article.

3 Main Theoretical Results

One of the main points of this paper is to show that traditional weighted averages of
forecasts are auto-ineffi cient almost surely. In fact, the next proposition shows that
the majority of forecast combinations with λ ∈ (0, 1) are auto-ineffi cient. Previous
to that, notice that with straightforward algebra the auto-effi ciency of the combined
forecast could be expressed in the following way:

E[Y CuC ] = −λ2E [Y1 − Y2]2 + λE [Y1 − Y2] [u2 − Y2] + E [Y2u2] (6)

It would be also useful to express (6) as follows

E[Y CuC ] = λ2E [Y1u1] + (1− λ)2E [Y2u2] + λ(1− λ)E [Y1u2 + Y2u1] (7)

The proof of these expressions are in the appendix.
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3.1 Auto-Ineffi ciency of Forecast Combinations

Proposition 3 Let Y denote a target variable and Y1, Y2 two forecasts for Y such
that assumptions 1-4 hold true. Then there will be at most two different combinations
λ1, λ2 ∈ (0, 1) for which the combined forecast is auto-effi cient.

Proof. Let us consider the expected value of the combined forecast times its forecast
error:

E[Y CuC ] = E [λ [Y1 − Y2] + Y2] [λ [u1 − u2] + u2]

this expression defines the following quadratic form

E[Y CuC ] = −λ2E [Y1 − Y2]2 + λE [Y1 − Y2] [u2 − Y2] + E [Y2u2]

We notice that
E [Y1 − Y2]2 > 0 (8)

otherwise
0 = E [Y1 − Y2]2 = V(Y1 − Y2) + [E [Y1 − Y2]]2 (9)

and
V(Y1 − Y2) = 0

which means that
V(Y1) + V(Y2) = 2Cov(Y1, Y2)

Let us consider V12 to be defined as the variance covariance matrix of the sub-vector(
Y1
Y2

)
2×1

then it has to be the case that V12 is a positive definite matrix as well, as all the
leading principal minors of V are also strictly positive. Nevertheless[

1 -1
]
V12

[
1
-1

]
=

[
1 -1

] [ V(Y1)− Cov(Y1,Y2)
Cov(Y1,Y2)− V(Y2)

]
= V(Y1)− Cov(Y1,Y2)− Cov(Y1,Y2) + V(Y2) = 0

which is a contradiction with the fact that V12 is positive definite. With

E [Y1 − Y2]2 > 0

the expression E[Y CuC ] is a strictly concave quadratic form and of course is different
from the zero function. As a consequence, E[Y CuC ] will have at most two real roots
which may or may not lie within the (0, 1) interval, so it may be the case that every
single combination is auto-ineffi cient. In any case, at most two combinations are
auto-effi cient.
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Corollary 4 Under assumptions 1-4, if we further assume that both individual fore-
casts are auto-effi cient, then any weighted average of the forecasts will display positive
auto-ineffi ciency.

Proof. We already saw that
0 < E [Y1 − Y2]2

Notice that

0 < E [Y1 − Y2]2 = E [Y1 − Y2] [u2 − u1]
0 < E [Y1 − Y2]2 = E [Y1u2 − Y1u1 − Y2u2 + Y2u1]

0 < E [Y1 − Y2]2 = E [Y1u2 + Y2u1]

Using that

E[Y CuC ] = λ2E [Y1u1] + (1− λ)2E [Y2u2] + (1− λ)λE [Y1u2 + Y2u1]

Because the two individual forecasts are auto-effi cient we have

E [Y1u1] = E [Y2u2] = 0

therefore we conclude that

E[Y CuC ] =(1− λ)λE [Y1u2 + Y2u1] > 0 for all λ ∈ (0, 1)

Proposition 3 showed that most of the possible forecast combinations are auto-
ineffi cient. The previous corollary showed a particular case ensuring that all possible
combinations within (0,1) are auto-ineffi cient. As a consequence, tests based upon
aggregated information from surveys might incorrectly reject the null hypothesis of
rational agents.

The next proposition provides more general conditions under which every single
combination in (0,1) is auto-ineffi cient.

Proposition 5 For Y , Y1 and Y2 as in proposition 3, let us assume that

E [Y1u1] ≥ 0 (10)

E [Y2u2] ≥ 0 (11)

then for every single combination λ ∈ (0, 1) the combined forecast displays auto-
ineffi ciency.
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Proof. Using that

0 < E [Y1 − Y2]2 = E [Y1 − Y2] [u2 − u1]
0 < E [Y1 − Y2]2 = E [Y1u2 − Y1u1 − Y2u2 + Y2u1]

we obtain
0 < E [Y1u2 + Y2u1]− E [Y1u1 + Y2u2]

therefore
E [Y1u1 + Y2u2] < E [Y1u2 + Y2u1]

but, by assumption the LHS is greater or equal than zero

0 ≤ E [Y1u1 + Y2u2] < E [Y1u2 + Y2u1]

therefore
0 < E [Y1u2 + Y2u1]

Using again that

E[Y CuC ] = λ2E [Y1u1] + (1− λ)2E [Y2u2] + (1− λ)λE [Y1u2 + Y2u1]

we conclude that

E[Y CuC ] = λ2E [Y1u1]+(1−λ)2E [Y2u2]+(1−λ)λE [Y1u2 + Y2u1] > 0 for all λ ∈ (0, 1)

It is important to remark that conditions (10) and (11) may be tested using a strategy
based on the “reality check”of White (2000) which has also been used by Pincheira
(2012).

Remark 6 Notice that
0 < E [Y1 − Y2]2

is also a necessary condition for combination gains to hold true. In fact, if instead
we had

0 = E [Y1 − Y2]2

then
0 = E [Y1 − Y2]2 = E [u2 − u1]2 = E [u2]

2 + E [u1]
2 − 2E [u2u1]

in other words we would have

2E [u2u1] = E [u2]
2 + E [u1]

2
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Let us analyze the sign of following expression having in mind that we will make use
of assumption (3):

2E [u1 − u2] [u2] = 2E [u2u1]− 2E [u2]
2 = E [u2]

2 + E [u1]
2 − 2E [u2]

2

= E [u1]
2 − E [u2]

2 ≥ 0

and no combination gains would be possible.

Proposition 7 For Y , Y1 and Y2 as in proposition 3, then we can find a unique
λ∗ ∈ (0, 1) such that

λ∗ = arg min
λ∈(0,1)

E [λu1 + (1− λ)u2]
2

For this λ∗ we also have

E[Y C(λ∗)uC(λ∗)] =λ∗E [Y2u1] + (1− λ∗)E [Y2u2]

Proof.

E [λu1 + (1− λ)u2]
2 = λ2E [u1 − u2]2 + E [u2]

2 + 2λE [u1 − u2] [u2]

this is a strictly convex quadratic function which admits a unique global minimum
defined by the following first order conditions

2λE [u1 − u2]2 + 2E [u1 − u2] [u2] = 0

this equation is solved by

λ∗ =
−E [u1 − u2] [u2]

E [u1 − u2]2

now, let us recall that by assumption

0 ≤ E
[
u21 − u22

]
= E [u1 − u2] [u1 + u2]

therefore

0 ≤ E
[
u21 − u22

]
= E [u1 − u2] [u1 − u2 + 2u2] = E [u1 − u2]2 + 2Eu2 [u1 − u2]

so, dividing by E [u1 − u2]2 we have

E [u1 − u2]2 + 2Eu2 [u1 − u2]
E [u1 − u2]2

≥ 0
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or

1 +
2E [u1 − u2]u2
E [u1 − u2]2

≥ 0

−1− 2E [u1 − u2]u2
E [u1 − u2]2

≤ 0

−2E [u1 − u2]u2
E [u1 − u2]2

≤ 1

by the assumption of combination gains we have

E [u1 − u2]u2 < 0

therefore

0 < −2E [u1 − u2]u2
E [u1 − u2]2

≤ 1

or

0 < λ∗ = −E [u1 − u2]u2
E [u1 − u2]2

≤ 1

2

therefore
0 < λ∗ < 1

Now, let us find an expression for E[Y C(λ∗)uC(λ∗)] :

E[Y C(λ∗)uC(λ∗)] = − [λ∗]2 E [Y1 − Y2]2 + [λ∗]E [Y1 − Y2] [u2 − Y2] + E [Y2u2]

= − [λ∗]2 E [u2 − u1]2 − [λ∗]E [u1 − u2] [u2 − Y2] + E [Y2u2]

= −λ∗
[
λ∗E [u2 − u1]2

]
− [λ∗]E [u1 − u2] [u2 − Y2] + E [Y2u2]

= λ∗E [u1 − u2] [u2]− λ∗E [u1 − u2] [u2 − Y2] + E [Y2u2]

= λ∗E [u1 − u2] [u2]− λ∗E [u1 − u2] [u2] + λ∗E [u1 − u2] [Y2] + E [Y2u2]

= λ∗E [u1 − u2] [Y2] + E [Y2u2]

= λ∗E [Y2u1] + (1− λ∗)E [Y2u2]

This last expression indicates that the optimal combination may be auto-ineffi cient
as well. For instance, if

E [Y2u1] and E [Y2u2]

share the same sign, then there is no way for the optimal combination to display
auto-effi ciency.
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3.2 Size of the Auto-Ineffi ciency in the Forecast Combina-
tions

Let us consider the following notation:

f(λ) ≡ E
(
uC
)2

= λ2E [u1 − u2]2 + 2λE [u1 − u2] [u2] + E (u2)
2

g(λ) ≡ E
[
Y CuC

]
= −λ2E [Y1 − Y2]2 + λE [Y1 − Y2] [u2 − Y2] + E [Y2u2]

S = E [Y1 − Y2]Y = −E [u1 − u2]Y

We notice that

f(λ) + g(λ) = E (u2)
2 + E [Y2u2] + 2λE [u1 − u2] [u2] + λE [Y1 − Y2] [u2 − Y2]

= E (u2)
2 + E [Y2u2] + 2λE [u1 − u2] [u2]− λE [u1 − u2]Y + 2λE [u1 − u2] [Y2]

= E (u2)
2 + E [Y2u2] + 2λE [u1 − u2]Y − λE [u1 − u2]Y

= E (u2)
2 + E [Y2u2] + λE [u1 − u2]Y

This las expression is equivalent to write:[
E
(
uC
)2 − E (u2)

2
]

= −
[
E
(
Y CuC

)
− E (Y2u2)

]
+ λE [u1 − u2]Y

or [
E
(
uC
)2 − E (u2)

2
]

+
[
E
(
Y CuC

)
− E (Y2u2)

]
= −λS

which could be written as

CG(λ) + AEG(λ) = −λS

where AEG stands for Auto-Effi ciency Gains (or losses) relative to the auto-effi cient
status of forecast 2. The first term in the LHS is a strictly convex quadratic form with
a zero root. The second term in the LHS is a strictly concave quadratic form with
a zero root. If the symmetry condition holds true ( S =0 ) then the two quadratic
forms would be the same but with opposite sign. This implies that movements along
the quadratic forms are totally compensated. When S 6= 0 this is not the case,
and movements along the quadratic forms are not totally compensated. They are
only partially compensated. The size of the symmetry conditon S is indeed key for
combination gains to be totally or just partially compensated by changes in auto-
effi ciency. We will see this with examples in subsection 3.4.
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3.3 Improving on Forecast Combinations

At this stage we know that the majority of forecast averages are auto-ineffi cient.
We also know that, for every auto-ineffi cient λ ∈ (0, 1) we could build a revised
forecast using an OLS adjustment. A natural question to ask is whether the optimal
combination λ∗ will remain optimal after the OLS adjustment. If the answer is
no, then we would want to find the optimal λ ∈ (0, 1) for which the combination,
adjusted by OLS and correcting by auto-ineffi ciency, provides the lowest MSPE.
We will denote this optimal recombination by λ∗∗. It is convenient now to recall
expression (2) which provides the magnitude of recombination gains:

E [u∗]2 = E [u]2 − E
[
α + βY f

]2
(12)

β ≡ Cov(Y f , u)

V (Y f )
;α ≡ Eu− βEY f (13)

From (12) we see that recombination gains are equal to:

E
[
α + βY f

]2
When the forecast Y f coincides with the combined forecast then recombination gains
are:

E
[
αλC + βλCY

C
]2

βλC ≡ Cov(Y C , uC)

V (Y C)
;αλC ≡ EuC − βλCEY C

We could build a revised forecast Y Cr as follows

Y Cr = αλC + (1 + βλC)Y C

= EuC − βλCEY C + (1 + βλC)Y C

= Y C + βλC
[
Y C − EY C

]
= Y C +

Cov(Y C , uC)

V (Y C)

[
Y C − EY C

]
the new forecast error is

u∗∗ ≡ Y − Y Cr = Y − αλC − (1 + βλC)Y C

= uC − (αλC + βλCY
C)

with
E [u∗∗]2 < E

[
uC
]2

17



as long as αλC 6= 0 or βλC 6= 0. In fact, as shown before,

E [u∗∗]2 = E
[
uC
]2 − E [αC + βλCY

C
]2

Notice that when working with unbiased forecasts we have

αλC ≡ EuC − βλCEY C = −βλCEY

and gains from OLS recombination would be given by

E
[
αλC + βλCY

C
]2

= E
[
βλCY

C − βλCEY
]2

= E
[
βλCY

C − E
[
βλCY

C
]]2

= V
[
βλCY

C
]

=
[
βλC
]2V [Y C

]
On the other hand

βλC ≡
Cov(Y C , uC)

V (Y C)
=
E
[
Y CuC

]
V (Y C)

therefore, the total gain from recombining is

E
[
αλC + βλCY

C
]2

=

(
E
[
Y CuC

])2
V (Y C)

=

(
E
[
Y CuC

])2
E (Y C)2 − [EY ]2

(14)

In the next two propositions we will try to find λ∗∗ ∈ (0, 1) for which (14) reaches a
local minimum.

Proposition 8 Let Y , Y1 and Y2 be as in proposition 3. Let λ∗ ∈ (0, 1) represents
the optimal combination. Furthermore, let us assume that the following symmetry
condition is met

S ≡ E [Y (Y1 − Y2)] = 0 (15)

then λ∗ will be a critical point of the combined MSPE function corrected by OLS.
Furthermore, λ∗ corresponds to a local minimum of the optimal OLS corrected com-
bination. In other words

λ∗ = arg min
B(λ∗)

E [u∗∗]2 = E
[
uC
]2 − E [αC + βCY

C
]2
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Proof. The total gain from the OLS recombination is given by

E
[
αC + βCY

C
]2

=

(
E
[
Y CuC

])2
V (Y C)

=

(
E
[
Y CuC

])2
E (Y C)2 − [EY ]2

we will use the following notation:

f(λ) ≡ E
(
uC
)2

g(λ) ≡ E
[
Y CuC

]
h(λ) ≡ V

(
Y C
)

The critical points of E [u∗∗]2 for λ ∈ (0, 1) must satisfy:

∂E [u∗∗]2

∂λ
= 0

which can be written as
∂ (f(λ)− g2(λ)/h(λ))

∂λ
= 0

so we have

f ′ −
[

2gg′h− g2h′
h2

]
= 0

Notice that under (15) we have[
E
(
uC
)2 − E (u2)

2
]

+
[
E
(
Y CuC

)
− E (Y2u2)

]
= λE [u1 − u2]Y = 0

which implies
∂E
(
uC
)2

∂λ
= −

∂E
(
Y CuC

)
∂λ

Besides, (15) also implies that

E
[
Y C
]2

= E [λ (Y1 − Y2) + Y2]
2 = λ2E [Y1 − Y2]2 + E [Y2]

2 + 2λE [(Y1 − Y2)Y2]
= λ2E [Y1 − Y2]2 + E [Y2]

2 + 2λE [(Y1 − Y2) (Y − u2)]
= λ2E [Y1 − Y2]2 + E [Y2]

2 + 2λE [(Y1 − Y2)Y ]− 2λE [(Y1 − Y2)u2]
= λ2E [Y1 − Y2]2 + E [Y2]

2 − 2λE [(Y1 − Y2)u2]
= λ2E [Y1 − Y2]2 + E [Y2]

2 + 2λE [(u1 − u2)u2]
= λ2E [Y1 − Y2]2 + E [Y2]

2 − 2λE [(Y1 − Y2) (Y − Y2)]
= λ2E [Y1 − Y2]2 + E [Y2]

2 + 2λE [(Y1 − Y2)Y2]
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from

E[Y CuC ] = −λ2E [Y1 − Y2]2 + λE [Y1 − Y2] [u2 − Y2] + E [Y2u2]

= −λ2E [Y1 − Y2]2 + λE [Y1 − Y2] [Y − 2Y2] + E [Y2u2]

= −λ2E [Y1 − Y2]2 − 2λE [Y1 − Y2]Y2 + E [Y2u2]

we conclude that

E
[
Y C
]2 − E [Y2]

2 = λ2E [Y1 − Y2]2 + 2λE [(Y1 − Y2)Y2]
E
[
Y C
]2 − E [Y2]

2 = −
[
E[Y CuC ]− E [Y2u2]

]
(16)

therefore, under (15) we have[
E
(
uC
)2 − E (u2)

2
]

= −
[
E
(
Y CuC

)
− E (Y2u2)

]
=
[
E
[
Y C
]2 − E [Y2]

2
]

= V
[
Y C
]
−V [Y2]

but also

V
[
Y C
]

= E
[
Y C
]2 − [EY C

]2
V
[
Y C
]

= E
[
Y C
]2 − [EY ]2

hence
∂E
(
uC
)2

∂λ
= −

∂E
(
Y CuC

)
∂λ

=
∂V
(
Y C
)

∂λ
=
∂E
[
Y C
]2

∂λ
or

f ′ = h′ = −g′

therefore we have

f ′ −
[

2gg′h− g2h′
h2

]
= 0

f ′ −
[
−2gf ′h− g2f ′

h2

]
= 0

f ′
[
h2

h2

]
−
[
−2gf ′h− g2f ′

h2

]
= 0

−
[
−f ′h2 − 2gf ′h− g2f ′

h2

]
= 0

f ′
[
h2 + 2gh+ g2

h2

]
= 0

f ′

h2
[h+ g]2 = 0
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but from (16) we have

E
[
Y C
]2 − E [Y2]

2 = −
[
E[Y CuC ]− E [Y2u2]

]
E
[
Y C
]2 − (E [Y C

])2 − E [Y2]
2 +

(
E
[
Y C
])2

= −
[
E[Y CuC ]− E [Y2u2]

]
V
(
Y C
)
− V (Y2) = −

[
E[Y CuC ]− E [Y2u2]

]
h− V (Y2) = − [g−E [Y2u2]]

or

h+ g = V (Y2) + E [Y2u2] = E
[
Y 2
2

]
− (E [Y2])

2 + E [Y2u2]

= E [Y2Y ]− (E [Y2])
2 = E [Y2Y ]− E [Y2]E [Y ]

= Cov(Y2, Y ) for all λ

therefore the critical points of

E [u∗∗]2 = E
[
uC
]2 − E [αC + βCY

C
]2

satisfy
f ′

h2
[Cov(Y2, Y )]2 = 0

When Cov(Y2, Y ) = 0, then our objective function is flat and every single λ ∈ R will
be a critical point and a global solution of our optimization problem, in particular
λ = λ∗ will solve the problem. When Cov(Y2, Y ) 6= 0 then the unique critical point
corresponds to λ = λ∗. Let us explore the behavior of the second derivative of our
objective function evaluated at λ = λ∗. We want:

∂2 (f(λ)− g2(λ)/h(λ))

∂λ2
=

∂

∂λ

[
∂ (f(λ)− g2(λ)/h(λ))

∂λ

]
=

∂

∂λ

[
f ′

h2
[h+ g]2

]
=

[
f ′′h2 − 2f ′hh′

h4

]
[h+ g]2 + 2

f ′

h2
[h+ g] [h′ + g′]
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therefore

∂E [u∗∗]2

∂λ |λ=λ∗
=

[(
f ′′h2 − 2f ′hh′

h4

)
[h+ g]2

]
|λ=λ∗

+

[
2
f ′

h2
[h+ g] [h′ + g′]

]
|λ=λ∗

∂E [u∗∗]2

∂λ |λ=λ∗
=

[(
f ′′

h2

)
[h+ g]2

]
|λ=λ∗

∂E [u∗∗]2

∂λ |λ=λ∗
=

[(
f ′′(λ∗)

[V (Y C(λ∗))]2

)
[Cov(Y2, Y )]2

]
> 0 if Cov(Y2, Y ) 6= 0

and in this way λ∗ is a local minimum of the OLS-adjusted objective function because
it is a global minimum of E

(
uC
)2
and therefore f ′′(λ∗) > 0.

When the symmetry condition (15) is not met, the optimal combination with and
without the OLS adjustment may differ. In fact it may not even exist. The following
proposition may be useful in this scenario.

Proposition 9 Let Y , Y1 and Y2 be as in proposition 3. Let us assume that the
following conditions are met

S ≡ E [Y (Y1 − Y2)] 6= 0 (17)

V(Y C) > 0 for all λ ∈ R (18)

CovE [u1 − u2]2 − SE [Y1 − Y2] [Y2] 6= 0 (19)

S2 [E [Y2u2]− Cov] +2SCovE [Y1 − Y2] [Y2]− [Cov]2 E [u1 − u2]2 6= 0 (20)

where
Cov ≡ Cov (Y, Y2)

then

λ∗∗ = − Cov(Y2, Y )E [u1 − u2] [u2] + SE [Y2u2]

Cov(Y2, Y )E [u1 − u2]2 − SE [Y1 − Y2] [Y2]

will be a critical point of the combined MSPE function corrected by OLS for λ ∈
R. Furthermore, λ∗∗ corresponds to a local minimum of the optimal OLS corrected
combination.

Proof. See the Appendix.

Remark 10 The symmetry condition can be easily tested using a t-type test similar
to that proposed by Diebold & Mariano (1995) and West (1996).

In the next section we will see illustrative examples of some of our results. In
particular we will show a situation in which λ∗∗ ∈ (0, 1) is a global minimum of
E [u∗∗]2 in the (0, 1) interval.
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3.4 Illustrative Examples

In this subsection we will illustrate with simple examples the main results showed
in previous sections. In all these cases we will impose the existence of combination
gains and will explore if auto-effi ciency is satisfied or not. Let us consider the three-
dimensional vector

Wt =

 Yt
Xt−1
Zt−1


3×1

 N(0,Ω)

We will consider the following four cases for the matrix Ω:

Ω(1) =

 1.600 0.600 0.750
0.600 0.700 0.250
0.750 0.250 0.900

 ; Ω(2) =

 1.600 0.600 0.750
0.600 0.600 0.250
0.750 0.250 0.750


Ω(3) =

 2.500 1.125 1.250
1.125 2.000 0.250
1.250 0.250 2.250

 ; Ω(4) =

 1.750 0.600 1.500
0.600 0.600 0.300
1.500 0.300 1.500


All these matrices are symmetric and definite positive as their eigenvalues are (2.33, 0.33, 0.54);
(2.28, 0.25, 0.42); (4.13, 0.76, 1.87) and (3.29, 0.04, 0.53) respectively. We will use two
different forecasts for Yt :

Y f
1 ≡ Xt−1

Y f
2 ≡ Zt−1

Let us analyze the case in which we have Ω(1). The respective MSPE and Mean
Squared Forecasts (MSF) are

MSPE(Y f
1 ) ≡ E(Yt −Xt−1)

2 = EY 2
t + EX2

t−1 − 2EYtXt−1 = 1.6 + 0.7− 1.2 = 1.1

MSPE(Y f
2 ) ≡ E(Yt − Zt−1)2 = EY 2

t + EZ2t−1 − 2EYtZt−1 = 1.6 + 0.9− 1.5 = 1

MSF (Y f
1 ) ≡ E(Xt−1)

2 = 0.7

MSF (Y f
2 ) ≡ E(Zt−1)

2 = 0.9

So clearly forecast 2 is more accurate than forecast 1 in terms of MSPE and dis-
plays higher MSF. Nevertheless, forecast 1 is not encompassed by forecast 2 and
combination gains are possible. This is so because

E [u1 − u2] [u2] = E [Yt −Xt−1 − (Yt − Zt−1)] [Yt − Zt−1]
= E [Zt−1 −Xt−1] [Yt − Zt−1]
= E [Zt−1Yt]− E

[
Z2t−1

]
− E [Xt−1Yt] + E [Zt−1Xt−1]

= 0.75− 0.9− 0.6 + 0.25 = −0.5 < 0

23



From Picture 2 we show that most combinations in (0,1) display reductions in MSPE
compared to the best performing individual forecast. At the same time, most of these
combinations are auto-ineffi cient.

Picture 2
Auto-ineffi ciency of Most Forecast Combinations
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Picture 3
Auto-ineffi ciency of Forecast Combinations When Individual Forecasts are
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Picture 4
The Optimal Combination May Display Auto-Effi ciency
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Picture 3 is associated to Ω(2). This picture depicts a situation in which all
combinations in (0, 1) are auto-ineffi cient. Picture 4 comes from Ω(3). This picture
provides an example in which the optimal combination is auto-effi cient.

Pictures 2 and 4 correspond to virtuous examples. In Picture 2 we can see that
for low values of λ we achieve both reductions in MSPE and auto-ineffi ciency (in
absolute value) with respect to the more accurate individual forecast. Furthermore,
within the region (0, 0.3) every single combination display lower MSPE and lower
auto-ineffi ciency in absolute terms. A situation like this one is possible as long as

E [Y2u2] < 0

d
([
E
(
uC
)2 − E (u2)

2
])
|λ=0

dλ
= 2E [u1 − u2] [u2] < 0

d
([
E
(
Y CuC

)2 − E (Y2u2)
2
])
|λ=0

dλ
= E [u2 − u1] [u2 − Y2] > 0

Picture 4 is also a particular case in which there is a relatively wide region for
combinations to be approximately optimal and auto-effi cient. This is a case in which
every single combination brings reductions in MSPE and auto-ineffi ciency in absolute
terms.
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Pictures 5 and 6 next correspond to Ω(3) and Ω(4) respectively. Both figures show
cases in which λ∗∗ represents a global solution to the optimal recombination problem
in (0, 1). The main difference between pictures 5 and 6 relies on the symmetry
condition (15). In picture 5 the symmetry condition holds true and consequently
λ∗∗ coincides with λ∗. In picture 6, however, the symmetry condition does not hold
true and therefore the optimal combination and recombination weights λ∗ and λ∗∗

are different.

Picture 5
The Optimal Combination and Optimal Recombination May Coincide
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Picture 6
The Optimal Combination and Optimal Recombination May Differ
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4 Empirical Illustration

In this section we present an empirical application in which we combine two sets
of forecasts for Chilean year-on-year CPI inflation. The exercise is twofold. First
we consider two sets of three month ahead forecasts for Chilean inflation: those
reported by Consensus Economics and those coming from the Survey of Professional
Forecasters (SPF) carried out at a monthly basis by the Central Bank of Chile. We
consider the simple average of the individual forecasts reported by Consensus and
the median of the forecasts coming from the SPF, which is information publicly
available. Because the SFP is carried out at the beginning of each month while
Consensus’ survey is carried out at the middle of each month, we expect a little
advantage of Consensus over the SPF. We have a sample of 98 monthly observations
for the period November 2001-December 2009.

Picture 7 shows with a blue line that combination gains do exist for a wide region
of the interval (0,1). With a simple combination, the MSPE can go down from
0.64 (Consensus MSPE) to 0.43. The red line, however, shows that every single
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combination is auto-ineffi cient. This allows for further improvement using an OLS
recombination. This adjustment is shown in a light blue color. We see that this final
recombination results in further reductions in MSPE.

Picture 7
Auto-Ineffi ciency when Combining Inflation Forecasts from the SPF and Consensus

Forecasting Horizon: 3 Months Ahead
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Second, we consider two sets of six month ahead forecasts for Chilean inflation:
those reported by Consensus Economics and those coming from the simple average
of eight SARIMA models fitted for Chilean inflation following the early work of
Pincheira & García (2012). Each SARIMA model is estimated with rolling windows
of forty observations. Out-of-sample forecasts are generated and thus we collect
predictions six months ahead. The sample period is a little different than before. We
work with 105 monthly observations from May 2001 until December 2009.

Picture 8 shows with a blue line that combination gains do exist for a wide region
of the interval (0,1). With a simple combination, the MSPE can go down from 1.70
(Consensus MSPE) to 1.09. The red line, however, shows that almost every single
combination is auto-ineffi cient. This allows for further improvement using an OLS
recombination. This adjustment is shown in a light blue color. We see that this
final recombination results in important reductions in MSPE. For instance, when
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λ = 0.30, the MSPE of the traditional combination is 1.09, yet the MSPE of the
adjusted recombination is only 0.65.

Picture 8
Auto-Ineffi ciency when Combining Inflation Forecasts from the SPF and Consensus
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There is an important shortcoming in these two applications: we have used all
the available data to compute sample estimates of the optimal weight and OLS
adjustment. This, of course, is impossible in a real time application. We move
towards a final exercise aimed at evaluating in a total out-of-sample fashion the
benefits from combination and from the OLS adjustment. We consider again a
rolling window of forty observations of forecasts and the target variable. Within
these rolling windows we compute both the optimal combination using λ∗ and the
corresponding OLS adjustment. We then build a real time sequence of combined
forecasts and OLS-adjusted forecasts. Table 1 next shows the result of this exercise.
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Table 1
MSPE of Different Combination Strategies
Out-of-Sample Results for Chilean Inflation

Consensus

3 months ahead 0.85

6 months ahead 2.69 1.84 1.19

0.65 0.60

Optimal Linear Combination Optimal Recombination

Combination gains and re-combination gains are quite important, especially at
longer horizons. This means that an OLS adjustment provides an useful way to
remove the auto-ineffi ciency of forecast combinations.

5 Summary and Conclusions

It is well known that weighted averages of two competing forecasts may reduce Mean
Squared Prediction Errors (MSPE) and generate certain problems. In this paper
we take an in-depth view of one particular type of problem stemming from simple
combination schemes. This problem is called forecast auto-ineffi ciency, and refers to
the notion of ineffi ciency analyzed by Mincer and Zarnowitz (1969).

Under mild assumptions we show that linear convex forecast combinations are
auto-ineffi cient with probability one, and therefore room for accuracy improvement is
almost surely possible. This implies that greater reductions in MSPE are possible and
has the additional implication that traditional optimal linear combination weights
might be sub-optimal in a broader sense. We also show that certain symmetry
condition is suffi cient to ensure that the traditional combination scheme is optimal
in this broader sense.

We also identify testable conditions under which every linear convex combination
of two forecasts is auto-ineffi cient. In particular, we show that the process of taking
averages of forecasts may induce ineffi ciencies in the combination, even when the
individual forecasts are auto-effi cient. The extent to which these ineffi ciencies are in-
deed relevant requires a case by case analysis. Nonetheless it is striking that in many
applications in which a number of different forecasts are available, the combination
of all of them seems to be the last step in the search of forecast accuracy, and no
attempt to take advantage of potential ineffi ciencies stemming from the combination
process is pursued.
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We illustrate our findings with an empirical application in which two different
forecast for Chilean CPI inflation are combined. In a totally out-of-sample exercise,
we show that gains from combination may be huge, but that the auto-ineffi ciency
induced by the combination may also be sizable. In our empirical application an
OLS-adjustment seems to remove this ineffi ciency quite well.

The extension of our results to the combination of more than two forecasts seems
conceptually straightforward, yet tedious and cumbersome. Further research may
include the aforementioned extension to combinations of any number of forecasts, as
well as a thorough empirical analysis of the benefits of our results in larger data sets.
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7 Appendix

7.1 Lemmas

Lemma 11

E[Y CuC ] = −λ2E [Y1 − Y2]2 + λE [Y1 − Y2] [u2 − Y2] + E [Y2u2]

E[Y CuC ] = λ2E [Y1u1] + (1− λ)2E [Y2u2] + λ(1− λ)E [Y1u2 + Y12u1]

Proof. Let us derive the first expression

E[Y CuC ] = E[λY1 + (1− λ)Y2] [λu1 + (1− λ)u2]

E[Y CuC ] = E [λ [Y1 − Y2] + Y2] [λ [u1 − u2] + u2]

= λ2E [(Y1 − Y2) (u1 − u2)] + λE [Y1 − Y2] [u2] +

+λE [u1 − u2] [Y2] + E [Y2u2]

Notice that

u1 − u2 = (Y − Y1)− (Y − Y2) = (Y2 − Y1) = − (Y1 − Y2)
therefore

E[Y CuC ] = −λ2E [Y1 − Y2]2 + λE [Y1 − Y2] [u2] +

−λE [Y1 − Y2] [Y2] + E [Y2u2]

so finally we have

E[Y CuC ] = −λ2E [Y1 − Y2]2 + λE [Y1 − Y2] [u2 − Y2] + E [Y2u2]

Let us derive the second expression. From

E[Y CuC ] = −λ2E [Y1 − Y2]2 + λE [Y1 − Y2] [u2 − Y2] + E [Y2u2]

we have

E[Y CuC ] = −λ2E [Y1 − Y2] [u2 − u1] + λE [Y1 − Y2] [u2 − Y2] + E [Y2u2]

= −λ2E [Y1u2 − Y1u1 − Y2u2 + Y2u1] +

+λE [Y1 − Y2] [u2]− λE [Y1 − Y2] [Y2] + E [Y2u2]

= −λ2E [Y1u2 − Y1u1 − Y2u2 + Y2u1] +

+λE [Y1 − Y2] [u2]− λE [u2 − u1] [Y2] + E [Y2u2]

= −λ2E [Y1u2 − Y1u1 − Y2u2 + Y2u1] +

+λE [Y1u2]− λE [Y2u2]− λE [u2Y2] + λE [u1Y2] + E [Y2u2]

= −λ2E [Y1u2 − Y1u1 − Y2u2 + Y2u1] + λE [Y1u2] +

+λE [Y2u1] + E [u2Y2] {−2λ+ 1}
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therefore

E[Y CuC ] = E [Y1u1]λ
2 + E [Y2u2]

{
λ2 − 2λ+ 1

}
+
{
λ−λ2

}
E [Y1u2 + Y2u1]

= λ2E [Y1u1] + (1− λ)2E [Y2u2] + λ(1− λ)E [Y1u2 + Y2u1]

Lemma 12

Cov(Y C , uC) = −λ2V [Y1 − Y2] +λCov(Y 1−Y 2, u2−Y 2) + Cov(Y 2, u2)

Cov[Y C , uC ] = λ2Cov(Y 1, u1) + (1− λ)2Cov(Y 2, u2) + λ(1− λ)Cov(Y 1, u2)+

+Cov(Y 2, u1)

Proof. Let us derive the first expression

Cov(Y C , uC) = Cov(λY1 + (1− λ)Y2, λu1 + (1− λ)u2)

Cov(Y C , uC) = Cov(λ [Y1 − Y2] + Y2, λ [u1 − u2] + u2)

= λ2Cov(Y1 − Y2, u1 − u2) + λCov(Y1 − Y2, u2) +

+λCov(u1 − u2, Y2) + Cov(Y2, u2)

Notice that

u1 − u2 = (Y − Y1)− (Y − Y2) = (Y2 − Y1) = − (Y1 − Y2)

therefore

Cov(Y C , uC) = −λ2V [Y1 − Y2] + λCov(Y1 − Y2, u2) +

−λCov(Y1 − Y2, Y2) + Cov(Y2, u2)

so finally we have

Cov(Y C , uC) = −λ2V [Y1 − Y2] + λCov(Y1 − Y2, u2 − Y2) + Cov(Y2, u2)

Let us derive the second expression. From

Cov(Y C , uC) = −λ2V [Y1 − Y2] + λCov(Y1 − Y2, u2 − Y2) + Cov(Y2, u2)
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we have

Cov(Y C , uC) = −λ2V [Y1 − Y2] + λCov(Y1 − Y2, u2 − Y2) + Cov(Y2, u2)

= −λ2Cov(Y1 − Y2, u2 − u1) +

+λCov(Y1 − Y2, u2)− λCov(Y1 − Y2, Y2) + Cov(Y2, u2)

= −λ2Cov(Y1 − Y2, u2 − u1) +

+λCov(Y1 − Y2, u2) + λCov(u1 − u2, Y2) + Cov(Y2, u2)

= −λ2 [Cov(Y1, u2)− Cov(Y1, u1)− Cov(Y2, u2) + Cov(u1, Y2)] +

+λCov(Y1, u2)− λCov(Y2, u2) + λCov(u1, Y2)− λCov(u2, Y2) +

+Cov(Y2, u2)

= −λ2 [Cov(Y1, u2)− Cov(Y1, u1)− Cov(Y2, u2) + Cov(u1, Y2)] +

+λCov(Y1, u2)− 2λCov(Y2, u2) + λCov(u1, Y2) + Cov(Y2, u2)

= −λ2 [Cov(Y1, u2)− Cov(Y1, u1)− Cov(Y2, u2) + Cov(u1, Y2)] +

+λCov(Y1, u2) + λCov(u1, Y2) + Cov(Y2, u2) {−2λ+ 1}

therefore

Cov(Y C , uC) = Cov(Y 1, u1)λ
2+Cov(Y 2, u2)

{
λ2−2λ+ 1

}
+

+
{
λ− λ2

}
[Cov(Y 1, u2) + Cov(u1, Y 2)]

= λ2Cov(Y 1, u1) + (1− λ)2Cov(Y 2, u2)+

+λ(1− λ) [Cov(Y 1, u2) + Cov(u1, Y 2)]

7.2 Proof of Proposition 9

We will use the following notation:

f(λ) ≡ E
(
uC
)2

= λ2E [u1 − u2]2 + 2λE [u1 − u2] [u2] + E (u2)
2

g(λ) ≡ E
[
Y CuC

]
= −λ2E [Y1 − Y2]2 + λE [Y1 − Y2] [u2 − Y2] + E [Y2u2]

= −λ2E [Y1 − Y2]2 + λS−2λE [Y1 − Y2] [Y2] + E [Y2u2]

h(λ) ≡ V
(
Y C
)

= λ2E [Y1 − Y2]2 + 2λE [(Y1 − Y2)Y2] + V (Y2)

S = E [Y1 − Y2]Y
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It follows that

f ′(λ) = 2λE [u1 − u2]2 − 2E [Y1 − Y2]u2
= 2λE [u1 − u2]2 + 2E [Y1 − Y2]Y2 − 2S

g′(λ) = −2λE [u1 − u2]2 + E [Y1 − Y2] [u2 − Y2]
= −2λE [u1 − u2]2 − 2E [Y1 − Y2] [Y2] + S

h′(λ) = 2λE [u1 − u2]2 + 2E [Y1 − Y2] [Y2]

therefore
f ′(λ) + h′(λ) + 2g′(λ) = 0 (21)

or

f ′ + g′ = −S
f ′ − h′ = −2S

The critical points of E [u∗∗]2 for λ ∈ (0, 1) must satisfy:

∂E [u∗∗]2

∂λ
= 0

which can be written as
∂ (f(λ)− g2(λ)/h(λ))

∂λ
= 0

so we have

f ′ −
[

2gg′h− g2h′
h2

]
= 0

or
h2f ′ − 2gg′h+ g2h′ = 0

using
f ′ + g′ = −S

we have

h2f ′ + 2g(S+f ′)h+ g2(f ′ + 2S) = 0

h2f ′ + 2gSh+ 2gf ′h+ g2f ′ + 2Sg2 = 0

h2f ′ + 2gf ′h+ g2f ′ + 2gSh+ 2Sg2 = 0

f ′ [h+ g]2 + 2gS [h+ g] = 0

[h+ g] [f ′ [h+ g] + 2gS] = 0
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now

h+ g = λE [Y1 − Y2] [u2 − Y2] + E [Y2u2] + 2λE [(Y1 − Y2)Y2] + V (Y2)

= λE [Y1 − Y2] [Y − 2Y2] + E [Y2u2] + 2λE [(Y1 − Y2)Y2] + V (Y2)

= λS+ E [Y2u2] + V (Y2)

= λS+ Cov(Y2, Y )

on the other hand,

f ′ [h+ g] =
[
2λE [u1 − u2]2 + 2E [Y1 − Y2]Y2 − 2S

]
[λS+ Cov(Y2, Y )]

2gS =
[
−2λ2E [Y1 − Y2]2 + 2λS−4λE [Y1 − Y2] [Y2] + 2E [Y2u2]

]
S

= −2Sλ2E [Y1 − Y2]2 + 2λS2−4λSE [Y1 − Y2] [Y2] + 2SE [Y2u2]

therefore

f ′ [h+ g] + 2gS = −2λSE [Y1 − Y2] [Y2] +

+
[
2λE [u1 − u2]2 + 2E [Y1 − Y2]Y2 − 2S

]
Cov(Y2, Y ) + 2SE [Y2u2]

= 2λ
(
Cov(Y2, Y )E [u1 − u2]2 − SE [Y1 − Y2] [Y2]

)
+

+2 [E [Y1 − Y2]Y2 − S]Cov(Y2, Y ) + 2SE [Y2u2]

= 2λ
(
Cov(Y2, Y )E [u1 − u2]2 − SE [Y1 − Y2] [Y2]

)
+

+2 [E [Y1 − Y2]Y2 − E [Y1 − Y2]Y ]Cov(Y2, Y ) + 2SE [Y2u2]

= 2λ
(
Cov(Y2, Y )E [u1 − u2]2 − SE [Y1 − Y2] [Y2]

)
+

+2E [Y1 − Y2] [Y2 − Y ]Cov(Y2, Y ) + 2SE [Y2u2]

= 2λ
(
Cov(Y2, Y )E [u1 − u2]2 − SE [Y1 − Y2] [Y2]

)
+

+2E [u1 − u2] [u2]Cov(Y2, Y ) + 2SE [Y2u2]

Let us recall that our first order condition is given by

[h+ g] [f ′ [h+ g] + 2gS] = 0

It follows that our critical values are the roots of

[h+ g]

and
[f ′ [h+ g] + 2gS]

But the only root of h+ g satisfies

λS+ Cov(Y2, Y ) = 0
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which means that our first critical value λ1 is given by

λ1 = −Cov(Y2, Y )

S

To analyze if this critical value is a local minimum we explore the following second
derivative:

∂2 (f(λ)− g2(λ)/h(λ))

∂λ2
=

∂

∂λ

[
∂ (f(λ)− g2(λ)/h(λ))

∂λ

]
=

∂

∂λ

[
[h+ g] [f ′ [h+ g] + 2gS]

h2

]
=

∂

∂λ

[[
f ′ [h+ g]2 + 2gS [h+ g]

]
h2

]

=

[
f ′′h2 − 2f ′hh′

h4

]
[h+ g]2 + 2

f ′

h2
[h+ g] [h′ + g′] +

+2S
[
g′h2 − 2ghh′

h4

]
[h+ g] + 2S

g

h2
[h′ + g′]

It follows that for λ1 we have h+ g = 0, therefore

∂E [u∗∗]2

∂λ |λ=λ1
= 2S

g

h2
[h′ + g′]|λ=λ∗ = 2S2

g

h2 |λ=λ∗

but
h(λ1) + g(λ1) = 0

so
g(λ1) = −h(λ1) = −V (λ1(Y1 − Y2) + Y2) < 0

therefore λ1 is a local maximum of our target function and it cannot be a solution
of our problem. We must then focus on the roots of [f ′ [h+ g] + 2gS]. They satisfy:

2λ
(
Cov(Y2, Y )E [u1 − u2]2 − SE [Y1 − Y2] [Y2]

)
+2E [u1 − u2] [u2]Cov(Y2, Y )+2SE [Y2u2] = 0

which means that, given that assumption (19) hold true, our second critical value
λ2 is given by

λ2 = − Cov(Y2, Y )E [u1 − u2] [u2] + SE [Y2u2]

Cov(Y2, Y )E [u1 − u2]2 − SE [Y1 − Y2] [Y2]
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Assumption (20) ensures that both roots λ1 and λ2 will not coincide. Because the
first order condition is a quadratic form with two different real roots, one of them
is bounded to be a local maximum and the other one is bounded to be a local
minimum. Given that we already proved that λ1 is a maximum then λ2 must be a
local minimum.
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